HPLC方法 检测初榨橄榄油中叶绿素和叶黄素

HPLC方法 检测初榨橄榄油中叶绿素和叶黄素
HPLC方法 检测初榨橄榄油中叶绿素和叶黄素

Journal of Chromatography A,1046(2004)

141–146

High-performance liquid chromatographic analysis of chlorophylls, pheophytins and carotenoids in virgin olive oils:chemometric

approach to variety classi?cation?

Angelo Cichelli,Gian Pietro Pertesana?

Dipartimento di Scienze,Universit`a degli Studi“Gabriele d’Annunzio”,Viale Pindaro42,65015Pescara,Italy

Received8March2004;received in revised form21June2004;accepted28June2004

Abstract

This work evaluate the possibility to get from the quali-quantitative determination of the pigments contained in monovarietal olive oils (chlorophylls,pheophytins and carotenoids)and from the multivariate statistical analysis of these measures,parameters able to distin-guish within the cultivars.The chemometric variables used have concurred to obtain preliminary interesting results.Liquid-phase dis-tribution and solid-phase extraction/puri?cation procedures has been compared:recoveries for both are resulted higher than94%for all the pigment classes and the R.S.D.values were below10%.HPLC analysis,allowing the simultaneous pigment determination, and?uorescence detection,allowing a better green pigments measure(detection limits from5to80ppb),are revealed a fundamental solution.

?2004Elsevier B.V.All rights reserved.

Keywords:Olive oil;Food analysis;Chemometrics;Statistical analysis;Chlorophylls;Pheophytins;Carotenoids;Pigments

1.Introduction

The chemical composition of the olive oils(Olea eu-ropaea,L.)varies widely depending on fruit variety,degree of fruit ripeness,environmental conditions,growing region and techniques of processing and storage[1,2].These factors in?uence oil colour,which is one of the basic quality char-acteristics of virgin olive oils.The green-yellowish colour is due to various pigments,i.e.chlorophylls,pheophytins and carotenoids.Such natural pigments can also affect considerably the preservation of the product as prooxidant, in synergy with metals eventually present.In particular the chlorophylls and the pheophytins in presence of the light act ?Presented at the3rd Meeting of the Spanish Association of Chromatog-raphy and Related Techniques and the European Workshop:3rd Waste Water Cluster,Aguadulce,Almeria,19–21November2003.

?Corresponding author.Tel.:+3908713555367;fax:+3908713555365.

E-mail address:gpperte@sci.unich.it(G.P.Pertesana).as catalysts in the formation of singlet state oxygen[3]and therefore they promote the?rst phases of the autoxidation process.Moreover,some researches underline the delaying role of the carotenoids in the photooxidation process[4,5]. The analysis of the chlorophylls and pheophytins has been recently considered to identify the technological treatments, like deodorization,used in a fraudulent way in the commerce of mixed olive oils[6].

The level of these compounds has been traditionally determined with spectrophotometrical methods by the measure of the total content in chlorophylls and carotenoids with values ranging,as regards the chlorophylls,from1to 10ppm,and for the carotenoids from fews up to100ppm;it is well known in fact the absorption curve of the virgin olive oils in the visible spectrum,characterized by typical bands for the chlorophylls and the carotenoids.

Has seemed interesting to us to analyse in detail such compounds using,after a preliminary pigments separation obtained with solid-phase extraction(SPE)and liquid-phase

0021-9673/$–see front matter?2004Elsevier B.V.All rights reserved. doi:10.1016/j.chroma.2004.06.093

142 A.Cichelli,G.P.Pertesana/J.Chromatogr.A1046(2004)141–146

distribution(LPD)procedures,the HPLC analysis coupled with contemporaneous UV–vis and?uorescence detection because this method allows to measure simultaneously chlorophylls and carotenoids and to obtain less discordant data than the obtainable ones with spectrophotometrical methods[7–11].

In this work the analysis of olive oil samples of different variety and geographic origin obtained with various extrac-tion and conservation technologies and characterized by dif-ferent maturity degrees has been made in order to evaluate and measure how these variables affect the content in pigments:in particular has been adopted a chemometric approach to iden-tify into the pigments patterns of every monovarietal sample some parameters able to distinguish olive cultivars and gen-uineness of olive oils.

2.Experimental

2.1.Equipment

HPLC pigments separation was performed with a Perkin-Elmer liquid chromatographic system(Norwalk,CT,USA) equipped with a Perkin-Elmer LC250binary pump and a Rheodyne Model7125injector whit a20?l?xed loop (Cotati,CA,USA).Pigments detection was performed with two detector systems,a Perkin-Elmer LS30?uorescence spectrometer and a Perkin-Elmer LC95UV–vis spectropho-tometer.The used column was a C18reversed-phase Waters Spherisorb ODS-2(5?m particle size,250mm×4.6mm internal diameter)protected by a guard-cartridge system packed with the same material.A B¨u chi R3000rotavapor was also used for sample preparation.

2.2.Reagents and standards

HPLC-grade solvents(methanol,acetone)and analytical grade DMF(N,N-dimethylformamide),n-hexane and diethyl ether were purchased from Sigma(St.Louis,MO,USA). Ultra-pure water generated by the Milli-Q system(Millipore, Bedford,MA,USA)was used.

Chlorophylls a and b standards were supplied by Sigma;pheophytins a and b were obtained by acidi?ca-tion with hydrochloric acid from the respective solutions of chlorophylls[12,13].Carotenoids(lutein,violaxanthin and neoxanthin)standards were obtained after extraction with cold acetone and puri?cation by OCC from curly lettuce [14].

2.3.Sampling and sample preparation

In the last3years have been sampled directly at the oil mill and analyzed not more than three months after the production94virgin olive oils of the harvests2000,2001, 2002;these samples were different for varietal and geo-graphic origin,ripening degree and extraction technology.Among these56were monovarietal oils(Tortiglione,Dritta, Leccino,Gentile,Frantoio,Bianchera,Picholine,Peranzana, Coratina,Ogliarola,Buga,Carbonera cvs.),12obtained by the pressing of fruits deriving from different varieties(two or three in well-known ratios)and the remaining oils were mixtures in unknown proportions.The sampled olive oils have been analyzed by liquid chromatography techniques to determine the quali-quantitative pro?les,measuring the chlorophylls a and b and the respective products of transformation,the pheophytins a and b;moreover have been measured the carotenoids lutein,violaxanthin and neoxanthin.

Has been use the analytical procedure setted by Minguez Mosquera[15]:this technique is characterized by a pre-liminary extraction of the pigments which must be stud-ied in one of the following ways:LPD and SPE.LPD is realized using as solvents n-hexane and DMF;the hex-anic fraction retains lipids and carotenes,DMF fraction chlorophylls,chlorophyllic derivatives like pheophytins and xanthophylls.The last fraction is therefore treated with a Na2SO42%solution and reextracted with n-hexane–diehyl ether(1:1);of the two phases so obtained,one organic and the other watery,the aqueous one is discarded removing poliphenols and other hydrophilic compounds,the organic phase dried and resuspended with acetone for the injection in HPLC.SPE is carried out using octadecyl disposable cartridges(C18):the pigments contained in the oil sample (1g),dissolved in n-hexane(4mL),loaded on column and washed with the same solvent are eluted using5mL of ace-tone.

Recovery studies of the olive oil pigments have been made to compare the extraction/puri?cation procedures.In general SPE extraction is slightly less effective than LPD:the recover capability values are instead comparable for both the meth-ods.In Table1,the data relative to the single pigments are shown.

