The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages

The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages
The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages

The Silkworm(Bombyx mori)microRNAs and Their Expressions in Multiple Developmental Stages

Xiaomin Yu1,2.,Qing Zhou1,2.,Sung-Chou Li4,5.,Qibin Luo1,3,Yimei Cai1,2,Wen-chang Lin4,6,Huan Chen1,3,Yue Yang1,2,Songnian Hu1,Jun Yu1*

1Key Laboratory of Genome Sciences and Information,Beijing Institute of Genomics,Chinese Academy of Sciences,Beijing,China,2Graduate University of Chinese Academy of Sciences,Beijing,China,3James D.Watson Institute of Genome Sciences,Zhejiang University,Hangzhou,China,4Institute of BioMedical Informatics, National Yang-Ming University,Taipei,Taiwan,5Bioinformatics Program,Taiwan International Graduate Program,Academia Sinica,Taipei,Taiwan,6Institute of Biomedical Sciences,Academia Sinica,Taipei,Taiwan

Introduction

As key regulators for gene expression at post-transcriptional levels,microRNAs(miRNAs)are a class of endogenous non-coding RNAs transcribed by RNA polymerase II with a size range of,22nt(nucleotides);they are processed from larger hairpin structures—known as pri-and pre-miRNAs—by two specialized proteins,namely Drosha and Dicer(or Dicer-like proteins,DCLs) [1,2].Mature miRNAs are incorporated into the RNA-induced silencing complex(RISC)with the Piwi/Argonaute(AGO)protein family to exert their functions[3],whereas their opposite strands, known as miRNAs*,are scrapped[4,5].Previous discoveries suggested that the strand whose59end is less stably paired as miRNA:miRNA*duplex is preferentially packaged into RISC [6,7].Similar to lin-4and let-7of Caenorhabditis elegans,the majority of miRNA genes are transcribed as independent transcriptional units[4,8,9]albeit a few of them were found in introns of pre-mRNAs and co-expressed with their host genes[5,10,11,12,13].A large fraction of miRNAs are conserved among closely-related species,and many even have homologs in distant species.For instance,more than a third of miRNAs found in C.elegans have homologs in humans[5],suggesting that they have important functions that are evolutionarily-conserved[14].miRNA genes are sometimes observed as clusters frequently transcribed as single polycistronic transcript[2,10],implying that they may share common functional relationships.Since lin-4and let-7were found 即使

有两部分成套

优先的

线虫

内含子部分

to regulate development in C.elegans[15,16],ample reports have suggested that miRNAs play significant regulatory roles under physiological(such as development)and pathological(such as cancers)conditions in plants,flies,fishes,and mammals [14,17,18,19,20,21].Although animal miRNAs tend to show imperfect base-pairing in39untranslated regions(39UTRs)of their target transcripts,a7-nt seed sequence starting from the second nucleotide at the59end of miRNAs pairs specifically with their target mRNA is reported to lead to decreased transcription and/or translational repression[11,22,23,24,25].Viruses also use their miRNAs to repress host genes that include transcriptional regulators,components of signal transduction pathways,B cell-specific chemokines,and cytokines[26,27,28].

Currently,5071miRNAs have been annotated in miRBase (release10.0)(https://www.360docs.net/doc/ae1399976.html,/sequences/)identi-fied by either experimental or computational approaches[29].For instance,direct sequencing and Northern blotting validations for endogenous small RNAs have been successful in identifying the majority of known miRNAs[26,30,31,32,33,34,35,36,37,38].One limitation of these approaches is its poor detectability for both low abundant miRNAs due to variable expression levels and their specificities of precise temporal and spatial expressions during developmental stages.For instance,in Drosophila melanogaster,mir-3, mir-4,mir-5,and mir-6are down-regulated in the transition from embryo to larva,whereas mir-100,mir-125,and let-7are up-regulated from larva to pupa[39].Another example is the fact that miRNAs are often expressed in a strict tissue-specific manner during development;for instance,miR-124a is expressed only in brain and spinal cord of vertebrates and ventral nerve cord of insects[40,41,42].Other examples are miR-1,miR-133,and miR-206;all are strictly expressed in muscles and heart[43,44,45,46]. Taking the advantage of computational algorithms that have been developed based on structural characteristics of miRNA precursors and phylogenetic conservation for the prediction of miRNAs[5,11,37,47,48,49,50,51]as well as the recently-se-quenced domesticated silkworm(B.mori)genome[52,53],we studied miRNAs in this economically important species by using a combined strategy—computational prediction and experimental identification.For the computational approach,we added custom-designed filters based on known characteristics of insect miRNAs in addition to software tools,such as Srnaloop[48].For the experimental approach,we initially made14small-RNA-specific cDNA libraries for the selected developmental stages throughout the life cycle of silkworms from pre-diapaused egg(embryo)to larva and moth,sequenced adequate amounts of clones from the libraries,and confirmed in part our in silico discoveries and predictions.We employed the stem-loop RT PCR to confirm the cloned novel miRNAs and analyzed the expression pattern of selected miRNAs in14developmental stages.In the context of predicted target genes and life history traits of silkworms;we also discussed potential functions of several stage-biased miRNAs. Results

Computational identification of conserved miRNAs and novel pre-miRNA candidates

We first surveyed the B.mori genome assembly to predict candidate pre-miRNAs using Srnaloop program and custom-designed filters(see Materials and Methods for details),we then searched Rfam database[54],an insect ncRNA dataset,and a CDS dataset assembled from the silkworm genome for removing those overlapping with these specialized sequences,yielding 7,241,352candidate pre-miRNAs.Since most of the mature miRNAs are evolutionarily-conserved among diverged species[5], we first identified hairpin sequences from B.mori,which are homologous to known metazoan miRNAs by searching miRBase 10.0[29],and identified114distinct conserved miRNAs.Of them,there were21previously-known miRNAs from B.mori[52] (Table S1).78were classifiable into known families based on their precursor sequences,and45have homologs among known insect miRNAs.We also discovered six pairs that are organized as clusters;bmo-miR-1/bmo-miR-133,bmo-let-7/bmo-miR-100, bmo-miR-12/bmo-miR-283,and bmo-miR-275/bmo-miR-305 are separated by less than20kb apart and in the same orientation; bmo-miR-9b overlaps with bmo-miR-79on the opposite strand; and bmo-miR-2is adjacent to bmo-miR-13but on the reverse strand in a tail-to-tail orientation about some twenty basepairs away.Most strikingly,there are six members of bmo-miR-466 family,and three have multiple copies.For instance,bmo-miR-466e has16copies in the current silkworm genome assembly. For predicting novel pre-miRNA candidates,we used filters based on sequences and structure features to limit false positives, including GC content as well as minimum free energy of entire hairpins,and core hairpin structures.To evaluate the performance of our pipeline,we carried out a sensitivity test.Starting from279 insect pre-miRNAs found in five known insect genomes,we obtained279and252pre-miRNAs after folding and filtering procedures,yielding sensitivities of100%and90.3%,respectively (Table1).

We also selected candidates whose sequences and structure features are consistent with reference range values as listed in Table2.In addition,we searched the sequences against genomic sequences of D.melanogaster,Drosophila pseudoobscure,Apis mellifera, Anopheles gambiae as well as the silkworm ESTs.Our procedure yielded148novel non-redundant pre-miRNAs candidates that are anchored to the genome sequence and tailored with relative abundances although in most cases only one arm of these pre-miRNAs is processed into mature miRNAs and conserved among closely related species.Our result indicated that conserved arms

Table1.Sensitivity test on279published insect pre-miRNAs.

Tested miRNAs Number of miRNAs Number of miRNAs after Srnaloop Number of miRNAs after filters A.gambiae383837

A.mellifera545443

B.mori212118

D.melanogaster939384

D.pseudoobscure737370

Total(Sensitivity)-279(100%)252(90.3%)

doi:10.1371/journal.pone.0002997.t001

(39arm or59arm)in closely related species are more likely to harbor authentic miRNAs.For instance,S1has a conserved39 arm among D.melanogaster, D.pseudoobscure, A.mellifera and A.gambiae,better than its59arm.We also found that28candidates (,18.9%)matched silkworm ESTs;shows that they are tran-scribed,which is consistent with them being real miRNAs(Table S2).

Cloning and identification of silkworm miRNAs

We also took a direct-cloning approach to identify novel miRNAs.We first constructed14independent small RNA libraries(in an insert-size range of15to40nucleotides)across the life span(from fertilized eggs to pre-diapaused embryos and all the way to moth;see Materials and Methods)of silkworms.We acquired6,720clones(480clones from each library)and3,721 sequences are in a length range of16to40nucleotides;69%of them have at least one match in the silkworm genome sequence annotated in SilkDB(https://www.360docs.net/doc/ae1399976.html,/)and the database posted by the silkworm genome research program (http://sgp.dna.affrc.go.jp/index.html).The remaining31%did not match anything and were not analyzed further.Among the cloned small RNAs,we also identified rRNA(9%),tRNA(5%), sn/snoRNA(1%),and other non-coding RNAs(4%)as well as a small fraction(2%)that contains breakdown products of mRNAs. 2%of the sequences are believed to be putative miRNAs(Table3), and the remaining46%of short sequences failed to be classified based on the current silkworm genome sequence assembly.

Our sequence analyses on the sequenced clones have yielded55 miRNAs,representing17unique conserved miRNAs already discovered computationally.We also found several miRNA*s, such as bmo-miR-263a*in bluish egg(BS),bmo-miR-71*in spinning larva(SS)and pre-pupa(PPS),which providing solid evidence for Dicer-like processing[55,56,57],as it was reported that miRNA*s can also be functional[43,58,59].Another group of 11clones representing11novel putative miRNAs in our predicted data were confirmed by direct cloning(Table3).In addition,four highly-conserved miRNAs(bmo-miR-278,bmo-miR-306,bmo-miR-317and bmo-miR-768)and three less-conserved miRNAs (bmo-miR-1920,bmo-miR-1921and bmo-miR-1922)were also cloned directly,which were not predicted based on our predicting criteria albeit their canonical precursors(Figure1).To validate the novel miRNAs identified through direct cloning(bmo-miR-1920—bmo-miR-1926and bmo-miR-2007—bmo-miR-2010), we deployed a stem-loop RT-PCR to assess the expression of these miRNAs(except bmo-miR-2009*).Expression of all13novel miRNAs at the different developmental stages was confirmed (Figure2).

Direct cloning allowed us to identify several mature miRNAs sequences,such as bmo-miR-263a,bmo-miR-282*,and bmo-miR-317,which vary in their59and/or39ends on the same stem of their precursors(Table3).It is difficult to recognize accurate sequences of mature miRNAs solely by computational prediction and Northern blotting.Direct sequencing provides solid evidence, to the level of single nucleotide.For instance nine miRNAs in our dataset(bmo-miR-1,bmo-miR-10,bmo-miR-13,bmo-miR-31, bmo-miR-71,bmo-miR-77,bmo-miR-263a,bmo-miR-275,and bmo-miR-317)have nucleotide differences in59or/and39end of their sequences when compared the mature forms to their predicted sequences or homologs in closely related species (Figure3).Moreover,we found that bmo-miR-2008from the59 stem of putative pre-miRNA S147yields three different segments as mature miRNAs(Figure4).

Based on the numbers of sequenced clones per library,assuming unbiased cloning process,miRNA expression profiles in B.mori appeared stage-biased.We detected expressions of miRNAs in multiple developmental stages,and the frequency of any single miRNA appearing in sequenced libraries varied from one to seven (Table3).For instance,aside from a few commonly expressed miRNAs,such as bmo-miR-8,bmo-miR-13,bmo-miR-263a, bmo-miR-275,bmo-miR-279,bmo-282*,bmo-miR-285and bmo-miR-306,most of them were found development-related (Table3)although some may be due to inadequate sampling that often results less reliable statistics.Furthermore,we noticed that the highest number of miRNAs,both in sorts and quantities,were detected in the library made from RNA isolated at molting larva stage(MLS)—33out of77sequences,representing12different miRNAs.

Analyzing15mature miRNAs expression patterns and potential targets

We analyzed the expression of15mature miRNAs from14 different stages with stem-loop RT-PCR(Figure5).The expression of bmo-miR-92varied across the14developmental stages,highly expressed at five stages—pre-diapaused egg(PDS) (p=0.0014),diapause-broken egg(BKS)(p=0.0011),pupa(PS) (p=0.0017)and PPS with slightly less significance(p=0.067)—but lower in other stages,and the lowest at diapaused egg(DS)stage (p=0.035).Bmo-miR-10and bmo-miR-14showed a synchronized trend where a sharp increase at trachea appearing stage(TAS) (p=0.0048and0.0031,respectively),NLS(p=0.011and0.00007, respectively),and MLS(p=0.012and0.0012,respectively).Bmo-miR-31,bmo-miR-71,and bmo-miR-77displayed a very similar expression pattern,higher expression at NLS(p=0.027,0.035and 0.0064,respectively);bmo-miR-31and bmo-miR-77are also expressed at a higher level at MLS than at other stages(p=0.019 and0.0082,respectively).Bmo-miR-8,bmo-miR-9a,and bmo-miR-263a,similar to bmo-miR-1,showed a slight elevation after diapause-broken stage(DBS)and kept a relatively constant level thereafter.In the case of bmo-miR-278and bmo-miR-iab-4-3p, our results showed that they displayed distinct increases at MLS (p=0.022),late fifth-instar larva(LFLS)(p=0.048),PPS (p=0.042),and DS(p=0.0083),SS(p=0.012),PS(p=0.022), respectively.The expression of bmo-miR-7and bmo-miR-275 maintained at a relatively stable level in14development stages except bmo-miR-275alone displayed a weak increase at both PPS and PS.Bmo-miR-13showed fluctuating trend with its lowest level at LFLS(p=0.042).In general,most of the miRNAs exhibited the highest expression at NLS and MLS(Spearman’s r=0.65, p=0.01)but the lowest expression at DS;these results are in accord with the cloning results for the MLS,where abundant miRNA expression was observed.

