球类运动中的理论力学和空气动力学分析

球类运动中的理论力学和空气动力学分析
球类运动中的理论力学和空气动力学分析

球类运动中的理论力学和空气动力学分析

工院九系范永祥PB10009017林奇标PB10009001

目的:球类运动是生活中常见的运动,然而这些运动中也蕴藏

了很多科学知识,本论文旨在运用理论力学和流体力学以及空气动力学的知识分析排球飘球、足球香蕉球和乒乓球上旋下旋球的运动原理,利用抽象数学理论计算的方法,计算球的受力,进而结合空气动力学的知识,分析球类的运动。

关键字:飘球、香蕉球、上旋下旋球,卡门涡街,伯努利方程。引言:○1排球飘球:排球运动发球的一种。发球时身体正面对网站立,上手击球,用力突然,并充分利用转体、收腹、挥臂的力量,使球在不旋转的情况下飞行,产生不规则的飘晃。具有较强的攻击性。对运动员的力量素质及发飘球时由于击球的作用力通过球体重心,使球不旋转并带有飘晃的飞行,使对方难以判断,容易产生错觉,造成接发球困难。发这种球,面对球网;便于观察对方,容易控制落点,准确性较大,成功率较高,攻击性强。正面上手飘球是目前排球比赛中最常用的一种发球方法。

○2乒乓球上旋下旋球:乒乓球是我国的国球,当乒乓球本身带着上旋飞行时,同时带着球体周围的空气一起旋转,但是由于球体上沿周围空气旋转方向和对面空气方向相反,因而受到阻力,导致其流速降低。而球体下沿的气流与迎面空气阻力方向相同,因而流速加快。最后的结果是,本来球体上下沿的压力相等,现在变成上沿的增大,而下沿的减小。这样由于球体受力不均衡,总的合力方向是向下,给击球者的感觉就是上旋球的下落速度加快。因此,在相同的条件下,

上旋球的飞行弧线比不转球的飞行弧线要低、要短。

如果是下旋球,其受力情况跟上旋球恰好相反,球体上沿的空气流速快,压强小,下沿的空气流速慢,压强大,所以气流给球体一个浮举力。这样,在其他条件相同的情况下,下旋球比不转或上旋球的弧线要高,要长。

○3足球香蕉球:又称“弧线球”,足球运动技术名词。指足球踢出后,球在空中向前并作弧线运行的踢球技术。弧线球常用于攻方在对方禁区附近获得直接任意球时,利用其弧线运行状态,避开人墙直接射门得分。当足球在空中飞行时,并且不断地在旋转,由于空气具有一定的粘滞性,因此当球转动时,空气就与球面发生摩擦,旋转着的球就带动周围的空气层一起转动,从而形成足球在空中向前并作弧线飞行。由于球呈弧线形运行,与香蕉形状相似,故又俗称“香蕉球”。

模型:我们先将排球(乒乓球、足球)抽象成一个质点,并且假设这个质点以初始速率v0、仰角α抛出,若空气阻力与速率的平方成正比,为方便起见,我们假设比例系数为mk,m为质点的质量,则有:

m x =?mkv2x

v

=?mkvx =?mkvs x x =?k s x

m y =?mkv2y

v

?mg=?mks y?mg

y =?ks y?g

其中x轴沿水平方向,y轴沿竖直向上。所以小球质点的运动微分方程可以写成:

x =?k s x

y =?ks y?g

进一步

y =dy

dt

=

d

dt

dy

dx

dx

dt

=x

dy

dx

+x 2

d2y

dx2 x

dy

dx

+x 2

d2y

dx2

=?ks y?g

将x =?ks x及y =dy

dx

x 带入上式,得

x d2y

dx2

=?g

再将x =d x

x x =1

2

d x

dx

及s =ds

dx

x 代入x =?ks x,得

1

2

dx 2

dx

=?kx 2

ds

dx

dx 2

x 2

=?2kds

用初始条件t=0是s=0,x =v0cosα,对上式积分,可得

x 2=v0cosα2e?2ks

将式(2)代入式(1),即得

d2y dx2=?

ge2ks

v0cosα2

所以,小球质点的微分方程可以写成

d2y dx2=?

ge2ks

v0cosα2

这里的s是自抛射点沿轨道经过的路程。

可见,质点受到的空气阻力越大,则d 2y

dx2

越大。若我们忽略空气阻力,则k=0,积分上述轨道微分方程,可得:

d2y dx2=?

g

v0cosα2

两边对x积分,

dy dx =?

g

v0cosα2

x+c1

初始条件:x=0是,dy

dx

=tanα,定出c1=tanα,

dy dx =?

g

v o cosα

x+tanα

y=?

g

v0cosα

x2+x tanα+c2

初始条件:x=0时,y=0,定出c2=0,

y=?

g

2v0cosα2

x2+x tanα

=?

g

2v0cosα2

x2?2v02cos2α?tanα?x

=?

g

2v0cosα2

x?v02sinαcosα2+

1

2

v02g sin2α

是标准抛物线方程。

讨论:以上是利用目前我们力学课堂上所讲的知识进行的计算,仅仅是将小球抽象成一个质点。然而,仅仅依靠这些计算是不能够解决的,论文中所涉及到的球类运动都是利用球的表面与空气摩擦的阻力进而改变了“应有”的运动轨迹给对方以错觉,进而达到出奇制胜的效果。

进一步分析:○1排球飘球:在击球的一闪那让击球力通过球心,

这样球就不会旋转,根据流体力学原理,球在空中飞行时会在球的尾部产生卡门涡街(Karman Vortex Street),流体绕过非流线形物体时,物体尾流左右两侧产生的成对的、交替排列的、旋转方向相反的反对称涡旋。

卡门涡街是粘性不可压缩流体动力学所研究的一种现象。流体绕流高大烟囱、高层建筑、电线、油管道和换热器的管束时都会产生卡门涡街。排球在空气中运动过程中也会出现。1911年,德国科学家T.von卡门从空气动力学的观点找到了这种涡旋稳定性的理论根据。对圆柱绕流,涡街的每个单涡的频率f与绕流速v成正比卡门涡街,与圆柱体直径d成反比。由于受到旋涡不规则作用,排球就会飘起来,有时候左右飘,有时候上下飘。

