Thermo-mechanical modeling of BeamBlank casting

Thermo-mechanical modeling of BeamBlank casting
Thermo-mechanical modeling of BeamBlank casting

Thermo-Mechanical Modeling of Beam Blank Casting

Lance C. Hibbeler1

Email: lhibbel2@https://www.360docs.net/doc/a112013040.html,

Seid Koric2

Email: skoric@https://www.360docs.net/doc/a112013040.html,

Kun Xu1

Email: kunxu2@https://www.360docs.net/doc/a112013040.html,

Brian G. Thomas1

Email: bgthomas@https://www.360docs.net/doc/a112013040.html,

Clayton Spangler3

Email: clayton.spangler@https://www.360docs.net/doc/a112013040.html,

1 – University of Illinois at Urbana-Champaign

1206 W. Green Street

Urbana, Illinois 61801

Phone – (217) 333-6919

Fax – (217) 244-6534

2 – National Center for Supercomputing Applications (NCSA)

1205 W. Clark Street

Urbana, Illinois 61801

Phone - (217) 265-8410

3 – Steel Dynamics Structural and Rail Mill

2601 S. County Road 700 East

Columbia City, Indiana 46725

Phone – (260) 625-8100

Fax – (260) 625-8825

Key words: Beam Blank Continuous Casting, Finite Elements, ABAQUS, UMAT, Solidification

INTRODUCTION AND PREVIOUS WORK

The continuous casting of “near-net-shape” cross sections called “beam blanks” or “dog-bones” has been an efficient commercial process to manufacture long steel products such as I-beams since the first beam-blank caster was installed at Algoma Steel (Sault Ste. Marie, Canada) over three decades ago. Its economic advantages over conventional bloom casting are due to higher productivity, lower rolling costs, and improved energy efficiency.

The efficiency and quality of continuous-cast steel is constantly improving, owing to increased automation and advances gained mainly through plant experimentation. However, empirical solutions are now very expensive without the aid of tools such as computational modeling. Practical applications of mathematical models include the design of mold geometry to control mold temperature and gap formation in order to avoid crack formation in both the mold and solidifying steel shell. In particular, the

development of mold tapers to match the steel shrinkage is an ongoing challenge that must be met for each new cross-section, mold design, and steel grade.

Defects arise if the mold has either too little or too much taper [7,8]. If any part of the internal mold shape has insufficient taper, gaps can open up between the solidifying steel shell and the mold wall, which drop the local heat transfer and lead to locally hot and thin sections. Combined with the ferrostatic pressure from the internal liquid pool, this can cause transverse strains on the newly solidified shell, which concentrate at the thin spots, resulting in longitudinal cracks or breakouts. Alternatively, if the mold taper is excessive anywhere, the mold pushes on the shell, leading to severe mold wear and/or buckling of the shell, and again leading to longitudinal cracks or breakouts. In addition, axial stresses from the mold friction can cause excessive local cooling and binding of the shell in the mold, generating transverse cracks and other problems.

Clearly there exists a strong incentive to develop quantitative computational models that can predict temperature, deformation, and stress in the solidifying steel shell in the mold during continuous casting of near-net-shape sections with sufficient accuracy to solve practical problems such as the design of mold taper. Many computational models have been developed of thermal and mechanical behavior during continuous casting of steel [2,5,6]. Only a few previous models of the beam-blank casting process have been attempted, owing to the computational difficulties associated with complex geometry and behavior.

Lait and Brimacombe pioneered the application of solidification models to beam blank casters. The predictions of their one-dimensional (1D) moving-slice model compared well with plant measurements, but variations around the perimeter were not investigated [9]. Thomas and coworkers applied a two-dimensional (2D) model of mold heat transfer to investigate water channel design in a beam-blank mold, and identified how the concave internal-corner region where the web intersects the flange is susceptible to overheating and hotface cracks in the meniscus region of the mold [10]. Researchers at Voest-Alpine Industrial Services have used a 2D transient finite-element model of heat transfer and stress in a horizontal slice through both the shell and mold to gain insights into beam-blank mold design and shell behavior, but details are not provided [11]. Lee and coworkers showcased multiphysics modeling by coupling a three-dimensional (3D) finite-difference model of fluid flow with a similar 2D transient thermal-stress model to predict solidification, gap formation, stress, and crack formation in a beam-blank caster [12]. Impingement of steel flow from the nozzle inlet was found to retard shell solidification in the central regions of the flange (narrow-face) and the web. Air gaps due to solidification shrinkage were predicted near the flange-tip corner. Surface cracks in the web and fillet regions and internal cracks in the flange-tip region were predicted. None of these predictions were checked with plant measurements.

The current study was undertaken to develop a thermo-mechanical model of the solidifying steel shell in the beam-blank casting mold, using realistic boundary conditions and material properties. Furthermore, the model predictions are compared with plant measurements, in order to demonstrate sufficient accuracy for the optimization of mold taper.

MODEL DESCRIPTION

The computational model solves the coupled temperature, stress, and deformation equilibrium equations in a beam blank caster. Separate models simulate thermal distortion of the mold, including the complete complex three-dimensional geometry of the copper plates and water box, and thermo-mechanical behavior of the solidifying steel shell, as it moves down through the mold. The latter “shell” model is fully-coupled, as the heat transfer calculation depends on the air gaps computed with the mechanical model. Furthermore, the shell model is coupled with the 3D “mold” model through the distorted shape of the wideface and narrowface surfaces, which are input as contact boundary conditions. Although the shell model produces complete steady-state results in three dimensions, the domain adopted for this work is a 2D transient slice that moves down the mold at the casting speed. This popular Lagrangian approach has been used successfully in many previous solidification stress models [5,6,13,14. This model alternates between solving the transient energy equation, and the small-strain thermo-mechanical equilibrium equations, which are fully described in previous work [2]. Cracks will form if the strains exceed only a few percent, so the model can be accurately applied to investigate the

initiation of crack formation using damage criteria [?]. Total strain, ε

&, in this elastic-viscoplastic model is divided into three components, using a unified isotropic rate formulation to model the constitutive behavior:

el ie th =++εεεε&&&& (1) where el ie th ,,&&&ε

εεare the elastic, inelastic (plastic + creep), and thermal strain rate tensors respectively. Thermal strains arise due to volume changes caused by both temperature differences and phase transformations, and include the effect of solidification and solid-state phase transformations between crystal structures, using a simple mixture rule to linearly combine separate functions for liquid, delta-ferrite and austenite according to the phase fractions. Constitutive Model

The inelastic (viscoplastic) strain component includes both strain-rate independent plasticity and time-dependent creep. Creep is significant at the high temperatures of the solidification processes and is indistinguishable from plastic strain [5]. This work solves

separate unified constitutive models for the austenite and delta-ferrite phases, which have been shown in previous work to accurately reproduce the temperature-, strain-rate-, and composition-dependent behavior of solidifying steel [5,6]. For the austenite phase, it

adopts model III in Kozlowski et al. [15 to relate equivalent inelastic strain rate ie ε&, von Mises stress σ, temperature (in Kelvin), equivalent inelastic strain ie ε, an activation constant Q , and several temperature- or carbon-content-dependent empirical constants

1f , 2f , 3f , and C f . This relation was developed to match both the tensile test measurements of Wray [21] and creep test data of Suzuki [22]

, and is given in Equation (2). For the delta-ferrite phase, it adopts the Zhu power-law model [6], given in Equation (3), which exhibits much higher creep rates than austenite. This power-law model has temperature- or composition-dependent constants δC f , m , and n and is applied in the solid whenever the volume fraction of delta-ferrite is more than 10%. This approximates the dominating influence of the very high-creep rates in the delta-ferrite phase of mixed-phase structures on the net mechanical behavior. The calculation of the volume fractions of the liquid, delta, and austenite phases according to the non-equilibrium phase diagram, [5,25,26]. A typical example of the phase fractions is given in Figure 4 for the 0.07%C alloy used in this work.

()

2

2-31-3

2-3

3C f f -1-1ie C 1ie ie 2

Q= 44,465

f =130.5-5.128×10T [K] f =-0.6289+1.114×10T [K] f =8.132-1.54×10T [K]

f =46,550 + 71,400 (%C) + 12,000 (%C)

Q ε[sec ]=f σ[MPa]-f ε|ε|exp -T[K]where:

??

??

??

&

[]

[]()()

[][]-2

n

-1ie -5.52

m

δc ie -5.56×104δc -5-4

σM Pa εsec =0.1T K f (%C )(1+1000ε)300w here:

f %C =1.3678×10%C m =-9.4156×10T K +0.3495

1

n=

1.617×10T K -0.06166

????

??

?

?????