We used the PITA program to identify the target genes of the15 mature miRNAs with a default criterion and DD G#25kcal/mol. From the long list of the target genes,we selected potential targets with high probability after taking both expression patterns of

Table2.Distributions and optimal ranges of quantifiable features of pre-miRNAs.

GC content Core mfe a Hairpin mfe b Ch_ratio c Distribution16–70232.1–28.1246.3–2120.39–0.99 Reference value30–60229.7–210240–2150.4–0.99

a Minimum free energy of the whole hairpin.

b Minimum free energy(mfe)of the core of hairpin structure

c Ratio of core mfe to hairpin mfe.

doi:10.1371/journal.pone.0002997.t002

Table3.miRNAs expressed in B.mori a.

Name Matched

prediction

candidates c Sequence(59to39)

Total

clones PDS DS DBS BKS TAS BS NLS FLS MLS LFLS SS PPS PS MS

bmo-miR-1H2UGGAAUGUAAAGAAGTGTGGA11

bmo-miR-7H92UGGAAGACUAGUGAUUUUGUUGU11

bmo-miR-8H101UAAUACUGUCAGGUAAAGAUGUC312

bmo-miR-9a H110UCUUUGGUUAUCUAGCUGUAUGA11

bmo-miR-10H3UACCCUGUAGAUCCGAAUUUGU22

bmo-miR-13H11UAUCACAGCCAUUUUUGACGAGUU211

bmo-miR-31H39GGCAAGAAGUCGGCAUAGCUGU22

bmo-miR-71H95UGAAAGACAUGGGUAGUGAGAUGU11

bmo-miR-71*H95UCUCACUACCUUGUCUUUCAUG11

bmo-miR-77H99UCAUCAGGCCAUAGUUGUCCA11

bmo-miR-92H104AAUUGCACCAAUCCCGGCCUGC11

bmo-miR-263a b H22AAUGGCACUGGAAGAAUUCACGGG514

AAUGGCACUGGAAGAAUUCACGG532

AAUGGCACUGGAAGAAUUCACG11173

AUGGCACUGGAAGAAUUCACG11

AAUGGCACUGGAAGAAUUCA44

bmo-miR-263a*H22CUCUUAGUGGCAUCAC11

bmo-miR-263b H23CUUGGCACUGGGAGAAUUCA11

bmo-miR-275H24UCAGGUACCUGAAGUAUCGCG11

bmo-miR-278–UCGGUGGGAUCUUCGUCCGUUU11

bmo-miR-279H27UGACUAGAUCCACACUCAU211 bmo-miR-282*b H29GACAUAGCCUGAUAGAGGUUACG211

ACAUAGCCUGAUAGAGGUUACG11

bmo-miR-285H31UAGCACCAUUCGAAUUCAGUGC41111

bmo-miR-306–UCAGGUACUAGGUGACUCUGA321

bmo-miR-317b–AGUGAACACAGCUGGUGGUAU22

UGAACACAGCUGGUGGUA11

bmo-miR-768–GAGGAUGAAAUUAUCGAGCUAC11

bmo-miR-iab-4-3p H113CGGUAUACCUUCAGUAUACGUAAC11

bmo-miR-1920–GCGUGCGCGUAGCGAGUUC11

bmo-miR-1921–UGAGAUUCAGCCUUGCGCCAGGU11

bmo-miR-1922–GUUCGUCGUGGAUUUAAGA11

bmo-miR-1923S105UAAUCGCGUACCGUUGCAUAGCCGUGGC11

bmo-miR-2008b S147CGGCGAGAGGGACGCUCCUUAGAGUCG11

AGGGACGCUCCUUAGAGUCGGGUU11

GCGAGAGGGACGCUCCUUAGA11

bmo-miR-2009S127GACCCGAAAGAUGGUGA11

bmo-miR-2009*S127GAUGGAGGAUCGUAGCA11

bmo-miR-2010S140CACCACGGAAACACAAUAAUUG11

bmo-miR-1926S104AGGAAUUCUAAAGCAAAAAGG11 bmo-miR-2007S122UAAAAACGUGCGUUGGCCG11

bmo-miR-1924S45UGAUGUCCGCGGAGGUGUAGUG11

bmo-miR-1925S20UUUUCAACAUGGUAUGGAC11

Total clones77313124413359722

a Pre-diapaused egg(PDS);Diapaused egg(DS);Diapause-broken egg(DBS);Blastokinesis stage egg(BKS);Trachea appearing stage egg(TAS);Bluish egg(BS);Newly-hatched larva(NLS);Fourth-instar larva(FLS);Molting larva(MLS);Late fifth-instar larva(LFLS);Spinning larva(SS);Pre-pupa(PPS);Pupa(PS);Moth(MS).

b The sequences have length heterogeneity found on the59and/or39end,and different mature forms from the same stem of precursor are also listed.

c H,ID of miRNAs predicte

d based on homolog conservation comparison with known Metazoa miRNAs;S,ID of putativ

e miRNAs predicted based on Sequence& Structural features filters.

doi:10.1371/journal.pone.0002997.t003

miRNAs and silkworm life traits into account,the targets predicted or confirmed in Drosophila previously were also listed (Table 4).These target genes involved those of hormone-regulated pathways (such as myosuppressin receptor/BMSR,juvenile hormone esterase/Jhe,juvenile hormone acid methyltransferase/Jhamt,allatostatin receptor,bombyxin and RXR type hormone recep-tor/BmCF1),cell cycle control (such as inhibitor of apoptosis protein/Iap ,annexin/EN16b,SCF apoptosis response protein/SCF,and serine/threonine protein phosphatase 6),signal transduction (such as notch homolog,presenilin enhancer,and achaete-scute-like protein/ASE),and binding (such as DNA supercoiling factor and RNA unwinding factor/vas ).

Discussion

Performance of our prediction procedures

Our prediction protocol took the advantage of previous studies [48,60]as well as custom-designed conditional filters.In particular,

we used shared features of insect mature miRNAs and pre-miRNAs,and the protocol gave rise to a sensitivity of 90.3%for known insect pre-miRNAs.However,several pre-miRNAs were not detected due to the stringency of the filters but discovered with our direct cloning experiments,including bmo-miR-278,bmo-miR-306,bmo-miR-317,bmo-miR-768,bmo-miR-1920,bmo-miR-1921,and bmo-miR-1922.Therefore,a combined approach is of essence to identify more miRNAs in any species even when genomic sequence is available and of high quality.

miRNA clusters in silkworms

Six pairs of clustered miRNA genes were uncovered despite the fragmented nature of the draft sequence assembly.We noticed that the bmo-miR-1/bmo-miR-133pair is highly conserved across diverse taxa including not only insects,such as honey bee and red flour beetle (data unpublished),but also vertebrates,such as frog,chicken,mouse,and human.In the silkworm genome

assembly,

Figure 1.Predicted stem-loop structures of precursors and mature forms (highlight in red)of newly-identified miRNAs based on our direct cloning approach from the silkworm.Hairpins longer than 120nt were truncated;these hairpins are indicated by a double slash preceding the stem.Scaffold numbers and genomic positions are indicated in parentheses.

doi:10.1371/journal.pone.0002997.g001

Figure 2.Expression confirmation of novel miRNAs identified by cloning from specific development stages of silkworm using stem-loop RT PCR.For bmo-miR-2008,we detected its three different mature segments,bmo-miR-2008a,bmo-miR-2008b and bmo-miR-2008c;for bmo-miR-2009,we detected only the mature segment from 59arm of its precursor.U6snRNA serves as a positive control.doi:10.1371/journal.pone.0002997.g002

this pair is situated on the antisene strand between the mind bomb homolog 1(MIB 1)and CG30492-PC,but in other species,they are all exclusively harbored by the antisense strand of the same intron (intron12)of MIB1.MIB1as a ubiquitin ligase interacts with the intracellular domain of Delta and promoting its ubiquitylation and internalization for efficient activation of Notch pathway [61].In Drosophila ,miR-1functions in Notch pathway through targeting the Notch ligand,Delta [62].In frog embryos,miR-1promotes muscle differentiation by targeting histone deacetylase4(HDAC4)that acts as a transcriptional repressor in the Notch pathway [46].These findings give us clues that conservative co-localization of the miR-1/miR-133cluster and its antisense gene may exhibit their conserved functions in various species.Another pair of interesting clustered miRNAs in the silkworm genome contains bmo-miR-2and bmo-miR-13,which are classified into the miR-2family based on sequence similarity.Those two miRNAs also form a cluster in D.melanogaster and have been defined as proapoptotic K-box family miRNAs for regulating Notch target genes and K-box

containing genes such as proapoptotic genes grim ,reaper ,and sickle [11,23,63].The miR-2family has been implicated in the control of apoptosis [23,64].Coincidently we detected bmo-miR-13in two stages:late fifth-instar larva (LFLS)and pupa stages (PS),and its potential targets also include notch-like gene and inhibitor of apoptosis gene (Iap )(Table 4)suggesting that bmo-miR-2/13have similar functions in silkworms and fruitflies.

Imprecise and alternative cleavage of Dicer and origins of new functions for miRNAs

Some of the conserved miRNAs reported here have nucleotide difference in their 59and/or 39ends as compared with predicted sequences or homologs in closely-related species.Especially in bmo-miR-263a (Figure 3),changes of one nucleotide in 59or more in 39ends may not affect their regulatory roles because a mechanism for selecting target genes is based on nucleotide shuffling of a 7-nt seed sequence starting from the second nucleotide at the 59end of miRNAs.Such end polymorphism of miRNAs has also been observed by others using small RNA cloning approach [43,65]and other methods,such as RNA-primed Array-based Klenow Extension (RAKE)[31].The 59and/or 39heterogeneity might be mainly attribute to the less precise Drosha/Dicer processing,degradation at the 59and/or 39end and addition of untemplated nucleotides to the 39ends of miRNAs [56,66].In silkworms,such changes may occur in a similar ways as in other well-studied species for better performances in regulating their target genes.Although there has not been evidence to explain the functional implication of the sequence heterogeneity at 59and/or 39ends,our findings may support the idea that such nucleotide changes possibly affect the stability/subcellular localization of miRNAs and/or alter chemically dynamic parameters of miRNA-target interactions,thus induce miRNAs to select new target genes [25,66].The sufficient variations flank mature miRNAs could contribute to the evolutionary diversification of these key regulatory genes [67].In our collection,for instance,the sequence of bmo-miR-2008has three different mature forms deducible from the same stem of its precursor S147(Figure 3);this phenomenon supports the possibility that imprecise and alternative cleavage

during

Figure 3.Length heterogeneity is found in the 59and/or 39end,the cloned sequences (C)of bmomiR-1,bmo-miR-10,bmo-miR-13,bmo-miR-31,bmo-miR-71,bmo-miR-77,bmo-miR-263a,bmo-miR-275and bmo-miR-317have nucleotides difference (highlighted in red)in 59and/or 39ends of the sequences as compared with their predicted sequences (P)or homologs among closely related species.

doi:10.1371/journal.pone.0002997.g003

Figure 4.Three different segments of cloned bmo-miR-2008(highlight in red,blue and green respectively)derived from the 59arm of its predicted pre-miRNA S147.Scaffold number and genomic positions are indicated in parentheses.doi:10.1371/journal.pone.0002997.g004

Dicer processing of mature miRNAs may allow miRNAs to acquire new functions.However,functional validation is needed to convince such active roles of Dicer contributing to the evolution of miRNAs.

Stage-biased miRNAs and their potential functions

Our direct cloning approach served two basic purposes:discovering new miRNA candidates and obtaining rough frequencies in a per library manner.Our results offer

indications

Figure 5.Expression profiles of 15mature miRNAs in 14developmental stages.Data from each miRNA were showed as dendrograms indicating expression correlation among genes.Samples and miRNAs are displayed in rows and columns,respectively.The relative expression values ranged from +5log 10to 25log 10.doi:10.1371/journal.pone.0002997.g005

Table 4.High-probability targets of 15silkworm miRNAs.