○2乒乓球上旋下旋球:当乒乓球本身带着上旋飞行时,同时带着球体周围的空气一起旋转,但是由于球体上沿周围空气旋转方向和对面空气方向相反,因而受到阻力,导致其流速降低。而球体下沿的气流与迎面空气阻力方向相同,因而流速加快。由伯努利方程(Bernoulli’s equation)

p+ρgh+1

ρv2=c

2

其中上式中p、ρ、v分别为流体的压强、密度和速度;h

为铅垂高度;g为重力加速度;c为常量。

对于气体,可忽略重力,方程简化为:

ρv2=Const(p0)

p+1

2

显然,流动中速度增大,压强就减小;速度减小,压强就增大,最后的结果是,本来球体上下沿的压力相等,现在变成上沿的增大,而下沿的减小。这样由于球体受力不均衡,总的合力方向是向下,给击球者的感觉就是上旋球的下落速度加快。

乒乓球上旋球受力图

如果是下旋球,其受力情况跟上旋球恰好相反,球体上沿的空气

流速快,压强小,下沿的空气流速慢,压强大,所以气流给球体一个浮举力。这样,在其他条件相同的情况下,下旋球比不转或上旋球的弧线要高,要长。

○3足球香蕉球:罚“香蕉球”的时候,运动员并不是拔脚踢中足球的中心,而是稍稍偏向一侧,同时用脚背摩擦足球,使球在空气中前进的同时还不断地旋转.这时,一方面空气迎着球向后流动,另一方面,由于空气与球之间的摩擦,球周围的空气又会被带着一起旋转.这样,球一侧空气的流动速度加快,而另一侧空气的流动速度减慢.由伯努利方程(Bernoulli’s equation)知:气体的流速越大,压强越小.由于足球两侧空气的流动速度不一样,它们对足球所产生的压强也不一样,于是,足球在空气压力的作用下,被迫向空气流速大的一侧转弯了.

精选-理论力学试题及答案

理论力学试题及答案 (一) 单项选择题(每题2分,共4分) 1. 物块重P ,与水面的摩擦角o 20m ?=,其上作用一力Q ,且已知P =Q ,方向如图,则物块的状态为( )。 A 静止(非临界平衡)状态 B 临界平衡状态 C 滑动状态 第1题图 第2题图 2. 图(a)、(b)为两种结构,则( )。 A 图(a)为静不定的,图(b)为为静定的 B 图(a)、(b)均为静不定的 C 图(a)、(b)均为静定的 D 图(a)为静不定的,图(b)为为静定的 (二) 填空题(每题3分,共12分) 1. 沿边长为m a 2=的正方形各边分别作用有1F ,2F ,3F ,4F ,且1F =2F =3F =4F =4kN ,该力系向B 点简化的结果为: 主矢大小为R F '=____________,主矩大小为B M =____________ 向D 点简化的结果是什么? ____________。 第1题图 第2题图 2. 图示滚轮,已知2m R =,1m r =,ο30=θ,作用于B 点的力4kN F =,求力F 对A 点之矩A M =____________。 3. 平面力系向O 点简化,主矢R F '与主矩M 10kN F '=,20kN m O M =g ,求合力大小及作用线位置,并画在图上。 D C A B F 1 F 2 F 3 F 4

第3题图 第4题图 4. 机构如图,A O 1与B O 2均位于铅直位置,已知13m O A =,25m O B =,2 3rad s O B ω=,则 杆A O 1的角速度A O 1ω=____________,C 点的速度C υ=____________。 (三) 简单计算题(每小题8分,共24分) 1. 梁的尺寸及荷载如图,求A 、B 2. 丁字杆ABC 的A 端固定,尺寸及荷载如图。求A 端支座反力。 3. 在图示机构中,已知m r B O A O 4.021===,AB O O =21,A O 1杆的角速度4rad ω=,角加速度22rad α=,求三角板C 点的加速度,并画出其方向。 F O R ' O M

悠悠球案例分析

三年级综合实践课 案例分析 ------玩悠悠球长学问 活动时间:2002年5月 活动地点:尚义小学大教室 活动人物:尚义小学三(3)班全体学生 教师:付丽娅 活动目的: 最近,玩悠悠球在小学生中风靡一时,成了最时尚的游戏。有的学生整天沉迷其中,甚至课堂上也在玩,影响了教学秩序,也影响了学生学习,但却屡禁不绝,老师对此很伤脑筋。于是我就思考,悠悠球为什么竟会有这么大的吸引力?带着这个问题,自己也试玩了几回悠悠球,结果并不象事先想象的那样简单。而学生却能玩出很多的新奇花样,看来悠悠球的确有一些奇特。我由此得到启发:设计一堂综合实践活动课,通过玩悠悠球,激发学生自主探究学习悠悠球中的奥秘,使他们懂得知识无处不在,只要开动脑筋,通过玩玩具也可以长学问的道理;同时通过学生之间的讨论,正面引导学生认识和正确处理课余娱乐和课堂学习之间的关系。 活动内容: 活动内容大致分四部分。 首先激发学生兴趣。提出问题:“最近同学们最喜欢玩的玩具

是什么呀?”让学生自发回答,然后老师提议和大家一起玩悠悠球。在玩的过程中,学生玩得很投入,且还变换出许多的花样。在让大家尽兴以后,我请各组推出“悠悠能手”上台表演,并要求给各自的玩法取名,“悠悠能手”取名不雅或不准确的,我请其他同学出主意,给重新起个恰当、文明的名字,以此锻炼学生观察事物并准确描述、简约概括的能力。学生们开动脑筋,起了很多生动、形象、具有新意的名字,如“金字塔”、“摇篮”、“猴子爬树”等等。接着,请“悠悠能手”简单地介绍自己的玩法和诀窍。 趁着大家热情高涨的时候,我提出了问题:“大家在玩悠悠球的时候,有没有发现什么问题?为什么有的同学玩得这么好?究竟是什么原因,大家思考过吗?” 根据学生不同的情况,他们会提出不同的问题。这个班提出这样一些问题: “为什么悠悠球会处于睡眠状态?” “悠悠球的绳有什么作用?” “悠悠球里有离合器等好多东西,都有什么作用?” “悠悠球为什么能在绳子的顶端旋转?” “悠悠球为什么是圆的?可不可以是其他形状?” “悠悠球是谁发明的?”等等。 在这个时候,我揭示出题目:“玩悠悠球长学问。”“大家提出了这么多精彩的问题,我和大家一样,对这些问题也很好奇,我们