&

Equation (2). Kozlowski Model III for Austenite Equation (3). Zhu Power-Law Model for Delta-Ferrite

The great variation in material properties between liquid, mush, and solid creates a significant numerical challenge to accurate thermo-mechanical simulations, as discussed elsewhere [2]. In the current model, elements that contain both liquid and solid are generally given no special treatment regarding either material properties or finite element assembly. The only difference is to choose an isotropic elastic-perfectly-plastic rate-independent constitutive model that enforces negligible liquid strength when the temperature is above the solidus temperature:

t+t

t+t Y ie σ-σΔε=

?ΔΔ (4)

where *t+Δt

σ

is the von Mises elastic predictor and μ is the shear modulus. This simple fixed-grid approach avoids difficulties of adaptive meshing or “giving birth” to solid elements, such as used in Ansys [16]. Liquid or mushy elements are defined when sol T T >

for at least one material (Gauss quadrature) point. The yield stress Y σ=0.01MPa is chosen small enough to effectively eliminate stresses in the liquid-mushy zones, but also large enough to avoid computational difficulties.

Owing to the highly strain-rate-dependent inelastic responses, a robust integration scheme is required to integrate the viscoplastic equations over a generic time increment t Δ. The system of ordinary differential equations defined at each material point by the viscoplatic model (Equation (3), (4), or (5)) is converted into two “integrated” scalar equations by the backward Euler method and then solved using a special bounded Newton-Raphson method. Details of this local integration scheme can be found elsewhere [2, 3, 5, 6, 17]

along with the derivation of the consistent tangent operator (“material Jacobian”) used with this method. Liquid and mushy elements are evaluated using the standard radial-return algorithm, which is a special form of backward-Euler procedure [18,19]. The algebraic equations associated with integrating the model are developed based on a single variable, the equivalent inelastic strain increment ie εΔ. These constitutive equations are implemented into the commercial finite element package ABAQUS [1] via its user-defined material subroutine UMAT. The solution obtained from this “local” integration step from all material points is used to update the global finite-element equilibrium equations, which are solved using the Newton-Raphson-based nonlinear finite-element procedures in ABAQUS. The Newton-Raphson method used in the global equilibrium equation iterations yields a quadratic convergence rate [20].

Temperature dependent properties were chosen for the 0.071 %C plain carbon steel alloy with T sol =1471.9 oC and T liq =1518.7 oC (pour temperature of 1523.7 oC). Figure 1 shows the fractions of liquid and solid phases for this steel [5]. The variations with

temperature of enthalpy, thermal conductivity, coefficient of thermal expansion, and elastic modulus for this steel grade were determined with empirical models described elsewhere [2]. Interface Boundary Conditions

Heat transfer across the interfacial gap between the shell and the mold wall surfaces is defined with a resistor model that depends on the thickness of gap calculated by the stress model. Heat transfer occurs in two parallel paths, due to radiation, h rad , and conduction, h c , as follows: ()()()"gap T shell mold c rad shell mold q h T T h h T T =??=?+? (5)

The radiation heat transfer coefficient rad h is calculated across the transparent liquid portion of the mold slag layer:

()()

822

rad shell mold shell mold m s

5.67*10h T T T T 11

1?=+++?εε (6)

where εm = εs = 0.8 are the emissivities of the mold and shell surface, and T mold and T shell are their current temperatures, respectively. The conduction heat transfer coefficient, h c , depends on four resistances connected in series:

pow air c mold air pow shell

d d 111

h h k k h =+++ (7)

The first resistance, 1/ h mold , is the contact resistance between mold wall surface and the solidified mold slag film. The contact heat transfer coefficient h mold is chosen to be 2500 W/m 2 [23]. The second resistance, d air /k air , is conduction across the air gap assuming k air =0.06 W/mK. The thickness of air gap, d air , is determined from the difference between mold and shell displacements, calculated from the mechanical contact analysis, and the slag film thickness. An artificial constant slag film thickness, d pow =0.1mm, is adopted to prevent non-physical behavior associated with very small gaps [23]. The third resistance, d pow / k pow , is conduction through the slag film assuming k pow =1 W/mK. The final term, 1/ h shell , is the contact resistance between the slag film and the strand, where the shell contact heat transfer h shell coefficient depends greatly on temperature. This shell-slag contact coefficient decreases greatly as the shell surface temperature drops below the solidification temperature of the mold slag [24]. The temperature dependency of h shell is given in Table I. These equations were implemented into ABAQUS using the user-defined subroutine, GAPCON [1].

Figure 1. Phase Fractions for 0.071%C Plain Carbon Steel

Table I. Temperature Dependence of h shell [24]

Temperature, oC

h shell, W/m 2K

1030 1000 1150 2000 1518 10,000 1530 20,000

The internal ferrostatic pressure from the molten steel pushes the shell towards the mold and is modeled with a linearly-increasing distributed load defined in Equation (17) that is applied to the shell contact surface starting at zero time at the meniscus.

p F gz =?ρ (8)

Where ρ is density, g = 9.81 m/s 2 is gravitational acceleration, and z is the current distance below the meniscus, which is easily calculated from the current time and the casting speed. Sometimes the start of pressure application is delayed until the outermost layer of elements is solid, in order to avoid convergence problems.

Mechanical contact is applied between mold and strand contact surfaces, based on the mold surface location defined from the mold model results and the applied taper. In this simulation, the mold is the “master” surface and the shell surface is the “slave” surface. Owing to the low strength of the shell at early times, an exponential softened contact algorithm [1] was required to enable convergence. This general model has been applied to simulate thermo-mechanical behavior in a wide range of continuous-casting molds, including billets, slabs, thin-slab funnel molds, and beam blanks. Beam Blank Caster Specifics

Figure 2 shows a top view of the beam blank casting mold looking in the casting direction. The model simulated a BB2 beam blank with final cross-section dimensions of 555 mm (width) by 420 mm (flange thickness) by 90 mm (web thickness). Note that the mold dimensions given in the figure at the meniscus are slightly larger, in order to accommodate shrinkage of shell. The side view (Figure 3) shows that the mold is curved, which causes different temperature variations down the inside and outside radii. The finite element domain of the shell (Figure 4) is “snake” shaped, encompasses ? of the shell section, and is wide enough to allow solidification of the expected shell thickness everywhere. Temperature of the mold surface is approximated by simulating a simplified thin portion of the mold wall that extends up to, but not including the water channels. This domain avoids expensive computation in the large, uninteresting liquid domain. More importantly, the shell is able to contract or expand around the missing internal core of liquid, which mimics the flow of liquid into and out of the plane, and greatly increases the robustness of the model. This behavior is not possible in a full ? section domain.

Figure 2. Horizontal Plane Mold Geometry

The outer surface of the domain represents the mold and was modeled in three different ways. First, sections through the mold were modeled according to the actual geometry, shown in Figures 2 and 3. This domain includes the circular water slots, and the variation in mold copper thickness with distance down the mold, according to the machine curvature of about 10 m. This model was used in predicting realistic mold temperatures, in order to calibrate the coefficients in the model of heat conduction across the interfacial gap. Next, the mold model was simplified to the geometry given in Figure 4, by setting the outside domain to a line passing tangential to the circular water channels. This simplified model was used in modeling thermo-mechanical behavior of the solidifying shell. Finally, the complete three-dimensional mold was modeled, including the water slots, curved surfaces, and curvature of the water slots at the top and bottom of the mold. In all cases, the mold copper has a thermal conductivity of 370 W/m·K and initial temperature of 285 oC. The convection coefficients of h = 45 kW/m 2K transferring the heat from wide face surface to the cooling water with 33.35 oC, and h = 34 kW/m 2K with 34.48 oC on the narrow face are imposed on the portions of the outer mold surface matching the positions of cooling channels.

A

A

B

C E

F

B C

D

533.4m Mold wide face (inside radius)

Mold wide face (inside radius)

576m 876.3m

x

Shoulde

Flange corner Flange

Annular cooling-

Outside

Meniscus

152.4mm

Middle line

Inside radius

Cooling water channel

Figure 3. Schematic of Beam Blank Caster and Locations of

Thermocouples

Figure 4. Shell Modeling Domain with Thermo-mechanical

Boundary Conditions

Thermal distortion and taper of the mold walls is incorporated by prescribing the displacements of the mold wall contact surfaces with respect to the time below meniscus. The taper in the beam blank mold in this work increases parabolically with distance down the mold, i.e. with higher taper gradients close to meniscus and lower towards the mold exit, to better match the shell shrinkage history. The taper at mold exit relative to the meniscus is 0.48, 2.22, 2.33, and 3.00 mm on the web, shoulder, flange, and narrow face respectively. The casting speed is 0.889 m/min so the domain takes about 44.6s to travel through the 660.4 mm working mold length.

The structured mesh for the beam-blank shell has 9000, 4-node generalized plane strain elements using a hybrid formulation (one extra degree of freedom per element for pressure stress) with average size of 1.3 mm in the strand, and 5 mm in the mold. The total number of degrees of freedom is over 40,000. ABAQUS required about 20 hours to finish this simulation on NCSA’s Linux cluster of 3.2 GHz Intel Xeon processors.