No miRNAs Predicted targets (Known)*Predicted targets (Novel)

1bmo-miR-1Hr46,HDAC4,Delta1BMSR,Cjhbp,Jhe,eclosion hormone,dopa decarboxylase 2

bmo-miR-7

Aop ,HLHm3,Tom ,YAN,hairy

Ptsp,ecdysteroid-regulated 16kDa protein precursor,vas ,dopa decarboxylase,Jhamt,SCF apoptosis response protein,presenilin enhancer,BMSR,Ago2,Bras1

3bmo-miR-8Ptp99A ,atrophin ,Lpr4,Cdc2,BmCF1,Bras1,stathmin ,Pbanr,Jhamt,trehalase 4bmo-miR-9a Br ,Hr46,SOPs ASE,Ago2,chiB4,Jhe,thymosin isoform 1,BRFa,Notch homolog,stathmin ,

5bmo-miR-10Scr ,HOXA3E75,BmCF1,ecdysone receptor,Jhe,Eck ,EN16b

6

bmo-miR-13

Rpr ,hb ,

abnormal wing disc-like protein,chiB4,Lysp ,Scr ,MOF protein,

Adamts-like protein,heptahelical receptor,Cjhbp,BMSR,Iap ,notch-like protein

7bmo-miR-14Br ,NetA ,EcR ,Eip93F ,Drice E75,BmBRC,BmCF1,BmCyc b,Jhe,Sgf-1

8bmo-miR-31NetB ,grim ,reaper ,sickle presenilin enhancer,Adamts-like protein,Ago2,Bras2,allatostatin preprohormone,eclosion hormone,Cjhbp

9bmo-miR-71-pbp2,Ago2,ecdysone 20-hydroxylase,ecdysteroid-phosphate phosphatase,Pbanr,BRFa

10bmo-miR-77-SCF apoptosis response protein,Jhe,Iap ,eclosion hormone,septin ,Jhamt,20-hydroxy-ecdysone receptor,bombyxin

11bmo-miR-92Hr96

Eck,myosin light polypeptide,BmCyc b,tropomyosin isoform 2,Boceropsin ,DNA supercoiling factor,EN16b

12

bmo-miR-263a

Abd-A ,Clk ,dbt ,tws ,slo

presenilin enhancer,calreticulin,ecdysteroid-regulated 16kDa protein precursor,Scr ,allatostatin receptor,dopamine transporter,caspase-1,allatostatin receptor

13bmo-miR-275Scr ,Drl-2,NetA ,Bras2,Wcp4,presenilin enhancer,Pbanr,Rack1,BIR,cell death-regulatory protein

14

bmo-miR-278

expanded

BIR,Jhamt,Iap ,ecdysone receptor,allatostatin preprohormone,allatostatin receptor,Rieske-domain protein Neverland,BmCF1,Eck,thymosin isoform 2,chitinase-like protein

15bmo-miR-iab-4-3p -

BmDHR-2,cell death-regulatory protein,BMSR,serine/threonine protein phosphatase 6,PKG-II,Sgf-1,allatostatin preprohormone,dopa decarboxylase,Adamts-like protein,IPPI_Bm

*

Those target genes have been predicted or confirmed in Drosophila .doi:10.1371/journal.pone.0002997.t004

of stage-biased expression of miRNAs in B.mori.In particular the most abundant miRNAs are found in NLS and MLS.Stage-biased miRNAs,such as bmo-miR-92at PDS,bmo-miR-10at NLS and MLS,bmo-miR-iab-4-3p at DS,SS and PS,may play crucial roles in regulating development-related genes.These stage-biased miRNAs provide insights into the mechanisms in regulating the developmental stages of B.mori.

As shown in Figure5,bmo-miR-iab-4-3p exhibited a relatively high expression level at DS and SS,reaching its expression peak at PS(p=0.022).We noticed that its predicted target genes—BMSR and cell death-regulatory protein—may be suppressed by bmo-miR-iab-4-3p at PS,resulting in normal level of ecdysone and inducing apoptosis of larval obligatory tissues as well as differentiation of imaginal discs at PS.Remarkably,bmo-miR-iab-4-3p displayed a relatively high level at DS whereas all other 14miRNAs kept a low level expression.Previous research indicated silkworm cells are suspended in G2at DS[68,69],and Ser/Thr protein phosphatase,targeted by bmo-miR-iab-4-3p, controls the transition of G2to M[70],suggesting that bmo-miR-iab-4-3p may play a pivotal role in keeping embryonic cells at G2 by suppressing the function of Ser/Thr protein phosphatase.In addition,dme-miR-92a,the ortholog of bmo-miR-92,was found expressed in the brain primordium and a subset of the ventral nerve cord in Drosophila[42],implying its possible role in regulating brain and nerve development.We also found Boceropsin, an important cerebral opsin of silkworms[71],is a potential target of bmo-miR-92.The relatively low expression of bmo-miR-92at TAS and bluish egg stage(BS)may be essential for the function of Boceropsin and normal development of stemma.

The expression patterns of bmo-miR-10and bmo-miR-14are very similar,and they also shared several common targets,such as ecdysone receptor(EcR),orphan nuclear receptor(E75),BmCF1, and Jhe.Varghese and Cohen have reported that miR-14plays a key role in modulating the positive autoregulatory loop by which ecdysone sensitizes its own signaling pathway[72].Aside from EcR,bmo-miR-10and bmo-miR-14may together down-regulate the expression of Jhe,inducing juvenile hormone to accumulate slowly at late MLS for normal larva development after ecdysis. Molting stage is composed of a series of successive processes including hypodermal cells activating,ecdysial fluid secreting, cuticular chitin and exoskeleton degrading,new epidermis formation,and old epidermis exuviation.The periodic ecdysis primarily orchestrated by ecdysone and juvenile hormone is a distinct characteristic in life cycle of silkworm[73].Abundant expressions of miRNAs at MLS implicated that miRNAs may be fine-tuning this complicated and transient process.This result also coincides with the expression pattern of bmo-let-7reported previously[74],which revealed that the expression level of bmo-let-7is higher at the beginning of each molt than at other periods. According to our results,bmo-miR-31,its homolog dme-miR-31a is expressed in a pair-rule pattern of14stripes and in the foregut, anterior endoderm,and hindgut[42],and miR-31was also found to have a high expression level in the small intestine of mammals

[75],which contributes to the tumorigenesis and the acquisition of

a more aggressive phenotype in human colorectal cancer[76]. Those findings provided clues that bmo-miR-31at MLS may control epithelial metabolism during molting.Another MLS-biased miRNA,bmo-miR-278,was also found at MLS,and its homolog dme-miR-278was proven to control energy homeostasis in Drosophila,since miR-278mutants have elevated insulin production and elevated circulating sugar[77].The relatively high expression level suggested that bmo-miR-278,in company with synchronized expressions of bmo-miR-77,bmo-miR-10and bmo-miR-14,may play a similar role in regulating energy metabolism at molting stage,compromising for the conflict of energy-hungry process and fasting behavior by targeting insulin receptor-like protein precursor(BIR),bombyxin,and BmCF1. Our cloning and real-time PCR results showed the expression of miRNAs is outstanding in stage of MLS,both in sorts and quantities.These discoveries shed lights on the fine-tuning mechanism of miRNAs in regulating different developmental stages of B.mori.Further investigations are needed to expand our comprehensive understanding of the modulating networks of miRNAs in the development of B.mori and even other insects. Materials and Methods

Experimental materials from silkworms

Our starting materials were from HCl-treated diapaused eggs (they are actually developing embryos but here we used the common word egg instead)of Chinese silkworm strain Dazao provided by the Sericultural Research Institute,Chinese Academy of Agricultural Sciences,Zhenjiang,P.R.China.Eggs were incubated at2561u C under illumination,and larvae were reared on an artificial diet produced by the Sericultural Research Institute of Shandong,P.R.China.Eggs were incubated at25u C for30 days,and then transferred to4u C and kept cold for2months to terminate diapause.All developmental stages of the silkworm were obtained in the following manner:(1)eggs laid within a20-hour period for pre-diapause stage(PDS),(2)eggs laid within40–48hours for diapause stage(DS),(3)chilled eggs just before revival for diapause-broken stage(DBS),(4)eggs collected72hours after diapause-broken stage for blastokinesis stage(BKS),(5)eggs collected120hours after diapause-broken stage for trachea-appearing stage(TAS),(6)eggs collected200hours after diapause-broken stage for bluish stage(BS),(7)larvae hatched at the first day were collected for newly-hatched larva stage(NLS),(8) larvae collected on day3of the fourth-instar for fourth-instar larva stage(FLS),(9)larvae collected at fourth-molting for molting larva stage(MLS),(10)larvae collected on day4of the fifth-instar for late fifth-instar larva stage(LFLS),(11)larvae collected at spinning for spinning stage(SS),(12)larvae collected2day after cocooning for pre-pupa stage(PPS),(13)pupas collected6days after cocooning for pupa stage(PS),and(14)moths collected before mating for moth stage(MS).

Computational prediction of microRNAs

We used Srnaloop to predict putative miRNAs from the silkworm genome.The genome assembly and some functional annotations were downloaded from SilkDB(https://www.360docs.net/doc/ae1399976.html,. cn/)and Silkworm genome research program(http://sgp.dna. affrc.go.jp/index.html).The optimized parameters for Srnaloop program were described previously[60],except for the parameter ‘‘-l90’’,which was specific to identify hairpins shorter than90 bases and was based on observations on known insect pre-miRNAs.We screened those hairpin sequences using overlapping filter developed by Li et al[60].For removing other non-coding RNAs,we used Rfam database(https://www.360docs.net/doc/ae1399976.html,/ Software/Rfam/)and assembled a database of rRNA,tRNA, snRNA,snoRNA sequences by querying GenBank(http://www. https://www.360docs.net/doc/ae1399976.html,/Genbank/index.html),with the appropriate feature keys(D.melanogaster,D.pseudoobscure,A.mellifera,B.mori and A. gambiae)as what in the insect ncRNA database.We also used a data set of silkworm CDS sequences(http://silkworm.genomics. https://www.360docs.net/doc/ae1399976.html,/)to screen out protein-coding sequences.

Two strategies were taken to predict conserved and novel miRNAs.The first strategy for obtaining homologs or orthologs of previously validated miRNAs,and candidate hairpins were searched

against sequences of known metazoan miRNAs in miRBase(release 10.0)[78].Based on the nomenclature of miRNAs,newly identified miRNAs with less than two bases variations against known miRNAs were classified into the same miRNAs family.

The second strategy for predicting novel miRNAs in the remaining hairpin sequences is to reduce the number of false predictions of pre-miRNAs based on Srnaloop.We applied several additional sequence/ structure filters such as GC content,minimal free energy of the full-length hairpin(hairpin mfe),minimal free energy of the core hairpin structure(core mfe),and the ratio of core mfe to hairpin mfe (ch_ratio)to select authentic pre-miRNAs as described previously [60].We also investigated features of known mature miRNAs and their precursors of D.melanogaster,D.pseudoobscure,A.mellifera,B.mori and A.gambiae.The candidate hairpins with sequence and structural features within the optimized reference range values of insect miRNAs were extracted for further analysis.

To assemble our own predicted miRNAs database,we searched putative pre-miRNAs against genomic sequences of D.melanogaster, D.pseudoobscure,A.mellifera and A.gambiae from UCSC(http:// https://www.360docs.net/doc/ae1399976.html,/)and silkworm EST sequences downloaded from NCBI dbEST(https://www.360docs.net/doc/ae1399976.html,/dbEST/index. html)for sequence conservation and analyzed their expression levels.We extracted the conserved pre-miRNAs whose59arm or 39arm have$20-nt continuous fragments identical to a subject sequence and the opposite arm have at least15-nt fragments matching the same subject sequence.

Cloning of small RNAs

The isolation and enrichment procedure for small RNA fraction were performed by using the mir Vana TM miRNA Isolation Kit (Ambion,Austin,TX),and isolated small RNAs were further separated with flashPAGE TM Fractionator(Ambion,Austin,TX) according to the manufacturer’s manuals.Small RNAs was cloned with special adaptors.The39adapter oligonucleotide(59-pUUUc-tatccatggactgtx-39,where uppercase,lowercase,p,and x stand for RNA,DNA,phosphate,and inverted deoxythymidine,respectively) with a59monophosphate and a39inverted deoxythymidine to prevent self-ligation was ligated first to the small RNA preparation with T4RNA ligase(NEB)at37u C for1h.The ligation product was then recovered after fractionation and ligated to the59adapter(59-tgggaattcctcactAAA-39).The ligation product was fractionated again and reverse-transcribed by using a RT primer(59-TACAGTC-CATGGATAGAAA-39),followed by PCR amplification with the reverse(RT primer)and forward(59-CATGGGAATTCCTCAC-TAAA-39)primers.The gel-purified PCR products were finally ligated to pGEM-T vector and transformed into Electro-MAX TM DH10B TM competent cells(Invitrogen).

Sequence analysis

We used PHRED,CROSS_MATCH,and BLASTN for automated base calling,vector removal,and sequence compari-son,respectively[79,80].After trimming off low-quality sequences, we compared miRNA candidates ranging from16nt to40nt in length to the silkworm genome sequence for putative origins,and those with perfect matches were searched against Rfam and our custom-curated insect ncRNA databases to remove sequences that are neither siRNAs nor miRNAs based on their sequence and structural features.We used the silkworm CDS database to identify and to remove sequences from degradations of mRNAs, and we also confirmed the candidate sequences by identifying query sequences among our predicted miRNAs and in miRBase 10.0.To get a prediction of the folding of these miRNAs,the candidate sequences along with100-nt upstream and downstream flanking sequences were ran through Mfold[81].Stem-loop reverse-transcription PCR confirmation and Real-time PCR quantification

cDNA was synthesized from total RNA by using miRNA-specific stem-loop primers obtained from commercial service (Takara,Dalian).For quantification of known miRNAs,cDNA was synthesized according to the TaqMan MicroRNA Assay protocol(Applied Biosystems,Foster City,CA)except bmo-miR-1, bmo-miR-13,bmo-miR-14,bmo-miR-77,bmo-miR-263a,bmo-miR-275,and U6snRNA,whose stem-loop primers also obtained from commercial service.All the stem-loop RT primers and gene specific primers were listed in Table S3.Reverse transcriptase reactions contained20ng of RNA samples,50nM stem-loop RT primer,16RT buffer,0.25mM each of dNTPs(Promega), 0.01M DTT(Invitrogen),5U/m l SuperScript TM II reverse transcriptase(Invitrogen)and0.25U/m l RNase Inhibitor(Pro-mega).The15-m l reactions were incubated in an Applied Biosystems2720Thermal Cycler in a96-well plate for30min at16u C,30min at42u C,5min at85u C and then held at4u C. The cDNAs were diluted15times to perform PCR for expression confirmation or real-time PCR for expression patterns analysis.PCR mixture containing1m l cDNA,0.5m M forward and reverse primers,16PCR buffer,1.75mM Mg2+,0.25mM each of dNTPs(Promega)and1.25U Taq polymerase(Fermen-tas).The20m l PCR reactions were performed using Applied Biosystems2720Thermal Cycler in200m l micro-tubes for5min at95u C,followed by35cycles of15sec at95u C,30sec at58u C, and30sec at72u C.PCR products were detected by electropho-resis with3%agarose gel containing ethidium and photographed under UV light.Real-time PCR was performed using an ABI Prism H7300Sequence Detection system.The20m l PCR included1.33m l RT product,16TaqMan Universal PCR master mix and1m l primers and probe mix of the TaqMan MicroRNA Assay.The reactions were incubated in a96-well optical plate at 95u C for10min,followed by40cycles of95u C for15sec and 60u C for10min.All reactions were run in duplicate.The threshold cycle(Ct)is defined as the fractional cycle number at which the fluorescence passes the fixed threshold.For analyzing the expression patterns of bmo-miR-1,bmo-miR-13,bmo-miR-14,bmo-miR-77,bmo-miR-263a,bmo-miR-275and U6snRNA, real-time PCR was performed in an ABI Prism H7300Sequence Detection system with Quant SYBR Green PCR kit(TIANGEN, BJ)following the manufacturer’s instructions.The20m l reactions including1.33m l RT product,16RealMasterMix(SYBR)and 0.5m M forward and reverse primers were incubated in a96-well optical plate at95u C for10min,followed by40cycles of95u C for 15sec,58u C for30sec and70u C for30sec.Melting curves for each PCR were carefully monitored to avoid nonspecific amplifications.All reactions were run in duplicate. Normalization and data analysis