理论力学带答案

一.选择题 1.空间同向平行力系1F 、 2F 、 3 F 和 4 F ,如图所示。该力系向O 点简化,主矢为 ' R F ,主矩为 O M , 则 (B ) (A) 主矢主矩均不为零,且'R F 平行于O M (B) 主矢主矩均不为零,且 ' R F 垂直于 O M (C) 主矢不为零,而主矩为零 (D) 主矢为零,而主矩不为零 2.已知点M 的运动方程为ct b s +=,其中b 、c 均为常数,则( C )。 (A) 点M 的轨迹必为直线 (B) 点M 必作匀速直线运动 (C) 点M 必作匀速运动 (D) 点M 的加速度必定等于零 3.如图所示若尖劈两侧与槽之间的摩擦角均为m ?,则欲使尖劈被打入后不致自动滑出,θ角应为 ( C ) (A) θ≤m ? (B) θ≥m ? (C) θ≤2m ? (D) θ≥2m ? 4.若质点的动能保持不变,则( D )。 (A) 该质点的动量必守恒 (B) 该质点必作直线运动 (C) 该质点必作变速运动 (D) 该质点必作匀速运动 5.直管AB 以匀角速度ω绕过点O 且垂直于管子轴线的定轴转动,小球M 在管内相对于管子以匀速度 r v 运动,在如图所示瞬时,小球M 正好经过轴O 点,则 在此瞬时小球M 的绝对速度a v 和绝对加速度a a 大小是( D )。 (A) 0a v =,0 a a = (B) a r v v =, a a = (C) a v =, 2a r a v ω= (D) a r v v =, 2a r a v ω= 二.填空题 1.平面汇交力系平衡的几何条件是 各力构成的力多边形自行封闭 ;平面汇交力系平衡的解析条件是 0x F =∑、0y F =∑。 2.空间力偶的三个要素是 力偶矩的大小 、 力偶作用面的方位 和 力偶的转向 。

理论力学习题及答案(全)

第一章静力学基础 一、是非题 1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。 () 2.在理论力学中只研究力的外效应。() 3.两端用光滑铰链连接的构件是二力构件。()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。() 6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。() 7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。 ()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。() 二、选择题 1.若作用在A点的两个大小不等的力 1和2,沿同一直线但方向相反。则 其合力可以表示为。 ①1-2; ②2-1; ③1+2; 2.作用在一个刚体上的两个力A、B,满足A=-B的条件,则该二力可能是 。 ①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。 ③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。 3.三力平衡定理是。 ①共面不平行的三个力互相平衡必汇交于一点; ②共面三力若平衡,必汇交于一点; ③三力汇交于一点,则这三个力必互相平衡。 4.已知F 1、F 2、F 3、F4为作用于刚体上的平面共点力系,其力矢 关系如图所示为平行四边形,由此。 ①力系可合成为一个力偶; ②力系可合成为一个力; ③力系简化为一个力和一个力偶; ④力系的合力为零,力系平衡。 5.在下述原理、法则、定理中,只适用于刚体的有。 ①二力平衡原理;②力的平行四边形法则; ③加减平衡力系原理;④力的可传性原理; ⑤作用与反作用定理。 三、填空题

理论力学计算题及答案

1. 图示圆盘受一平面力系作用,已知圆盘半径R =0.1m ,F 1=100N ,F 2=200N ,M 0=400Nm 。 求该平面任意力系的合力及其作用线与AC 或其延长线的交点位置。 平面任意力系简化 191.42,54.82,199.12391.347.16R x y F N F N F N M Nm OE m ==-==-=∑∑∑ 2. 求图示桁架中各杆的内力。 桁架内力计算,截面法与节点法:136 F F = 3. 已知图示结构中2m a =,在外力5kN F =和力偶矩=10kN m M ?作用下,求A 、B 和D 处的约束反力。 力系的平衡条件的应用,隔离体与整体分析: ()()()1010D Ax Ay Bx By A F F F F F kN M kNm ↑=→=↓====

4. 已知图示结构中1m =60,a οθ=,在外力10kN F =和力偶矩0=20kN m M ?作用下,求A 、 C 处的约束反力。 同上()20,0,20,17.32Ax Ay A c F kN F M kNm F kN =→=== 5. 图示构件截面均一,图中小方形边长为b ,圆形半径均为R ,若右图中大方形和半圆形 材料密度分别为12,ρρ,试计算确定两种情况下平面图形的质心位置。 以圆心为原点:() ()3 222c b x =-R b π→-左 以方形下缘中点为原点:()() () 12212123238c 2x = ρπρρρπρ++↑+右

6. 斜坡上放置一矩形匀质物体,质量m=10kg ,其角点A 上作用一水平力F ,已知斜坡角 度θ=30°,物体的宽高比b/h=0.3,物体与斜坡间的静摩擦系数s f =0.4。试确定不致破坏平衡时F 的取值范围。 计算滑动和翻倒两种情况得到(1)滑动平衡范围14.12124.54N F N -≤≤,(2)翻倒平衡范围:8.6962.27N F N ≤≤ 7. 如图机构,折杆OBC 绕着O 轴作顺时针的匀速定轴转动,角速度为ω,试求此时扣环 M 的速度和加速度。 点的合成运动:动系法 2 4sin 2tan ,sin 2M M V OM a OM ?ω?ω? -=??= 8. 悬臂刚性直杆OA 在O 处以铰链连接一圆环,半径R=0.5m ,圆环绕O 逆时针作定轴转 动,在图示瞬时状态下,圆环角速度1rad/s ω=,试求同时穿过圆环与杆OA 的扣环M 的速度和加速度。 9. 摇杆OA 长r 、绕O 轴转动,并通过C 点水平运动带动摇杆OA 运动。图示瞬时摇杆 OA 杆与水平线夹角?,C 点速度为V ,加速度a ,方向如图,试求该瞬时摇杆OA 的角速度和角加速度。

溜溜球的力学原理

溜溜球的力学原理 引言:源于美国,近年来风行于我国青少年学生,许多人都为其能够自动上爬而感到神秘莫测,大学生们也深感好奇,爱不释手。然而,如果老师能够抓住时机,正确地加以引导,让同学们利用已学过的力学知识分析其中的原理,学生的学习兴趣将会上升到一个新的高度,对于培养学生研究实际问题!解决实际问题的能力也大有益处。 溜溜球有一对圆盘,直径 一般为58-65mm,塑料或硬卡 纸制成;中间为一段圆柱状空 芯薄壁中轴,直径一般为 8mm,长约为3mm。圆盘粘在 中轴两侧,然后在轴上中点处 钻一小孔,系上1m长细绳,并 在细绳的另一端系上圆环. 中轴为一空芯薄壁圆柱,半径为r,质量为m1,中轴两侧为一对薄片圆盘,半径为R,每个圆盘的质量为m2。设溜溜球的整体质量为m,则有m=m1+2m2 (1) 溜溜球对通过其质心C的转轴z的转动惯量J为 J=m1r2+2m2R2/2=m1r2+m2R2 (2)

