Unix、Lunix和Windows的进程调度策略比较

Unix、Lunix和Windows的进程调度策略比较
Unix、Lunix和Windows的进程调度策略比较

研究Unix、Lunix和Windows等3种操作系统的进程调度

策略

摘要:本文对Unix、Lunix和Windows三种操作系统的进程调度策略进行了详细的分析。Lunix系统对普通进程的调度策略-动态优先调度,对于实时进程采用了两种调度策略,FIFO(先来先服务调度)和RR(时间片轮转调度);UNIX系统的进程调度采用的算法是,多级反馈列轮转调度法;而Windows 系统其调度方式比较复杂,它的处理器调度的调度单位是线程而不是进程,是基于优先级的抢先式多处理器调度,依据优先级和分配时间片来调度。最后对它们的进程调度方式进行了对比研究,分析出了各种调度算法的优缺点、以及在哪些情况下用什么样的调度方式最合适。

关键词:操作系统进程调度算法实时优先级

引言:无论是在批处理系统还是分时系统中,用户进程数一般都多于处理机数、这将导致它们互相争夺处理机。另外,系统进程也同样需要使用处理机。这就要求进程调度程序按一定的策略,动态地把处理机分配给处于就绪队列中的某一个进程,以使之执行。

进程调的实质是资源的分配,如何使系统能够保持较短的响应时间和较高的吞吐量,如何在多个可运行的进程中选取一个最值得运行的进程投入运行是调度器的主要任务。进程调度包括两个方面的内容:何时分配CPU 时间(调度时机)即调度器什么时候启动;如何选择进程(调度算法)即调度器该怎么做。

进程调度有以下两种基本方式:

非剥夺方式:分派程序一旦把处理机分配给某进程后便让它一直运行下去,直到进程完成或发生某事件而阻塞时,才把处理机分配给另一个进程。

剥夺方式:当一个进程正在运行时,系统可以基于某种原则,剥夺已分配给它的处理机,将之分配给其它进程。剥夺原则有:优先权原则、短进程、优先原则、时间片原则。

Linux进程调度策略

调度程序要在所有处于可运行状态的进程中选择最值得运行的进程投入运行。在每个进程的task_struct 结构中有:policy、priority、counter、rt_priority,这4 项就是选择进程的依据。policy是进程的调度策略,用来区分两种进程-实时和普通;priority是进程(实时和普通)的优先级;counter 是进程剩余的时间片,它的大小完全由priority决定;rt_priority是实时优先级,这是实时进程所特有的,用于实时进程间的选择。.

首先,Linux 根据policy从整体上区分实时进程和普通进程,因为实时进程和普通进程度调度是不同的,它们两者之间,实时进程应该先于普通进程而运行,然后,对于同一类型的不同进程,采用不同的标准来选择进程:

1.普通进程的调度策略-动态优先调度。

当policy 的值为SCHED_OTHER 时,是普通的用户进程,采用动态优先调度,选择进程的依据是进程counter 的大小。进程创建时,优先级priority 被赋一个初值,一般为0~70 之间的数字,这个数

字同时也是计数器counter 的初值,进程创建时两者是相等的。priority 代表分配给该进程的时间片,counter 表示该进程剩余的时间片。在进程运行过程中,counter 不断减少,而priority 保持不变,以便在counter 变为0 的时候(该进程用完了所分配的时间片)对counter 重新赋值。

当一个普通进程的时间片用完以后,并不马上用priority 对counter 进行赋值,只有所有处于可运行状态的普通进程的时间

(p->counter==0)都用完了以后,才用priority 对counter重新赋值,这个普通进程才有了再次被调度的机会。在普通进程运行过程中,counter 的减小给了其他进程得以运行的机会,即进程正在运行时可以被其他counter 值更大的进程中断,但只有当该进程的counter 值减为0 时才完全放弃对CPU 的使用,这就相当于优先级在动态变化,所以称之为动态优先调度。

2.对于实时进程,Linux采用了两种调度策略,即FIFO(先来先服务调度)和RR(时间片轮转调度)。

图1 时间片轮转调度示意图

因为实时进程具有一定程度的紧迫性,所以衡量一个实时进程是否应该运行,Linux采用了一个比较固定的标准。实时进程的counter只是用来表示该进程的剩余时间片,并不作为衡量它是否值得运行的标准。实时进程的counter只是用来表示该进程的剩余时间片,并不作为衡量它是否值得运行的标准,这和普通进程是有区别的。上面已经看到,每个进程有两个优先级,实时优先级就是用来衡量实时进程是否值得运行的。

Unix进程调度策略

UNIX系统是单纯的分时系统,所以没有设置作业调度。UNIX 系统的进程调度采用的算法是,多级反馈列轮转调度法。其核心思想是先从最高休先级就绪队列中取出排在队列最前面的进程,当进程执行完一个时间片仍未完成则剥夺它的执行,将它放入到相应的队列中取出下一个就绪进程投入运行(如图2所示)。

多级反馈队列调度算法即能使高优先级的作业得到响应又能使短作业(进程)迅速完成。

多级反馈队列调度算法描述:

1、进程在进入待调度的队列等待时,首先进入优先级最高的Q1等待。

2、首先调度优先级高的队列中的进程。若高优先级中队列中已没有调度的进程,则调度次优先级队列中的进程。例如:

Q1,Q2,Q3三个队列,只有在Q1中没有进程等待时才去调度Q2,同理,只有Q1,Q2都为空时才会去调度Q3。

3、对于同一个队列中的各个进程,按照时间片轮转法调度。比如Q1队列的时间片为N,那么Q1中的作业在经历了N个时间片后若还没有完成,则进入Q2队列等待,若Q2的时间片用完后作业还不能完成,一直进入下一级队列,直至完成。

4、在低优先级的队列中的进程在运行时,又有新到达的作业,那么在运行完这个时间片后,CPU马上分配给新到达的作业(抢占式)。

图2

该算法的具体运作方式:

假设系统中有3个反馈队列Q1,Q2,Q3,时间片分别为2,4,8。现在有3个作业J1,J2,J3分别在时间 0 ,1,3时刻到达。而它们所需要的CPU时间分别是3,2,1个时间片。