NUMERICAL VALIDATION

The solidification stress model used in this work was first validated by comparison with the semi-analytical solution of the benchmark problem of thermal stress in an unconstrained solidifying plate, derived by Weiner and Boley [4] and with a previous finite-element model, CON2D. A 1D model of this test casting can produce the complete 3D stress and strain state if the condition of generalized plane strain [5] is imposed in both the width (y) and length (z) directions. The domain adopted for this problem moves with the strand in a Langrangian frame of reference as shown in Figure 5. The domain consists of a thin slice through the plate thickness using 2D generalized plane strain elements (in the axial z direction) implemented in ABAQUS. The second generalized plane strain condition was imposed in the y-direction (parallel to the surface) by coupling the displacements of all nodes along the bottom edge of the slice domain. The material in this problem has elastic-perfectly plastic constitutive behavior. A very narrow mushy region, 0.1 oC, is used to approximate the single melting temperature assumed by Boley and Weiner. The yield stress drops linearly with temperature from 20 MPa at 1000 oC to zero (approximated numerically as Y σ=0.03MPa ) at the solidus temperature of 1494.4 oC.

Table I. Constants Used in Solidification Test Problem Figure 5. Solidifying Slice

Conductivity [W/mK] 33.0 Specific Heat [J/kg K] 661.0 Elastic Modulus in Solid [GPa] 40.0 Elastic Modulus in Liquid [GPa] 14.0 Thermal Linear Expansion Coefficient [1/K] 0.00002

Density [kg/m 3

] 7500. Poisson’s Ratio 0.3

Liquidus Temperature [o

C] 1494.45 Fusion Temperature (analytical) [o C] 1494.4

Solidus Temperature [o

C] 1494.35 Initial Temperature [o C] 1495.0 Latent Heat [J/kg K] 272000.0

Reciprocal of Liquid viscosity [MPa -1sec -1

] 1.5x108 Surface Film coefficient [W/m 2K] 250,000

Figures 6 and 7 show the temperature and the stress distribution across the solidifying shell at two different solidification times. These figures also include the solution from an in-house code, CON2D [5,6] to this problem. Further comparisons of with CON2D for 2D test problems also produced reasonable agreement. More details about this model validation can be found elsewhere [2,3] including comparisons with other less-efficient integration methods and a convergence study, which shows that the shell with element sizes between 1.3 mm on the chilled surface gradually increased to 3 mm deep in the liquid/mushy zone was still able of reproducing reasonable temperature and stress results (within 5% error).

Figure 7. Y and Z Stress Distributions Along the Solidifying Slice

PLANT MEASUREMENTS

A BB2 beam blank mold at Steel Dynamics in Columbus City, IN was instrumented with 47 thermocouples, as located in Figures 2 and 3. Temperatures were collected during the continuous casting of 0.071 %C low carbon A992 structural steel with casting speed at 0.889 m/min. The Si-Mn killed steel was open poured into two ceramic funnels, located in the central flange regions, as shown in Figure 2. Mold temperatures were averaged over 30 min of casting. The chromel-slumel K-type thermocouples were inserted into holes drilled through the copper. Although the fit was very tight, thermal paste was not used, so thermal distortion was able to create small gaps (on the order of 0.01mm) between the thermocouple tip and the root of each drilled hole. Heat conduction along the thermocouple wire caused the recorded temperatures to drop, especially for the thermocouples which extended directly through the center of the round water channels, such as thermocouple

B in Figure 2.

Figure 8. Photograph of Breakout Shell

The total rate of heat removal to the cooling water was measured to be 1112.4 kW to the wide face, and 651.4 kW to the narrow face. During continuous casting under similar conditions, a breakout occurred, due to thinning and failure at the concave shoulder just below mold exit. Figure 8 shows the breakout shell, which provided a rare opportunity to further validate the computational model. The shell thickness was measured both down the mold narrow face (50 mm from the corner), and around the perimeter (at 457 mm below meniscus).

MODEL CALIBRATION

The accurate 2D slice model of the mold was used to calibrate the heat flux profile to simultaneously match the temperature measurements on both inside and outside radii at various cross sections, in addition to the total mold heat flux from the temperature increase of the cooling water. Figure 9 shows typical results from the model. Note that the inside radius (bottom of Fig. 9b) has higher hotface temperatures, owing to the thicker copper plates midway down the mold from the mold curvature.

Figures 10 and 11 show the agreement obtained between the model predictions at the thermocouple locations and the thermocouple measurements after adjustment to take into account a 0.01 mm air gap on the wide face. The adjustment calculation was performed by assuming the thermocouple acts like a rod-fin, with heat transfer coefficient of 60 Wm -2 K -1 (air for most thermocouples) and 3 kWm -2 K -1 (average value for air and water environment experienced by thermocouple wire that passes through the wideface water slot near the shoulder TC B). Note that the thermocouples on the widefaces all give low values prior to adjustment. The presence of even this tiny air gap is enough to greatly change the results. After adjustment, the measurements roughly match or exceed the numerical predictions. The following equation is used to calculate the adjusted temperature:

adjusted measured T T =where D =3.175mm is the diameter of thermocouple wire, 19.2/TC k W mK =for chromel-slumel thermocouples, 25o T C ∞= is the ambient temperature, 0.026/air k W mK = and 0.01x mm Δ≈ is the approximate gap thickness.

a) b)

Figure 9. Predicted Mold Temperatures with Slice Model at a) the Meniscus and b) Midway Down the Mold

MOLD THERMAL DISTORTION MODEL

A full 3-D finite element model of one fourth of the mold and water box was constructed to accurately calculate mold temperature and mold distortion. Much of the actual detail of the mold geometry was included in the model, such as the casting radius on the hot face, water channels, and bolt holes. The calculated mold temperatures shown in Figure 12 are the result of the same calibrated heat flux profiles used in the shell model and the mold slice model, presented in the next section. Figure 13 shows the surface temperature profiles down the mold at a few points around the perimeter. The warmest place on the wide face is at the shoulder, due to convergent heat flow into the mold, agreeing with previous work by Thomas et al. [10]. The temperatures increase locally at the bottom of the

mold because the water channels do not run the entire length of the mold. Figures 14 and 15 show temperature and distortion profiles of two horizontal slices through the mold.

T e m p e r a t u r e (o

C )

Distance around perimeter (mm)

Figure 10. Comparison of Temperature for a Transverse Slice

(590.6 mm Below Mold Top)

T e m p e r a t u r e (o

C )

Figure 11. Comparison of Temperature Down Mold Wide Face

200250300350

Surface Temperature (oC)

Figure 12. 3D Mold Temperature Results (Distortion Magnified 20x)

Figure 13. Temperature Profiles Down the Mold

Figure 14. Temperature Results at 165.1 mm Below Mold Top

(Distortion Magnified 10x) Figure 15. Temperature Results at 406.4 mm Below Mold Top

(Distortion Magnified 10x)

MODEL OF SOLIDIFYING STEEL SHELL

The coupled two-dimensional transient model of thermal-mechanical behavior of the solidifying steel shell moving down the contoured surface of the mold was applied to simulate temperature, solidified shell thickness growth, deformation and stress in the shell in addition to interfacial heat flux and gap formation between the shell and the mold. The simulation results presented here included mold taper, but did not include the 3-D mold distortion shape.

Heat Flux

The heat flux around the perimeter for several horizontal slices of the mold is shown in Figure 16, and the heat fluxes profiles down the mold for multiple points around the perimeter are presented in Figure 17. The average values for the narrow face and wide face are almost the same because these profiles are computed using the coupled model for gap heat conduction, Equation (5), but the wide face removes more heat owing to its larger perimeter. The model overpredicts the total heat flux in the mold by about 4%, which can be attributed to the greater overprediction of the wide face balancing the underprediciton of the narrow face, as shown in Table II.

Table II. Comparison of Predicted and Measured Mold Heat Flux Experimental Mold Model Error Wide Face 1112.4kW 1204.7kW +8.30% Narrow Face 651.4kW 634.2kW -2.64%

Total 1763.8kW 1838.9kW +4.26%

H e a t f l u x (W /m m 2

)

Distance around perimeter (mm)

Distance Below Meniscus [mm]

H e a t F l u x [M W /m 2

]

Figure 16. Heat Flux Around Perimeter Figure 17. Heat Flux Down the Mold at Points Around Perimeter

Matching the heat flux in both of the mold and shell models with the measurements based on heat-up of the cooling water is a difficult task, because the interfacial gaps are not known a-priori. Manual iteration between the different models was required.

Shell Behavior

Figure 18 shows typical contours of the solidus, liquids, and 30% solid temperature about midway down the mold. Temperature profiles through the shell thickness are shown at an important location: the shoulder. The shell becomes slightly thinner and hotter at the end of the shoulder region, owing to the drop in heat flux experienced there at lower distances, as shown in Figures 16 and 17. This is due to the formation of an air gap in this region, which arises because there is too much taper at the shoulder. The shell does not shrink enough, so buckles away from the mold wall in this region. This is pictured in Figure 20. Lower in the mold, a second gap opens up in the middle of the shoulder. This influence of excessive taper on the shoulder region is opposite to the effect that excessive taper would have in the corners, owing to the convex shape of the mold in this region.