为了分析方便,1、假设溜溜球下落的初始速度为Vco=0,初始转速度ω0=0;2、假设细绳是完全弹性体(即不考虑球体转向时平动动能的损失);3、暂不考虑空气的阻尼和细绳的摩擦阻力;4、忽略细绳的质量。溜溜球的运动可看成整个球体随质心C在垂直方向上的平动和绕通过质心的转轴Z的转动的迭加。如图2所示,假设溜溜球在“上爬下走”过程中,细绳的张力为T,重力加速度为g,质心加速度为ac,转体所受合外力矩为Mc,角加速度为B.对于平动由质心运动定律得, Mac=mg-T (3) 对于转动由转动定律得, Mc=JB=Tr (4) 因为溜溜球在运动过程中仅有转动,所以其质心加速度ac与中轴和细绳切点处的切向加速度a t相等, 即a c=a t.由于a t=rB,故有,a c=rB (5) 如图3所示,根据S=12at2可计算出溜溜球单程 式中H为溜溜球单程运动的高度。 根据v2-v02=2as可计算出质心C下落的速度V

2012理论力学(带答案)

一.选择题 1.空间同向平行力系1 F 、 2 F 、 3 F 和 4 F ,如图所示。该力系向O 点简化,主矢为' R F ,主矩 为 O M ,则 (B ) (A) 主矢主矩均不为零,且'R F 平行于O M (B) 主矢主矩均不为零,且 ' R F 垂直于 O M (C) 主矢不为零,而主矩为零 (D) 主矢为零,而主矩不为零 2.已知点M 的运动方程为ct b s +=,其中b 、c 均为常数,则( C )。 (A) 点M 的轨迹必为直线 (B) 点M 必作匀速直线运动 (C) 点M 必作匀速运动 (D) 点M 的加速度必定等于零 3.如图所示若尖劈两侧和槽之间的摩擦角均为m ?,则欲使尖劈被打入后不致自动滑出,θ角 应为( C ) (A) θ≤m ? (B) θ≥m ? (C) θ≤2m ? (D) θ≥2m ? 4.若质点的动能保持不变,则( D )。 (A) 该质点的动量必守恒 (B) 该质点必作直线运动 (C) 该质点必作变速运动 (D) 该质点必作匀速运动 5.直管AB 以匀角速度ω绕过点O 且垂直于管子轴线的定轴转动,小球M 在管内相对于管子以匀速度r v 运动,在如图所示瞬时,小球M 正好经过轴O 点,则在此瞬时小球M 的绝对速度a v 和绝对加速度a a 大小是( D )。 (A) 0a v =,0 a a = (B) a r v v =,0 a a = (C) a v =, 2a r a v ω= (D) a r v v =, 2a r a v ω= 二.填空题 1.平面汇交力系平衡的几何条件是 各力构成的力多边形自行封闭 ;平面汇交力系平衡的分析条件是 0x F =∑、0y F =∑。 2.空间力偶的三个要素是 力偶矩的大小 、 力偶作用面的方位 和 力偶的转向 。 A B r v O M θ

悠悠球的理论力学分析

悠悠球的简单力学分析及讨论 假设悠悠球的质量为m ,对质心的转动惯量为。细绳长为,不计形变及质量。轴承摩擦系数为μ,内外半径分别为,细绳全部缠绕在轴承上时半径为R,忽略轴承的质量及转动惯量。假设悠悠球进行一个简单运动:以一定初速度被甩出,方向竖直向下,到达底端经过一段时间的睡眠后收回。下面分五个过程进行定量计算。(图均为过质心的截面图)过程分析 1.设出手的过程人做功W,该功量全部转化为悠悠球的动能,使其绕瞬心O点定轴转动, 角速度。由动能定理: 得: 后面的计算并不用到这个角速度,这里只是定量分析一下能量转换的关系。

2.此后悠悠球在重力的作用下加速下落,运动方式类似纯滚动。随着细绳逐渐被抽出, 缠绕的细绳越来越接近球的中心,其角速度迅速增大。忽略空气阻力及一切能量耗散,设在细绳完全抽出的瞬时角速度为。由动能定理: 得: 其质心速度 3.此时细绳会突然急剧张紧,在极短时间内产生一个竖直方向的冲量,使得悠悠球质心 速度变为零,平动动能耗散为其他形式的能量,这就是物理中所学过的“范性过程”。 规定向下为正,其冲量为: 同时,由于轴承不完全光滑,该过程轴承对悠悠球的冲量矩为(类比小球与粗糙平面的斜碰撞,平面对其的切向冲量为法向冲量的):

设范性过程结束时悠悠球角速度为动量矩定理: 得: 4.此后由于悠悠球离合器中的钢珠受很大的离心力的作用,压缩弹簧使离合器打开,悠 悠球绕质心作定轴转动,并且角速度在摩擦力矩的作用下逐渐变小。由动量矩定理有微分关系式: 即 积分,初始条件 可见随时间线性减小。当其减小到离合器的临界角速度时,钢珠的离心力和弹簧 作用的压力相互平衡。只要继续减小,离合器就会卡住轴承从而使悠悠球沿细绳 向上运动,达到“收球”的目的。设经过时间T达到离合器临界角速度,代入上式有

8理论力学

10.1 一质量为10kg 的小球置于倾斜 30的光滑斜面上,并用平行于斜面的软绳拉住如图示。求当斜面以3/g 的加速度向左运动时,绳子中的拉力以及斜面上的压力,并问当斜面的加速度达到多大时绳子中的拉力为零? 解:小球:∑=F a m x ' :T 30sin 30cos F mg ma +-=- ,N 71.20T =F y ': 30cos 30sin N mg F ma -=,N 20.101N =F 令第一式中得0T =F ,解得: 2m/s 66.530cos /30sin == g a 10.2 一重20N 的小方块放于绕铅垂轴转动的水平圆台上如图示,m 1=r ,今圆台从静止开始以20.5rad/s 的匀角加速度转动。设方块与台面间的静摩擦因数为0.25,问经过多少时间后,方块开始在台面上滑动?又问当s 2=t 时,方块与台面间的摩擦力多大? 解:方块:∑=F a m ,向三轴投影得 x F ma =τ,y n F ma =,mg F =N 其中α=τr a , r t r a 22n )(α=ω=。因此有 4 22y 2x 1t r m F F F α+α=+= (1) 滑动时将fmg fF F ==N 代入式(1),解得s 10.3=t ; 将s 2=t 代入式(1),解得N 28.2=F 。 10.3 游乐场一圆柱形旋转厅如图示,游客背对墙而立,当旋转厅达到一定角速度时,让地板下降。求保证游客(允许视为质点)不往下掉落的最小角速度。设人和墙之间的静摩擦因数3.0s =f 。