2.4.HPLC analysis

We have used reversed-phase ion-pair chromatography to separate olive oil pigments;the eluents used were(A) water-ion-pair reagent(0.05M tetrabutylammonium and1M ammonium acetate aqueous solution)–methanol(1:1:8,v/v) and(B)acetone–methanol1:1(v/v).The pigments were eluted at a rate of1.5mL/min following the scheme in Table2.The clorophyllic pigments was detected?uoromet-rically(with a?uorescence spectrometer)using excitation and emission wavelenghts of440and660nm respectively. Carotenoids detection was obtained spectrophotometrically at430nm.

2.5.Statistical analysis

Multivariate analysis[factor analysis with principal com-ponent analysis(PCA)method and hierarchical clustering] was done by SPSS statistic software package.

A.Cichelli,G.P.Pertesana/J.Chromatogr.A1046(2004)141–146143 Table1

Study of recovery of virgin olive oil pigments by LPD and SPE

Chlorophylls

(mg/kg olive oil(ppm))Pheophytin a

(mg/kg olive oil(ppm))

Pheophytin b

(mg/kg olive oil(ppm))

Lutein

(mg/kg olive oil(ppm))

LPD SPE LPD SPE LPD SPE LPD SPE Virgin olive oil0.500.429.128.450.400.254.714.55 Pigment addition0.320.322.332.330.110.112.072.07 Enriched oil0.800.7511.4010.830.540.346.466.54

Recovery(%)97.56101.3599.56100.46105.8894.4495.

2898.79

R.S.D.(%,n=3)2.604.701.222.387.537.781.121.94

3.Results and discussion

From a comprehensive evaluation,between the olive oil pigments detected pheophytin a and lutein represent the most substantial fraction(more than80%for all the samples)with values ranging between2.06and37.06ppm for the pheo-phytin a and between3.96and14.78ppm for lutein;the clorophyll a not always has turned out detectable,often re-vealed only in traces;easier the quanti?cation of the other pigments(Table3).The method chosen for the analysis and in particular the use of a?uorescence spectrometer as detec-tor has turned out very useful.This allowed us to obtain a good detection of the signals concerning the pheophytins(a, b and relative epimers a and b )and to have detection limits 10times lower than obtainable ones with a detector UV–vis (Table4).

The obtained data,mean and median values(Table5), substantially agree with analogous measures reported in lit-erature[16–19]as regards the absolute and relative amounts.

In particular with respect to the different processing tech-nologies,variety and ripening degree we can observe that:(i) Table2

Gradient scheme used for the HPLC separation of the olive oil pigments Time(min)Mobile phase Elution curve a

A(%)B(%)

07525

72575Linear,1 102575

201090Convex,?5 240100Concave,+5 307525Concave,+5

a The numbers refer to the curve slope used by the methods of the Perkin-Elmer LC250binary pump.

Table3

Typical pigment distribution

Olive oil pigment Fraction(%) Chlorophyll b4 Chlorophyll a1 Pheophytin b4 Pheophytin a48 Neoxanthin4 Violaxanthin4

Lutein35with the newer extraction technology(centrifugal or contin-uous system)the olive oils samples show a greater amount of pigments as regards the traditional(pressure system);(ii) variety lead to signi?cant difference on the pigment com-position of the end product;instead geographical origin af-fects mainly pigment amounts;(iii)the level of maturation of the fruits is closely correlated with the pigment amount: the collection of cherry olives for all the varieties guarantees a more elevated content in these substances than the produc-tions obtained in complete or late maturation.Tables6and7 summarize this results.

HPLC analysis proved to be useful for the study of the olive oil pigments in terms of separation of the various com-pound classes and quantitative determination of the single terms:the obtained data have point out the opportunity of a systematic study of all the fractions,for a more complete characterization of the olive oil productions.Furthermore this analysis can be applied to identify olive oil adulteration with natural or syntethic food colourings.Fig.1shows the com-parison between three different samples:a virgin,an re?ned and a commercial adultered olive oil:the quali-quantitative pigment composition join the drastic decrease in pigments of the re?ned oil and the anomalous ratio between pheophytin a and pheophytin a epimer peaks shows clearly the adulter-ation of the commercial as regards the virgin olive oil.In fact as regards the virgin olive oils in no case the peak concerning the a epimer is superior than the basic epimer.

The second aim of this work was to evaluate the possibil-ity to obtain varietal identi?cation parameters leaving from the content in pigments of the various examined oils.To this purpose the data concerning monovarietal samples with com-parable maturity degree have been analysed exploiting the tools supplied by the multivariate statistics:we have consid-ered only four varieties in this study because only for this ones we had a suf?cient number of useful samples.

Multivariate statistical analysis has been used to recog-nize which chemometric information coming from measured parameters of the olive oil is able to discriminate the olive cultivars.For every sample have been considered like de-scriptive variables the following ones:the content in sin-gle pigment(seven variable ones distinguished)and,more, new variables derived from the combination of the previ-ous ones:for example new variables were the relationship in weight carotenes/green pigments or still the relationship

144 A.Cichelli,G.P .Pertesana /J.Chromatogr.A 1046(2004)141–146

Table 4

Detection limits of the olive oil pigments (ppm)Olive oil pigment UV–vis detector (?430nm)

Fluorescence spectrometer (λexc 440nm,λem 660nm a )Chlorophyll b 0.027Chlorophyll a 0.005Pheophytin b 0.009Pheophytin a 0.080

Neoxanthin 0.013Violaxanthin 0.010Lutein

0.013

a

λexc ,λem are respectively excitation and emission wavelengths.

Table 5

Virgin olive oil pigments:summarizing table Olive oil pigment Mean values (mg/kg olive oil (ppm))Median values (mg/kg olive oil (ppm))Range (mg/kg olive oil (ppm))Chlorophyll b 0.920.410.00–5.19Chlorophyll a 0.290.010.00–6.18Pheophytin b 1.200.920.05–9.72Pheophytin a 12.0910.75 2.06–37.06Neoxanthin 0.910.860.12–2.36Violaxanthin 0.890.510.00–5.15Lutein

7.82

6.82

3.96–1

4.78

Table 6

Comparison between olive oil extraction technologies:centrifugal or continuous system versus traditional or pressure system Olive oil pigment

Traditional system a Continuous system a

Continuous vs.traditional

Mean

Median Mean Median Chlorophyll b 0.520.231.231.06?57.44%Chlorophyll a 0.270.010.370.01?28.05%Pheophytin b 1.170.981.441.10?18.31%Pheophytin a 10.748.7514.4613.60?25.72%Neoxanthin 0.240.251.080.95?77.47%Violaxanthin 0.350.370.670.16?48.20%Lutein

5.44 5.47

9.30

9.39

?41.54%

a mg/kg

olive oil (ppm).