The shell also becomes thinner at the left flange corner, for the same reasons. The gap pictured in Figure 21 coincides with the drop in heat flux in Figures 16 and 17, and the thinner shell in Figure 18. This result shows that air gap formation is far more influential on heat transfer than the effects of two-dimensional conduction, which tends to increase cooling of the corners slightly.

Figure 18. Major Temperature Contours (457 mm below meniscus)Figure 19. Temp. Profile Through Shell Thickness at Shoulder

Figure 20. Shoulder Shell Temperature Contours with Gap Detail at 457 mm Below Meniscus Figure 21. Flange Shell Temperature Contours with Gap Details

at 457 mm Below Meniscus (1x magnification)

The evolution of temperature and gap size at seven points around the shell perimeter are presented in Figures 22 and 23. Their locations are labeled in Figure 4. The heat flux that leaves the shell surface for these seven points is given in Figure 17. Most of the

perimeter, including the middle of the wideface, narrowface, and middle of the flange stays in touch with the mold all the time, so the heat flux and temperature histories at these points are fairly uniform with no large jumps or gaps. Both flange corner points shrink away from mold, increasing gap heat resistance, dropping heat flux, and increasing shell temperature. The shoulder region also forms gaps, as discussed earlier, which drops local heat extraction, increases temperature. In fact, excessive reheating and thinning of the shell at this location resulted in a breakout at the shoulder region after exiting the mold.

Distance Below Meniscus [mm]

T e m p e r a t u r e [C ]

Distance Below Meniscus [mm]

G a p O p e n i n g [m m ]

Figure 22. Temperature histories for the points on shell perimeter Figure 23. Gap histories for the points on shell perimeter

The maximum principal stress contours midway down the mold are given in Figure 24. They reveal the expected tensile stress peaks just past the solidification front. These are seen more clearly in Figure 25, where hoop stress is the stress component tangential to the mold wall. This is where hot tear cracks are most likely to form, owing to the combined effects of this stress and metallurgical embrittlement caused by liquid films from microsegregation. Although the stress is only a few MPa, the strains are more significant. These stress results are consistent with the results of the validation test problem, where surface shell compression and sub-surface shell tension close to solidification front are revealed. The largest stresses are found in the shoulder region, which is consistent with where shell failure starts, leading to the breakout.

Figure 24. Maximum principal stress contour 457 mm below

meniscus Figure 25. Hoop Stress along the path through shell thickness at

the shoulder

As the solidification progresses, the faster cooling of the interior relative to the surface region naturally causes more interior contraction and tensile stress along with more compression at the surface. This is why hoop stress in Figure 25 increases with distance down the mold. Additional stress may be due to mechanical bending caused by the middle of flange pushing on the shell.

Shell Thickness Validation

Shell thickness at 30% solid predicted by the model is compared with measurements around the perimeter of the breakout shell in Figure 26. A reasonable match is observed everywhere except the middle portion of the wide face (web) where the measured shell appears to be 5 mm thicker. This is likely caused by the uneven superheat distribution due to the flow pattern in the liquid pool, [5] as this location is farthest away from the pouring funnels. Superheat variations are not included in the model. The measured thickness profile down the shell for a point on the narrow face 50 mm from the corner is compared with the model predictions in Figure 27.

Figure 26. Shell Thickness Comparisons at 457 mm

Below Meniscus

Figure 27. Shell Thickness History for a Point on the Narrow

Face 50 mm from the Corner

CONCLUSIONS

A coupled thermal-mechanical model of continuous casting of steel is applied to accurately simulate the continuous casting of steel beam blanks and validated with plant measurements. The model features an efficient local-global numerical procedure to integrate a realistic elastic-viscoplastic phase-dependent constitutive model that has been implemented into the commercial package ABAQUS. The model is first validated with a semi-analytical solution of thermal stress in an infinite solidifying plate. The model is then applied to simulate temperature, strain and stress in a one quarter transverse section of a commercial beam blank caster with realistic complex geometry, temperature dependent material properties, and operating conditions. The results compare well with in-plant measurements of temperature from thermocouples embedded in the beam blank mold walls, total heat flux from a heat balance on the cooling water temperature rise, and the thickness of the solidifying shell measured after a breakout. The model provides valuable insights into the mechanisms of shoulder shell failure triggered initially by a thinner shell under combined thermo-mechanical stress conditions, and later accelerated by a shoulder gap opening. This model is ready to be applied in future parametric studies of optimum taper and slag film thickness solutions that will minimize the amount of failures and maximize the productivity of continuous beam blank casting.

ACKNOWLEDGMENTS

We would like to thank the Steel Dynamics Structural and Rail Mill for their great support for this project, and the National Center for Supercomputing Applications (NCSA) from computational and software resources. Support of this work by the Continuous Casting Consortium at the University of Illinois and the National Science Foundation Grant # DMI 05-28668 is gratefully acknowledged.

REFERENCES

1. ABAQUS, Inc., ABAQUS Standard User Manuals v6.6, Providence, RI, 2007.

2. S. Koric, B.G. Thomas, “Efficient Thermo-Mechanical Model for Solidification Processes.” Inter. Journal for Numerical Methods

in Eng., 2006, vol. 66, pp. 1955-1989.

3. S. Koric: Ph.D Thesis,University of Illinois, 2006.

4. J.H. Weiner and B.A. Boley, “Elasto-plastic thermal stresses in a solidifying body.” J. Mech. Phys. Solids, 1963, vol. 11,pp. 145-

154

5. C. Li and B.G. Thomas, “Thermomechanical finite-element model of shell behavior in continuous casting of steel.” Metal. &

Material Trans. B., 2004, vol. 35B(6), pp. 1151-1172.

6. H. Zhu: Ph.D Thesis, University of Illinois, 1993.

7. B.G. Thomas and C. Ojeda, “Ideal taper prediction for slab casting.” in Manfred Wolf Memorial Symposium Proceedings, ISS-

AIME, Warrendale, PA, 2003, pp. 295-308.

8. C. Li and B.G.Thomas, “Maximum Casting Speed for Continuous Cast Steel Billets Based on Sub-Mold Bulging Computation.”

Steelmaking Conf. Proc., ISS Warrendale,, PA 2003, vol. 86.

9. Lait J., J.K. Brimacombe and F. Weinberg, “Mathematical Modelling of Heat Flow in the Continuous Casting of Steel”

Ironmaking Steelmaking, 1974, vol. 2, pp. 90-98

10. B.G. Thomas, J. Jiang and D. Lorento, “Optimization of Water Channel Design in Beam-Blank Molds.” 5th European

Continuous Casting Conf., (Nice, France, 20-22 June 2005), The Institute of Materials, Minerals & Mining, Paris, 2005, vol. S16 3, p. 139-147.

11. F. Leingruber, C. Chimani, M. Thalhammer and G. Shan: in CCR04 Conference, (Linz, Austria), VAI Technology, Linz,

Austria, 2004, Vol. 4.1, p. 1-9.

12. Lee, J.-E., T.-J. Yeo, K.H. Oh, J.-K. Yoon and U.-S. Yoon, “Prediction of cracks in continuously cast steel beam blank through

fully coupled analysis of fluid flow, heat transfer, and deformation behavior of a solidifying shell.” Metall. Mater. Trans. A, Vol.

31A (1),2000, p. 225 – 237.

13 J.O. Kristiansson, “Thermomechanical Behavior of the Solidifying Shell Within Continuous-Casting Billet Molds--A Numerical

Approach.” Journal of Thermal Stresses, 1984, vol. pp. 209-226.

14 J.M. Risso, A.E. Huespe, and A. Cardona, “Thermal stress evaluation in the steel continuous casting process.” Inter.l Journal for

Numerical Methods in Eng., 2006, vol. 65(9), pp. 1355-1377.

15 P.F. Kozlowski, B.G. Thomas, J.A. Azzi, and H. Wang, “Simple constitutive equations for steel at high temperature.” Metal. &

Materials Trans. A , 1992, vol. 23A, pp. 903-918.

16. Ansys Inc.: Ansys User Manuals, Canonsburg, PA, 2006, v10.

17. A.M. Lush, G. Weber and L. Anand, “An Implicit Time-Integration Procedure for a Set of Internal Variable Constitutive

Equations for Isotropic Elasto-Viscoplasticity.” International Journal of Plasticity, 1989, vol. 5, pp. 521-49.

18. M.A. Crisfiled, Nonlinear FEA of Solids and Structures. Wiley, 1991.

19. O.C. Zienkiewicz and R.L. Taylor: Finite element method: solid and fluid mechanics dynamics and non-linearity, McGraw-Hill,

1991.

20. J. C. Simo and R. L. Taylor: Computer Methods in Applied Mechanics and Eng., 1985, vol.48, pp. 101-118.

21. P.J. Wray, “Effect of carbon content on the plastic flow of plain carbon steels at elevated temperatures.” Metall Trans. A, 1982,

vol. 13, pp. 125-134.

22. T. Suzuki, K.H. Take, K. Wunnenberg, K. Schwerdtfeger, “Creep Properties of Steel at Continuous Casting Temperatures.”