(1)时刻0 J1到达。于是进入到队列1 ,运行1个时间片,时间片还未到,此时J2到达。

(2)时刻1 J2到达。由于时间片仍然由J1掌控,于是等待。J1在运行了1个时间片后,已经完成了在Q1中的2个时间片的限制,于是J1置于Q2等待被调度。现在处理机分配给J2。

(3)时刻2 J1进入Q2等待调度,J2获得CPU开始运行。

(4)时刻3 J3到达,由于J2的时间片未到,故J3在Q1等待调度,J1也在Q2等待调度。

(5)时刻4 J2处理完成,由于J3,J1都在等待调度,但是J3所在的队列比J1所在的队列的优先级要高,于是J3被调度,J1

继续在Q2等待。

(6)时刻5 J3经过1个时间片完成。

(7)时刻6 由于Q1已经空闲,于是开始调度Q2中的作业,则

J1得到处理器开始运行。

(8)时刻7 J1再经过一个时间片,完成了任务。于是整个调度过程结束。

从上面的例子看,在多级反馈队列中,后进的作业不一定慢

完成。

Windows进程调度策略

Windows的进程调度比较复杂,以Windows 2000/XP为例。Windows 2000/XP的处理器调度的调度单位是线程而不是进程,是基于优先级的抢先式多处理器调度,依据优先级和分配时间片来调度;而且Windows 2000/XP在单处理器系统和多处理器系统中的线程调

度是不同的线程调度机制。

Windows操作系统的调度系统总是运行优先级最高的就绪线程。在同一优先级的各线程按时间片轮转算法(如图1)进行调度。如果一个高优先级的线程进入就绪状态,当前运行的线程可能在用完它的时间片之前就被抢先。

可触发线程调度的事件:一个线程进入就绪状态;一个线程的

时间片结束;线程由于调用系统服务而改变优先级或被系统本身改变

其优先级;正在运行的线程被改变了所运行的处理器(在多处理器系统中)。

Windows 2000/XP内部使用32个线程优先级,范围从0到31,数值越大,优先级越高。实时线程优先级:16~31;可变线程优先级:1~15;级别0保留为系统使用,仅用于对系统中空闲物理页面进行清零的零页线程。

当一个线程被调度进入运行状态时,它运行一个称为时间配额的时间片,时间配额是Windows2000/XP允许一个线程连续运行的最大时间长度。

Windows在单处理器系统中的线程调度

Windows2000/XP基于线程实现优先级驱动的抢先式多任务的方式如下:

1.主动切换

一个线程可能因为进入等待某个对象而主动放弃处理器的使用。当该线程等待的事件出现时,它会排到相应优先级的就绪队列尾。

通常进入等待状态线程的时间配额不会被重置,而是在等待事件出现时,线程的时间配额被减1,相当于1/3个时钟间隔;如果线程的优先级大于等于14,在等待事件出现时,线程的优先级被重置。2.抢先

当一个高级优先级线程进入就绪状态时,正在处于运行状态的低优先级线程被抢先。可能在两种情况下出现:

(1)高优先级线程的等待完成,即一个线程等待的事件出现。

(2)一个线程的优先级被增加或减少。

调度器只是根据线程优先级判断一个线程是否被抢先,而不管线程是处于用户态还是内核态。当线程被抢先时,它被放回相应优先级的就绪队列的队首。

(1)处于实时优先级的线程在被抢先时,时间配额被重置为一个完整的时间片;

(2)处于动态优先级的线程在被抢先时,时间配额不变,重新得到处理机使用权后将运行到剩余的时间配额用完。

3.时间配额用完

处于运行状态的线程用完它的时间配额时,Windows 2000/XP 会中断该线程的运行,判断是否需要降低该线程的优先级,并查找是否有其他高优先级或相同优先级的线程等待运行。

——如果该线程的优先级降低了,Windows 2000/XP会寻找一个优先级高于该线程的新设置值的就绪线程来调度;

——如果该线程的优先级没有降低,并且有其他优先级相同的就绪线程,Windows 2000/XP将选择相同优先级的就绪队列中的下一个线程进入运行状态,刚用完时间配额的线程被排到就绪队列的队尾。

——如果没有优先级相同的就绪线程可运行,刚用完时间配额的线程将得到一个新的时间配额并继续运行。

3.结束

当线程完成运行时,它的状态从运行状态转到终止状态。

Windows在对称多处理器系统上的线程调度

亲合关系Affinity

(1)描述该线程可在哪些处理器上运行

(2)线程的亲合掩码是从进程的亲合掩码继承得到

(3)SetProcessAffinityMask或SetThreadAffinityMask函数可以指定亲合掩码

线程的首选处理器和第二处理器

(1)首选处理器:线程运行时的偏好处理器,是基于进程控制块的索引值在进程创建时随机选择的。SetThreadIdealProcessor函数可以设置线程的首选处理器。

(2)第二处理器:线程第二个选择的运行处理器。

就绪线程的处理器选择

当线程进入运行状态时,首先试图调度该线程到一个空闲处理器上运行。如果有多个空闲处理器,则调度顺序为线程的首选处理器、线程的第二处理器、当前执行处理器,如果它们都不是空闲的,则依据处理器标识从高到低扫描系统中的空闲处理器状态,选择找到的第一个空闲处理器。

如果线程进入就绪状态时,所有处理器都处于繁忙状态,则将检查一个处于运行状态或备用状态的线程,判断它是否可抢先。检查的顺序为线程的首选处理器、线程的第二处理器,如果它们都不在线程的亲合掩码中,则将依据活动处理器掩码选择该线程可运行的编号最大的处理器。

特定的处理器调度线程

在多处理器系统,Windows 2000/XP不能简单地从就绪队列中取第一个线程,它要在亲合掩码限制下寻找一个满足下列条件之一的线程。

(1)线程的上一次运行是在该处理器上;

(2)线程的首选处理器是该处理器;

(3)处于就绪状态的时间超过2个时间配额;

(4)优先级大于等于24;

如果能找不到满足要求的线程,它将从就绪队列的队首取第一个线程进入运行状态。

最高优先级就绪线程可能不处于运行状态

空闲线程

一个处理器上没有可运行的线程时,Windows 2000/XP会调度相应处理器上对应的空闲线程。在多处理器系统中,每个处理器都有一个对应的空闲线程。

对比总结:上文分别对Unix、Lunix和Windows三种操作系统的进程调度策略进行了详细的分析。通过对比发现,实时进程将得到优先调用,实时进程根据实时优先级决定调度权值。分时进程则通过nice