Table 7

Correlation between the level of maturation of the fruits and the pigment amounts Olive oil pigment Green olives (mg/kg olive oil (ppm))Cherry olives (mg/kg olive oil (ppm))Black olives (mg/kg olive oil (ppm))Chlorophylls 1.801.561.13Pheophytins 17.7416.7412.25Carotenoids 12.9712.449.54Total pigments

32.51

30.75

22.92

Table 8

List of variables describing olive oil samples used in multivariate statistical analysis Abbreviation Variable

Abbreviation

Variable

1.Chlb Chlorophyll b 10. Y Sum of yellow pigments

2.Chla Chlorophyll a 11. Chls Sum of chlorophylls

3.Pheob Pheophytin b 12. Pheos Sum of pheophytins

4.Pheoa

Pheophytin a 13.Y/G Ratio yellow /green pigments 5.Neoxanthin Neoxanthin 14.Chls/Lut Ratio chlorophylls/lutein 6.Violaxanthin Violaxanthin 15.fPheos ·fLut Pheos/ G ·lutein/ G 7.Lutein Lutein

16.fChls ·fLut Chls/ G ·lutein/ G 8. Sum of all the pigments 17.fChla Chla/( Chls +

G-lutein)

9. G

Sum of green pigments

18.fChlb

Chlb/( Chls +

G-lutein)

A.Cichelli,G.P.Pertesana/J.Chromatogr.A1046(2004)141–146

145

https://www.360docs.net/doc/a14134798.html,parison between three different olive oil samples. chlorophylls/lutein.A complete list of the variables consid-ered is reported in Table8.In order to identify between the variables taken in consideration the ones able to explain the variance shown by the olive oil samples,the?rst statistical method used has been the factor analysis,and the extrac-tion method PCAi used;this allows to focalize our atten-tion only on few mainly meaningful variables excluding the others.

The entire data matrix for each sample was subjected to PCA.This analysis is a well known technique which provides Table9

Percentage variance contributions by the?rst10PCs

PCs Variance(%)Cumulative variance(%) 154.9054.90

222.3677.26

310.7588.01

45.9293.93

53.0897.01

61.2098.21

70.8799.08

80.5999.67

90.1899.85

100.0799.92

a signi?cant insight into the structure of a data set.PCA gen-erates a set of new orthogonal variables(axes),the principal components(PCs),linear combination of the original vari-ables,so that the maximal amount of variance contained in the starting data set is concentrated in the?rst principal com-ponents.Therefore,PCA is suitable to reduce the dimension-ality of large data matrices by eliminating the non-signi?cant principal components and facilitating successive analyses on the reduced data.The data were auto-scaled before PC com-putation in order to asses the same weight to each variable. Analysing the covariance matrix,four principal component were needed to account for about94%of the total variation (Table9).The loadings associated to each variable on the?rst four principal component identify the variables that mostly de?ne them(Table10).

The projections of the loadings on the plane de?ned by the?rst two principal components are illustrated in Fig.2. These projections allow us to visualize the position of the variables in the plane and the corresponding correlations. In fact,if two variables are distant(the angle between the respective vectors is for example90?)they are less correlated because the correlation coef?cient is the cosine of this angle (cos90?=0).

Table10

Loadings of variables on the?rst four components

Variable PC1PC2PC3PC4 Chlb0.953?0.151?0.1270.053 Chla0.072?0.9150.253?0.247 Pheob0.7530.5140.335?0.080 Pheoa0.9420.2690.123?0.141 Violaxanthin0.341?0.1740.5920.681 Lutein0.8900.1160.321?0.163 Neoxanthin0.8980.1010.0380.012

0.9550.1930.208?0.086

G0.9510.2410.125?0.126

Y0.9030.0710.3810.011

Pheo0.9320.2930.143?0.136

Chl0.924?0.319?0.0730.004 Y/G?0.842?0.0510.4330.047 Chls/Lut0.729?0.477?0.4280.100 fPheo·fLut?0.5660.5520.008?0.577 fChls·fLut0.536?0.736?0.3680.105 fChla0.047?0.9280.228?0.232 fChlb0.713?0.085?0.633?0.180

146 A.Cichelli,G.P .Pertesana /J.Chromatogr.A 1046(2004)

141–146

Fig.2.Projections of loadings of the variables on the ?rst two

PCs.

Fig.3.Scores of samples on the ?rst two PCs.

The scores of data plotted on the ?rst two principal compo-nents shows clearly three grouping of olive varieties (Fig.3).

Comparing the Figs.2and 3we can easily to recognize the variables characterizing the varieties considered.

4.Conclusion

The multivariate statistical approach applied on olive oil pigment data obtained using HPLC techniques allow to rec-ognize,among many descriptive variables,the most signi?-cant ones,able to cluster olive oil sample and able to lead us to a ?rst classi?cation of olive variety.

References

[1]L.Di Giovacchino,M.Solinas,M.Miccoli,J.Am.Oil Chem.Soc.71

(1994)1189.

[2]L.Almela,J.A.Fernandez-Lopez,M.J.Roca,J.Chromatogr.A 870

(2000)483.

[3]M.Rahmani,A.S.Csallany,J.Am.Oil Chem.Soc.75(1998)837.[4]B.H.Chen,M.H.Liu,Food Chem.63(1998)207.

[5]A.Gossauer,N.Engel,Photochem.Photobiol.32(1996)141.[6]A.Serani,D.Piacenti,Riv.Ital.Sostanze Grasse 78(2001)459.[7]M.Rahmani,A.S.Csallany,J.Am.Oil Chem.Soc.9(1991)672.[8]E.Psomiadou,M.Tsimidou,J.Agric.Food Chem.46(1998)5132.[9]M.I.Minguez-Mosquera,B.Gandul-Rojas,A.Monta?n o-Asquerino,J.

Garrido-Fernandez,J.Chromatogr.585(1991)259.[10]J.Oliver,A.Palou,J.Chromatogr.A 881(2000)543.

[11]A.Cert,W.Moreda,M.C.Perez-Camino,J.Chromatogr.A 881(2000)

131.

[12]G.Sievers,P.H.Hynninen,J.Chromatogr.134(1977)359.[13]T.Watanabe,A.Hongu,K.Honda,Anal.Chem.56(1984)251.[14]M.Rimura,D.B.Rodriguez-Amaya,Food Chem.78(2002)389.[15]M.I.Minguez-Mosquera,B.Gandul-Rojas,J.Agric.Food Chem.40

(1992)60.

[16]E.Psomiadou,M.Tsimidou,J.Sci.Food Agric.81(2001)640.

[17]B.Gandul-Rojas,M.I.Minguez-Mosquera,J.Sci.Food Agric.72

(1996)31.

[18]M.I.Minguez-Mosquera,B.Gandul-Rojas,J.Garrido-Fernandez,L.

Gallardo-Guerrero,J.Am.Oil Chem.Soc.67(1990)192.

[19]M.I.Minguez-Mosquera,J.Garrido-Fernandez,J.Agric.Food Chem.

37(1989)1.

便携式叶绿素测定仪的使用原理及方法

便携式叶绿素测定仪 仪器用途: 可以即时测量植物的叶绿素相对含量(单位SPAD)或绿色程度、氮含量、叶面湿度、叶面温度,从而了解植物真实的硝基需求量并且了解土壤硝基的缺乏程度或是否过多地施加了氮肥。可以通过此款仪器来增加氮肥的利用率,并可保护环境。可广泛应用于农林相关科研单位和高校对植物生理指标的研究和农业生产的指导。 功能特点: 快速无损植物活体检测,不影响植物成长。 一次操作可同时测定所有参数,实时显示。 氮,叶绿素,叶温,叶片湿度四种参数同一屏幕同时显示,且可同时储存 内置GPS定位功能,实时显示当前经纬度 历史数据查看,即可顺序查看。 测量数据可连接计算机将测量数据导出,便于植物养分的管理和分析。 历史数据查看,即可顺序查看,也可跳转查看。 意外断电后已保存在主机里的数据不丢失。 对于历史数据可以一键式全部删除。 可连接计算机将测量数据导出,便于植物养分的管理和分析。 使用锂电池供电,带背光功能。 每种参数的报表、曲线图均可选择时段查询查看。 可将存储记录的数据以EXCEL格式备份保存,方便以后调用。 可将存储记录的数据曲线图以BMP图片格式备份保存,方便以后调用。 技术参数: 1、测量范围:叶绿素:0.0-99.9SPAD 氮含量:0.0-99.9mg/g 叶面湿度:0.0-99.9RH% 叶面温度:-10-99.9℃ 2、测量精度:叶绿素:±1.0 SPAD单位以内(室温下,SPAD值介于0-50) 氮含量:±5% 叶面湿度:±5% 叶面温度:±0.5℃ 3、重复性:叶绿素:±0.3 SPAD单位以内(SPAD值介于0-50) 氮含量:±0.5单位 叶面湿度:±0.5单位 叶面温度:±0.2℃ 4、测量面积:2mm*2mm 5.测量时间间隔:小于3秒 6.数据存储容量:2000组数据 7.电源:4.2V可充电锂电池 8.电池容量:2000mah 9.重量:200g