Ironmaking and Steelmaking, 1988, vol. 15, pp. 90-100.

23. J. K. Park, B. G. Thomas, and I. Samarasekera, “Analysis of Thermo-Mechanical Behavior in Billet Casting with Different Mold

Corner Radii.” Ironmaking and Steelmaking, 2002, vol.29(5), pp.359-375.

24. Han, H. N., J. E. Lee, T. J. Yeo, Y. M. Won, K. Kim, K. H. Oh and J. K. Yoon, “A Finite Element Model for 2-Dimensional Slice

of Cast Strand.” ISIJ International,1999, vol. 39(5), p.445-455

25. Won, Y.-M. and B.G. Thomas, "Simple Model of Microsegregation During Solidification of Steels", Metal. & Material Trans. A,

2001, Vol. 32A, No. 7, pp. 1755-1767.

26. Meng, Y. and B.G. Thomas, "Heat Transfer and Solidification Model of Continuous Slab Casting: CON1D", Metal. & Material

Trans B, Vol. 34B, No. 5, Oct., 2003, pp. 685-705.

船舶原理

1.什么是船舶的浮性? 船舶在各种装载情况下具有漂浮在水面上保持平衡位置的能力 2.什么是静水力曲线?其使用条件是什么?包括哪些曲线?怎样用静水力曲线查某一吃水时的排水量和浮心位置? 船舶设计单位或船厂将这些参数预先计算出并按一定比例关系绘制在同一张图中;漂心坐标曲线、排水体积曲线;当已知船舶正浮或可视为正浮状态下的吃水时,便可在静水力曲线图中查得该吃水下的船舶的排水量、漂心坐标及浮心坐标等 3.什么是漂心?有何作用?平行沉浮的条件是什么? 船舶水线面积的几何中心称为漂心;根据漂心的位置,可以计算船舶在小角度纵倾时的首尾吃水;船舶在原水线面漂心的铅垂线上少量装卸重量时,船舶会平行沉浮;(1)必须为少量装卸重物(2)装卸重物p的重心必须位于原水线面漂心的铅垂线上 4.什么是TPC?其使用条件如何?有何用途? 每厘米吃水吨数是指船在任意吃水时,船舶水线面平行下沉或上浮1cm时所引起的排水量变化的吨数;已知船舶在吃水d时的tpc数值,便可迅速地求出装卸少量重物p之后的平均吃水变化量,或根据吃水的改变量求船舶装卸重物的重量 5.什么是船舶的稳性? 船舶在使其倾斜的外力消除后能自行回到原来平衡位置的性能。 6.船舶的稳性分几类? 横稳性、纵稳性、初稳性、大倾角稳性、静稳性、动稳性、完整稳性、破损稳性 7.船舶的平衡状态有哪几种?船舶处于稳定平衡状态、随遇平衡状态、不稳定平衡状态的条件是什么? 稳定平衡、不稳定平衡、随遇平衡 当外界干扰消失后,船舶能够自行恢复到初始平衡位置,该初始平衡状态称为稳定平衡当外界干扰消失后,船舶没有自行恢复到初始平衡位置的能力,该初始平衡状态称为不稳定平衡 当外界干扰消失后,船舶依然保持在当前倾斜状态,该初始平衡状态称为随遇平衡8.什么是初稳性?其稳心特点是什么?浮心运动轨迹如何? 指船舶倾斜角度较小时的稳性;稳心原点不动;浮心是以稳心为圆心,以稳心半径为半径做圆弧运动 9.什么是稳心半径?与吃水关系如何? 船舶在小角度倾斜过程中,倾斜前、后的浮力作用线的交点,与倾斜前的浮心位置的线段长,称为横稳性半径!随吃水的增加而逐渐减少 10.什么是初稳性高度GM?有何意义?影响GM的因素有哪些?从出发港到目的港整个航行过程中有多少个GM? 重心至稳心间的距离;吃水和重心高度;许多个 11.什么是大倾角稳性?其稳心有何特点? 船舶作倾角为10°-15以上倾斜或大于甲板边缘入水角时点的稳性 12.什么是静稳性曲线?有哪些特征参数? 描述复原力臂随横倾角变化的曲线称为静稳性曲线;初稳性高度、甲板浸水角、最大静复原力臂或力矩、静稳性曲线下的面积、稳性消失角 13.什么是动稳性、静稳性? 船舶在外力矩突然作用下的稳性。船舶在外力矩逐渐作用下的稳性。 14.什么是自由液面?其对稳性有何影响?减小其影响采取的措施有哪些? 可自由流动的液面称为自由液面;使初稳性高度减少;()减小液舱宽度(2)液舱应

船舶原理及结构课程教学大纲

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 《船舶原理与结构》课程教学大纲 一、课程基本信息 1、课程代码:NA325 2、课程名称(中/英文):船舶原理与结构/Principles of Naval Architecture and Structures 3、学时/学分:60/3.5 4、先修课程:《高等数学》《大学物理》《理论力学》 5、面向对象:轮机工程、交通运输工程 6、开课院(系)、教研室:船舶海洋与建筑工程学院船舶与海洋工程系 7、教材、教学参考书: 《船舶原理》,刘红编,上海交通大学出版社,2009.11。 《船舶原理》(上、下册),盛振邦、刘应中主编,上海交通大学出版社,2003、2004。 《船舶原理与结构》,陈雪深、裘泳铭、张永编,上海交通大学出版社,1990.6。 《船舶原理》,蒋维清等著,大连海事大学出版社,1998.8。 相关法规和船级社入级规范。 二、课程性质和任务 《船舶原理与结构》是轮机工程和交通运输工程专业的一门必修课。它的主要任务是通过讲课、作业和实验环节,使学生掌握船舶静力学、船舶阻力、船舶推进、船舶操纵性与耐波性和船体结构的基本概念、基本原理、基本计算方法,培养学生分析、解决问题的基本能力,为今后从事工程技术和航运管理工作,打下基础。 本课程各教学环节对人才培养目标的贡献见下表。

三、教学内容和基本要求 课程教学内容共54学时,对不同的教学内容,其要求如下。 1、船舶类型 了解民用船舶、军用舰船、高速舰船的种类、用途和特征。 2、船体几何要素 了解船舶外形和船体型线力的一般特征,掌握船体主尺度、尺度比和船型系数。 3、船舶浮性 掌握船舶的平衡条件、船舶浮态的概念;掌握船舶重量、重心位置、排水量和浮心位置的计算方法;掌握近似数值计算方法—梯形法和辛普森法。 2

3D Modeling

Updated 05.09.2008 3D Modeling & Animation - Career Development Certificate Courses can be taken on their own or in conjunction with the following AS Degrees: CINS - Programming Concentration, A.A.S. Interested in learning a different language? Just like humans, computers speak their own languages. This concentration places emphasis on developing advanced programming skills, mastering a variety of computer languages. DESN - Computer-Aided Design & Manufacturing, A.S. or A.A.S Manufacturing or CAD/CAM design technologists translate engineers’ and designers’ ideas into graphic form. This places emphasis on using CNC programming, and CAD/CAM technology in design and manufacturing applications. General Studies Degree, A.S. The General Studies program focuses on students taking their first two years of college at Ivy Tech Community College and then transferring their credits to other colleges and universities both in state and out of state. (see Indiana University transfer listing). Certificate in 3D Modeling & Animation (27 credits) – Recommended Sequence VISC 101 VISC 102 VISC 111 VISC 115 VISC 294 VISC 209 VISC 212 VISC 294 VISC 294 Fundamentals of Design Fundamentals of Imaging Drawing for Visualization Introduction to Computer Graphics Special Topic: Introduction to 3D Rendering and Animation Rendering and Animation I - (IU/Education class R341) 3D Rendering and Animation II Special Topic: 3D Rendering and Animation III Special Topic: Computer Game Production 3 3 3 3 3 3 3 3 3 For more Information: Office of Enrollment Services Phone: 812.330.6350 Toll Free: 866-447-0700 (ext. 6350) BL-AdmissionInquiry@https://www.360docs.net/doc/a112013040.html, Dr. Lou Pierro Program Chair & Associate Professor (812) 330-6135, lpierro@https://www.360docs.net/doc/a112013040.html,