和counter值决定权值,nice越小,counter越大,被调度的概率越大,也就是曾经使用了cpu最少的进程将会得到优先调度。RR进程和FIFO 进程都采用实时优先级做为调度的权值标准,RR是FIFO的一个延伸。FIFO时,如果两个进程的优先级一样,则这两个优先级一样的进程具体执行哪一个是由其在队列中的未知决定的,这样导致一些不公正性

如果将两个优先级一样的任务的调度策略都设为RR,则保证了这两个任务可以循环执行,保证了公平。多级反馈队列,是对时间片轮转调度算法的发展,其不必估计进程运行时间的大小,它结合了FIFO、RR、优先级算法和SJF算法。该算法有多个进程就绪队列,同一队列中进程优先级相同,每个队列对应一个调度级别,各级都有不同的运行优先级。其优势在于优先级超高,时间片超短;优先级越低时间片越长。它有利于交互型作业,有利于短批处理作业,但是它还是存在某些方面的不足:当不断新进程到来,则长进程可能饥饿。

各种调度策略各有优缺点,因此在实际应用中通常根据系统设计目标的不同面采取不同的调度策略。批处理系统通常注重提高计算机效率、增加系统的平均吞吐量,不是为提高用户服务设计的,故多实行先来先服务高度算法、最短剩余时间优先调度算法。实时系统的调度策略是在保证及时响应和处理与时间有关的事件的前提下,才能考虑资源的使用效率,故实时系统中通常采用基于优先级的调度策略和最晚时间限调度策略。

随机进程调度算法

《操作系统原理》实验报告 实验名称:Linux随机进程调度算法实现 班级: 学号: 姓名: 日期: 2012/12/31

一、实验名称 Linux随机进程调度算法实现 二、所属课程名称 《操作系统原理》 三、实验原理 linux 0.11内核目录linux/kernel中的sched.c函数是内核中进程调度管理的程序,其中schedule()函数负责选择系统中下一个要运行的进程。 schedule()函数首先对所有任务(进程)进行检测,唤醒任何一个已经得到信号的进程。具体方法是任务数组中的每个进程,检查其报警定时值alarm。如果进程的alarm时间已经过期(alarm

NR_TASKS:系统能容纳的最大进程数(64个); task[]:任务(进程)数组; 更改代码如下:(linux 0.11内核目录下linux/kernel/sched.c 源文件的scheduling()函数while(1)循环)while (1) { //定义c用来判断系统中是否可运行的任务(进程)存在; c=-1; //c初值设为-1,默认不存在可运行进程; next = 0;//next记录下一个即将运行的进程; i=jiffies % NR_TASKS+1; //i的值是随机产生的; p=&task[i];//p指向在task表中下标为i的进程; while (--i) { //遍历task[]; if(!*--p)continue; //如果task[i]不包含进程,跳过; //如果task[i]包含进程且该进程处于就绪状态,记录 //该任务(进程)序号,跳出无限循环while(1),转向 //switch_to()函数执行该任务(进程); if ((*p)->state == TASK_RUNNING) { next = i; c=i; break; } } if (c) break;//如果没有任何任务(进程)要执行,则跳出, //转向switch_to(),执行0号进程(idle)。 }

实验21 进程调度

实验2、1 进程调度 一、 实验目的 多道程序设计中,经常就是若干个进程同时处于就绪状态,必须依照某种策略来决定那个进程优先占有处理机。因而引起进程调度。本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。 二、 实验要求 1. 设计进程调度算法,进程数不定 2. 包含几种调度算法,并加以实现 3. 输出进程的调度过程——进程的状态、链表等。 三、 参考例 1.题目——优先权法、轮转法 简化假设 1) 进程为计算型的(无I/O) 2) 进程状态:ready 、running 、finish 3) 进程需要的CPU 时间以时间片为单位确定 2.算法描述 1) 优先权法——动态优先权 当前运行进程用完时间片后,其优先权减去一个常数。 2) 轮转法 四、 实验流程图 开始 键盘输入进程数n,与调度方法的选择 优先权法? 轮转法 产生n 个进程,对每个进程产生一个PCB,并用随机数产生进程的优先权及进程所需的CPU 时间 按优先权大小,把n 个进程拉成一个就绪队列 撤销进程就绪队列为空? 结束 N Y Y

注意: 1.产生的各种随机数的取值范围加以限制,如所需的CPU 时间限制在1~20之间。 2.进程数n 不要太大通常取4~8个 3.使用动态数据结构 4.独立编程 5.至少三种调度算法 6.若有可能请在图形方式下,将PCB 的调度用图形成动画显示。 五.实验过程: (1)输入:进程流文件(1、txt),其中存储的就是一系列要执行的进程, 每个作业包括四个数据项: 进程名 进程状态(1就绪 2等待 3运行) 所需时间 优先数(0级最高) 进程0 1 50 2 进程1 2 10 4 进程2 1 15 0 进程3 3 28 5 进程4 2 19 1 进程5 3 8 7 输出: 进程执行流等待时间,平均等待时间 本程序包括:FIFO 算法,优先数调度算法,时间片轮转调度算法 产生n 个进程, 的时间片数,已占用CPU 的时间片数置为0 按进程产生的先后次序拉成就绪队列链 =0? 撤销该进程 就绪队列为空不? =轮转时间片数? N Y Y Y 结束 N

计算机操作系统进程调度实验研究报告

计算机操作系统进程调度实验研究报告

————————————————————————————————作者:————————————————————————————————日期:

操作系统实验题:设计一若干并发进程的进程调度程序 一、实验目的 无论是批处理系统、分时系统还是实时系统,用户进程数一般都大于处理机数,这将导致用户进程互相争夺处理机。这就要求进程调度程序按一定的策略,动态地把处理及分配给处于就绪队列中的某一进程,以使之执行。进程调度是处理机管理的核心内容。本实验要求采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法编写和调试一个简单的进程调度程序。通过本实验可以加深理解有关进程控制块、进程队列的概念。并体会了优先数和先来先服务调度算法的具体实施办法。 二、实验要求 用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解. 三、实验内容 进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法(将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理)。 每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输入的时间。 进程的运行时间以时间片为单位进行计算。 每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 就绪进程获得CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。 如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。重复以上过程,直到所要进程都完成为止。 四、实验算法流程