Since there has not been a standard control for expression normalization for miRNAs,we adopted a strategy using U6 snRNA as an internal control.Relative quantification(RQ)of each miRNA expression was calculated with22D Ct method,and the data were presented as log10of RQ of target miRNAs.Results were visualized with GENESIS(Alexander Sturn,Institute for Genomics and Bioinformatics,Graz University of Technology). Statistical analysis of miRNA expression profiles

For each miRNA,one-tailed t-tests were applied to experimen-tal replicates of each pair of stages to assess significance of differential expression.Stage that has the highest expression level was identified by times of rejection of null hypothesis that

expression of tested stage is no higher than the other.And for certain miRNAs,group of stages of high expression level was defined by rejection of null hypothesis between lowest expression value in the group and highest one of the remaining.Nonpara-metric correlation coefficients between profiles of different stages were presented as Spearman’s r to demonstrate relative similarities.p,0.05was considered statistically significant.All related calculation was performed using the software MATLAB version2007a.

Target gene prediction for miRNAs

For miRNAs target gene prediction,we extracted39UTRs of the silkworm(Dazao strain)UniGene which downloaded from NCBI UniGene database(https://www.360docs.net/doc/ae1399976.html,/sites/ entrez?db=unigene)by using PITA program[82]that takes target accessibility on the interaction of miRNAs and their targets into account,was employed to predict miRNAs targets using default parameters.We selected and analyzed the target genes with DD G#25kcal/mol from the original predictions. Supporting Information

Table S1Genomic locations of putative miRNAs predicted based on homology conservation comparison with known Metazoa miRNAs Found at:doi:10.1371/journal.pone.0002997.s001(0.06MB XLS)

Table S2Conservation patterns,expression levels and genomic locations of putative miRNAs predicted based on Sequence& Structural features filters

Found at:doi:10.1371/journal.pone.0002997.s002(0.08MB XLS)

Table S3Sequences of stem-loop RT primers,forward primers and reverse primers

Found at:doi:10.1371/journal.pone.0002997.s003(0.09MB DOC)

Acknowledgments

We would like to thank Professor Anying Xu of the Sericultural Research Institute,Chinese Academy of Agricultural Sciences,for providing silkworm eggs.

Author Contributions

Conceived and designed the experiments:SH JY.Performed the experiments:XY QZ YC YY.Analyzed the data:XY QZ SCL QL YC HC.Contributed reagents/materials/analysis tools:WCL.Wrote the paper:XY QZ JY.Discussion and suggestion:SL QL WL YY HC.

References

1.Bartel DP(2004)MicroRNAs:genomics,biogenesis,mechanism,and function.

Cell116:281–297.

2.Lee Y,Kim M,Han J,Yeom KH,Lee S,et al.(2004)MicroRNA genes are

transcribed by RNA polymerase II.Embo J23:4051–4060.

3.Meister G,Tuschl T(2004)Mechanisms of gene silencing by double-stranded

RNA.Nature431:343–349.

https://www.360docs.net/doc/ae1399976.html,u NC,Lim LP,Weinstein EG,Bartel DP(2001)An abundant class of tiny

RNAs with probable regulatory roles in Caenorhabditis elegans.Science294: 858–862.

5.Lim LP,Lau NC,Weinstein EG,Abdelhakim A,Yekta S,et al.(2003)The

microRNAs of Caenorhabditis elegans.Genes Dev17:991–1008.

6.Khvorova A,Reynolds A,Jayasena SD(2003)Functional siRNAs and miRNAs

exhibit strand bias.Cell115:209–216.

7.Schwarz DS,Hutvagner G,Du T,Xu Z,Aronin N,et al.(2003)Asymmetry in

the assembly of the RNAi enzyme complex.Cell115:199–208.

8.Lee RC,Ambros V(2001)An extensive class of small RNAs in Caenorhabditis

elegans.Science294:862–864.

https://www.360docs.net/doc/ae1399976.html,gos-Quintana M,Rauhut R,Lendeckel W,Tuschl T(2001)Identification of

novel genes coding for small expressed RNAs.Science294:853–858.

10.Baskerville S,Bartel DP(2005)Microarray profiling of microRNAs reveals

frequent coexpression with neighboring miRNAs and host genes.Rna11: 241–247.

https://www.360docs.net/doc/ae1399976.html,i EC,Tomancak P,Williams RW,Rubin GM(2003)Computational

identification of Drosophila microRNA genes.Genome Biol4:R42.

https://www.360docs.net/doc/ae1399976.html,gos-Quintana M,Rauhut R,Meyer J,Borkhardt A,Tuschl T(2003)New

microRNAs from mouse and human.Rna9:175–179.

13.Li SC,Tang P,Lin WC(2007)Intronic microRNA:discovery and biological

implications.DNA Cell Biol26:195–207.

14.Carrington JC,Ambros V(2003)Role of microRNAs in plant and animal

development.Science301:336–338.

15.Lee RC,Feinbaum RL,Ambros V(1993)The C.elegans heterochronic gene

lin-4encodes small RNAs with antisense complementarity to lin-14.Cell75: 843–854.

16.Reinhart BJ,Slack FJ,Basson M,Pasquinelli AE,Bettinger JC,et al.(2000)The

21-nucleotide let-7RNA regulates developmental timing in Caenorhabditis elegans.Nature403:901–906.

17.Jones-Rhoades MW,Bartel DP,Bartel B(2006)MicroRNAS and their

regulatory roles in plants.Annu Rev Plant Biol57:19–53.

18.Plasterk RH(2006)Micro RNAs in animal development.Cell124:877–881.

19.Zhang B,Pan X,Cobb GP,Anderson TA(2007)microRNAs as oncogenes and

tumor suppressors.Dev Biol302:1–12.

20.Ma L,Teruya-Feldstein J,Weinberg RA(2007)Tumour invasion and metastasis

initiated by microRNA-10b in breast cancer.Nature449:682–688.

21.Ibarra I,Erlich Y,Muthuswamy SK,Sachidanandam R,Hannon GJ(2007)A

role for microRNAs in maintenance of mouse mammary epithelial progenitor cells.Genes Dev21:3238–3243.

22.Lewis BP,Shih IH,Jones-Rhoades MW,Bartel DP,Burge CB(2003)Prediction

of mammalian microRNA targets.Cell115:787–798.23.Stark A,Brennecke J,Russell RB,Cohen SM(2003)Identification of Drosophila

MicroRNA targets.PLoS Biol1:E60.

24.Bagga S,Bracht J,Hunter S,Massirer K,Holtz J,et al.(2005)Regulation by let-

7and lin-4miRNAs results in target mRNA degradation.Cell122:553–563.

25.Lim LP,Lau NC,Garrett-Engele P,Grimson A,Schelter JM,et al.(2005)

Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.Nature433:769–773.

26.Pfeffer S,Zavolan M,Grasser FA,Chien M,Russo JJ,et al.(2004)Identification

of virus-encoded microRNAs.Science304:734–736.

27.Bennasser Y,Le SY,Yeung ML,Jeang KT(2004)HIV-1encoded candidate

micro-RNAs and their cellular targets.Retrovirology1:43.

28.Li SC,Shiau CK,Lin WC(2007)Vir-Mir db:prediction of viral microRNA

candidate hairpins.Nucleic Acids Res.

29.Griffiths-Jones S,Grocock RJ,van Dongen S,Bateman A,Enright AJ(2006)

miRBase:microRNA sequences,targets and gene nomenclature.Nucleic Acids Res34:D140–144.

30.Ambros V,Lee RC(2004)Identification of microRNAs and other tiny

noncoding RNAs by cDNA cloning.Methods Mol Biol265:131–158.

31.Berezikov E,van Tetering G,Verheul M,van de Belt J,van Laake L,et al.

(2006)Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis.Genome Res16:1289–1298.

32.Chen PY,Manninga H,Slanchev K,Chien M,Russo JJ,et al.(2005)The

developmental miRNA profiles of zebrafish as determined by small RNA cloning.Genes Dev19:1288–1293.

33.Sunkar R,Zhu JK(2004)Novel and stress-regulated microRNAs and other

small RNAs from Arabidopsis.Plant Cell16:2001–2019.

34.Sunkar R,Girke T,Jain PK,Zhu JK(2005)Cloning and characterization of

microRNAs from rice.Plant Cell17:1397–1411.

35.Zhao T,Li G,Mi S,Li S,Hannon GJ,et al.(2007)A complex system of small

RNAs in the unicellular green alga Chlamydomonas reinhardtii.Genes Dev21: 1190–1203.

36.Molnar A,Schwach F,Studholme DJ,Thuenemann EC,Baulcombe DC(2007)

miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii.Nature.

37.Pfeffer S,Sewer A,Lagos-Quintana M,Sheridan R,Sander C,et al.(2005)

Identification of microRNAs of the herpesvirus family.Nat Methods2:269–276.

38.Schafer A,Cai X,Bilello JP,Desrosiers RC,Cullen BR(2007)Cloning and

analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus.Virology.

39.Sempere LF,Sokol NS,Dubrovsky EB,Berger EM,Ambros V(2003)Temporal

regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity.Dev Biol259:9–18. 40.Wienholds E,Kloosterman WP,Miska E,Alvarez-Saavedra E,Berezikov E,et

al.(2005)MicroRNA expression in zebrafish embryonic development.Science 309:310–311.

41.Ason B,Darnell DK,Wittbrodt B,Berezikov E,Kloosterman WP,et al.(2006)

Differences in vertebrate microRNA expression.Proc Natl Acad Sci U S A103: 14385–14389.

42.Aboobaker AA,Tomancak P,Patel N,Rubin GM,Lai EC(2005)Drosophila

microRNAs exhibit diverse spatial expression patterns during embryonic development.Proc Natl Acad Sci U S A102:18017–18022.

https://www.360docs.net/doc/ae1399976.html,gos-Quintana M,Rauhut R,Yalcin A,Meyer J,Lendeckel W,et al.(2002)

Identification of tissue-specific microRNAs from mouse.Curr Biol12:735–739.

44.Sempere LF,Freemantle S,Pitha-Rowe I,Moss E,Dmitrovsky E,et al.(2004)

Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.Genome Biol5:R13.

45.Zhao Y,Samal E,Srivastava D(2005)Serum response factor regulates a muscle-

specific microRNA that targets Hand2during cardiogenesis.Nature436: 214–220.

46.Chen JF,Mandel EM,Thomson JM,Wu Q,Callis TE,et al.(2006)The role of

microRNA-1and microRNA-133in skeletal muscle proliferation and differen-tiation.Nat Genet38:228–233.

47.Lim LP,Glasner ME,Yekta S,Burge CB,Bartel DP(2003)Vertebrate

microRNA genes.Science299:1540.

48.Grad Y,Aach J,Hayes GD,Reinhart BJ,Church GM,et al.(2003)

Computational and experimental identification of C.elegans microRNAs.Mol Cell11:1253–1263.

49.Bonnet E,Wuyts J,Rouze P,Van de Peer Y(2004)Detection of91potential

conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.Proc Natl Acad Sci U S A101:11511–11516.

50.Adai A,Johnson C,Mlotshwa S,Archer-Evans S,Manocha V,et al.(2005)

Computational prediction of miRNAs in Arabidopsis thaliana.Genome Res15: 78–91.

51.Sullivan CS,Grundhoff AT,Tevethia S,Pipas JM,Ganem D(2005)SV40-

encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells.Nature435:682–686.

52.Tong CZ,Jin YF,Zhang YZ(2006)Computational prediction of microRNA

genes in silkworm genome.J Zhejiang Univ Sci B7:806–816.

53.He PA,Nie Z,Chen J,Lv Z,Sheng Q,et al.(2008)Identification and

characteristics of microRNAs from Bombyx mori.BMC Genomics9:248. 54.Griffiths-Jones S,Moxon S,Marshall M,Khanna A,Eddy SR,et al.(2005)

Rfam:annotating non-coding RNAs in complete genomes.Nucleic Acids Res 33:D121–124.

55.Rajagopalan R,Vaucheret H,Trejo J,Bartel DP(2006)A diverse and

evolutionarily fluid set of microRNAs in Arabidopsis thaliana.Genes Dev20: 3407–3425.