2020年研究生入学考试考纲

武汉理工大学交通学院2020年研究生入学考试大纲 2020年研究生入学考试考纲 《船舶流体力学》考试说明 一、考试目的 掌握船舶流体力学相关知识是研究船舶水动力学问题的基础。本门考试的目的是考察考生掌握船舶流体力学相关知识的水平,以保证被录取者掌握必要的基础知识,为从事相关领域的研究工作打下基础。 考试对象:2020年报考武汉理工大学交通学院船舶与海洋工程船舶性能方向学术型和专业型研究生的考生。 二、考试要点 (1)流体的基本性质和研究方法 连续介质概念;流体的基本属性;作用在流体上的力的特点和表述方法。 (2)流体静力学 作用在流体上的力;流体静压强及特性;压力体的概念,及静止流体对壁面作用力计算。 (3)流体运动学 研究流体运动的两种方法;流体流动的分类;流线、流管等基本概念。 (4)流体动力学 动量定理;伯努利方程及应用。 (5)船舶静力学 船型系数;浮性;稳性分类;移动物体和液舱内自由液面对船舶稳性的影响;初稳性高计算。 (6)船舶快速性 边界层概念;船舶阻力分类;尺度效应,及船模阻力换算为实船阻力;方尾和球鼻艏对阻力的影响;伴流和推力减额的概念;空泡现象对螺旋桨性能的影响;浅水对船舶性能的影响。 三、考试形式与试卷结构 1. 答卷方式:闭卷,笔试。 2. 答题时间:180分钟。 3. 试卷分数:总分为150分。 4. 题型:填空题(20×1分=20分);名词解释(10×3分=30分);简述题(4×10分=40分);计算题(4×15分=60分)。 四、参考书目 1. 熊鳌魁等编著,《流体力学》,科学出版社,2016。 2. 盛振邦、刘应中,《船舶原理》(上、下册)中的船舶静力学、船舶阻力、船舶推进部分,上海交通大学出版社,2003。 1

《船舶原理与结构》课程教学提纲

《船舶原理与结构》课程教学大纲 一、课程基本信息 1、课程代码: 2、课程名称(中/英文):船舶原理与结构/Principles of Naval Architecture and Structures 3、学时/学分:60/3.5 4、先修课程:《高等数学》《大学物理》《理论力学》 5、面向对象:轮机工程、交通运输工程 6、开课院(系)、教研室:船舶海洋与建筑工程学院船舶与海洋工程系 7、教材、教学参考书: 《船舶原理》,刘红编,上海交通大学出版社,2009.11。 《船舶原理》(上、下册),盛振邦、刘应中主编,上海交通大学出版社,2003、2004。 《船舶原理与结构》,陈雪深、裘泳铭、张永编,上海交通大学出版社,1990.6。 《船舶原理》,蒋维清等著,大连海事大学出版社,1998.8。 相关法规和船级社入级规范。 二、课程性质和任务 《船舶原理与结构》是轮机工程和交通运输工程专业的一门必修课。它的主要任务是通过讲课、作业和实验环节,使学生掌握船舶静力学、船舶阻力、船舶推进、船舶操纵性与耐波性和船体结构的基本概念、基本原理、基本计算方法,培养学生分析、解决问题的基本能力,为今后从事工程技术和航运管理工作,打下基础。 本课程各教学环节对人才培养目标的贡献见下表。

三、教学内容和基本要求 课程教学内容共54学时,对不同的教学内容,其要求如下。 1、船舶类型 了解民用船舶、军用舰船、高速舰船的种类、用途和特征。 2、船体几何要素 了解船舶外形和船体型线力的一般特征,掌握船体主尺度、尺度比和船型系数。 3、船舶浮性 掌握船舶的平衡条件、船舶浮态的概念;掌握船舶重量、重心位置、排水量和浮心位置的计算方法;掌握近似数值计算方法—梯形法和辛普森法。

Modeling

Modeling of ecosystems as a data source for real-time terrain rendering Johan Hammes PO Box 1354 Stellenbosch 7599 South Africa Fax: +27 21 880 1936 Telephone:+27 21 880 1880 Abstract. With the advances in rendering hardware, it is possible to render very complex scenes in real-time. In general, computers do not have enough memory to store all the necessary information for sufficiently large areas. This paper discusses a way in which well-known techniques for modeling ecosystems can be applied to generate the placement of plants on a terrain automatically at run-time. Care was taken to pick algorithms that would be sufficiently fast to allow real-time computation, but also varied enough to allow for natural looking placement of plants and ecosystems while remaining deterministic. The techniques are discussed within a specific rendering framework, but can easily be adapted to other rendering engines. Keywords: ecosystem modeling, ecotope modeling, compression, real-time rendering, terrain modeling, terrain visualization

2019年上海交通大学船舶与海洋工程考研良心经验

2019年上海交通大学船舶与海洋工程考研良心经验 我本科是武汉理工大学的,学的也是船舶与海洋工程,成绩属于中等偏上吧,也拿过两次校三等奖学金,六级第二次才考过。 由于种种原因,我到了8月份才终于下定决心考交大船海并开始准备,只有4个多月,时间比较紧迫。但只要你下定决心,什么时候开始都不算晚,也不要因为复习得不好,开始的晚了就降低学校的要求,放弃了自己的名校梦。每个人情况不一样,自己好好做决定,即使暂时难以决定,也要早点开始复习。决定是在可以在学习过程中做的,学习计划也是可以根据自己的情况更改的。所以即使不知道考哪,每天学习多久,怎样安排学习计划,那也要先开始,这样你才能更清楚学习的难度和量。万事开头难,千万不要拖。由于准备的晚怕靠个人来不及,于是在朋友推荐下我报了新祥旭专业课的一对一,个人觉得一对一比班课好,新祥旭刚好之专门做一对一比较专业,所以果断选择了新祥旭,如果有同学需要可以加卫:chentaoge123 上交船海考研学硕和专硕的科目是一样的,英语一、数学一、政治、船舶与海洋工程专业基础(801)。英语主要是背单词和刷真题,我复习的时间不多,背单词太花时间,就慢慢放弃了,就只是刷真题,真题中出现的陌生单词,都抄到笔记本上背,作文要背一下,准备一下套路,最好自己准备。英语考时感觉着超级简单,但只考了65分,还是很郁闷的。数学是重中之重,我八月份开时复习,直接上手复习全书,我觉得没有必要看课本,毕竟太基础,而且和考研重点不一样,看了课本或许也觉得很难,但是和考研不沾边。计划的是两个月复习一遍,开始刷题,然后一边复习其他的,可是计划跟不上变化,数学基础稍差,复习的较慢,我又不想为了赶进度而应付,某些地方掌握多少自己心里有数,若是只掌握个大概,也不利于后面的学习。所以自打复习开始,我就没放下过数学,期间也听一些网课,高数听张宇、武忠祥的,线代肯定是李永乐,概率论听王式安,课可以听,但最主要还是自己做题,我只听了一些强化班,感觉自己复习不好的地方听了一下。我真题到了11月中旬才开始做,实在是太晚,我8月开始复习时网上就有人说真题刷两遍了,能不慌吗,但再慌也要淡定,不要因此为了赶进度而自欺欺人,做什么事外界的声音是一回事,自己的节奏要自己把握好,不然

船舶原理整理资料,名词解释,简答题,武汉理工大学

第一章 船体形状 三个基准面(1)中线面(xoz 面)横剖线图(2)中站面(yoz 面)总剖线图(3) 基平面 (xoy 面)半宽水线图 型线图:用来描述(绘)船体外表面的几何形状。 船体主尺度 船长 L 、船宽(型宽)B 、吃水d 、吃水差t 、 t = dF – dA 、首吃水dF 、尾吃水dA 、平均吃水dM 、dM = (dF + dA )/ 2 } 、型深 D 、干舷 F 、(F = D – d ) 主尺度比 L / B 、B / d 、D / d 、B / D 、L / D 船体的三个主要剖面:设计水线面、中纵剖面、中横剖面 1.水线面系数Cw :船舶的水线面积Aw 与船长L,型宽B 的乘积之比。 2.中横剖面系数Cm :船舶的中横剖面积Am 与型宽B 、吃水d 二者的乘积之比值。 3.方型系数Cb :船舶的排水体积V,与船长L,型宽B 、吃水d 三者的乘积之比值。 4. 棱形系数(纵向)Cp :船舶排水体积V 与中横剖面积Am 、船长L 两者的乘积之比值。 5. 垂向棱形系数 Cvp :船舶排水体积V 与水线面积Aw 、吃水d 两者的乘积之比值。 船型系数的变化区域为:∈( 0 ,1 ] 第二章 船体计算的近似积分法 梯形法则约束条件(限制条件):(1) 等间距 辛氏一法则通项公式 约束条件(限制条件):(1)等间距 (2)等份数为偶数 (纵坐标数为奇数 )2m+1 辛氏二法则 约束条件(限制条件)(1)等间距 (2)等份数为3 3m+1 梯形法:(1)公式简明、直观、易记 ;(2)分割份数较少时和曲率变化较大时误差偏大。 辛氏法:(1)公式较复杂、计算过程多; (2)分割份数较少时和曲率变化较大时误差相对较小。 第三章 浮性 船舶(浮体)的漂浮状态:(1 )正浮(2)横倾(3)纵倾(4)纵横倾 排水量:指船舶在水中所排开的同体积水的重量。 平行沉浮条件:少量装卸货物P ≤ 10 ℅D 每厘米吃水吨数: TPC = 0.01×ρ×Aw {指使船舶吃水垂向(水平)改变1厘米应在船上施加的力(或重量) }{或指使船舶吃水垂向(水平)改变1厘米时,所引起的排水量的改变量 } (1)船型系数曲线 (2)浮性曲线 (3)稳性曲线 (4)邦金曲线 静水力曲线图:表示船舶正浮状态时的浮性要素、初稳性要素和船型系数等与吃水的关系曲线的总称,它是由船舶设计部门绘制,供驾驶员使用的一种重要的船舶资料。 第四章 稳性 稳性:是指船受外力作用离开平衡位置而倾斜,当外力消失后,船能回复到原平衡位置的能力。 稳心:船舶正浮时浮力作用线与微倾后浮力作用线的交点。 稳性的分类:(1)初稳性;(2)大倾角稳性;(3)横稳性;(4)纵稳性;(5)静稳性;(6)动稳性;(7)完整稳性;(8)非完整稳性(破舱稳性) 判断浮体的平衡状态:(1)根据倾斜力矩与稳性力矩的方向来判断;(2)根据重心与稳心的 相对位置来判断 浮态、稳性、初稳心高度、倾角 B L A C w w ?=d B A C m m ?=d V C ??=B L b L A V C m p ?=d A V C w vp ?=b b p vp m w C C C C C C ==, 002n n i i y y A l y =+??=-????∑[]012142...43n n l A y y y y y -=+++++[]0123213332...338n n n l A y y y y y y y --=++++++P D ?= P f P f x = x y = y = 0 ()P P d= cm TPC q ?= m g b g b g GM = z z = z BM z = z r z -+-+-