叶绿素a的测量-乙醇提取法

Hydrobiologia485:191–198,2002. ?2002Kluwer Academic Publishers.Printed in the Netherlands. 191 Chlorophyll-a determination with ethanol–a critical test ′Eva P′a pista1,′Eva′Acs2&B′e la B?ddi3,? 1E?tv?s Lor′a nd University of Science,Doctoral School,P′a zm′a ny P′e ter allee1/A,Budapest H-1117,Hungary 2E?tv?s Lor′a nd University of Science,Department of Microbiology,P′a zm′a ny P′e ter allee1/C Budapest H-1117, Hungary 3E?tv?s Lor′a nd University of Science,Department of Plant Anatomy,P′a zm′a ny P′e ter allee1/C,Budapest H-1117,Hungary Tel:12660240;E-mail:bbfotos@ludens.elte.hu (?Author for correspondence) Received2May2001;in revised form30August2002;accepted20August2002 Key words:algae,chlorophyll-a determination,ethanol,ISO standard10260(1992) Abstract Chlorophyll-a content is widely used as an indicator of the quality of freshwater bodies.Quanti?cation of chlorophyll-a is a routine procedure in the test laboratories of water works,and in research laboratories.Although attempts have been made to standardise the measurement procedure,there are nonetheless many procedures currently in use.This work is focused on a careful re-examination of the ISO:10260,1992standard,which prescribes90%(v/v)ethanol for chlorophyll extraction and measurement.Chlorophyll contents of cultures of the cyanobacterium Synechococcus elongatus N?geli and the chlorophyte Scenedesmus acutus Meyen were determined by means of a series of concentrations of ethanol/water mixtures which were employed as extracting agents–the water content was gradually decreased from20to0%.The extraction procedure was veri?ed by measuring the amount of retained water after using both water and oil pumps for?ltering the samples.The spectroscopic effects of the presence of water were studied and the molecular background of these spectral phenomena is discussed.The extraction yields obtained with90%ethanol were compared to those obtained with methanol and acetone.On the basis of the calculated error level,improvements to the ISO:10260,1992standard method have been suggested. Introduction The chlorophyll(Chl)content of freshwater bodies is a widely accepted indicator of water quality.Research projects on periphyton(Cattaneo,1983;Jonsson, 1987;Robinson&Rushforth,1987;Pantecost,1991) or phytoplankton(Kiss&Genkal,1993;Balogh et al., 1995;Jones,1995;Kiss,1996;Sha?k et al.,1997; Skidmore et al.,1998;Kiss et al.,1998)use these characteristics to describe the trophic state(Sumner &Fisher,1979;V?r?s&Padisák,1991;Talling, 1993)of the studied system.However,the identi?c-ation of the alga species,the knowledge of the algal cell number,or the physiological state of cells may also be important in providing a true picture of the water quality or trophic state.A combination of Chl determination and consideration of these other factors may provide an improvement in the reliability and ac-curacy of water quality estimation.Uterm?hl(1958) developed a method to determine the individual num-ber of algae with an inverted microscope and Lund et al.(1958)described a procedure to estimate the accuracy and limitations of Uterm?hl’s method. If certain taxa are in developing or degrading stages in the studied populations,consideration of the factors above is essential,since certain species produce toxins harmful to both water animals and hu-man(Slatkin et al.,1983;Codd et al.,1992).It has been established that the presence of algae and thus the Chl content indicate the concentration of certain chemicals or the appearance of toxins in the drinking water(Bernhardt&Clasen,1991).Thus,considera-

植物叶绿素测定方法

叶绿素含量的测定 一、原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。这就是吸光度的加和性。今欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A,并根据叶绿素a、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 二、材料、仪器设备及试剂 (一)材料:新鲜(或烘干)的植物叶片。 (二)仪器设备:1)分光光度计;2)电子顶载天平(感量0.01g);3)研钵;4)棕色容量瓶; 5)小漏斗;6)定量滤纸;7)吸水纸; 8)擦境纸;9)滴管。 (三)试剂:1)95%乙醇(或80%丙酮)(v丙酮:v乙醇=2:1的95%水溶液);2)石英砂;3)碳酸钙粉。暗中2h,0.5g,25ml 三、实验步骤 1)取新鲜植物叶片(或其它绿色组织)或干材料,擦净组织表面污物,剪碎(去掉中脉),混匀。 2)称取剪碎的新鲜样品 0.2g ,共3份,分别放入研钵中,加少量石英砂和碳酸钙粉及2~3ml 95%乙醇,研成均浆,再加乙醇10ml,继续研磨至组织变白。静置3~5m 3)取滤纸1张,置漏斗中,用乙醇湿润,沿玻棒把提取液倒入漏斗中,过滤到25ml棕色容量瓶中,用少量乙醇冲洗研钵、研棒及残渣数次,最后连同残渣一起倒入漏斗中。 4)用滴管吸取乙醇,将滤纸上的叶绿体色素全部洗入容量瓶中。直至滤纸和残渣中无绿色为止。最后用乙醇定容至25ml,摇匀。 5)把叶绿体色素提取液倒入光径1cm的比色杯内,以95%乙醇为空白,在波长663nm 和645nm下测定吸光度。在波长663nm、645nm下或652nm测定吸光度。 四、实验结果计算 叶绿素a的含量 = 12.7 ? OD 663 – 2.69 ? OD 645 叶绿素a的含量 = 22.9 ? OD 645 – 4.86 ? OD 663 叶绿素a、b的总含量 = 8.02 ? OD 663 + 20.20 ? OD 645

叶绿素测定方法

实验三十三叶绿素含量的测定(分光光度法) 根据朗伯-比尔(Lambert-Beer)定律,某有色溶液的吸光度A值与其中溶质浓度C以及光径L成正比,即A=aCL(a为该物质的吸光系数)。各种有色物质溶液在不同波长下的吸光值可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下的吸光度的总和,这就是吸光度的加和性。今欲测定叶绿体色素提取液中叶绿素a、b含量,只需测定该提取液在2个特定波长下的吸光度度值,并根据叶绿素a与b在该波长下的吸光系数即可求出各自的浓度。在测定叶绿素a、b含量时,为了排除类胡萝卜素的干扰,所用单色光的波长应选择叶绿素在红光区的最大吸收峰。 已知叶绿素a、b的80%丙酮提取液在红光区的最大吸收峰分别为663nm和645nm,又知在波长663nm下,叶绿素a、b在该溶液中的比吸收系数分别为82.04和9.27,在波长645nm 下分别为16.75和45.60,可根据加和性原则列出以下关系式: A663=82.04Ca+9.27Cb (1) A645=16.75Ca+45.6Cb (2) 式中A663、A664分别为波长663nm和645nm处测定叶绿素溶液的吸光度值;Ca、Cb分别为叶绿素a、b的浓度(g/L)。 解联立方程(1)、(2)可得以下方程: Ca=0.0127A663-0.00269A645 (3) Cb=0.0229A645-0.00468A663 (4) 如把叶绿素含量单位由g/L改为mg/L,(3)、(4)式则可改写为: Ca(mg/L)=12.7A663-2.69A645 (5) Cb(mg/L)=22.9A645-4.68A663 (6) 叶绿素总量CT(mg/L)=Ca+Cb=20.2A645+8.02A663 (7) 叶绿素总量也可根据下式求导 A652=34.5×CT 由于652nm为叶绿素a与b在红光区吸收光谱曲线的交叉点(等吸收点),两者有相同的比吸收系数(均为34.5),因此也可以在此波长下测定一次吸光度(A652)求出叶绿素总量:CT(g/L)=A652/34.5 CT(mg/L)=A652×1000/34.5 (8) 因此,可利用(5)、(6)式可分别计算叶绿素a与b含量,利用(7)式或(8)式可计算叶绿