56.Ruby JG,Jan C,Player C,Axtell MJ,Lee W,et al.(2006)Large-scale

sequencing reveals21U-RNAs and additional microRNAs and endogenous siRNAs in C.elegans.Cell127:1193–1207.

57.Fahlgren N,Howell MD,Kasschau KD,Chapman EJ,Sullivan CM,et al.

(2007)High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes.PLoS ONE2:e219.

58.Krichevsky AM,King KS,Donahue CP,Khrapko K,Kosik KS(2003)A

microRNA array reveals extensive regulation of microRNAs during brain development.Rna9:1274–1281.

59.Ruby JG,Stark A,Johnston WK,Kellis M,Bartel DP,et al.(2007)Evolution,

biogenesis,expression,and target predictions of a substantially expanded set of Drosophila microRNAs.Genome Res17:1850–1864.

60.Li SC,Pan CY,Lin WC(2006)Bioinformatic discovery of microRNA

precursors from human ESTs and introns.BMC Genomics7:164.

61.Koo BK,Lim HS,Song R,Yoon MJ,Yoon KJ,et al.(2005)Mind bomb1is

essential for generating functional Notch ligands to activate Notch.Development 132:3459–3470.62.Kwon C,Han Z,Olson EN,Srivastava D(2005)MicroRNA1influences cardiac

differentiation in Drosophila and regulates Notch signaling.Proc Natl Acad Sci U S A102:18986–18991.

https://www.360docs.net/doc/ae1399976.html,i EC,Tam B,Rubin GM(2005)Pervasive regulation of Drosophila Notch

target genes by GY-box-,Brd-box-,and K-box-class microRNAs.Genes Dev19: 1067–1080.

64.Enright AJ,John B,Gaul U,Tuschl T,Sander C,et al.(2003)MicroRNA

targets in Drosophila.Genome Biol5:R1.

65.Neilson JR,Zheng GX,Burge CB,Sharp PA(2007)Dynamic regulation of

miRNA expression in ordered stages of cellular development.Genes Dev21: 578–589.

66.Wu H,Neilson JR,Kumar P,Manocha M,Shankar P,et al.(2007)miRNA

profiling of naive,effector and memory CD8T cells.PLoS ONE2:e1020. 67.Ehrenreich IM,Purugganan MD(2008)Sequence variation of MicroRNAs and

their binding sites in Arabidopsis.Plant Physiol146:1974–1982.

68.Champlin DT,Truman JW(1998)Ecdysteroid control of cell proliferation

during optic lobe neurogenesis in the moth Manduca sexta.Development125: 269–277.

69.Nakagaki M,Takei R,Nagashima E,Yaginuma T(1991)Cell cycles in embryos

of the silkworm,Bombyx mori:G2-arrest at diapause stage.Development Genes and Evolution200:223–229.

70.Iwasaki H,Takahashi M,Niimi T,Yamashita O,Yaginuma T(1997)Cloning of

cDNAs encoding Bombyx homologues of Cdc2and Cdc2-related kinase from eggs.Insect Mol Biol6:131–141.

71.Shimizu I,Yamakawa Y,Shimazaki Y,Iwasa T(2001)Molecular cloning of

Bombyx cerebral opsin(Boceropsin)and cellular localization of its expression in the silkworm brain.Biochem Biophys Res Commun287:27–34.

72.Varghese J,Cohen SM(2007)microRNA miR-14acts to modulate a positive

autoregulatory loop controlling steroid hormone signaling in Drosophila.Genes Dev21:2277–2282.

73.Kramer KJ,Corpuz L,Choi HK,Muthukrishnan S(1993)Sequence of a cDNA

and expression of the gene encoding epidermal and gut chitinases of Manduca sexta.Insect Biochem Mol Biol23:691–701.

74.Liu S,Xia Q,Zhao P,Cheng T,Hong K,et al.(2007)Characterization and

expression patterns of let-7microRNA in the silkworm(Bombyx mori).BMC Dev Biol7:88.

75.Beuvink I,Kolb FA,Budach W,Garnier A,Lange J,et al.(2007)A novel

microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs.Nucleic Acids Res35:e52.

76.Bandres E,Cubedo E,Agirre X,Malumbres R,Zarate R,et al.(2006)

Identification by Real-time PCR of13mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.Mol Cancer5:29. 77.Teleman AA,Maitra S,Cohen SM(2006)Drosophila lacking microRNA miR-

278are defective in energy homeostasis.Genes Dev20:417–422.

78.Griffiths-Jones S(2006)miRBase:the microRNA sequence database.Methods

Mol Biol342:129–138.

79.Ewing B,Green P(1998)Base-calling of automated sequencer traces using

phred.II.Error probabilities.Genome Res8:186–194.

80.Altschul SF,Madden TL,Schaffer AA,Zhang J,Zhang Z,et al.(1997)Gapped

BLAST and PSI-BLAST:a new generation of protein database search programs.Nucleic Acids Res25:3389–3402.

81.Zuker M(2003)Mfold web server for nucleic acid folding and hybridization

prediction.Nucleic Acids Res31:3406–3415.

82.Kertesz M,Iovino N,Unnerstall U,Gaul U,Segal E(2007)The role of site

accessibility in microRNA target recognition.Nat Genet39:1278–1284.

基因沉默与RNAi技术

基因沉默与RNAi技术 定义:基因沉默双是指链RNA被特异的核酸酶降解,产生干扰小RNA(siRNA),这些siRNA 与同源的靶RNA互补结合,特异性酶降解靶RNA,从而抑制、下调基因表达。 RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象。由双链引发的植物RNA沉默,主要有转录水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修饰或染色体异染色质化等原因使基因不能正常转录;PTGS是启动了细胞质靶mRNA序列特异性的降解机制。有时转基因会同时导致TGS和PTGS。 基因沉默是一种RNA干扰技术。 RNA干扰是由双链RNA 引发的转录后基因静默机制。其原理是:RNaseIII核酶家族的Dicer,与双链RNA结合,将其剪切成21 - 25nt及3'端突出的小干扰RNA (small interfering RNA ,siRNA),随后siRNA与RNA诱导沉默复合物(RNA - induced silencing complex ,RISC结合,解旋成单链,活化的RISC受已成单链的siRNA引导,序列特异性地结合在靶mRNA上并将其切断,引发靶mRNA的特异性分解,从而阻断相应基因表达的转录后基因沉默机制. 一、基因沉默的分类及其机制 (一)转录水平基因沉默 转录水平基因沉默是指对基因专一的细胞核 RNA合成的失活, 它的发生主要是由于基因无法被顺利转录成相应的RNA而导致基因沉默。转录水平基因沉默可以通过有性世代传递,表现为减数分裂的可遗传性。引起转录水平基因沉默的机制主要有以下几种: 1.基因及其启动子甲基化 甲基化是活体细胞中最常见的一种DNA共价修饰形式,通常发生在DNA的CG序列的碱基上,该区碱基甲基化往往导致转录受抑制,该区甲基化的频率 在人类及高等植物中分别可达4%和36%。[4] 近来的研究表明,发生在转基因启动子5'端的甲基化是造成转录水平基因沉默的主要原因。虽然转基因的甲基化可延伸至转基因的3'端,但甲基化过程均是从启动子区域开始的。从所报道的转基因沉默例子来看,几乎所有的转基因沉默现象与转基因及其启动子的甲基化有关。 2.同源基因间的反式失活 反式失活主要是由于拥有同源序列的沉默位点和其他位点的DNA的相互作用而引起的基因沉默。通过顺式作用而甲基化并失活的基因能作为一种"沉默子",对其他与之分离的具有同源性的靶基因施加一种反式作用,使具有同源序列的靶基因发生甲基化并导致失活。反式失活的靶基因既可以与沉默基因是等位基因,也可以是非等位基因。 3.后成修饰作用导致的基因沉默 后成修饰作用是指转基因的序列和碱基组成不发生改变,但是其功能却在个体发育的某一阶段受到细胞因子的修饰作用后而关闭。这种修饰作用所造成的转基因沉默是可以随着修饰作用的解除而被消除。后成修饰作用导致的转基因沉默与受体植物的核型构成有关。 4.重复序列 外源基因如果以多拷贝形式整合到同一位点上,形成首尾相连的正向重复或头对头、尾对尾的反向重复,则不能表达,而且拷贝数越多,基因沉默现象越严重。这种重复序列诱导的基

基因沉默

基因沉默 摘要随着基因技术的迅速发展和广泛应用,在转基因技术实践中首先暴露出来的外源基因不能按照预期设想进行表达的问题越来越显得普遍,而人们对基因沉默现象的不断深入研究和探索,不仅揭示出了基因沉默的发生机制,也在一定程度上推动了新技术的产生和应用,这不仅推动了基因研究领域的发展,更在遗传群体构建、疾病治疗等方面建立了新方法、新体系,为生物学技术的发展做出了贡献。 关键字基因沉默分类机理应用 1.引言 基因沉默(Gene Silencing),又称为基因沉寂,是真核生物细胞基因表达调节过程中的一种特殊生理现象,是指细胞基因在表达过程中受到各种因素的综合作用而导致基因部分区段发生“沉寂”现象,从而失去转录活性并不予表达或表达减少。该现象最先于1986年Peerbolte在转基因植物研究中所发现,随后科学家在线虫、真菌、水螅、果蝇以及哺乳动物中陆续发现了基因沉默现象的存在。 转基因沉默是基因沉默现象最为频发和常见的,这也是转基因为何在受体难以百分之百全部表达的因素之一,其基本特征是导入并整合到受体基因组的外源基因在当代或后代中表达活性受到抑制。研究发现,其主要原因是由于转基因之间或转基因与内源基因之间存在着序列同源性,因此转基因沉默又被称为同源性依赖的基因沉默(homology-dependent gene silencing)。 根据沃森-克里克的核酸碱基互补配对模型,基因沉默可能涉及到DNA-DNA、DNA-RNA以及RNA-RNA三种不同形式的核酸分子之间的互作,简单地说就是插入的外源DNA或自身基因区段在核内高浓度的RNA作用下,能够与内源反向DNA 或者RNA进行碱基互补配对,并且在核内被重新甲基化,进而导致基因沉默;而另一种可能则是内源基因与转基因转录生成的RNA之间互补配对生成可被RNases酶性降解的双链RNA(dsRNA),其水解直接导致基因的不表达,即基因沉默效果。从染色体水平上看,基因沉默现象的实质是形成异染色质(Heterochromation)的过程,检查发现被沉寂的基因区段往往呈现出高浓缩状态,显然,这在一定程度上也决定了被沉寂基因的难表达性。实验早已证明,在高度浓缩的基因区段,正常的DNA转录活动是难以进行并维持的,换言之,即一旦形成异染色质进入高度浓缩状态,那么相应区段的基因片段就必然因为不能被

2型糖尿病发病机制中遗传标记和分子途径的研究进展

?专题笔谈? 2型糖尿病研究现状及进展 2型糖尿病发病机制中遗传标记 和分子途径的研究进展 班 博,耿厚法 (济宁医学院附属医院,山东济宁272029) 2型糖尿病(T2DM)在全世界广泛流行,严重影响人体身心健康。尽管在过去的几十年中对于T2DM的胰岛素抵抗(I R)研究取得迅速进展,并发现其与营养过度、肥胖及活动减少等环境因素相关,在复杂的基因—环境交互作用中遗传易感性可能反映了个体间的差异;然而,本病分子病理生理机制至今未完全阐明,因此影响了其有效预防和治疗措施的制定。现对T2DM发病中遗传标记和分子途径的研究概述如下。 1 T2DM的危险因素 T2DM的危险因素包括:①遗传及家族史;②围生期环境因素、宫内环境不良、低体质量、肥胖、活动减少、妊娠期糖尿病及高龄。每项危险因素多通过未阐明的机制导致骨骼肌、脂肪组织、肝脏I R和(或)胰岛B细胞功能障碍。 2 T2DM的组织特异性代谢缺陷 2.1 骨骼肌 骨骼肌是人体最大的胰岛素靶器官,故骨骼肌的I R是影响整体糖稳态的最主要因素。高胰岛素—正葡萄糖钳夹试验表明,具有T2DM高危因素的个体早期表现为胰岛素刺激的糖摄取能力降低,伴有下游胰岛素信号传导、候选基因表达和肌肉糖原合成能力减弱。骨骼肌胰岛素受体敲除小鼠可出现葡萄糖耐量异常。 2.2 脂肪组织 脂肪组织是复杂的内分泌组织,可调节人体生理代谢,肥胖患者脂肪过量及脂肪营养不良患者脂肪过少均与I R和T2DM相关。脂肪组织特异性胰岛素受体敲除小鼠的脂肪体积显著减少,血清瘦素升高,提示胰岛素在调节脂肪组织生物学活性方面可能有未被认知的作用。最近发现脂肪组织分泌的视黄醇结合蛋白4(RBP24)与I R有关,正常血糖I R人群血清RBP24升高,与多种代谢综合征的特点一致;通过锻炼后其血清RBP24显著下降,与改善的胰岛素敏感性一致。 2.3 肝脏 肝脏在碳水化合物、蛋白和脂肪代谢中起重要作用,包括糖原合成和糖异生。胰岛素与肝脏胰岛素受体结合后直接作用于肝脏,激活胰岛素信号传递途径,修饰基因表达,抑制葡萄糖产生。啮齿类动物试验结果也支持肝脏在糖尿病(DM)发病中的重要作用,如肝脏胰岛素受体敲除小鼠可发展为I R、糖耐量异常、胰岛素抑制肝糖输出受损及肝脏基因表达模式改变等。 2.4 胰岛 T2DM时,糖脂毒性、炎症介质及高瘦素血症等可导致进展性胰岛B细胞功能缺陷,胰岛B细胞水平的I R 也可导致胰岛B细胞功能受损。B细胞特异性敲除胰岛素受体(B I RK O)小鼠因选择性缺失糖刺激的胰岛素分泌,可发展为糖耐量异常;由于缺乏胰岛素分泌反应是糖特异性的,而其他分泌刺激物(如精氨酸)仍可刺激胰岛素分泌。因此,B I RK O小鼠再现了人类T2DM患者胰岛B细胞功能缺陷的多种特点,并且为“I R同样发生在胰岛B细胞功能障碍本身”的假说提供了依据。 2.5 胃肠道和系统代谢 胃肠道激素除胰升糖素样肽21和促胰岛素多肽外,ghrelin、胆囊收缩素、多肽YY和成纤维细胞生长因子221都是影响系统代谢的重要肠肽,胆汁酸的肠肝循环亦可影响系统代谢。研究表明,胆汁酸可通过调节组织脱碘酶活性而影响细胞内甲状腺激素活性,从而刺激外周能量消耗。 2.6 中枢神经系统(C NS) 研究表明,具有能量摄取、燃料利用、组织特异性和整体代谢调节作用的C NS,在I R发病中起重要作用,CNS内的胰岛素受体信号也可调节整体的代谢水平。研究发现,神经特异性敲除胰岛素受体小鼠可出现肥胖、I R和高胰岛素血症。因此,明确人类大脑是否存在I R 是未来临床研究的热点。 3 T2DM的系统代谢缺陷 3.1 炎症 脂肪组织可能是系统炎症激活的中心位点。研究表明,脂肪细胞可产生T NFα,导致I R;高脂饮食和肥胖可诱导脂肪组织炎症发生,且伴有I L26、单核细胞趋化蛋白21、NF2κB、激动蛋白21和生长反应因子等炎症调节因子生成增加。小鼠模型显示,肝脏NF2κB激活可诱导I R,减弱NF2κB 信号传导可逆转I R。在人类,使用水杨酸盐抑制NF2κB可能是一种新的治疗T2DM及其前期的措施。 3.2 内质网(ER)应激 ER应激可损伤胰岛B细胞功能,其在1、2型DM和Wolf man综合征患者中均可出现。研究表明,小鼠ER伴侣蛋白ORP150或HSP72过度表达可改善I R和糖耐量异常,通过42苯丁酸和牛磺酸熊脱氧胆酸治疗可增强ER反应,并改善胰岛素敏感性。提示ER应激反应易感性升高可能是T2DM的特点之一,减弱其应激可能对T2DM有益。 3.3 线粒体功能障碍 研究显示,T2DM与线粒体氧化活性减弱、基础与胰岛素刺激的ATP合成受损、肌膜下线粒体减少及核编码线粒体基因表达减少相关。动物模型显示,通过靶向性去除凋亡诱导因子,减轻线粒体氧化磷酸化表达和功能,可增加胰岛素敏感性。因T2DM及其前期患者的多种线粒体氧化基因失调由过氧化物酶体增殖物激活受体γ协同刺激因子1α(PGC21α)和PGC21β介导,故T2DM、肥胖及 201 山东医药2009年第49卷第37期