解:游客:∑=F a m ,向 x 、y 轴投影得 N 2F r m =ω,N fF mg F == 由上二式解得rad/s 56.2/==ωfr g 10.4 一质量为1kg 的小球A 被限制在两滑槽内运动,如图示。若两滑槽的运动规律分别为t y 2cos 0=和t x 2sin 20=(其中,t 以s 计,0x ,0y 以cm 计),试求在任意时刻小球A 所受到的作用力。 解:设 )cm (2sin 2A t x =,)cm (2cos A t y =, 则有 )cm/s (2sin 82A x t x a -== ,)cm/s (2cos 42A y t y a -== 根据牛顿定律,小球A 受到得作用力为: )N )(2cos 2sin 2(04.0j i a F t t m +-==∑ 10.5 支撑缆车的铁索成悬链线状如图示,相对(Oxy )坐标系的轨迹方程为 ax a e e a y cosh )(2ax -ax =+=(单位为m ) 若缆车以5m/s 的速度沿铁索前进,缆车和乘客总重量为kN 5.2,试以x 表示缆车作用于铁索的正压力。假定缆车不影响铁索的形状。 解:由铁索轨迹方程ax a y ch =可得 ax a dx dy sh /2=,ax a dx y d ch /322= 其中10=a 。根据几何关系有 ax a dx dy sh /tg 2==β,22)sh (1/1cos ax a +=β ax a ax a dx y d dx dy ch /])sh (1[)//(])/(1[32/322222/32+=+=ρ (m ) 对缆绳列写牛顿定律沿N F 方向的投影式:

理论力学试题及答案

理论力学试题及答案 、是非题(每题2分。正确用",错误用X,填入括号内。) 1、作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。 2、力对于一点的矩不因力沿其作用线移动而改变。() 3、在自然坐标系中,如果速度u =常数,则加速度a = 0。() 4、虚位移是偶想的,极微小的位移,它与时间,主动力以及运动的初始条件无关。 5、设一质点的质量为m其速度—与x轴的夹角为a,则其动量在x轴上的投影为mv =mvcos a。 、选择题(每题3分。请将答案的序号填入划线内。) 1、正立方体的顶角上作用着六个大小相等的力,此力系向任一点简化的结果是 ____________ 。 ①主矢等于零,主矩不等于零; ②主矢不等于零,主矩也不等于零; ③主矢不等于零,主矩等于零; ④主矢等于零,主矩也等于零。 2、重P的均质圆柱放在V型槽里,考虑摩擦柱上作用一力偶,其矩为M时(如图),圆柱处于极限平衡状态。此 时按触点处的法向反力N A与N B的关系为________________ 。 ① N A = N B;② N A > N B;③ N A < N B。 3、边长为L的均质正方形平板,位于铅垂平面内并置于光滑水平面上,如图示,若给平板一微小扰动,使其从图示位 置开始倾倒,平板在倾倒过程中,其质心C点的运动轨迹是___________________ 。 ①半径为L/2的圆弧;②抛物线;③椭圆曲线;④铅垂直线。 4、在图示机构中,杆O A//QB,杆Q C//O3 D,且O A = 20cm , O2 C = 40cm, CM = MD = 30cm 若杆AO 以角速度co 2 = 3 rad / s匀速转动,则D点的速度的大小为 ________ cm/s , M点的加速度的大小为_________ c m/s 。

物理论文——基于悠悠球中的物理原理

基于悠悠球中的物理原理 机械91 2009010411 周斌 2010年12月26日

摘要;悠悠球作为一种休闲玩具曾经风靡一时,深受中小学生喜爱和追捧。作为一个类似陀螺仪的玩具,悠悠球中包含着许多复杂的物理原理。悠悠球分为有离合器和没有离合器两种,两种的原理各不相同。有离合器的运用了惯性离心力和弹簧弹力的关系,没有离心力的运用了轴承两侧与绳子的摩擦力。 关键词:离合器惯性离心力弹簧弹力 正文: 悠悠球的基本原理就是将重力势能转化为转动动能,回收时又由转动动能转化为重力势能。悠悠球的运动过程分为三个阶段:投掷阶段,睡眠阶段和回收阶段。 一、投掷阶段 在投掷阶段,玩家拉着绳子的一头将悠悠球用力往下扔,悠悠球的质心做曲线运动(或者竖直方向上的直线运动),同时球的其他部分围绕质心做定轴转动。最后质心稳定,静止,绳子的拉力与球 所受重力平衡,球做定轴转动,这就进 入了睡眠阶段。 二、睡眠阶段 在睡眠阶段,对于有离合器的悠悠 球,如右图所示,离合器中有两块卡子, 每块卡子上面套着两个钢球并且连结着 一个弹簧,当溜溜球的转动速度足够时, 钢球的惯性离心力就会大于弹簧的弹 力,离合器的卡子会松开,使球体和轴 分离,令溜溜球能保持空转,即产生睡眠状态;球的转动速度下降后,钢球的惯性离心力就会小于弹簧的弹力,离合器的卡子会重新夹紧轴部,使溜溜球无法空转而回收。

下面计算悠悠球产生睡眠状态需要的角速度和开始抛出时最小速度 1. 角速度 简化模型,如右图所示。 考虑上面一个卡子,两钢球的质量为 , 轴心到两钢球圆心连线的距离为, 两钢球 圆心距离为 ,弹簧的弹劲系数为,悠悠 球半径为,连结钢球和弹簧的曲杆质量不 计,弹簧质量不计。 假设初始时弹簧压缩量为 ,当悠悠球以角速度旋转时,受力情况如下右图。 受力分析: 球1受到惯性离心力 ,重力 球2受到惯性离心力 ,重力 其中在水平方向上的分力大 小相等方向相反,即 在竖直方向上 卡子恰好使球体和轴分离时满足