叶绿体色素的提取分离理化性质和叶绿素含量的测定

实验报告 植物生理学及实验(甲)实验类型:课程 名称:实验名称:叶绿体色素的提取、分离、理化性质和叶 绿素含量的测定姓名:专业:学 号:指导老师:同组学生姓名: 实验日期:实验地点: 二、实验内容和原理一、实验目的和要求装 四、操作方法与实验步骤三、主要仪器设备订 六、实验结果与分析五、实验数据记录和处理 七、讨论、心得一、实验目的和要求、掌握植物中叶绿体色素的分离和 性质鉴定、定量分析的原理和方法。1 和b的方法及其计算。a2、熟悉在 未经分离的叶绿体色素溶液中测定叶绿素二、实验内容和原理以青菜为 材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。 原理如下:80%的乙醇或95%叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,1、常用的丙酮提取。、皂化反应。叶绿素是二羧酸酯,与强碱反应, 形成绿色的可溶性叶绿素2. 盐,就可与有机溶剂中的类胡萝卜素分开。- COOCHCOO3 Mg + 2KOH C32H30ON4Mg + 2KOH +CH3OH

HONC43230+C20H39OH 、3H+可依次被在酸性或加温条件下,叶-COOCOOCH39 20 绿素卟啉环中的Mg++取代反应。Mg2+, Cu2+ 取代Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素。(H+和H+ ) 取代(Zn2+) 绿色褐色 、叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。4645其中叶绿素吸收红光和兰紫光,红光区可用于定量分析,5、定量分析。 652可直接用于总量分析。663用于定量叶绿素a,b及总量,而和C最大吸收光谱不同的两个组分的混合液,它们的浓度根据朗伯-比尔定律, *k+C*kOD=Ca*k与吸光值之间有如下的关系: OD=Ca*k+C b2 1g/L和b的80查阅文献得,2b1 b1a1a2b时,比吸收系%丙酮溶液,当浓度为 叶绿素a 值如下。数k k 比吸收系数波长/nm b 叶绿素a 叶绿素 9.27 82.04 663 45.60 645 16.75

叶绿素a测定仪

叶绿素a测定仪 一、设备性能要求 1、采用荧光度检测技术 2、手持式便携设计重量小于500g 3、专用双通道设计,两种测量模式可实现单键切换 4、操作简便,一键测定 5、具有浊度补偿功能,有效消除浊度对测定的影响 6、具有温度及光照强度的显示功能,方便监测人员及时掌握影响叶绿素的环境因子状况 7、专用小型测量试管,有效消除测量池对测定的影响,提高测量精度,抛弃型测量试管,一次性使用,免清洗,方便快捷 8、内置可充电锂电池,每次充电可检测次数大于1000次 9、高强度塑料外壳,防护等级达到IP67,防尘防水 10、配备便携检测箱,可满足现场检测的全部需要 11、检测项目:活体叶绿素、萃取叶绿素、浊度、光照强度、温度 12、最大检测浓度:500μg/L 13、检出限: 0.5ppb 14、使用试管类型:10mm方型聚苯乙烯管 15、检测器:荧光检测器(测定范围:300~1000nm) 16、温度显示:-10℃~50℃ 17、照度显示:0~1×106lux 18、测量精度:5% 19、数据存储:内置数采器,可存储1000组历史数据 20、测量时间:5秒 21、显示:LCD显示 22、环境温度:5℃~40℃ 23、自动关机:未触摸按键3分钟后 24、外形尺寸:195mm×100mm×70mm

二、配置要求 1、叶绿素a测定主机 1台 2、方形比色皿 100只 3、专用便携箱 1个 4、取液器 200只 5、操作手册及合格证 1套 三、技术支持与服务 1、所有产品均需符合国家产品的有关质量标准,是有品牌的整机原厂正品。 2、符合产品厂家的出厂标准,并能提供原厂质保书、合格证、文档资料等有关文件。 3、所有产品均需提供安装服务(到招标方指定场所进行现场安装)并通过验收。 4、维修: 4.1与该产品售后服务以及技术支持有关的所有工作应由生产厂家直接支 持解决。 4.2所有产品均需保证每周7天随时提供上门维护服务。报修后,在24小时内响应,并上门解决问题。 4.3质保期为12个月。 若质保期内发生维修、更换产品部件等所有事项所产生的一切费用由供方承担。发生过维修部分或更换过整机的,该部件或更换后的整机其质保期从维修或更换完成、达到使用要求后重新计算,仍为12个月。 5、培训:使用户达到独立使用要求。

(完整word版)叶绿素含量的测定

叶绿素含量的测定 一、原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。 根据朗伯—比尔定律,某有色溶液的吸光度A 与其中溶质浓度C 和液层厚度L 成正比,即A =αCL 式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm 时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。 如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。这就是吸光度的加和性。今欲测定叶绿体色素混合提取液中叶绿素a 、b 和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A ,并根据叶绿素a 、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a 、b 时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 已知叶绿素a 、叶绿素b 的80%丙酮溶液在红外区的最大吸收峰分别位于663、645nm 处。已知在波长663nm 下叶绿素a 、叶绿素b 在该溶液中的吸光系数的分别为82.04和9.27;在波长645nm 处的吸光系数分别为16.75和45.60。根据加和性原则列出以下关系式: A663=82.04Ca+9.27Cb (1) A645=16.76Ca+45.60Cb (2) 式(1) (2)A 663nm 和A645nm 为叶绿素溶液在663nm 和645nm 处的吸光度,C a C b 分别为叶绿素a 、叶绿素b 的浓度,以mg/L 为单位。 解方程(1) (2)组得 C a =12.72 A 663—2.59 A 645 (3) C b =22.88 A 645—4.67 A 663 (4) 将C a +C b 相加即得叶绿素总量C T C T = C a 十C b =20.29A 645—8.05 A 663 (5) 从公式(3)、(4)、(5)可以看出,,就可计算出提取液中的叶绿素a 、b 浓度另外,由于叶绿素a 叶绿素b 在652nm 的吸收峰相交,两者有相同的吸光系数(均为30.5),也可以在此波长下测定一次吸光度(A 652)而求出叶绿素a 、叶绿素 b 总量 所测定材料的单位面积或单位重量的叶绿素含量可按下式进行计算: C T = 5 .341000 652 A (6) 有叶绿素存在的条件下,用分光光度法可同时测出溶液中类胡萝卜素的含量。Licht-enthaler 等对Arnon 进行了修正,提出了 80%丙酮提取液中3种色素含量的计算公式: C a =12.21A 663—2.59 A 646 (7)