UNIX操作系统常用命令使用方法

UNIX系统及BSJ2200系统培训 第一章SUN系统介绍 第一节SUN的发展史 (一)硬件体系 81--89 Sun1/2/3 CISC Motrala 680x0系列 89--94 Sun4/60 sparc1 Risc sparc 65 sparc1+ 70 sparc2 Server : Sun/290/670/690 93--96 Sparc10/20 SuperSparc Server : 1000/2000 96--97 Ultra1(140/170/170E/200E) UltraSparc SBUS体系结构,UPA接口 Ultra2 Server : E150,E3000 98--99 Ultra5 ,Ultra10 PCI体系结构(IDE外设) Ultra30,Ultra60 Server : E250,E450,E3500 2000-至今BLADE 150/2000/2500 (二)软件体系 Solaris 1.x SunOS 4.1.3+OpenWindow 1.x BSD Solaris 2.x System V 32bit 2.5.1 SunOS 5.5.1 +OpenWindows 2.6 SunOS5.6+CDE1.2 Solaris 2.7(7) 64 bit Solaris 2.8(8) for sparc平台/intel x86平台 Solaris 2.9(9) for sparc平台/intel x86平台 第二节SUN系统的安装 以SUN Ultra5(9.1G)硬盘Solaris2.7为例,步骤如下: 1、在OK提示下输入:boot cdrom 2、出现“Select Language and local”时,选择“Continue”按钮。 3、出现“The Solaris installation program”时,选择“Continue”按钮。 4、出现“Identify this system”时,选择“Continue”按钮。 5、出现“Hostname”时,先输入机器名后,再选择“continue”按钮。 6、出现“Network connectively”时,先选择“Yes”,再选择“Continue”。 7、出现“IP Address”时,输入IP后,选择“Continue”。 8、出现“Confirm Infirmation”时,选择“Continue”。 9、出现“Name service”时,先选择“None”后,再选择“Continue”。 10、出现“Confirm Infirmation”时,选择“Continue”。 11、出现“Subnets”时,先输入“NO”,再输入“Continue”。 12、出现“Time Zone Geographic region”时,输入“Set”。 13、出现“Geographic region”时,选“Asia Eastern HongKong”。

时间片轮转进程调度模拟算法的实现

武汉理工大学华夏学院课程设计报告书 课程名称:操作系统原理 题目:时间片轮转进程调度模拟算法的实现系名:信息工程系 专业班级:计算机1132班 姓名:李杰 学号: 10210413209 指导教师: 司晓梅 2015年 6 月 26日

武汉理工大学华夏学院信息工程系 课程设计任务书 课程名称:操作系统原理课程设计指导教师:司晓梅 班级名称:计算机1131-2 开课系、教研室:自动化与计算机 一、课程设计目的与任务 操作系统课程设计是《操作系统原理》课程的后续实践课程,旨在通过一周的实践训练, 加深学生对理论课程中操作系统概念,原理和方法的理解,加强学生综合运用操作系统原理、 Linux系统、C语言程序设计技术进行实际问题处理的能力,进一步提高学生进行分析问题 和解决问题的能力,包含系统分析、系统设计、系统实现和系统测试的能力。 学生将在指导老师的指导下,完成从需求分析,系统设计,编码到测试的全过程。 二、课程设计的内容与基本要求 1、课程设计题目 时间片轮转进程调度模拟算法的实现 2、课程设计内容 用c/c++语言实现时间片轮转的进程调度模拟算法。要求: 1.至少要有5个以上进程 2.进程被调度占有CPU后,打印出该进程正在运行的相关信息 提示: 时间片轮转调度算法中,进程调度程序总是选择就绪队列中的第一个进程,也就是说按照先来先服务原则调度,但一旦进程占用处理机则仅使用一个时间片。在使用完一个时间片后,进程还没有完成其运行,它必须释放出处理机给下一个就绪的进程,而被抢占的进程返回到就绪队列的末尾重新排队等待再次运行。 1)进程运行时,只打印出相关提示信息,同时将它已经运行的时间片加1就可以了。 2)为进程设计出PCB结构。PCB结构所包含的内容,有进程名、进程所需运行时间、已运行时间和进程的状态以及指针的信息等。 3、设计报告撰写格式要求: 1设计题目与要求 2 设计思想 3系统结构 4 数据结构的说明和模块的算法流程图 5 使用说明书(即用户手册):内容包含如何登录、退出、读、写等操作说明 6 运行结果和结果分析(其中包括实验的检查结果、程序的运行情况)