人类DNA组中与糖尿病相关的基因

人类DNA组中与糖尿病相关的基因 上海舒泽生物科技研究所楼秀余 中国华夏人类基因组研究院 摘要:糖尿病分为Ⅰ型、Ⅱ型、特异型和妊娠糖尿病四大类糖尿病已成为现代社会的一种高发病,目前我国Ⅱ型糖尿病患者已经超过9400万,发病率居世界首位。为什么现代社会糖尿病患者人数会如此之多呢?近年来随着分子遗传学和分子生物学等新技术的不断发展,人们在人类基因组中发现了与糖尿病发病相关的基因已达60余个。糖尿病是多基因遗传性疾病,但其遗传表型对不同的个体具有很大的易感性差异,糖尿病基因表型的多态性是目前研究的重点和难点。 关键词:基因组多基因遗传性遗传表型基因多态性 目前糖尿病的广泛流行是人类漫长的进化过程中自然选择留下来的“近乎完美”的人类基因组与迅速改变的饮食结构和生活方式之间冲突的结果。糖尿病是现代饮食结构和生活方式与多基因遗传因素共同作用而导致细胞功能障碍的代谢疾病。 Ⅰ型糖尿病又称胰岛素依赖型糖尿病,通常是由于人体免疫系统失调,造成胰腺β细胞受损,不能正常分泌甚至停止分泌胰岛素而导致的:①身免疫系统缺陷,在Ⅰ糖尿病患者的血液中往往可查出多种自身免疫抗体,如谷氨酸脱羧酶抗体(gad抗体)、胰岛细胞抗体(ica抗体)等。这些异常的自身抗体损伤了人体β胰岛细胞,使之不能正常分泌胰岛素。②遗传因素:研究表明多基因遗传缺陷是Ⅰ糖尿病的发病基础,这种遗传缺陷表现在人6号染色体的hla抗原异常上。科学家的研究提示:Ⅰ糖尿病有家族性发病的特点--如果你父母患有糖尿病,那么与无此家族史的人相比,你更易患上此病。③病毒感染也是诱因:科学家怀疑许多病毒可以引起Ⅰ糖尿病,这是因为Ⅰ型糖尿病患者发病之前的一段时间内往往得过病毒感染,而且Ⅰ糖尿病的流行,往往出现在病毒流行之后如,引起流行性腮腺炎和风疹的病毒,以及能引发脊髓灰质炎的柯萨奇病毒,都有可能引起Ⅰ糖尿病。

基因表达技术

基因表达技术 https://www.360docs.net/doc/ae1399976.html, 2007年5月16日09:43 生物技术世界 目前,基因表达已经成为生物学、医学和药物开发研究中的主流技术。基因表达就是基因转录及翻译的过程。广义来说,基因表达有两类:分析型和功能型。前者是指检测和定量基因,尤其是在比较两个样本时,如处理/非处理,疾病/正常。功能型的基因表达,目的是获得一定数量的蛋白质。Invitrogen公司的JudyMacemon称,在她的顾客中,对研究基因功能的基因表达/敲除感兴趣的人是采用基因表达制造蛋白质的人的两倍。 cDNA过度表达优势大 经典的基因表达操作常对病变细胞或组织、以及用药治疗之后的情况进行比较。为了验证某种化合物对基因的效果,研究人员用siRNA或反义化合物返回去做敲除试验。这些技术可以让基因或者基因组表现出特殊的沉默现象。OpenBioSystems公司的PaulTodd博士指出,虽然基因敲除很流行,但它不是证实基因性能的唯一方法。 Todd博士把cDNA过度表达称之为基因敲除的“合理逆转”。siRNA是让基因沉默,以确定基因下游的效应,而cDNA 引入许多目标基因的复制样本,引起基因及其下游产物都超表达。很多时候,从cDNA获得的信息要比siRNA的信息要更好,Todd认为这与设计无关。 采用siRNA方法,研究人员必须确定短寡聚核苷酸序列,该方法可以最佳方式敲除目标基因。并非所有的寡聚物都能发挥效用,因此,就无法做到把所有基因的反应都准确预测出来。通常要敲除20~80%的序列,采用cDNA会出现过表达现象,这样就可以提供足够的目标基因用于插入。Todd认为,cDNA可以确保产生更多的信使RNA,也就会产生更多的蛋白质或下游产物。 cDNA优于siRNA的主要优势在于前者具有更广泛的潜在应用范围,可以用股票的短期销售或者是长期交易进行比喻。短期销售只可能赚到原来的股票价格,然而,长期购买,股票可能会翻两倍或者是三倍。siRNA试验的信号只限制于基因原始状态的性能,因为可能从最高水平降低为零。cDNA能正调节一个基因的性能,而且,把目标基因与绿色荧光蛋白相融合,可以直接观察到在活细胞中产生的蛋白质及其分布位置。 基因表达在药物发现上有许多应用。在最近纽约科学院的一次会议上,Avalon制药公司副总裁PaulYoung向大家

1型糖尿病的细胞和分子致病机理

第27卷第2期2012年4月 齐鲁师范学院学报 Journal of Qilu Normal University Vol.27No.2 Apr.2012 收稿日期:2010-12-24 作者简介:杨晓蕾(1984—),女,山东济南人,助教。 1型糖尿病的细胞和分子致病机理 杨晓蕾 (齐鲁师范学院生物系,山东济南250013) 摘要:1型糖尿病是把自身免疫系统对胰岛β细胞进行特异性损伤作为特征的自身免疫疾病,其中β细胞自身抗原, T 淋巴细胞,B 淋巴细胞及巨噬细胞对胰岛β细胞的损伤起重要作用。关键词:1型糖尿病;β细胞自身抗原;T 细胞;B 细胞;巨噬细胞中图分类号:Q25 文献标识码:A 文章编号:1008-2816(2012)02-0135-04 1 引言 糖尿病(Diabetes mellitus , DM )是一种常见的代谢紊乱综合征, 通常是在遗传因素与环境因素的共同作用下, 引起体内胰岛素缺乏或胰岛素抵抗,导致机体内的糖脂代谢紊乱。1999年世界卫生组织(WHO )将糖尿病分为四种类型:1型糖尿 病(Type 1diabetes mellitus , T1DM )、2型糖尿病(Type 2diabetes mellitus ,T2DM )、继发糖尿病和妊 娠期糖尿病(Gestational diabetes mellitus , GDM )。T1DM ,又称胰岛素依赖性糖尿病,是由T 细胞介导的自身免疫系统对胰岛β细胞进行特异性损伤而引起的一种器官特异性的自身免疫疾 病[1] 。近年来,随着人们生活水平的提高及环境因素的改变,糖尿病发病率逐渐增加。T1DM 约占 糖尿病患者总数的7% 10%, 临床症状较严重,严重危害患者的生活质量及身心健康。T1DM 的 致病机理非常复杂, β细胞自身抗原,自身免疫系统的T 细胞、B 细胞、巨噬细胞、树突状细胞以及由这些免疫细胞所分泌的细胞因子和产生的自由基 等在T1DM 的发病过程中起到了非常重要的作用。 2 T1DM 与自身抗原 胰岛β细胞自身抗原,如谷氨酸脱羧酶(Glu-tamic Acid Decarboxylase ,GAD )、胰岛素(Insulin )、热休克蛋白60(Heat Shock Protein 60, HSP60)和胰岛细胞(Islet Cell ,IC )等,是T1DM 中自身免疫系 统的主要攻击目标。T1DM 发病的早期及发病后,患者血清中均可检测到多种针对胰岛细胞或胰岛素分泌细胞β细胞成分的自身抗体(Autoanti-body ),患者血清中自身抗体的水平通常可以作为T1DM 早期诊断的重要依据之一。 2.1 GAD 的编码基因 GAD 被认为是最主要的自身抗原,GAD 有GAD65和GAD67两种亚型,两者由不同的基因编码,氨基酸序列大约有70%的同源性,作为蛋白质双链体在神经和胰岛细胞表达。在T1DM 中GAD 是激活T 淋巴细胞的主要抗原,在发病初期60 80%的T1DM 患者体内可以检测到GAD65的自身抗体,但在患病几年后,其在血清中的水平逐渐下降[2] 。GAD67抗体主要识别GAD 蛋白分子的中 部和C 末端的结构[3] 。 2.2Insulin 的自身抗体 Insulin ,其编码基因定位于第11对染色体的 短臂上,蛋白序列全长为51个氨基酸,由A 、B 两个肽链组成。T1DM 中, 患者体内胰岛素的自身抗体主要是针对胰岛素B 链的,在患病初期可检测出胰岛素抗体,但随着患病时间延长,逐渐减少。 [4]2.3 IC 与ICA

基因沉默

RNA干扰基因沉默 基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。一方面,基因沉默是遗传修饰生物(genetically modified organisms)实用化和商品化的巨大障碍,另一方面,基因沉默是植物抗病毒的一个本能反应,为用抗病毒基因植物工程育种提供了具有较大潜在实用价值的策略——RNA介导的病毒抗性(RNA-mediated virus resistance,RMVR)。

转基因植物和转基因动物中往往会遇到这样的情况,外源基因存在于生物体内,并未丢失或损伤,但该基因不表达或表达量极低,这种现象称为基因沉默。 转基因沉默分为转录水平的沉默(TGS)和转录后水平的沉默(PTGS)。TGS是指转基因在细胞核内RNA合成受到了阻止导致基因沉默,PTGS是指 RNAi——基因沉默指南 基因沉寂(Gene Silencing) 也可以被称为“基因沉默”。基因沉寂是真核生物细胞基因表达调节的一种重要手段。在染色体水平,基因沉寂实际上是形成以染色质(Heterochromatin)的过程,被沉寂的基因区段呈高浓缩状态。 基因沉寂需要经历不同的反应过程才能实现,包括组蛋白N端结构域的赖氨酸残基的去乙酰基化加工、甲基化修饰(由甲基转移酶催化,修饰可以是一价、二价和三价甲基化修饰,后者又被称为'过度’甲基化修饰(Hypermethylation) ) 、以及和甲基化修饰的组蛋白结合的蛋白质(MBP)形成“异染色质”,在上述过程中,除了部分组蛋白的N端尾部结构域需要去乙酰化、甲基化修饰之外,有时也许要在其他的组蛋白N端尾部结构域的赖氨酸或精氨酸残基上相应地进行乙酰化修饰,尽管各种修饰的最终结果会导致相应区段的基因“沉寂”失去转录活性。这个“原则”就是目前尚没有真正完全清楚的“组蛋白密码”(Histone Code)。