叶绿素含量的测定

叶绿素含量的测定 一.实验原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。 根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL.式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。 如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。就是吸光度的加和性。如欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三特定波长下的吸光度A,并根据叶绿素a、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 植物叶绿素含量测定----丙酮提取法 高等植物光合作用过程中利用的光能是通过叶绿体色素(光合色素)吸收的。叶绿体色素由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。叶绿体色素的提取、分离和测定是研究它们的特性以及在光合中作用的第一步。叶片叶绿素含量与光合作用密切相关,是反眏叶片生理状态的重要指标。在植物光合生理、发育生理和抗性生理研究中经常需要测定叶绿素含量。叶绿素含量也是指导作物栽培生产和选育作物品种的重要指标。 ● 叶绿素不溶于水,溶于有机溶剂,可用多种有机溶剂,如丙酮、乙醇或二甲基亚砜等研磨提取或浸泡提取。叶绿色素在特定提取溶液中对特定波长的光有最大吸收,用分光光度计测定在该波长下叶绿素溶液的吸光度(也称为光密度),再根据叶绿素在该波长下的吸收系数即可计算叶绿素含量。 ●利用分光光计测定叶绿素含量的依据是Lambert-Beer定律,即当一束单色光通过溶液时,溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。其数学表达式为: ●A=Kbc 式中:A为吸光度;K为吸光系数;b为溶液的厚度;c为溶液浓度。 ●叶绿素a、b的丙酮溶液在可见光范围内的最大吸收峰分别位于663、645nm处。叶绿素a 和b在663nm处的吸光系数(当溶液厚度为1cm,叶绿素浓度为g·L-1时的吸光度)分别为82.04和9.27;在645nm处的吸光系数分别为16.75和45.60。根据Lambert-Beer定律,叶绿素溶液在663nm和645nm处的吸光度(A663和A645)与溶液中叶绿素a、b和总浓度(a+b)(Ca、Cb 、Ca十b,单位为g·L-1),的关系可分别用下列方程式表示: ●A663=82.04C a+9.27C b (1) ●A645=16.76C a+45.60C b(2) ●C a=12.7 A663—2.59 A645(3) ●C b=22.9 A645—4.67 A663 (4) ●C a十b=20.3 A645—8.04 A663 (5) ●

叶绿素含量的测定

叶绿素含量的测定 绿素含量的绿定叶 一、绿绿目的 1.了解分光光度绿的工作原理~ 2.掌握不同型分光光度绿的操作方绿~号 3.通绿本绿绿的绿掌握绿素含量绿定的一绿常绿的方法学叶------分光光度法。 二、绿绿原理 叶叶体体体叶绿素是脂溶性色素~主要存在于以绿绿首的色素中。在活中~绿绿 素脂蛋白绿合受到绿原系绿的保绿~绿和光是绿定的。与并氧 叶绿素的80%丙绿提取液在波绿663nm~645nm有吸收峰~绿素叶a和绿素叶b 的绿度符合以下公式, C=0.0127A-0.00259A a663645 C=0.0229A-0.00467A绿度绿位是,g/Lb645663 C=12.7A-2.59Aa663645 C=22.9A-4.67A绿度绿位是,mg/Lb645663 叶绿素绿绿度绿, C=C+CTab 若以绿液中色素含量表示~绿来 三、绿器、绿绿和材料 1.绿器 紫外-可绿分光光度绿、、研体25ml容量、璃漏斗、璃棒、皮绿滴管瓶玻玻2. 绿绿

丙绿;分析绿,、85%丙绿、80%丙绿 2.材料 绿绿、石英砂、酸绿碳 四、操作步绿 1. 在遮光件下取出等绿绿品~剪碎~混~取绿绿条匀称0.1-0.5g~ 2. 绿品置于绿~加入少量酸绿和石英砂~加入一定绿的丙绿磨绿绿~再加研内碳体研匀 85%丙绿适量绿绿磨至绿绿白色~研 3. 绿绿有绿绿的漏斗绿液绿入将匀25ml的容量中~用瓶并80%的丙绿分次洗绿和绿绿清研~ 最后用80%的丙绿定容。 4. 以80%的丙绿绿比液~在参663和645nm波绿绿绿定吸光绿;A绿在0.2-0.8范绿~内 绿度绿大绿用80%丙绿适稀绿,。当 五、绿果绿理 按照公式绿算出绿素叶a和绿素叶b的绿度~再绿算出绿素的含量。叶六、 注意事绿 1. 在活~绿合绿绿素是绿定的~绿绿一绿破~绿素易被光解。因此~抽提和绿体内叶坏叶 定工作绿可能避光快速完成。尽 2. 绿含有大量酸性液泡的绿品~绿首先加入微性的绿液~仔绿磨后加入丙绿绿行碱冲研抽提。 3. 分光光度绿的精度绿绿定的绿果有至绿重要的影~使用前绿绿器绿行校正。响七、思考绿

植物组织中叶绿素含量测定

植物组织中叶绿素含量测定 (无机及分析化学实验II-设计性实验) 一、实验目的 1.设计用分光光度计测定植物组织中的叶绿素 2. 学习利用文献资料设计研究方案 3. 掌握分光光度计测定植物组织中的叶绿素的原理与方法 二、原理: 叶绿素广泛存在于果蔬等绿色植物组织中,并在植物细胞中与蛋白质结合 成叶绿体。当植物细胞死亡后,叶绿素即游离出来,游离叶绿素很不稳定,对 光、热较敏感;在酸性条件下,叶绿素生成绿褐色的脱镁叶绿素,在稀碱液中 可水解成鲜绿色的叶绿酸盐以及叶绿醇和甲醇。高等植物中叶绿素有两种,均 易溶于乙醇、乙醚、酒精和氯仿。 叶绿素a 叶绿素b 叶绿素a、b在长波方面最大吸收峰分别位于663nm和645nm,且两吸 收曲线相交于652nm处。叶绿素a、b的比吸收系数K为已知,可在663nm和 645nm测定试样吸光度(两组份混合试样测定,双波长法),根据Lambert-

Beer定律,列出浓度c与吸光度A之间的关系式: A 663 =82.04c a+9.27c b (1) A 645 =16.75c a+45.6c b (2) (1)、(2)式中的A 663、A 645 为叶绿素溶液在波长663nm和645nm时的吸光度 度。 c a 、c b为叶绿素a、b的浓度,单位为g/L。 82.04、9.27为叶绿素a、b在波长663nm时的比吸收系数16.75、45.6为叶绿素a、b在波长645nm时的比吸收系数。解方程式(1)(2),则得经验公式: c a =12.7 A 663 -2.69 A 645 (3) c b =22.9 A 645 -4.68 A 663 (4) c T =(c a + c b)=20.2 A645+8.02 A663...... (5) 此时,c T为总叶绿素浓度,c a、c b为叶绿素a、b的浓度,单位为mg/L ,利用上面(3)(4)(5)式,即可以计算a、b总叶绿素的浓度。 仪器:分光光度计、电子天平、棕色容量瓶(如使用白玻容量瓶,可用报纸遮光)、小漏斗、滤纸 试剂:95%乙醇 三、实验步骤 1、试材的采集 采集新鲜植株叶片(或含叶绿素的其他组织),夹于双层报纸中,风干(不能置于太阳光下晒)。将风干材料处理成细小颗粒,装入封口塑料袋,避光保存。 2、待测液的制备 (1)叶绿素的浸提 精密称定风干后的样品(约0.1g)于20mL 95%乙醇中,在室温浸提36-48h。 (2)叶绿素浸提液定容