windows操作系统与Unix操作系统的优缺点

windows操作系统与Unix操作系统的优缺点 windows: 优点:图形界面良好,拥有良好的集成开发环境,操作简单。 缺点:不是免费的软件,采用二进制代码,不易修改操作系统本身。漏洞比较多。和linux和unix系统相比,网络功能相对较差,源码不开放。不利于操作系统的开发。 UNIX 优点:UNIX 如此的成功,这大大超出了它的创造者最初的设想。UNIX 成功的一个主要原因是它最初的发行发式。由于法令(consent decree)的限制,AT&T 不得不以极少的费用出售UNIX许可证和源代码。世界各地的人们都可以索取和运行该系统。由于附带源代码,用户可以分析它,更改它,告诉其他人自己所做的修改。然后AT&T 再将开多修改加入到新发行中。 在伯克利的工作更带动了这一趋势。总而言之,UNIX 在一种极为开放的过程〔或者说没有过程〕中不断发展。各国、各大洲的学术界、厂商、以及疯狂的黑客们都为UNIX 的发展做出了贡献。既便在UNIX 商业化之后.许多厂商也认识到开放系统的价值,将它们的成果公布于众,制定了许多像NFS 这样的开放规范。 最初的UNIX 设计非常精湛,井为后来版本和分支奠定了成功的基础。它的一个最大的长处就是始终贯彻“越小越完美”的思想[ Allm 87],用一个小的内核提供一组必要功能的最小集。系统有许多小的实用工具完成简单的数据处理。用户可以通过管道机制以及可编程的shell 等工具将这些实用工具以各种方式组合起来,形成功能更强大的工具。 UNIX 的文件系统是这种小巧,简单方式的一个典型代表。与当时使用诸如索引顺序访问方式(ISAM),层次顺序访问方式(HSAM)等复杂文件访问方式的操作系统不同,UNIX 将文件看成是一个字节流。应用它可以在文件上建立任何数据结构,实用自己的访问方式访问文件,不需要文件系统的干预。 大多数系统应用都使用文本数据。例如,比较重要的系统数据库/etc/passwd , /etc/fstab,以及/etc/ttys 都是普通的文本文件。尽管使用二进制的有结构的方法组织信 息会更有效,使用一般的文本可以让用户不必使用特殊的工具就可以访问和处理这些文件。文本是一件友好的,通用的,高度可移植的数据形式,可以用许多实用工具进行处理。 UNIX 另一个很突出的特点就是它简单而统一的I/O 设备接口。UNIX 将所有的设备都用文件表示,用户可以使用与处理文件相同的命令和系统调用集访问设备。开发者写程序完成I/O操作时不必考虑这个操作是对文件的,还是对用户终端,打印机,或其他设备进行的。这一特性与shell 中的I/O 重定向一起提供了一个简单而强大的I/O 接口。 促使UNIX 成功和流行的一个关键因素是它的可移植性。内核的大部分都是用C 语言写的。这就使其在移植到新机器时相对容易了许多。它先是用于 PDP-11,后来移植到 V AX-11 及其他许多机器、许多厂商都是开发出自己的新机器,然后简单将 UNIX 移植到它的上面,而不必重写一个新的操作系统。 缺点: 事物总有相反的两个方面。在赞誉UNIX 优点的同时,也不能忽略了它的缺点。对UNIX 进行如此客观回顾的人中就有这样一个人,他不是别人,正是DennisRitchie 本人。在1987 年 1 月 USENIX 会议中的一次 UNIX 回顾会晤中,RitChie 分析了许多 UNIX 的缺点[ Ritc87] 。下面我们对其进行简述。 尽管UNIX 最初是一个简单的系统。它已不再是这样了。例如,AT&T 为了高效地对数据进行缓冲和将程序移植到非UNIX 系统上,为UNIX 系统增加了标准1/O 库。这个库相对其

进程调度算法实验报告

操作系统实验报告(二) 实验题目:进程调度算法 实验环境:C++ 实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较 各种算法的性能优劣。 实验内容:编程实现如下算法: 1.先来先服务算法; 2.短进程优先算法; 3.时间片轮转调度算法。 设计分析: 程序流程图: 1.先来先服务算法 开始 初始化PCB,输入进程信息 各进程按先来先到的顺序进入就绪队列 结束 就绪队列? 运行 运行进程所需CPU时间 取消该进程 2.短进程优先算法

3.时间片轮转调度算法 实验代码: 1.先来先服务算法 #include #define n 20 typedef struct { int id; //进程名

int atime; //进程到达时间 int runtime; //进程运行时间 }fcs; void main() { int amount,i,j,diao,huan; fcs f[n]; cout<<"请输入进程个数:"<>amount; for(i=0;i>f[i].id; cin>>f[i].atime; cin>>f[i].runtime; } for(i=0;if[j+1].atime) {diao=f[j].atime; f[j].atime=f[j+1].atime; f[j+1].atime=diao; huan=f[j].id; f[j].id=f[j+1].id; f[j+1].id=huan; } } } for(i=0;i #define n 5 #define num 5 #define max 65535 typedef struct pro { int PRO_ID; int arrive_time;

UNIX和Linux操作系统概述

第1章UNIX和Linux操作系统概述 练习题和解答 1.在UNIX大家族的以下分支中,哪两个分支对成就UNIX的辉煌起到了至关重要的作用? A.MIT B.GNU C.BSD D.POSIT E.BESYS F.System V 【解答】这一题是测试你对UNIX的简要发展史以及对UNIX发展影响巨大的两个分支的熟悉程度。根据本章1.2节有关UNIX的简要发展史的介绍——对UNIX操作系统的发展贡献最大的是它的两个分支——加州大学Berkeley分校的BSD和AT&T公司的System V,可以断定答案C和F是正确的。 答案:C和F 2.为什么Linux操作系统总是在一个被称为Linux Standard Base(LSB)的通用标准下开发和颁布? A.防止互用性(interoperability) B.防止服从POSIX标准 C.确保应用一级的多样性 D.确保不同发布之间的兼容性 【解答】这一题是测试你对UNIX和Linux设计思想和实现的理解程度。虽然在本章中并没有直接讨论过本题的答案,但是根据本章1.2节~1.6节的介绍我们可以断定只有答案D是正确的,因为其他几个答案都与UNIX和Linux设计理念相违背。 这里需要解释的是POSIX是IEEE标准,其全名是Portable Open Systems Interface(可移植开放系统接口/界面)。 答案:D 补充练习题和解答 3.UNIX被称为有史以来最稳定的操作系统,请问在以下所列的原则中有哪两个对这种稳定性起到了比较大的作用?