理论力学复习题及答案

理论力学自测复习题 静力学部分 一、填空题:(每题2分) 1、作用于物体上的力的三要素是指力的 大小 、 方向 和 作用点 。 2、当物体处于平衡状态时,作用于物体上的力系所满足的条件称为 平衡条件 ,此力系称为 平衡 力系,并且力系中的任一力称为其余力的 平衡力 。 3、力的可传性原理适用于 刚体 ,加减平衡力系公理适用于 刚体 。 4、将一平面力系向其作用面内任意两点简化,所得的主矢相等,主矩也相等,且主矩不为零,则此力系简化的最后结果为 一个合力偶 5、下列各图为平面汇交力系所作的力多边形,试写出各力多边形中几个力之间的关系。 A 、 0321=++F F F 、 B 、 2341F F F F =++ C 、 14320F F F F +++= D 、 123F F F =+ 。 6、某物体只受三个力的作用而处于平衡状态,已知此三力不互相平行,则此三力必 并且 汇交于一点、共面 7、一平面力系的汇交点为A ,B 为力系作用面内的另一点,且满足方程∑m B =0。若此力系不平衡,则其可简化为 作用线过A 、B 两点的一个合力 。 8、长方形平板如右图所示。荷载集度分别为q 1、q 2、q 3、q 4的均匀分布 荷载(亦称剪流)作用在板上,欲使板保持平衡,则荷载集度间必有如下关 系: q 3=q 1= q 4=q 2 。 9、平面一般力系平衡方程的二力矩式为 ∑F x = 0、∑M A = 0、∑M B = 0 ,其适用条件是 A 、B 两点的连线不垂直于x 轴 10、平面一般力系平衡方程的三力矩式为 ∑M A =0、∑M B =0、∑M C =0 ,其适用条件是 A 、B 、C 三点不共线 。 11、正方形平板受任意平面力系作用,其约束情况如下图所示,则其中 a b c f h 属于静定问题; d e g 属于超静定问题。

溜溜球力学现象

溜溜球中的力学现象 何超051893 hicy5627@https://www.360docs.net/doc/a69443144.html, 地址:上海市同济大学1239号邮编:200092 摘要:讨论溜溜球上下来回沿绳滚动的原理,并建立模型进行定量分析。 关键词:溜溜球,运动过程 主要内容: Yo-Yo,又名溜溜球,最早起源于中国,被称为第二古老的玩具。溜溜球的基本结构可视为一个两端大中间小的短绕线轴,将溜溜球释放后它的轴将沿着绳做来回滚动。 本文将就溜溜球竖直释放后的上下来回运动进行研究。 溜溜球能够沿绳上下来回运动的基本原理是:假设在理想状态下,当球沿绳滚动时,由于球与绳的接触处无相对运动,绳的拉力不做功,主动力只有重力,溜溜球机械能守恒。绳的拉力不过溜溜球的质心,它改变了溜溜球对质心的动量矩,而重力与绳的拉力一起改变溜溜球的动量。当溜溜球运动到绳端时,绳的拉力产生变化。由于球轴半径相对绳长可忽略,所以此时绳端可视为静止。于是绳对溜溜球突加一个冲量改变了溜溜球质心的运动方向。且这个变化的拉力作用方向可近似看成通过质心。于是它不改变溜溜球对质心的动量矩。由于机械能守恒,球质心将以与原来大小相等方向相反的速度沿绳向上运动。

下面具体分析运动过程。 为分析方便,忽略绳的质量和直径。设溜溜球的质心与形心重合。溜溜球中间轴的半径与绳长相比极小。绳一端与轴紧密连接,无相对移动。 首先讨论理想状态。 忽略一切阻力与摩擦,将绳不与球相连的一端固定。绳、球系统机械能守恒 取m 为溜溜球质量,g 为重力加速度,r 为球中间转轴半径,ρ为溜溜球回转半径,c J 为对质心的转动惯量,2ρm J c = l 为绳长。 滚动过程中小球以与绳相切的一点为瞬心做类似纯滚动的平面运动。 静止释放溜溜球。取?为广义坐标。以向下为质心运动正向,顺时针方向为角速度正向。 动能2 22 121ωc J mv T += ?==?ωr r v 势能mgy V -=(取绳的固定端为重力势能零点) 0)2121(222=-+?mgy m mv d ?ρ ? 02 2=-+?????dt mgr d m d mr ???ρ?? 解得球运动的角加速度2 2ρ ?+=? ?r gr 质心运动加速度??=?r a 由于质心速度方向改变时没有机械能损失,所以在理想状态下溜溜球将永远不停上下运动。 但是实际有损失。为具体分析该情况下的运动情况,假设球每下上一次机械能损失km gl 10≤≤k (包含了各种原因造成的损失),且损失集中在质心运动到绳下端,运动方向由向下变为向上时期,沿绳运动期间无机械能损失。 溜溜球无初速释放。 1.球沿绳向下运动到刚达绳端过程

2012理论力学(带答案)

一.选择题 1.空间同向平行力系1F 、2F 、3F 和4F ,如图所示。该力系向O 点简化,主矢为' R F ,主矩 为 O M ,则 (B ) (A) 主矢主矩均不为零,且' R F 平行于O M (B) 主矢主矩均不为零,且' R F 垂直于O M (C) 主矢不为零,而主矩为零 (D) 主矢为零,而主矩不为零 2.已知点M 的运动方程为ct b s +=,其中b 、c 均为常数,则( C )。 (A) 点M 的轨迹必为直线 (B) 点M 必作匀速直线运动 (C) 点M 必作匀速运动 (D) 点M 的加速度必定等于零 3.如图所示若尖劈两侧与槽之间的摩擦角均为m ?,则欲使尖劈被打入后不致自动滑出,θ角 应为( C ) (A) θ≤m ? (B) θ≥m ? (C) θ≤2m ? (D) θ≥2m ? 4.若质点的动能保持不变,则( D )。 (A) 该质点的动量必守恒 (B) 该质点必作直线运动 (C) 该质点必作变速运动 (D) 该质点必作匀速运动 5.直管AB 以匀角速度ω绕过点O 且垂直于管子轴线的定轴转动,小球M 在管内相对于管子以匀速度r v 运动,在如图所示瞬时,小球M 正好经过轴O 点,则在此瞬时小球M 的绝对速度a v 和绝对加速度a a 大小是( D )。 (A) 0a v =,0a a = (B) a r v v =,0a a = (C) 0a v =,2a r a v ω= (D) a r v v =,2a r a v ω= 二.填空题 1.平面汇交力系平衡的几何条件是 各力构成的力多边形自行封闭 ;平面汇交力系平衡的解析条件是 0x F =∑、0y F =∑。