叶片叶绿素含量的测定

植物叶片中叶绿素含量测定----丙酮提取法 1、原理 叶绿素a、b在长波的最大吸收峰分别在663nm、645nm,据Lamber-Beer 定律,可得浓度C与光密度D间的关系式: D663= + D645= + (浓度单位:g/mL) 叶绿素a的浓度:Ca= – 叶绿素b的浓度:Cb= –D663 总叶绿素的浓度:Ct = + (浓度单位:mg/L) 2、试剂与材料 试剂: 丙酮、石英砂、碳酸钙 材料: 新鲜叶片。 仪器与器皿: 分光光度计、天平、剪刀、研钵、移液管、漏斗、大试管 3、实验步骤 称叶用丙酮研磨 ↓ 匀浆过滤(用80%丙酮洗研钵及残渣,合并滤液) ↓ 滤液用80%丙酮定容至25mL ↓ 适当稀释后测A645、A663 取样:称取剪碎的叶片(提供的样品即为剪碎后冻于-80℃的叶片)放入研钵中。注意取样时要避开大的叶脉。 研磨提取:向研钵中加入80%丙酮,以及少许(约)CaCO3 (中和酸性,防止叶绿素酯酶分解叶绿素) 和石英砂,研磨成匀浆,再加入3ml 80%丙酮,继续研磨至组织变白,在暗处静止3~5min后,用一层干滤纸过滤到25ml容量瓶中,用滴管吸取80%丙酮将研钵洗净,清洗液也要过滤到容量瓶中,并用80%丙酮沿滤纸的周围洗脱色素,待滤纸和残渣全部变白后,用80%丙酮定容至刻度。 读取吸光度:取厚度为lcm的洁净比色皿,注意不要用手接触比色皿的光面,先用少量色素提取液清洗2~3次,注意清洗时要使清洗液接触比色皿内壁的所有部分,然后将色素提取液倒入比色皿中,液面高度约为比色皿高度的4/5,将撒在比色皿外面的溶液用滤纸吸掉(注意不能擦),再用擦镜纸擦干擦净。将比色

叶绿素含量测定方法

实验14 叶绿素a 和b 含量的测定(分光光度法) 一、目的 学会Chla 、b 含量的测定方法,了解叶片中Chla 、b 的含量。 二、材料用具及仪器药品 菠菜叶片、721分光光度计、天平、研钵、剪刀、容量瓶(25ml )、漏斗、滤纸、乙醇(95%) 三、原理 叶绿素a 、b 在波长方面的最大吸收峰位于665nm 和649nm ,同时在该波长时叶绿素a 、b 的比吸收系数K 为已知,我们即可以根据Lambert Beer 定律,列出浓度C 与光密度D 之间的关系式: D 665=83.31Ca+18.60C b (1) D 649=24.54Ca+44.24 C b (2) (1)(2)式中的D 665、D 649为叶绿素溶液在波长665nm 和649nm 时的光密度。 为叶绿素a 、b 的浓度、单位为每升克数。 82.04、9.27为叶绿素a 、b 在、在波长665nm 时的比吸收系数。 16.75、45.6为叶绿素a 、b 在、在波长649nm 时的比吸收系数。 解方程式(1)(2),则得 : C A =13.7 D 665—5.76 D 649 (3) C B =25.8 D 649—7.6 D 665 (4) G=C A +C B =6.10 D 665+20.04 D 649 (5) 此时,G 为总叶绿素浓度,C A 、C B 为叶绿素a 、b 浓度,单位为每升毫克,利用上面(3) (4)(5)式,即可以计算叶绿素a 、b 及总叶绿素的总含量。 四、方法步骤 1.称取0.1克新鲜叶片,剪碎,放在研钵中,加入乙醇10ml 共研磨成匀浆,再加5ml 乙醇,过滤,最后将滤液用乙醇定容到25ml 。 2.取一光径为1cm 的比色杯,注入上述的叶绿素乙醇溶液,另加乙醇注入另一同样规格的比色杯中,作为对照,在721分光光度计下分别以665nm 和649nm 波长测出该色素液的光密度。 计算结果: 叶绿素a 含量(mg/g. FW )=2 .01100025??A C 叶绿素b 含量(mg/g.FW )=2.01100025?? B C 叶绿素总量(mg/g.FW )=2 .01100025??G 五、实验报告 计算所测植物材料的叶绿素含量。

青菜叶中叶绿素含量的测定

青菜叶中叶绿素含量的测定 食品学院S100111029 王婷同组人:王莹、王芳 一、实验目的 1.学习并且使用分液漏斗分离水与不溶于水的有机溶剂。 2.熟悉掌握用有机溶剂萃取青菜叶中叶绿素的方法。 二、实验原理 将青菜叶中的叶绿素萃取到丙酮中,然后将溶于丙酮的叶绿素转移到乙醚中,在指定的波长下,测定叶绿素-乙醚溶液的吸光度,然后根据公式计算青菜叶中的叶绿素a、叶绿素b 和总叶绿素的含量。 三、实验器材 1.实验仪器:天平、组织捣碎机、水、循环真空泵、抽滤瓶、滤纸、布氏漏斗、容量瓶(100ml、500ml各一个)、分液漏斗(2个)、尖嘴管、铁架台、铁圈(2个)、分光光度计。 2.实验试剂:碳酸钙、丙酮(85﹪)、乙醚、无水硫酸钠。 3.实验原料:青菜叶。 四、实验步骤 1.称取30g新鲜青菜叶置于组织捣碎机中,然后加0.05gCaCO3和85ml丙酮(85﹪),在高速组织捣碎机中,在转速20000r/min下捣碎,2min,捣碎青菜叶组织。 2.抽滤所得的匀浆,用少量85﹪丙酮多次洗涤残渣,直到残渣不带绿色为止,将溶液合并后用丙酮定容至500ml。 3.吸取25ml叶绿素-丙酮溶液,加入到含有25ml乙醚的分液漏斗中,然后加入50ml水,观察到所有的叶绿素都转入到上层乙醚相时,放出下层水相。 4.在另一只分液漏斗中加入50ml水,插入一只末端拉成小孔的玻璃管,将叶绿素-乙醚溶液注入玻璃管,溶液通过通过玻璃环末端小孔进入水相后再上升聚集在水相表面,放出下层水相,重复上述操作步骤五次,让溶于叶绿素-乙醚溶液中的丙酮转移到水相中,将乙醚层转移至容量瓶中。 5.将以上放出的下层水合并,加入25ml乙醚,同上操作,将乙醚层也转移至容量瓶中。 6.用乙醚将叶绿素-乙醚溶液定容到100ml。 7.用少量无水硫酸钠吸收叶绿素-乙醚溶液中的水分。 8.在波长660nm和642.5nm下,分别测定叶绿素-乙醚溶液的吸光度。

叶绿素含量测定方法(精)