A.容易修改终端用户程序 B.所有程序的配置数据都以二进制文件存储 C.整个策略的决策都是由内核做出的 D.UNIX操作系统中的每一件东西或者是一个文件或者是一个进程【解答】这一题是测试你对UNIX设计理念的理解程度。根据本章1.3节有关UNIX 设计理念的解释——所有的操作系统配置数据都存储在正文文件中,可以断定答案B是错误的。 根据本章1.3节有关UNIX设计原则的介绍——“每一个操作系统命令或应用程序都很小,而且只完成单一的功能。UNIX操作系统提供了许多小的应用程序,每个应用程序都能够很好地执行单一的功能。当需要一个新功能时,UNIX的通用原则是为此创建一个单独的程序而不是扩展一个已经存在的应用程序的功能。”,可以断定答案C是错误的。 利用排除法可以断定,答案A和D是正确的。 答案:A和D 4.由自由软件基金会(Free Software Foundation,FSF)发起的GNU项目的目标就是创建一个自由的UNIX克隆。根据你的理解,以下哪个陈述适用于FSF的“自由”这一术语? A.在获得软件的同时源代码将免费提供 B.软件是全部免费的而仅仅收取修复软件故障的费用 C.软件是以可运行(可安装)形式免费自由分发的 D.软件是自由分发的但是并没有提供再分发这个软件的自由 【解答】这一题是测试你对GNU项目与自由软件的熟悉程度。根据本章1.4节有关GNU项目与自由软件的介绍——“你有修改该程序满足自己需求的自由(为使该自由实际上可实施,你必须可接触源代码,因为没有源代码的情况下,在一个程序中做修改是非常困难的)。”,可以断定答案A是正确的。 根据本章1.4节有关GNU项目与自由软件的介绍——“自由软件(Free Software)这一术语有时被错误地理解,其实它与价格无关。”,所以答案B和C肯定是错误的。 根据本章1.4节有关GNU项目与自由软件的介绍——“你有权利发布该程序修改过的版本,从而让其他人得益于你的改进。”,可以断定答案D是错误的。 答案:A 5.多用户可以共享一个UNIX计算机,这使得利用一个用户的空闲时间来服务其他用户成为可能。操作系统的这一特性被称为什么? A.数据共享 B.时间共享 C.一次性初始化 D.轻量级的内核线程

操作系统实验-进程调度程序设计

课程名称:实验项目:实验地点: 专业班级:学生姓名:指导教师: 本科实验报告 操作系统B 进程调度程序设计 学号:2011 年11 月

目录 进程调度程序设计 一、实验目的和要求 (1) 二、实验内容及原理 (1) 三、实验仪器设备 (3) 四、操作方法与实验步骤 (3) 五、实验数据记录和处理 (3) 六、实验结果与分析 (10) 七、实验感想 (11)

实验二 一、实验目的和要求 (一) 目的 进程调度程序设计 进程是操作系统最重要的概念之一,进程调度是操作系统的主要内容,本实验要求 学生独立地用高级语言编写一个进程调度程序,调度算法可任意选择或自行设计,本实验 可使学生加深对进程调度和各种调度算法的理解。 (二) 要求 1. 设计一个有几个进程并发执行的进程调度程序,每个进程由一个进程控制块(PCB) 表示,进程控制块通常应包括下述信息:进程名,进程优先数,进程需要运行的时间,占 用 CPU 的时间以及进程的状态等,且可按照调度算法的不同而增删。 2. 调度程序应包含 2—3 种不同的调度算法,运行时可以任选一种,以利于各种方法 的分析和比较。 3. 系统应能显示或打印各进程状态和参数的变化情况,便于观察。 二、实验内容及原理 1. 本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行 R(run)、就绪 W(wait)和完成 F(finish)三种状态之一,并假定起始状态都是就绪状态 W 。 为了便于处理,程序中进程的运行时间以时间片为单位计算。各进程的优先数或轮 转时间片数、以及进程需要运行的时间片数,均由伪随机数发生器产生。 进程控制块结构如表 2-1 所示: 表 2-1 PCB 进程控制块链结构如图 2-1 所示: 图 2-1 进程控制块链结构 其中:RUN —当前运行进程指针; 进程标识符 链指针 优先数/轮转时间片数 占用 CPU 时间片数 进程所需时间片数 进程状态

unix操作系统

Unix操作系统浅析 摘要:本文较详细的介绍了什么是UNIX操作系统,以及UNIX操作系统的发展历史,UNIX系统的基本结构,UNIX操作系统的优势,UNIX操作系统和LINUX操作系统的区别和联系。 关键字:UNIX,LINUX 一、引言 UNIX ,是一个强大的多用户、多任务操作系统,支持多种处理器架构,按照操作系统的分类,属于分时操作系统。UNIX操作系统最早由Ken Thompson、D ennis Ritchie和Douglas McIlroy于1969年在AT&T的贝尔实验室开发。经过长期的发展和完善,目前已成长为一种主流的操作系统技术和基于这种技术的产品大家族。由于UNIX具有技术成熟、结构简练、可靠性高、可移植性好、可操作性强、网络和数据库功能强、伸缩性突出和开放性好等特色,可满足各行各业的实际需要,特别能满足企业重要业务的需要,已经成为主要的工作站平台和重要的企业操作平台。它主要安装在巨型计算机、大型机上作为网络操作系统使用,也可用于个人计算机和嵌入式系统。曾经是服务器操作系统的首选,占据最大市场份额,但最近在跟WINDOWS SERVER以及Linux的竞争中有所失利。 二、UNIX历史 初创期Unix的诞生和Multics(Multiplexed Information and Computi ng System)是有一定渊源的。Multics是由麻省理工学院,AT&T贝尔实验室和通用电气合作进行的操作系统项目,被设计运行在GE-645大型主机上,但是由于整个目标过于庞大,糅合了太多的特性,Multics虽然发布了一些产品,但是性能都很低,最终以失败而告终。AT&T最终撤出了投入Multics项目的资源,其中一个开发者,Ken Thompson则继续为GE-645开发软件,并最终编写了一个太空旅行游戏。经过实际运行后,他发现游戏速度很慢而且耗费昂贵——每次运行会花费75美元。在Dennis Ritchie的帮助下,Thompson用PDP-7的汇编语言重写了这个游戏,并使其在DEC PDP-7上运行起来。这次经历加上Multics 项目的经验,促使Thompson开始了一个DEC PDP-7上的新操作系统项目。Thom pson和Ritchie领导一组开发者,开发了一个新的多任务操作系统。这个系统包括命令解释器和一些实用程序,这个项目被称为UNICS(Uniplexed Informat ion and Computing System),因为它可以支持同时的多用户操作。后来这个名字被改为UNIX。发展期最初的Unix是用汇编语言编写的,一些应用是由叫做B语言的解释型语言和汇编语言混合编写的。B语言在进行系统编程时不够强大,所以Thompson和Ritchie对其进行了改造,并与1971年共同发明了C语言。1973 年Thompson和Ritchie用C语言重写了Unix。在当时,为了实现最高效