Business-Process-Modeling(BPM)业务流程建模

IDEner创意孵化项目系统建模 前言 以下分别采用业务流程建模和UML建模两种建模发放对系统设计进行建模。其中UML 面向对象系统设计建模中,我们采用了类图,对象图,Communication Diagram(通信图),状态图。 说明:由于参考文献问英文文档,有些翻译可能不是很贴切。 1. Business Process Modeling(BPM)业务流程建模 业务流程建模通过一系列的技术和标准实现对业务流程进行分析设计,实施以及执行。能够帮助识别,描述,分解业务流程。BPM支持三种流行的流程语言:Analysis languages,Service Orchestration languages,Collaborative languages。后两者语言能够直接生成代码。 1.1 Process Hierarchy Diagram(PHD)业务架构图 业务架构图给出了系统功能的视图,并且将一个流程分解成多个子流程。分析阶段分析师和经理用使用此图。 IDEner创意孵化系统的业务架构图如下。 图1 IDEner创意孵化系统的业务架构图 1.2 Business Process Diagrams(BPD)业务流程图 业务流程图给出了系统各个层面流程间的控制流和数据流的视图。业务流程图可以是业务架构图中的一个子流程。 对于系统的不同层面,有以下三种业务流程图 1.2.1 Top-level diagram 描述业务伙伴之间的关系。 对于图1 IDEner创意孵化系统的业务架构图中的Bind Advertise子流程我们进一步分解成业务流程图得到图2。

图2 Bind Advertise Top-level diagram 1.2.2 Choreography diagram 改图通过控制流将业务流程连接起来,可以有一个或者多个开始,也可以由一个或多个结束。 对于图 1 IDEner创意孵化系统的业务架构图中的Bind Advertise子流程得到的Choreography diagram 如图3 Bind Advertise Choreography diagram。 图3 Bind Advertise Choreography diagram 1.2.3 Data Flow Diagram(DFD)数据流图 数据流图能够表示数据的在系统中的传递情况,反映了体现为系统功能的业务流程间的数据交互情况。 图1 IDEner创意孵化系统的业务架构图中的Bind Advertise子流程的数据流图图4如下。

船舶原理题库

船舶原理试题库 第一部分船舶基础知识 (一)单项选择题 1.采用中机型船的是 A. 普通货船 C.集装箱船D.油船 2.油船设置纵向水密舱壁的目的是 A.提高纵向强度B.分隔舱室 C.提高局部强度 3. 油船结构中,应在 A.货油舱、机舱B.货油舱、炉舱 C. 货油舱、居住舱室 4.集装箱船的机舱一般设在 A. 中部B.中尾部C.尾部 5.需设置上下边舱的船是 B.客船C.油船D.液化气体船 6 B.杂货船C.散货船D.矿砂船 7 A. 散货船B.集装箱船C.液化气体船 8.在下列船舶中,哪一种船舶的货舱的双层底要求高度大 A.杂货船B.集装箱船C.客货船 9.矿砂船设置大容量压载边舱,其主要作用是 A.提高总纵强度B.提高局部强度 C.减轻摇摆程度 10 B.淡水舱C.深舱D.杂物舱 11.新型油船设置双层底的主要目的有 A.提高抗沉性B.提高强度 C.作压载舱用 12.抗沉性最差的船是 A.客船B.杂货船C散货船 13.横舱壁最少和纵舱壁最多的船分别是 B.矿砂船,集装箱船 C.油船,散货船D.客船,液化气体船 14.单甲板船有 A. 集装箱船,客货船,滚装船B.干散货船,油船,客货船 C.油船,普通货船,滚装船 15.根据《SOLASl974 A.20 B.15 D.10 16 A. 普通货船C.集装箱船D.散货船17.关于球鼻首作用的正确论述是 A. 增加船首强度

C.便于靠离码头D.建造方便 18.集装箱船通常用______表示其载重能力 A.总载重量B.满载排水量 C.总吨位 19. 油船的______ A. 杂物舱C.压载舱D.淡水舱 20 A. 集装箱船B,油船C滚装船 21.常用的两种集装箱型号和标准箱分别是 B.40ft集装箱、30ft集装箱 C.40ft集装箱、10ft集装箱 D.30ft集装箱、20ft集装箱 22.集装箱船设置双层船壳的主要原因是 A.提高抗沉性 C.作为压载舱 D. 作为货舱 23.结构简单,成本低,装卸轻杂货物作业效率高,调运过程中货物摇晃小的起货设备是 B.双联回转式 C.单个回转式D.双吊杆式 24. 具有操作与维修保养方便、劳动强度小、作业的准备和收尾工作少,并且可以遥控操 作的起货设备是 B.双联回转式 D.双吊杆式 25.加强船舶首尾端的结构,是为了提高船舶的 A.总纵强B.扭转强度 C.横向强度 26. 肋板属于 A. 纵向骨材 C.连接件D.A十B 27. 在船体结构的构件中,属于主要构件的是:Ⅰ.强横梁;Ⅱ.肋骨;Ⅲ.主肋板;Ⅳ. 甲板纵桁;Ⅴ.纵骨;Ⅵ.舷侧纵桁 A.Ⅰ,Ⅱ,Ⅲ,ⅣB.I,Ⅱ,Ⅲ,Ⅴ D.I,Ⅲ,Ⅳ, Ⅴ 28.船体受到最大总纵弯矩的部位是 A.主甲板B.船底板 D.离首或尾为1/4的船长处 29. ______则其扭转强度越差 A.船越长B.船越宽 C.船越大 30 A.便于检修机器B.增加燃料舱 D.B+C 31

考试大纲-重庆交通大学知识交流

硕士生入学复试考试《船舶原理与结构》 考试大纲 1考试性质 《船舶原理》和《船舶结构设计》均是船舶与海洋工程专业学生重要的专业基础课。它的评价标准是优秀本科毕业生能达到的水平,以保证被录取者具有较好的船舶原理和结构设计理论基础。 2考试形式与试卷结构 (1)答卷方式:闭卷,笔试 (2)答题时间:180分钟 (3)题型:计算题50%;简答题35%;名词解释15% (4)参考数目: 《船舶原理》,盛振邦、刘应中,上海交通大学出版社,2003 《船舶结构设计》,谢永和、吴剑国、李俊来,上海交通大学出版社,2011年 3考试要点 3.1 《船舶原理》 (1)浮性 浮性的一般概念;浮态种类;浮性曲线的计算与应用;邦戎曲线的计算与应用;储备浮力与载重线标志。 (2)船舶初稳性 稳性的一般概念与分类;初稳性公式的建立与应用;重物移动、

增减对稳性的影响;自由液面对稳性的影响;浮态及初稳性的计算;倾斜试验方法。 (3)船舶大倾角稳性 大倾角稳性、静稳性与动稳性的概念;静、动稳性曲线的计算及其特性;稳性的衡准;极限重心高度曲线;IMO建议的稳性衡准原则;提高稳性的措施。 (4)抗沉性 抗沉性的概念;安全限界线、渗透率、可浸长度、分舱因数的概念;可浸长度计算方法;船舶分舱制;提高抗沉性的方法。 (5)船舶阻力的基本概念与特点 船舶阻力的分类;阻力相似定律;阻力(摩擦阻力、粘压阻力、兴波阻力)产生的机理和特性。 (6)船舶阻力的确定方法 船模阻力试验方法;阻力换算方法;阻力近似计算的概念及方法;艾尔法、海军系数法等。 (7)船型对阻力的影响 船型变化及船型参数,主尺度及船型系数的影响,横剖面面积曲线形状的影响,满载水线形状的影响,首尾端形状的影响。 (8)浅水阻力特性 浅水对阻力影响的特点;浅窄航道对船舶阻力的影响。 (9)船舶推进器一般概念 推进器的种类、传送效率及推进效率;螺旋桨的几何特性。