叶绿素含量测定方法---丙酮法 由于微藻的生长周期比较复杂,包括无性繁殖阶段和有性繁殖阶段,其在不同阶段的生理形态不同,有时藻细胞会聚集在一起,以片状或团状形式存在,在显微镜下难以确定其所包含的细胞数量。 藻细胞中叶绿素的含量(特别是叶绿素a的含量)通常随与细胞的生长呈较好的线性关系,因此可通过测定藻细胞中叶绿素含量变化来反映微藻的生长情况。叶绿素测定采用丙酮研磨提取法。 取适量藻液于10 mL离心管中在4000 rpm转速下离心10 min,弃去上清液,藻泥中加入适量的100 %的丙酮。采用丙酮提取法时在试管研磨器中冰浴研磨5 min,4000 rpm离心后,上清液转入10 mL容量瓶中。按上述方法对藻体沉淀进行萃取,直至藻体沉淀呈白色为止。定容后,采用722S型可见分光光度计分别测定645 nm和663 nm下萃取液的吸光值,叶绿素含量用以下公式进行计算(Amon,1949): 叶绿素a含量用以下公式进行计算: Chlorophyll a (mg/L) = (12.7×A663 nm-2.69×A645 nm)×稀释倍数 叶绿素b含量用以下公式进行计算: Chlorophyll b (mg/L) = (22.9×A645 nm-4.64×A663 nm)×稀释倍数 叶绿素总含量用以下公式进行计算: Chlorophyll a+b (mg/L) = (20.2×A645 nm+8.02×A663 nm)×稀释倍数 由于丙酮的沸点较低,较高温度下挥发很快。此外,叶绿素稳定性较差,见光易分解,因此,本实验中叶绿素的提取和测定均在低温黑暗条件下进行,以减少提取过程中的损失。 叶绿素提取方法 提取液:本试验用DMSO/80%丙酮(l/2,v/v)提取的叶绿素,谭桂英周百成底栖绿藻叶绿素的二甲基亚砜提取和测定法* 海洋与湖沼 1987 18(3)295--300. 一、直接浸提法: 1、准确量取10ml藻液,加到15ml离心管中,放在台式离心机离心,3500r/min (根据不同的藻选择不同那个的离心转速)离心5min倒上清;留藻泥。随后在盛有藻泥的离心管中加入蒸馏水,与藻泥混匀后再次离心,目的是除去藻细胞表面的盐份,此清洗过程重复三次。 2、往藻泥中加二甲基亚砜3.33ml,65℃水浴9h,20h; 3、然后离心,将上清转移到10ml棕色瓶中, 4、添加6.67ml80%丙酮到离心管中,混匀,离心,再将上清转移到10ml棕色瓶中。 5、定容,待测。

叶绿素含量的测定

叶绿素含量的测定 一、 实验目的 1. 了解分光光度计的工作原理; 2. 掌握不同型号分光光度计的操作方计; 3. 通过本实验的学习掌握叶绿素含量测定的一种常见的方法------分光光度法。 二、 实验原理 叶绿素是脂溶性色素,主要存在于以叶绿体为首的色素体中。在活体中,叶绿素与脂蛋白结合并受到还原系统的保护,对氧和光是稳定的。 叶绿素的80%丙酮提取液在波长663nm ,645nm 有吸收峰,叶绿素a 和叶绿素b 的浓度符合以下公式: C a =0.0127A 663-0.00259A 645 C b =0.0229A 645-0.00467A 663 浓度单位是:g/L C a =12.7A 663-2.59A 645 C b =22.9A 645-4.67A 663 浓度单位是:mg/L 叶绿素总浓度为: C T =C a +C b 若以试液中色素含量来表示,则 1000 )()()/(/??=g ml L mg C )g (mg 样品重提取液总体积鲜样叶绿素含量 三、 仪器、试剂和材料 1. 仪器 紫外-可见分光光度计、研体、25ml 容量瓶、玻璃漏斗、玻璃棒、皮头滴管 2. 试剂 丙酮(分析纯)、85%丙酮、80%丙酮 2. 材料

滤纸、石英砂、碳酸镁 四、操作步骤 1. 在遮光条件下取出等测样品,剪碎,混匀,称取鲜样0.1-0.5g; 2. 样品置于研钵内,加入少量碳酸镁和石英砂,加入一定体积的丙酮研磨匀浆,再加85%丙酮适量继续研磨至组织白色; 3. 经铺有滤纸的漏斗将匀浆液转入25ml的容量瓶中,并用80%的丙酮分次清洗研钵和滤纸,最后用80%的丙酮定容。 4. 以80%的丙酮为参比液,在663和645nm波长处测定吸光值(A应在0.2-0.8范围内,浓度过大应用80%丙酮适当稀释)。 五、结果处理 按照公式计算出叶绿素a和叶绿素b的浓度,再计算出叶绿素的含量。 六、注意事项 1. 在活体内,结合态叶绿素是稳定的,组织一经破坏,叶绿素易被光解。因此,抽提和测定工作应尽可能避光快速完成。 2. 对含有大量酸性液泡的样品,应首先加入微碱性的缓冲液,仔细研磨后加入丙酮进行抽提。 3. 分光光度计的精度对测定的结果有至关重要的影响,使用前对仪器进行校正。 七、思考题 1. 当溶液中有两种成分共存时,利用分光光度计进行测定时,如何选择测定波长? 附属实验: 1.溶剂极性对有机物精细结构影响 苯-环己烷、苯-乙醇、苯-水 2.溶剂pH对光谱的影响 苯酚、苯酚—H+(pH=6)、苯酚—OH-(pH=10)

叶绿素含量的测定

植物生理学实验报告实验题目:叶绿素含量的测定 姓名 班级 学号

一、实验原理和目的 根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比。叶绿素(丙酮)在652nm(混合)、663nm、645nm有最大吸收峰。 叶绿素(95%乙醇)在665nm、649nm,类胡萝卜素在470nm有最大吸收峰,根据在分光光度计下测定的吸光度,求得叶绿素的含量 二、实验器具和步骤 植物材料:女贞 实验器具:分光光度计;电子天平;研钵;试管;小漏斗;滤纸;吸水纸;移液管;量筒;剪刀 试剂:95%乙醇(或80%丙酮);石英砂;碳酸钙粉 步骤:1.称取剪碎的新鲜样品0.1g 左右,放入研钵中,加少量石英砂和碳酸钙粉及3~5ml 95%乙醇,研成均浆,继续研磨至组织变白。静置3~5min 2. 取滤纸1张,置漏斗中,用乙醇湿润,沿玻棒把提取液倒入漏斗中,过滤到10ml试管中,用少量乙醇冲洗研钵、研棒及残渣数次,最后连同残渣一起倒入漏斗中。 3.用滴管吸取乙醇,将滤纸上的叶绿体色素全部洗入漏斗中。直至滤纸和残渣中无绿色为止。最后用乙醇定容至10 ml ,摇匀 4. 把叶绿体色素提取液倒入光径1cm的比色杯内。以95%乙醇为空白,在波长665nm、649nm、470nm下测定吸光度 5. 计算公式: 叶绿素的含量(mg/g)= (浓度×提取液体积×稀释倍数)/样品鲜重。 Ca=13.95A665-6.88A649; Cb=24.96A649-7.32A665 C类=(1000A470-2.05Ca-114.8Cb)/245 单位:mg/L 三、实验数据和作业

2、计算叶绿素含量 计算公式: 叶绿素的含量(mg/g)= (浓度×提取液体积×稀释倍数)/样品鲜重。 Ca=13.95A665-6.88A649; Cb=24.96A649-7.32A665 C类=(1000A470-2.05Ca-114.8Cb)/245 单位:mg/L 由上面的公式进行代入计算,有: Ca=13.95*1.820-6.88*0.953=18.83236 Cb=24.96*0.953-7.32*1.820=10.46448 C类=(1000*1.948-2.05*18.83236-114.8*10.46448)/245=2.8901 则:叶绿素含量=(29.29684*10*0.001*1)/0.1=2.9297 四、数据分析 实验中可能清洗研钵和滤纸不是特别干净可能造成误差 五、思考题 为什么提取叶绿素时干材料一定要用80%的丙酮,而新鲜的材料可以用无水丙酮提取?答:因为叶绿素存在于叶绿体内囊体上与其上的蛋白质组成色素蛋白复合体,要 分离叶绿素和蛋白质必须有水,叶绿素的头部为极性的,有亲水性

相关文档
最新文档