理论力学习题答案

第一章 静力学公理和物体的受力分析 一、是非判断题 1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。 ( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。 ( × ) 1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。 ( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。 ( ∨ ) 1.1.5 两点受力的构件都是二力杆。 ( × ) 1.1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。 ( × ) 1.1.7 力的平行四边形法则只适用于刚体。 ( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。 ( ∨ ) ¥ 1.1.9 只要物体平衡,都能应用加减平衡力系公理。 ( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。 ( × ) 1.1.11 合力总是比分力大。 ( × ) 1.1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。 ( × ) 1.1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。 ( ∨ ) 1.1.14 当软绳受两个等值反向的压力时,可以平衡。 ( × ) 1.1.15 静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。 ( ∨ ) 1.1.16 静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。 ( ∨ ) 1.1.17 凡是两端用铰链连接的直杆都是二力杆。 ( × ) / 1.1.18 如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。 ( × ) ! 二、填空题 1.2.1 力对物体的作用效应一般分为 外 效应和 内 效应。 1.2.2 对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引

溜溜球的力学原理

溜溜球的力学原理 杭州公益中学竺叶澍表面看来,YO-YO球只是个极为简单的玩具:无非就是一段绳子连着一个线轴。但一到行家手里,它就变得异常奇妙。熟练的YO-YO球玩家能让YO-YO球向各个方向飞出,悬停在半空中,然后迅速收回掌内。这些东西就仿佛有了生命! 这看起来像在变戏法,其实只是利用了物理原理。无论是传统溜溜球,还是近年出现的精密自动YO-YO球,都清晰展现出基本的科学原理。 1 构造及其设计的原理 现代YO-YO球于20世纪20年代从菲律宾传入美国(见下图),其绳子只是环绕在轮轴上。 (图为YO-YO球的构造图,一 对薄片圆盘,直径一般为 54-75mm,厚为10mm,塑料或 金属制成;中间为一段圆柱状空 芯薄壁中轴,直径一般为2mm,长约为20mm。圆盘通过螺帽和螺丝固定在中轴两侧,然后在轴上套上细长绳,并

在细绳的另一端打上一个圆环。) 最初的YO-YO球在设计时是将绳子紧系在轮轴上。而现代溜溜球只是让绳子环绕在轮轴上,这样溜溜球就能“悬停”。 无论哪种YO-YO球,玩家都会把绳子紧紧缠绕在轮轴上。溜溜球在玩家手中时,具有一定的势能。这种势能分为两种不同形式:YO-YO球被持在空中,因此具有落向地面的势能。 绳子环绕着YO-YO球,因此放线时有旋转的势能。 玩家投放YO-YO球时,上述两种形式的势能都会转化为动能。YO-YO球的线轴垂直落向地面,形成一定的线动量(直线中的动量)。同时绳子展开、线轴旋转,形成角动量(旋转的动量)。 当YO-YO球到达绳子底端时,就不能继续下降了。但由于它还有很多角动量,因此会继续旋转。 旋转运动让YO-YO球获得陀螺稳定性。物体旋转时外力会随物体本身一起移动,因此物体能抵抗对转动轴的改变。例如,如果在转轮顶端的某点推一下,当这个点移到转轮前端时,施加的力依然存在。受力点继续移动,并最终对转轮的底端施力,从而与最初施加在顶端的力自行抵消。因此,只要YO-YO球的旋转速度够快,就能使其转轴与绳子保持垂直。 如果按最初的设计将绳子紧系在轮轴上,那么旋转的轮轴就会抓紧绳子并开始重新绕线,YO-YO球也会沿绳子向上攀回。YO-YO 球重新绕线产生的摩擦力会损失能量,因此玩家必须稍稍拖曳绳子补偿能量。

理论力学课后答案解析第五章(周衍柏)

第五章思考题 5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点? 5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲? 5.3广义动量a p 和广义速度a q 是不是只相差一个乘数m ?为什么a p 比a q 更富有意义? 5.4既然 a q T ??是广义动量,那么根据动量定理,??? ? ????αq T dt d 是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ??项?你能说出它的物理意义和所代表的物理量吗? 5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式 ()14.3.5? 5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的? 5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动? 5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程? 5.9 dL 和L d 有何区别? a q L ??和a q L ??有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么? 5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况? 5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何? 5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到

理论力学名校考研真题详解

理论力学名校考研真题详解,益星学习网可免费下载题库 目录 第1章静力学公理和物体的受力分析 1.1 重点与难点解析 1.2 名校考研真题与期末考试真题详解 1.3 名校期末考试真题详解 第2章平面会交力系与平面力偶系 2.1 重点与难点解析 2.2 名校考研真题详解 第3章平面任意力系 3.1 重点与难点解析 3.2 名校考研真题详解 3.3 名校期末考试真题详解 第4章空间力系 4.1 重点与难点解析 4.2 名校考研真题详解 4.3 名校期末考试真题详解 第5章摩擦 5.1 重点与难点解析 5.2 名校考研真题详解 5.3 名校期末考试真题详解 第6章点的运动学 6.1 重点与难点解析 6.2 名校考研真题详解 6.3 名校期末考试真题详解 第7章刚体的简单运动 7.1 重点与难点解析 7.2 名校考研真题详解 7.3 名校期末考试真题详解 第8章点的合成运动 8.1 重点与难点解析 8.2 名校考研真题详解 8.3 名校期末考试真题详解 第9章刚体的平面运动 9.1 重点与难点解析 9.2 名校考研真题详解 9.3 名校期末考试真题详解 第10章质点动力学的基本方程 10.1 重点与难点解析 10.2 名校考研真题详解 10.3 名校期末考试真题详解