进程模拟调度算法课程设计

一.课程概述 1.1.设计构想 程序能够完成以下操作:创建进程:先输入进程的数目,再一次输入每个进程的进程名、运行总时间和优先级,先到达的先输入;进程调度:进程创建完成后就选择进程调度算法,并单步执行,每次执行的结果都从屏幕上输出来。 1.2.需求分析 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目,要使这多个进程能够并发地执行,这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统必(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。本次实验在VC++6.0环境下实现先来先服务调度算法,短作业优先调度算法,高优先权调度算法,时间片轮转调度算法和多级反馈队列调度算法。 1.3.理论依据 为了描述和管制进程的运行,系统为每个进程定义了一个数据结构——进程控制块PCB(Process Control Block),PCB中记录了操作系统所需的、用于描述进程的当前情况以及控制进程运行的全部信息,系统总是通过PCB对进程进行控制,亦即,系统是根据进程的PCB 而不是任何别的什么而感知进程的存在的,PCB是进程存在的惟一标志。本次课程设计用结构体Process代替PCB的功能。 1.4.课程任务 一、用C语言(或C++)编程实现操作模拟操作系统进程调度子系统的基本功能;运用多 种算法实现对进程的模拟调度。 二、通过编写程序实现进程或作业先来先服务、高优先权、按时间片轮转、短作业优先、多 级反馈队列调度算法,使学生进一步掌握进程调度的概念和算法,加深对处理机分配的理解。 三、实现用户界面的开发

操作系统实验2进程调度源程序

#include #include #include #include #include #include #define P_NUM 5 #define P_TIME 50 enum state{ ready, execute, block, finish };//定义进程的状态 struct pcb{ char name[4];//进程名 int priority;//优先权 int cputime;//CPU运行时间 int needtime;//进程运行所需时间 int count;//进程执行次数 int round;//时间片轮转轮次 state process;//进程状态 pcb*next; };//定义进程pcb pcb*get_process(){ pcb*q; pcb*t; pcb*p; int i=0; cout<<"input name and time"<>q->name; cin>>q->needtime; q->cputime=0; q->priority=P_TIME-q->needtime; q->process=ready; q->next=NULL; if(i==0){ p=q; t=q; } else{

t->next=q;//创建就绪进程队列 t=q; } i++; }//while循环 return p; }//输入模拟测试的进程名和执行所需时间,初始设置可模拟5个进程的调度 void display(pcb*p){ cout<<"name"<<" "<<"cputime"<<" "<<"needtime"<<" "<<"priority"<<" "<<"shate"<name; cout<<" "; cout<cputime; cout<<" "; cout<needtime; cout<<" "; cout<priority; cout<<" "; switch(p->process){ case ready:cout<<"ready"<next; }//显示模拟结果,包含进程名、CPU时间、运行所需时间以及优先级 } int process_finish(pcb*q){ int bl=1; while(bl&&q){ bl=bl&&q->needtime==0; q=q->next; } return bl; }//结束进程,即将各队列中各进程的所需时间设置为0 void cpuexe(pcb*q){ pcb*t=q; int tp=0; while(q){ if(q->process!=finish){ q->process=ready; if(q->needtime==0){ q->process=finish;

linux系统进程调度

Linux系统进程调度 姓名: 班级: 学号: 摘要 Linux 自出现以来以惊人的速度在服务器和桌面系统中获得了成功。本文介绍了现代操作系统常见进程调度算法以及linux2.6.32中进程调度的策略并根据具体例子对Linux进程调度过程进行了具体分析。 一、最常用的操作系统调度算法有以下几种; 1.先来先服务调度算法 调度程序按照进程在就绪队列中的提交顺序或变为就绪状态的先后进行调度,是一种最普遍和最简单的方法,所需的系统开销最小。该算法对所有的进程一视同仁,不能反映对实时进程或特殊要求的进程的特殊处理,在实际操作系统中,很少单独使用该算法,而是和其它一些算法配合起来使用。 2.高优先权优先调度算法 1 优先权类型。 1)静态优先权,他是在创建进程时确定的,且在进程的整个运行期间保持不变。 2)动态优先权,他是在创建进程时所赋予的优先权,是可以随进程的推进或随其等待时间的增加而改变的,以便获得更好的调度性能。 2优先权调度算法的类型。 1)非抢占式优先权算法。在这种方式下,系统一旦把处理机分配给就绪队列中优先权最高的进程后,该进程便一直执行下去,直至完成;或因发生某事件使该进程放弃处理机时,系统方可再将处理机重新分配给另一优先权最高的进程。 2)抢占式优先权调度算法。这种方式下,系统同样是把处理机分配给优先权最高的进程,使之执行。但在其执行期间,只要又出现了另一个其优先权更高的进程,进程调度程序就立即停止当前进程(原优先权最高的进程)的执行,重新将处理机分配给新到的优先权最高的进程。 3.时间片的轮转调度算法 时间片轮转法一般用于进程调度,每次调度,把CPU分配队首进程,并令其执行一

进程调度研究现状分析

进程调度研究现状分析 (中南大学信息学院) 【摘要】:调度算法是指根据系统的资源分配策略所规定的资源分配算法.本文详细地讨论了先来先服务调度算法、短作业(进程)优先调度算法、时间片轮转调度算法、优先级调度算法、最短剩余时间优先、高响应比优先调度算法、多级反馈队列调度算法、最晚时间限调度等八种常用作业调度算法的基本思想,并就其性能的进行了比较分析。 【关键字】:调度策略;FCFS;SPJ;RR;优先级 【Abstract】:Scheduling algorithm is defined as the resource allocation strategy for the allocation of resources required by algorithm. This article discussed in detail first-come first-serve scheduling algorithm, the short operations (the process) priority scheduling algorithm, time scheduling algorithm rotary tablet, priority scheduling algorithm, the shortest time remaining priority, high priority response ratio scheduling algorithm, multi-level feedback queue scheduling algorithm the latest scheduling time limit of eight common operations, such as the basic idea of scheduling algorithm and its performance on a comparative analysis. 【Key Words】:Scheduling strategy; FCFS; SPJ; RR; Priority 【正文】: 1、引言 随着现代操作系统的日趋成熟,用户对计算机的需求越来越多,处理机在同一时刻能处理的资源是有限的,从而导致各种任务随时随地争夺使用处理机,因此对程序的并发能力提出了更高的要求。 引进并发技术后,为了更好地说明并发现象(尤其是动态过程),引入了进程的概念。进程是一个具有一定独立功能的可并发执行的程序关于某个数据集合的一次运行活动。一个程序的启动执行,便是一个进程的建立;一个程序执行结束(正常或非正常结束),便是一个进程的撤销。由于同时处于就绪态(争夺使用CPU资源)的进程经常比较多,因此需要CPU调度算法来决定由哪个进程获得CPU使用权进入运行态,即进程调度算法(策略)。