糖尿病与复合多糖

浅谈生物活性多糖防治糖尿病的作用及其机制 【关键词】生物活性多糖;糖尿病防治;作用与机制;药物与保健品 糖尿病是一种因体内糖、蛋白质、脂肪等营养物质代谢紊乱以及内分泌失调等引起的常见多发慢性疾病,对人们的身体健康危害极大。近年来随着国内人们生活水平的日益提高以及膳食结构的变化,致使糖尿病的发病率逐年升高,且发病者渐呈年轻化趋势。目前,我国糖尿病患者已达2500万人以上,居世界第二位,仅次于美国[1,2]。以往,关于糖尿病的防治药物主要有肽类、胰岛素、生物碱和黄酮类等天然物质以及硫酰脲类、双胍类、硫醚类等化学合成降血糖药物。近年来,人们研究发现[3],自然界中的某些特殊化学结构的生物活性多糖具有较显著降血糖作用,且基本无毒副作用,是一类很值得研究开发的天然防治糖尿病药物。 生物活性多糖(biologically active polysaccharides,本文简称BAP)是指一类对人体具有某种特殊生物学功能的高分子碳水化合物聚合体。它们广泛存在于自然界中的动物、植物、微生物和海洋生物等所有生物体内,资源十分丰富。其一般由7个以上一种或两种以上的单糖以特殊糖苷键缩合而成的单一聚糖、杂聚糖或粘多糖[1]。随着医药学、分子生物学、免疫学等学科技术的飞速发展,国内外学者研究阐明[2,4],BAP的抗糖尿病作用是通过调控糖代谢的酶系、促进β-胰岛细胞增殖及胰岛素的分泌、抗自由基氧化损伤以及加速血糖转化和减缓葡萄糖吸收等多种机制而实现的。并相继研制出一些防治糖尿病的BAP药物制剂,有些药物已在临床上获得了应用,取得了一定进展,充分显示出BAP作为新型天然防治糖尿病药物潜在的发展前景。 1 生物活性多糖的分类 BAP一般由7个以上一种或两种以上的单糖,如葡萄糖、阿拉伯糖、木糖、岩藻糖、鼠李糖、半乳糖和甘露糖等以α或β-(1→2)、(1→3)、(1→4)和(1→6)等特殊糖苷键缩合而成的多聚糖作为主链,多数还带有不同单糖以特殊糖苷键连接的聚合糖支链,目前从天然产物中已提取分离出来300多种BAP[1,5]。通常,根据BAP原料来源的不同,可将其分为五大类:(1)食用真菌类多糖主要包括灵芝、香菇、冬虫夏草、云芝、猪苓、茯苓、银耳、猴头菇、金针菇、黑木耳、灰树花及裂褶菌BAP等[1,6];(2)植物多糖类此类BAP数量较多,它们有人参、党参、沙参、芦荟、枸杞、山药、茶叶、黄芪、仙人掌、甘草、五味子、百合、沙棘、南瓜、麻黄、刺五加、桑白皮多糖以及各类膳食纤维素等[5~7];(3)动物类多糖多来自于螃蟹、虾、蚕蛹、苍蝇蛹等节肢动物骨骼或动物内脏,如甲壳素、糖原、肝素和硫酸软骨素等[7,8];(4)微生物类多糖此类BAP大致分为两类:一类是脂多糖,是指革兰阴性菌代谢过程中产生的内毒素,常存在于细胞壁上,并与类脂体结合成多糖体复合物;另一类是植物体多糖,是担子菌实体等较高微生物发酵液中的代谢产物,常见的有透明质酸、凝胶多糖和羊肚菌多糖等[9];(5)海洋生物类多糖此类主要分为海洋植物类,如螺旋藻、红藻、褐藻、海带、羊栖菜和紫菜BAP等;以及海洋动物类,它们有厚壳贻贝、乌贼墨、鲨鱼软骨酸性粘多糖、牡蛎、海参BAP等[5~8]。 2 生物活性多糖的防治糖尿病作用 2.1 天然产物多糖的降血糖作用目前已发现具有降血糖活性天然产物的BAP约有80

人工微RNA定向基因沉默

人工miRNA定向基因沉默 摘要:描述一个基因的功能通常包括对功能丧失等位基因的详细的分析。在模式植物例如拟 南芥和水稻中,插入序列索引的收集为潜在无效等位基因分析提供了很大帮助,而这些都可以 通过网站(e.g., https://www.360docs.net/doc/ae1399976.html,)容易的获取。然而,这对于非模式生物是不可能的,要研 究非模式生物,需要敲除大量的同系物,而且部分缺失基因功能或者调节缺失基因功能不容易 应用,然而当无效等位基因是致死的时,这种方法却很有效。采用定向基因沉默技术的转基因 途径可以替换无效等位基因,也可以用于基因功能的精细研究,例如,通过组织特异性的和可 诱导的基因沉默。 这一章将阐述人工miRNA的产生以及人工miRNA(amiRNAs)作为基因沉默工具在不同植物定向 1.六寡核苷酸:两个是对载体普遍的(A 和B,表一),四个是特异修饰的。 它们的序列是amiRNA设计程序的输出结果。 2.模板质粒:PRS300(包括Arabidopsis athMIR319a)或者PNW55(包括水 稻osa-MIR528) 3.进行PCR,琼脂糖凝胶电泳,以及凝胶提取所需的装置和化学试剂。

图三,构建amiRNA前体的模版质粒——aMIRNA。(a)Plasmid pRS300包含pBluescript SK中的osa-MIR528前体(通过SmaI位点克隆)。(b)质粒pNW55包含pBluescript KS中的osa-MIR528前体(也是通过SmaI克隆)。质粒全部序列是在http://wmd3. https://www.360docs.net/doc/ae1399976.html,.可获取的。缩写:A,B,寡核苷酸结核位点;T3,T7 :RNA聚合酶/寡核苷酸结合位点;Amp:氨苄青霉素抗性基因;MCS:多克隆位点。aMIRNA的大小和围绕区域在图四中指示。 图四,图示产生aMIRNA前体的PCR反应。(a)为有寡核苷酸结合位点的模版质粒(图三);(b)PCR扩增(a)(b)(c),(c)(a)(b)(c)通过PCR融合产生(d)(d)只有中央部分编码aMIRNA 前体,在底部的图中已列出。缩写:Ath:拟南芥;Osa:栽培稻;A, B, I, II, III, IV:寡核苷酸识别物;MCS:多克隆位点;a), (b), (c), (d):PCR片段。 3.2.2寡核苷酸要产生一个aMIRNA的转基因,需要六个PCR寡核苷酸引物。四个引物

糖尿病病因的分子生物学研究策略

ó述 评ó 作者单位:200233上海市第六人民医院内分泌科、糖尿病研究室、医学遗传研究室 糖尿病病因的分子生物学研究策略 项坤三 糖尿病在病因上呈明显异质性。1997年7月,美国糖尿病学会主持的糖尿病诊断及分型国际专家委员会公布了新的糖尿病病因学分类。糖尿病患者中,单由遗传因素或由环境因素引起者仅占少数,大部分患者是由遗传因素及环境因素共同参与及/或相互作用引起的多因子病或称复杂病(complex disease),例如新分类中的1型及2型糖尿病。阐明各种类型糖尿病病因机制是进行病因诊断及充分防治的前提。 糖尿病致病易感DNA 位点的定位及致病基因的确认近年进展较快。近20年的糖尿病分子病因学研究的成就是在不断探索其研究策略的过程中取得的,而此探索仍在进行中,目前有下述趋势: 一、单基因突变糖尿病与多因子(复杂)糖尿病 前一类糖尿病研究已取得较多成果,明确了至少六种单基因突变糖尿病。此六种基因是:胰岛素基因(第一次确认时间为1979年)、胰岛素受体基因(1988年)、葡萄糖激酶基因(即MODY2基因)(1992年)、线粒体基因(数种,最多见的是亮氨酸(UUR)转运核糖核酸基因)(1992年)、肝细胞核因子21A 基因(即MODY3基因)(1996年)及肝细胞核因子24A 基因(即MODY1基因)(1996年)。各基因的致糖尿病突变性质自几种至数十种,且新的突变性质尚不断有所发现。对这些基因突变的致糖尿病机制亦作了研究。但是,学者们更关切的是属于复杂病范畴的1型及2型糖尿病。1 型糖尿病与H LA 基因及胰岛素基因的关系已 有较深入研究,目前较注目的是研究新分类中的2型糖尿病。研究复杂病时须认识的是:每一个参与复杂病发病的遗传及环境因素只是赋予个体某种程度的易感性,其在个体中单独存在并不至发病。群体中的糖尿病患者是各种遗传及环境致病易感因素综合作用的后杲,但是每个患者的致病易感因素种类可不相同;群体中的非糖尿病者亦可不同程度地集结着各种遗传及环境致病易感因素。就单个糖尿病遗传或环境因素而言,糖尿病患者群及非患者群之间的差别仅是频率上的差异。 二、定性临床状态(qualitative clinical state)与定量中间性状(quantitative intermediate trait) 长期以来,糖尿病分子遗传学研究着眼于糖尿病这个定性临床状态与DNA 位点或基因的相关情况。但是,血糖增高是多种遗传及环境因素正性或负性综合作用的后果。这些因素可能是通过共同或不同生物学途径影响中间性状如胰岛B 细胞胰岛素分泌功能及/或周围组织胰岛素作用程度。例如,遗传基因缺陷可能通过对胰岛B 细胞合成分泌胰岛素的生物学过程、机体免疫防御机制及胰岛细胞再生能力等的影响导致胰岛素分泌不足;遗传基因缺陷亦可通过对周围组织胰岛素作用信号传递过程或间接通过对体脂含量及分布的影响导致周围组织胰岛素作用不足。因此,要解析糖尿病因似以研究参与中间性状的遗传因素更为直接。近年就基因与定量中间性状,尤其是胰岛B 细胞分泌功能、周围组织胰素敏感性,体脂含量及分布等相关研究日渐增多。 # 131#中华内分泌代谢杂志1997年8月第13卷第3期

糖尿病科普知识

糖尿病科普知识 一、什么是糖尿病? 糖尿病是一种古老的疾病,我国最早的古典医书《皇帝内经》就有关于“消渴病”的记载,也就是消瘦加上烦渴。现代医学认为,糖尿病是一种病因十分复杂的终生性疾病,是慢性的全身性代谢性疾病,其基本生理特征是血糖水平增高,主要是由于胰岛素分泌相对或绝对不 足,或者β细胞对胰岛素的敏感性降低而引起的。血糖增高时可以出现三多一少,也就是指吃的多、喝的多,排尿多、以及体重减轻的典型症状,但多数患者早期症状并不明显,仅在 体检或出现并发症时才被发现血糖升高,从而贻误了治疗时机。长期血糖增高会导致多器官 组织损害,出现一系列并发症,如心脑血管、肾、视网膜及神经系统的病变等,严重时可发 生急性酮酸中毒、高渗性昏迷、乳酸性酸中毒,甚至威胁到生命。 二、糖尿病发病的危险因素 糖尿病发病病因目前尚不完全清楚,不过下列因素可能会增加糖尿病发病的危险。(1)有亲属,尤其是一级亲属,患糖尿病者;(2)饮食过多而不节制,营养过剩;(3)肥胖或超重,特别是体重指数[BMI=体重(公斤)/身高(米)的平方]大于25者,另外腹部肥胖者也是 重要的危险因素;(4)高血压、高血脂及早发冠心病者;(5)以往有妊娠血糖增高或巨大儿 生育史,有多次流产者;(6)年龄40岁以上者。国内外资料都表明40岁以上中老年糖尿病 患病率较年青人显著增高;(7)饮酒过多者 三、糖尿病的流行情况和社会危害 据世界卫生组织估计,2004年全世界约有糖尿病人 1.94亿,预计到2025年全球糖尿病患病 人数将增加到 3.66亿人。值得注意的是,糖尿病患病率在发展中国家增加的速度特别快, 甚至远远超过发达国家,特别是那些经济和生活水平发生剧变的国家,还有富裕国家中的贫 困民族,糖尿病的流行状况令人堪忧。我国是糖尿病患者最多的三个国家之一,据2002年中国居民营养与健康状况调查结果显示,我国18岁及以上居民糖尿病患病率为 2.6%,估计全国糖尿病患者达到2000多万,城市患病率明显高于农村。与1996年糖尿病抽样调查资 料相比,大城市20岁以上糖尿病患病率由 4.6%上升到 6.4%、中小城市由 3.4%上升到 3.9%。 四、怎样早期发现糖尿病? 由于糖尿病的早期不一定出现多饮、多食、多尿和消瘦的“三多一少”典型症状,而典型症 状的出现,就有可能意味着病程长,病情较重了。尤其是2型糖尿病更是如此。因此早期发 现糖尿病尤为重要。中老年、肥胖者、高血压患者,高血脂等都是糖尿病的易患因素。有以 上情况的人群应定期到医院检查以便早期发现糖尿病。另外,当出现以下症状应考虑是否与 糖尿病有关。1.常发生疖肿或毛囊炎等皮肤感染;2.有异常分娩史,如有原因不明的多次 流产史、死胎、死产、早产、畸形儿或巨大儿等。3.女性下身瘙痒,按阴道炎治疗效果不 佳;4.男性性功能障碍,排除了泌尿生殖道局部病变;6.年轻患者发生动脉硬化,冠心病,眼底病变等。 五、糖尿病的预防 众所周知,糖尿病与冠心病、肿瘤并称为人类生命的三大杀手。但是,糖尿病是可以预防的。糖尿病的预防应构筑三道防线,医学上称之为“三级预防”。哪三级预防呢?一级预防:是树立正确的进食观和采取合理的生活方式,以最大限度地减少糖尿病的发生率。糖尿病是一