第11章动量定理 11.1 重点与难点解析 11.2 名校考研真题详解 11.3 名校期末考试真题详解 第12章动量矩定理 12.1 重点与难点解析 12.2 名校考研真题详解 12.3 名校期末考试真题详解 第13章动能定理 13.1 重点与难点解析 13.2 名校考研真题详解 13.3 名校期末考试真题详解 第14章达朗贝尔原理(动静法) 14.1 重点与难点解析 14.2 名校考研真题详解 14.3 名校期末考试真题详解 第15章虚位移原理 15.1 重点与难点解析 15.2 名校考研真题详解 15.3 名校期末考试真题详解 第16章非惯性系中的质点动力学 16.1 重点与难点解析 16.2 名校考研真题详解 第17章碰撞 17.1 重点与难点解析 17.2 名校考研真题详解 17.3 名校期末考试真题详解 第18章分析力学基础 18.1 重点与难点解析 18.2 名校考研真题详解 18.3 名校期末考试真题详解 第19章机械振动基础 19.1 重点与难点解析 19.2 名校考研真题详解 19.3 名校期末考试真题详解 附录部分院校考研真题与答案 附录1 天津大学2008年《理论力学》考研试题与答案 附录2 北京航空航天大学2007年《理论力学》考研试题与答案 附录3 北京航空航天大学2009年《力学基础》考研试题与答案 附录4 哈尔滨工业大学2007年《理论力学》考研试题与答案 附录5 浙江大学2007年《理论力学》考研试题与答案 附录6 哈尔滨工程大学2009-2010学年第1学期《理论力学》期末考试试题与答案附录7 重庆大学2005-2006学年《理论力学》期末考试试题与答案 附录8 河海大学2003-2004学年第1学期《理论力学》期末考试试题与答案

理论力学试题及答案

一、选择题(每题3分,共15分)。) 1. 三力平衡定理是--------------------。 ① 共面不平行的三个力互相平衡必汇交于一点; ② 共面三力若平衡,必汇交于一点; ③ 三力汇交于一点,则这三个力必互相平衡。 2. 空间任意力系向某一定点O 简化,若主矢0≠'R ,主矩00≠M ,则此力系简化的最后结果--------------------。 ① 可能是一个力偶,也可能是一个力; ② 一定是一个力; ③ 可能是一个力,也可能是力螺旋; ④ 一定是力螺旋。 3. 如图所示,=P 60kM ,T F =20kN ,A , B 间 的静摩擦因数s f =0.5,动摩擦因数f =0.4,则物块A 所受的摩擦力F 的大小为-----------------------。 ① 25 kN ;② 20 kN ;③ 310kN ;④ 0 4. 点作匀变速曲线运动是指------------------。 ① 点的加速度大小a =常量; ② 点的加速度a =常矢量; ③ 点的切向加速度大小τa =常量; ④ 点的法向加速度大小n a =常量。 5. 边长为a 2的正方形薄板,截去四分 之一后悬挂在A 点,今若使BC 边保持水平,则点A 距右端的距离x = -------------------。 ① a ; ② 3a /2; ③ 6a /7; ④ 5a /6。 二、填空题(共24分。请将简要答案填入划线内。) T F P A B 30A a C B x a a a

1. 双直角曲杆可绕O 轴转动,图 示瞬时A 点的加速度2s /cm 30=A a , 方向如图。则B 点加速度的大小为 ------------2s /cm ,方向与直线------------成----------角。(6分) 2. 平面机构如图所示。已知AB 平行于21O O ,且AB =21O O =L ,r BO AO ==21,ABCD 是矩形板, AD=BC=b ,1AO 杆以匀角速度ω绕1O 轴转动,则矩形板重心1C 点的速度和 加速度的大小分别为v = -----------------, a = --------------。(4分) (应在图上标出它们的方向) 3. 在图示平面机构中,杆AB =40cm ,以1ω=3rad/s 的匀角速度绕A 轴转动,而CD 以2ω=1rand/s 绕B 轴转 动,BD =BC =30cm ,图示瞬时AB 垂直于CD 。若取AB 为动坐标系,则此时D 点的牵连速度的大小为 -------------,牵连加速度的大小为 -------------------。(4分) (应在图上标出它们的方向) 4. 质量为m 半径为r 的均质圆盘, 可绕O 轴转动,其偏心距OC =e 。图示瞬时其角速度为ω,角加速度为ε。则该圆盘的动量p =--------------,动量矩 =o L ------------------------------------,动能T = -----------------------,惯性力系向O 点的简化结果 为----------------------------------------------------------。 (10分) (若为矢量,则应在图上标出它们的方向) m 3m 3m 4 03O A B A a B A ω D C 1O 2 O 1 C A B C D 1ω2 ωe C ε O

理论力学试题及答案

东北林业大学 理论力学期终考试卷(工科) 、选择题(每题3分,共15分)。) 1. 三力平衡定理是 ----------------- ) ① 共面不平行的三个力互相平衡必汇交于一点; ② 共面三力若平衡,必汇交于一点; ③ 三力汇交于一点,则这三个力必互相平衡) 2. 空间任意力系向某一定点 0简化,若主矢R 0,主矩M 。0,则此力 系简化的最后结果 ----------------- ① 可能是一个力偶,也可能是一个力; ② 一定是一个力; ③ 可能是一个力,也可能是力螺旋; ④ 一定是力螺旋 3.如图所示,P 60kM, F T =20kN, A B 间的 静摩擦因数f s =,动摩擦因数f =,则物块A 所受的摩擦力F 的大小为 ------------------------------------------------------------------ O ① 25 kN :② 20 kN :③ 10 一 3 kN :④ 0 O 4.点作匀变速曲线运动是指 院 (系): 班级: 20 级 姓名: 考试时间:150分钟 学号:

① 点的加速度大小a =常量; ② 点的加速度a =常矢量; ③ 点的切向加速度大小a 尸常量; ④ 点的法向加速度大小a n =常量。 5.边长为2a 的正方形薄板,截去四分 之一后 悬挂在A 点,今若使BC 边保 持水平,则 点 A 距右端的距离x= ④ 5 a/6。 、填空题(共24分。请将简要答案填入划线 内。) 1. ----- 双直角曲杆可绕0轴转动,图 示瞬 时A 点的加速度a A 30cm /s 2,方 向如图。 则B 点加速度的大小为 --- cm/s 2, 方向与 直线 --- 成 ----------- 角。(6 分) 2. 平面机构如图所示。已知 AB 平行于 0Q 2,且 AB= 0Q 2 =L , AO 1 BO 2 r , ABCD 是矩形板, AD=BC=b A 。!杆以匀角 速度s 绕O i 轴 转动,则矩形板重心C 1点的速 度和加 速度的大小分别为 v= , a = ------------ 。(4 分) (应在图上标出它们的方向) ① a ; ② 3a/2 ; ③ 6a/7

相关文档
最新文档