操作系统 进程调度实验代码

一、实验题目 进程调度 二、实验目的 加深对进程、处理机调度的概念及进程调度各种算法(先来先服务、短作业优先、高响 应比优先)的理解。 三、实验要求 要求用C语言设计一个模拟单处理机系统下各种调度算法的思想。要求各种算法均采 用非抢占式的调度方式。 四、实验内容 设计按先来先服务调度的算法、短作业优先调度的算法和高响应比优先调度算法 要求: 1、输出进程的执行顺序 2、输出算法的平均周转时间和平均带权周转时间 五、实验原理 先来先服务调度算法的基本思想是:每次调度是从就绪队列中,选择一个最先进入该队列的进程,把处理机分配给它,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后,才放弃处理机。 短作业优先调度算法的基本思想是:每次调度是从就绪队列中,选择一个运行时间最短的作业,把处理机分配给它,使之投入运行。该作业程一直运行到完成或发生某事件而阻塞后,才放弃处理机。 高响应比优先调度算法的基本思想是:…………………………………………………… 六、实验步骤 程序设计: #include #include #include #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 int n; float T1=0,T2=0; int times=0; struct jcb //作业控制块 { char name[10]; //作业名 int reachtime; //作业到达时间 int starttime; //作业开始时间 int needtime; //作业需要运行的时间

第一章:UNIX操作系统简介

第一章:UNIX操作系统简介 学习目标 学完这一章,你能做到以下事情: 描述UNIX系统的基本组成和基本功能 1.1 什么是操作系统? 操作系统是一种特殊的用于控制计算机(硬件)的程序(软件)。 操作系统在资源使用者和资源之间充当中间人的角色。为众多的消耗者协调分配有限的系统资源。系统资源包括,CPU,内存,磁盘,和打印机。举个例子,一个用户(也可以是程序)将一个文件存盘,操作系统就会开始工作:管理磁盘空间的分配,将要保存的信息由内存写到磁盘等。 当用户要运行一个程序时,操作系统必须先将程序载入内存,当程序执行时,操作系统会让程序使用CPU。在一个分时系统中,通常会有多个程序在同一时刻试图使用CPU。 操作系统控制应用程序有序地使用CPU ,就好象一个交通警察在一个复杂的十字路口指挥交通。十字路口就象是CPU;每一条在路口交汇的支路好比一个程序,在同一时间,只有一条路的车可以通过这个路口,而交通警察的作用就是指挥让哪一条路的车通过路口,直到让所有路口的车辆都能通过路口。 UNIX操作系统的历史 UNIX操作系统1969年在贝尔实验室诞生。Ken Thompson在Rudd Canaday, ,Doug Mcllroy,Joe Ossana,and Dennis Ritchie,的协助下,写出一个小的分时系统,开始得到关注,在许诺为实验室的管理人员提供一个文档准备工具后,UNIX先驱们可以使用到一台更大的计算机,从而得以继续他们的开发工作。 在七十年代的中期,一些大学得到使用UNIX的许可,并很快在学院之间得到广泛流行,其主要的原因是: 小巧:最早的UNIX系统只占用512K字节的磁盘空间,其中系统内核使用16K,用户程序使用8K,文件使用64K。 灵活:源代码是可利用的,UNIX是用高级语言写成,提高了操作系统的可移植性。 便宜:大学能以一盘磁带的价格得到一个UNIX系统的使用许可。早期的UNIX系统提供了强大的性能,使其能在许多昂贵的计算机上运行。 以上优点在当时掩盖了系统的不足: 没有技术支持:AT&T在当时大部分的资源和都用在MUTICS上,没有兴趣 开发UNIX系统。 Bug的修补:由于没有技术支持,bug的修补也得不到保证。 很少的,或者根本没有说明文档:用户有问题经常只能是去看源代码。 当UNIX传播到位于California的Berkeley大学的时候,Berkeley大学的使用者们创建了自己的UNIX版本,在得到国防部得支持后,他们开发出了许多新的特性。但是,作为一个研究机构,Berkeley大学提供的版本和A T&T的版本一样,也没有技术支持。 当A T&T意识到这种操作系统的潜力后就开始将UNIX商业化,为了加强产品性能,他们在AT&T的不同部门进行UNIX系统开发,并且开始在系统中结合Berkeley开发出的成果。UNIX最终的成功可以归结为: 一个灵活的、包含多种工具的用户界面与操作环境。 模块化的系统设计可以很容易地加入新的工具。 支持多进程,多用户并发的能力。

操作系统模拟进程调度算法

操作系统 ——项目文档报告 进程调度算法 专业: 班级: 指导教师: 姓名: 学号:

一、核心算法思想 1.先来先服务调度算法 先来先服务调度算法是一种最简单的调度算法,该算法既可以用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将他们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。 2.短作业(进程)优先调度算法 短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。该算法对长作业不利,完全未考虑作业的紧迫程度。 3.高响应比优先调度算法 在批处理系统中,短作业优先算法是一种比较好的算法,其主要不足之处是长作业的运行得不到保证。如果我们能为每个作业引人动态优先权,并使作业的优先级随着等待时间的增加而以速率a提高,则长作业在等待一定的时间后,必然有机会分配到处理机。该优先权的变化规律可描述为: 优先权=(等待时间+要求服务时间)/要求服务时间 即优先权=响应时间/要求服务时间 如果作业的等待时间相同,则要求服务的时间越短,其优先权越高,因而该算法有利于短作业。 当要球服务的时间相同时,作业的优先权决定于其等待时间,等待时间越长,优先权越高,因而它实现的是先来先服务 对于长作业,作业的优先级可以随着等待时间的增加而提高,当其等待时间足够长时,其优先级便可以升到很高,从而也可获得处理机。 4.时间片轮转算法 在时间片轮转算法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。当执行的时间片用完时,由一个计数器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。换言之,系统能在给定的时间内响应所有用户的请求。 二、核心算法流程图

相关文档
最新文档