糖尿病定义

糖尿病定义:是由遗传因素、免疫功能紊乱、微生物感染及其毒素、自由基毒素、精神因素等等各种致病因子作用于机体导致胰岛功能减退、胰岛素抵抗等而引发的糖、蛋白质、脂肪、水和电解质等一系列代谢紊乱综合征,临床上以高血糖为主要特点,典型病例可出现多尿、多饮、多食、消瘦等表现,即“三多一少”症状,糖尿病(血糖)一旦控制不好会引发并发症,导致肾、眼、足等部位的衰竭病变,且无法治愈。 胰岛定义:是胰的内分泌部分,是许多大小不等和形状不定的细胞团,散布在胰的各处,胰岛产生的激素成胰岛素,可控制碳水化合物的代谢;如胰岛素分泌不足则患糖尿病。 胰岛素定义:胰岛素是由胰岛β细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等的刺激而分泌的一种蛋白质激素。胰岛素是机体内唯一降低血糖的激素,同时促进糖原、脂肪、蛋白质合成。外源性胰岛素主要用来糖尿病治疗,糖尿病患者早期使用胰岛素和超强抗氧化剂如(注射用硫辛酸、口服虾青素等)有望出现较长时间的蜜月期,胰岛素注射不会有成瘾和依赖性。 细胞增殖定义:细胞增殖是生物体的重要生命特征,细胞以分裂的方式进行增殖。单细胞生物,以细胞分裂的方式产生新的个体。多细胞生物,以细胞分裂的方式产生新的细胞,用来补充体内衰老和死亡的细胞;同时,多细胞生物可以由一个受精卵,经过细胞的分裂和分化,最终发育成一个新的多细胞个体。必须强调指出,通过细胞分裂,可以将复制的遗传物质,平均地分配到两个子细胞中去。可见,细胞增殖是生物体生长、发育、繁殖和遗传的基础。骨髓移植定义:是器官移植的一种,将正常骨髓由静脉输入患者体内,以取代病变骨髓的治疗方法。用以治疗造血功能异常、免疫功能缺陷、血液系统恶性肿瘤及其他一些恶性肿瘤。用此疗法均可提高疗效,改善预后,得到长生存期乃至根治。 牛奶蛋白定义:又称牛乳蛋白。是牛奶中很多种蛋白质混合物总称。主要由酪蛋白(casein)和乳清蛋白(lactoal-bumin)两大部分组成。前者为牛奶在20℃,PH值条件下沉淀下来的蛋白质,余下溶解于乳清的蛋白质均称为乳清蛋白。乳清蛋白则包括β-乳球蛋白、α-乳白蛋白、血清白蛋白和免疫球蛋白及其他微量蛋白,如含铜、锌-超氧化物歧化酶等。除血清白蛋白、免疫球蛋白来自血液外,所有酪蛋白和乳清蛋白均为乳腺中的乳分泌细胞合成产物。随着大部分牛乳蛋白的氨基酸序列测定,已发现了许多牛乳蛋白的变异型。牛奶蛋白主要用作食品添加剂。 蛋白质构件定义:蛋白质分子是由氨基酸首尾相连缩合而成的共价多肽链,但是天然蛋白质分子并不是走向随机的松散多肽链。每一种天然蛋白质都有自己特有的空间结构或称三维结构,这种三维结构通常被称为蛋白质的构象,即蛋白质的结构。一级结构:构成蛋白质的单元氨基酸通过肽键连接形成的线性序列,为多肽链。一级结构稍有变化,就会影响蛋白质的功能。二级结构:一级结构中部分肽链的弯曲或折叠产生二级结构。多肽链的某些部分氨基酸残基周期性的空间排列。现已报道的蛋白质中二级结构共有四种: α-螺旋,β-折叠,β-转角,无规卷曲。三级结构:在二级结构基础上进一步折叠成紧密的三维形式。三维形状一般都可以大致说是球状的或是纤维状的。四级结构:由蛋白质亚基结构形成的多于一条多肽链的蛋白质分子的空间排列。 化学磷酸盐定义:磷酸盐是几乎所有食物的天然成分之一,作为重要的食品配料和功能添加剂被广泛用于食品加工中。它是磷酸的盐,在无机化学、生物化学及生物地质化学上是很重要的物质。 激酶定义:(1)全称“磷酸激酶”。催化ATP上的5′-磷酸基团转移到其他化合物上的酶。也偶尔催化其他三磷酸核苷上磷酸基团转移。(2)催化酶原转变为有活性的酶。 生物矿化定义:是指由生物体通过生物大分子的调控生成无机矿物的过程。与一般矿化最大不同在于有生物大分子生物体代谢、细胞、有机基质的参与。是生物形成矿物的作用,是生物在特定的部位,在一定的物理化学条件下,在生物有机物质的控制或影响下,将溶液中

II型糖尿病模型的建立

II型糖尿病模型的建立 一、概述 糖尿病是一组由于遗传和环境因素相互作用,胰岛素相对或绝对缺乏以及靶组织对胰岛素敏感性降低(胰岛素抵抗)引起的碳水化合物、脂肪及蛋白质代谢紊乱的综合征,是一种持续高血糖为特征的、慢性、全身性代谢性疾病。起病后若未得到有效治疗,随着病程的延长,可出现广泛的微血管及大血管病变,出现神经、泌尿、循环等多系统的病理改变。目前糖尿病的分型采取的是1999年经世界卫生组织(WHO)咨询委员会认可的分型方法:(1)1型糖尿病:胰岛β细胞破坏,通常导致胰岛素绝对缺乏。包括自身免疫性(急性型、迟发型)及特发性。这类糖尿病患者必须用胰岛素治疗,过去又称胰岛素依赖型糖尿病。(2)2型糖尿病:胰岛素抵抗为主伴胰岛素相对缺乏,或胰岛素分泌不足为主伴有胰岛素抵抗。这类患者一般不需用胰岛素治疗,仅用饮食调节加用口服降糖药物即可控制血糖,过去又称为非胰岛素依赖型糖尿病。(3)其他特殊类型:由胰腺内、外原因和其他疾病、药物引起的继发性糖尿病;(4)妊娠糖尿病。我国糖尿病患者中1型糖尿病约占糖尿病的5.6%。2型糖尿病约占糖尿病的93.7%。其他类型糖尿病仅占0.7%[1]。 上世纪80年代以来,全球和我国的糖尿病患者人数显著增加,2003年全球糖尿病病人超过1.94亿。有研究者预测到2010年全世界的糖尿病患者将达22亿1千万。其潜在的最大增长人群在亚洲,约占总增长的65%以上[2]。中国糖尿病患病率近年上升近3倍以上,20岁以上人群中糖尿病患者由1980年的1.0%上升到1996年的3.2%,患病人数占全球糖尿病病人的约1/5。研制用于糖尿病防治的药物一直是新药开发中的热点和难点之一。由于

糖尿病发病机制与相关基因分子生物学病因

糖尿病发病机制与相关基因分子生物学病因 张柯 【摘要】(糖尿病已成为当今社会医疗急需解决的问题,我国糖尿病的发病率逐年升高,其病因及发病机制纷繁复杂,长期发展下去可引起多个器官组织的病变。探索糖尿病的的发病机制以及病因已成为当务之急。更多的研究显示,糖尿病发病与细胞免疫、基因组学等有着不可分割的关系。本文从遗传分析、环境因生物学功能和分子作用机制等多个方面全面的概述了糖尿病分子生物学的病因和发病机制、研究的现状。系统的阐述了糖尿病从基因发病以及细胞免疫的关键影响因素,使临床医学工作者或基础医学工作者对糖尿病有一个较为完整的认识,并在研究糖尿病和深入探索解析人类血糖增高机制中开拓研究思路。) 【关键词】糖尿病;病因;遗传因子分析;分子作用机制; 从医学的一般角度看,分子生物学涵概了基因遗传、生物组学等复杂深奥的学科。其中糖尿病的病因及发病机制是极为纷繁复杂的,迄今也无法完全阐明。一般认为,糖尿病是一种由多种病因引起的以慢性高血糖为特征的代谢性疾病。是由于胰岛素分泌和(或)作用去诶按所致。当今中国糖尿病的发病率已居于世界前三,并且糖尿病的发生能够导致碳水化合物、脂肪、蛋白质三大营养物质代谢紊乱,长期发展下去可引起多个器官组织的病变,危害患者,给糖尿病的治疗带来了许多难题,同时也给许多家庭造成了沉重的负担,也会间接阻碍社会的发展。 糖尿病主要分为三型。1型糖尿病为胰岛β细胞的破坏,导致胰岛素绝对缺乏;2型糖尿病以胰岛素抵抗为主伴胰岛素进行性分泌不足发展到以胰岛素进行性分泌不足为主伴胰岛素抵抗;第三类为特殊类型,其中包括β细胞功能遗传缺陷、胰岛素的遗传缺陷、胰腺其它病变所致糖尿病、内分泌疾病、化学物质诱导糖尿病、感染、其他自身免疫病、伴糖尿病遗传综合征共八种类型。不同类型的糖尿病的病因不尽相同,因为在同种类型中也体现着异质性,较为明确的是,遗传和环境因素一同参与其中,并且大部分为多种基因发病同时存在,由此也产生了临床糖尿病症状的多样性。 1型糖尿病:现在为止已有多种研究证实此种类型为自身免疫性疾病。首先,遗传因素在1型糖尿病的发病已经占到了很大比例,遗传易感基因类型广泛,其中主要有HLA和非HLA基因,其中关键环节为Th1和Th2细胞及其表达细胞因子失衡[1]。虽然所有基因类型未被完全识别,但其对糖尿病发病有着举足轻重的影响,由此可得出,人类基因类型上的缺陷在个体遗传上的差异。但应注意的是,

糖尿病发病机理及治疗方法综述

糖尿病发病机理及治疗方法综述 韦淼苏日娜 【摘要】 糖尿病是常见的内分泌代谢疾病,主要症状为多食、多饮、多尿、消瘦和疲乏无力等 ,甚至伴有糖尿病酮症酸中毒。随着糖尿病病程的延长 ,易并发心、脑、肾、视网膜及神经系统的慢性进行病变。 糖尿病发病机理较为复杂,至今尚未完全清楚。通常认为遗传因素和环境因素以及二者之间的相互作用是引起糖尿病的主要因素。糖尿病是在遗传易感性基因因子的基础上 ,由于饮食、营养、免疫反应和病毒感染等因素作用而发病 , 胰岛素分泌不足或作用缺陷导致血糖浓度高、脂肪和蛋白质代谢紊乱。世界卫生组织将糖尿病分为Ⅰ型糖尿病、Ⅱ型糖尿病、妊娠糖尿病及其他特殊糖尿病4种类型。 目前还没有根治糖尿病的治疗方法,但通过多种治疗手段可以控制好糖尿病。糖尿病的基本治疗方案包括饮食治疗、运动治疗、药物治疗、糖尿病监测及糖尿病教育5个方面。近年来,出现了一系列关于诱导干细胞分化产生胰岛细胞的研究,为糖尿病的治疗开辟了一条新途径。 【关键词】l型糖尿病Ⅱ型糖尿病胰源性糖尿病妊娠糖尿病发病机理治疗方法【引言】 糖尿病已经成为全球性的疾病,若不能得到及时有效的治疗,还会产生一系列严重的并发症,降低患者生活质量。本文主要就不同类型的糖尿病,对近二十年来有关发病机理及治疗方法的研究做一个总结。 Ⅰ型糖尿病(Type 1 Diabetes Mellitus, DM1) 1. 发病机理 1.1 遗传因素 对糖尿病病因的遗传因素研究表明:糖尿病发病具有种族和家族遗传易感性。遗传的不是糖尿病本身 ,而是糖尿病的易感性 ,且在外界因素和体内环境的共同作用下 ,糖尿病才会诱发出来。与Ⅰ型糖尿病发病有关的是人类白细胞抗原 (HLA)基因 , HLA基因位于人类第 6号染色体断臂上 ,共有 HLA2 A、 B、 C、 D (DR、 DQ、 DP) 6个基因位点HLA2 A、B、 C为Ⅰ 类抗原 ,正常时Ⅰ类抗原基因可在所用有核细胞表面 (包括胰岛素β细胞表面 )表达 ,参与细胞介导免疫。HLA2 D系列为Ⅱ类抗原 ,正常时只在 B淋巴细胞、激活的 T淋巴细胞、巨噬细胞、内皮细胞表面表达 ,胰岛β细胞 表面表达与自身免疫发病有关。研究表明[ 1 ]Ⅰ型糖尿病与DQB2 57位氨基酸是否为门冬氨酸以及 DQA2 52是否为精氨酸有关 , 80%~90%的Ⅰ型糖尿病患者中 DQA2 52位精氨酸(Arg + )和 DQB2 57位非门冬氨酸 (ASP2 )有肯定的致病易感作用 , DQA2 DQB S/S2 S 基因型 (即 DQB2 52Arg +纯合子和DQB2 57 ASP2 纯合子 )患病相对风险最高 ,但有地理上和种族间差异。Acton[ 2 ]等对亚拉巴马的非裔美国妇女的研究显示HLA2 B41,DR的升高是Ⅰ 型糖尿病的独立危险因素。 1.2 病毒感染 流行病学及实验研究证明 ,与Ⅰ型糖尿病发病有关的病毒有风疹病毒、巨细胞病毒、腮腺炎病毒、腺病毒及脑、心肌病毒等。 病毒引起 1型糖尿病患者的发病有以下 4种方式: ① 病毒通过具有糖尿病易感性个体的胰岛细胞膜上的病毒受体进入β细胞 ,直接侵袭胰岛β胞 ,胰岛β细胞急性坏死 ,大量破坏 ,继之溶解 ,导致胰岛素分泌缺乏。 ②病毒通过具有糖尿病易感性个体的胰岛细胞膜上的病毒受体进入胰岛β细胞 ,不立即发

相关文档
最新文档