九动态模型DynamicModeling

九.动态模型(Dynamic Modeling) ⒈目的和内容 ·动态模型用来描述系统内动作变化的时序过程; ·动态模型的最基本概念是状态(State),状态将引出对象的值(Value)、事件(Events)和外界的刺激(Stimuli)等概念; ·动态模型的表述工具是状态图(State diagram),每个类拥有一张用以表述其相应的动作责任和作用模式状态变化图; ⒉事件与状态 ①对状态的认识 试阅读下述C程序段: typedef struct Boolean { int b;}Bool; void init(Bool x){x.b=0;} void set_true(Bool x){x.b=1;} void set_false(Bool x){x.b=0;} int value(Bool x){return x.b;} 本例的状态变化可由下图表述:

②事件(Events) 一个事件是一个对象向另一个对象发出的独立的刺激信号。事件含有三个要素: ·事件是某一时刻发生的; ·两个以上的事件即可以是顺序的,也可以是并发的; ·每个事件具有一个的生成背景,可以将共同生成背景的事件构成一个事件类(层次结构); 例: event(event attributes) digit dialed(digit) airline flight departs(airline, flight #, city) ③脚本(Scenarios)与事件流(event traces) ·脚本是用来描述一个系统在特定运行时的事件的顺序; ·脚本即可以包括系统中的全部事件,也可以只描述系统的某些特地对象间的局部事件; 例:

计算机辅助船舶制造(考试大纲)

课程名称:计算机辅助船舶制造课程代码:01234(理论) 第一部分课程性质与目标 一、课程性质与特点 《计算机辅助船体建造》是船舶与海洋工程专业的一门专业必修课程,通过本课程各章节不同教学环节的学习,帮助学生建立良好的空间概念,培养其逻辑推理和判断能力、抽象思维能力、综合分析问题和解决问题的能力,以及计算机工程应用能力。 我国社会主义现代化建设所需要的高质量专门人才服务的。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的计算机运用能力和综合运用所学知识去分析和解决问题的能力。 二、课程目标与基本要求 通过本课程学习,使学生对船舶计算机集成制造系统有较全面的了解,掌握计算机辅助船体建造的数学模型建模的思路和方法,培养计算机的应用能力,为今后进行相关领域的研究和开发工作打下良好的基础。 本课程基本要求: 1.正确理解下列基本概念: 计算机辅助制造,计算机辅助船体建造,造船计算机集成制造系统,船体型线光顺性准则,船体型线的三向光顺。 2.正确理解下列基本方法和公式: 三次样条函数,三次参数样条,三次B样条,回弹法光顺船体型线,船体构件展开计算的数学基础,测地线法展开船体外板的数值表示,数控切割的数值计算,型材数控冷弯的数值计算。 3.运用基本概念和方法解决下列问题: 分段装配胎架的型值计算,分段重量重心及起吊参数计算。 三、与本专业其他课程的关系 本课程是船舶与海洋工程专业的一门专业课,该课程应在修完本专业的基础课和专业基础课后进行学习。 先修课程:船舶原理、船体强度与结构设计、船舶建造工艺学 第二部分考核内容与考核目标 第1章计算机辅助船体建造概论 一、学习目的与要求 本章概述计算机辅助船体建造的主要体系及技术发展。通过对本章的学习,掌握计算机辅助制造的基本概念,了解计算机辅助船体建造的特点、造船计算机集成制造系统的基本含义和主要造船集成系统及其发展概况。 二、考核知识点与考核目标 (一)计算机辅助制造的基本概念(重点)(P1~P5) 识记:计算机在工业生产中的应用,计算机在产品设计中的应用,计算机在企业管理中的应用,计算机应用一体化。 理解:CIM和CIMS概念,计算机辅助制造的概念和组成 (二)造船CAM技术的特点(重点)P6~P8 识记:船舶产品和船舶生产过程的特点,造船CAM技术的特点 理解:船舶产品和船舶生产过程的特点与造船CAM技术之间的联系 应用:造船CAM技术应用范围 (三)计算机集成船舶制造系统概述(次重点)(P8~P11)

船舶维修技术实用手册

船舶维修技术实用手册》出版社:吉林科学技术出版社 出版日期:2005年 作者:张剑 开本:16开 册数:全四卷+1CD 定价:998.00元 详细介绍: 第一篇船舶原理与结构 第一章船舶概述 第二章船体结构与船舶管系 第三章锚设备 第四章系泊设备 第五章舵设备 第六章起重设备 第七章船舶系固设备 第八章船舶抗沉结构与堵漏 第九章船舶修理 第十章船舶人级与检验 第二篇现代船舶维修技术 第一章故障诊断与失效分析 第二章油液监控技术 第三章新材料、新工艺与新技术 第三篇船舶柴油机检修 第一章柴油机概述 第二章柴油机主要机件检修 第三章配气系统检修 第四章燃油系统检修 第五章润滑系统检修 第六章冷却系统检修 第七章柴油机操纵系统检修 第八章实际工作循环 第九章柴油机主要工作指标及其测定 第十章柴油机增压 第十一章柴油机常见故障及其应急处理

第四篇船舶电气设备检修 第一章船舶电气设备概述 第二章船舶常用电工材料 第三章船舶电工仪表及测量 第四章船舶常用低压电器及其检修 第五章船舶电机维护检修 第六章船舶电站维护检修 第七章船舶辅机电气控制装置维护检修第八章船舶内部通信及其信号装置检修第九章船舶照明系统维护检修 第五篇船舶轴舵系装置检修 第一章船舶轴系检修 第二章船舶舵系检修 第三章液压舵机检修 第四章轴舵系主要设备与要求 第五章轴舵系检测与试验 第六篇船舶辅机检修 第一章船用泵概述 第二章往复泵检修 第三章回转泵检修 第四章离心泵和旋涡泵 第五章喷射泵检修 第六章船用活塞空气压缩机检修 第七章通风机检修 第八章船舶制冷装置检修 第九章船舶空气调节装置检修 第十章船用燃油辅机锅炉和废气锅炉检修第十一章船舶油分离机检修 第十二章船舶防污染装置检修 第十三章海水淡化装置检修 第十四章操舵装置检修 第十五章锚机系缆机和起货机检修 第七篇船舶静电安全检修技术 第一章船舶静电起电机理 第二章舱内静电场计算 第三章船舶静电安全技术研究 第四章静电放电点燃估算 第五章船舶静电综合分析防治对策

玩具公仔3D设计-FreeForm Modeling Plus软件教程

玩具建构练习(使用2D影像) 01.开启新档。 02.从File/Import/Image输入2D影像图 文件的前视图(Front.jpg)。 03.按F3切换至侧视视角。 04.从File/Import/Image输入2D影像图 文件的侧视图(Side.jpg)。 05.点选对象清单(Object List)中的侧视 图以进入绘图模式,并调整影像的 尺寸及位置。

06.点选前视图并进入绘图模式。 07.绘制中轴线和头部的断面线。

08.点选Spin功能,选择断面线, 再选择中轴线将小恐龙的头部制作 出来。 09.开启对象清单(Object List),将黏土 粗糙度调整为Add Detail。 10.开启对象清单(Object List),复制前 视图,并关闭原始的前视图。 11.使用Edit Plane将绘图板往前移 动,以避免被头部的模型遮住。12.点选Sketch On进入绘图模式,并绘 制出鼻子的轮廓线。

13.点选Wire Cut功能,并点选鼻 子的轮廓线,建构大体形状。 14.使用Inflate功能,依据侧视图 制作出鼻子的外观。

15.使用Smooth顺化工具,将鼻子 和头部间进行顺化。 16.开启对象清单(Object List),将黏土 粗糙度调整为Add FineDetail。17.点选Sketch On进入绘图模式,并绘 制出鼻孔的轮廓线。

18.使用Project Sketch将2D线段投 影在模型上。 19.使用Tug Area点选线段,以调 整出所需的形状。 20.使用Add Clay制作牙齿。 ※选择Pieces/New Piece/Start with Empty Piece,将对象产生在另外的图层里。

船舶原理 名词解释啊

1长宽比L/B 快速性、操纵性 宽吃水比B/d 稳性、摇荡性、快速性、操纵性 深吃水比D/d 稳性、抗沉性、船体强度 宽深比B/D 船体强度、稳性 长深比L/D 船体强度、稳性 2船长:船舶的垂线间长代表船长,即沿设计夏季载重水线,由首柱前缘至舵柱后缘或舵杆中心线的长度 3型宽:在船体最宽处,沿设计水线自一舷的肋骨外缘量至另一舷的肋骨外缘之间的水平距离 4型表面:不包括船壳板和甲板板厚度在内的船体表面 5型深:在船长中的处,由平板龙骨上缘量至上甲板边线下缘的垂直距离 6型吃水:在船长中点处由平板龙骨上缘量至夏季载重水线的垂直距离 7型线图是表示船体型表面形状的图谱,由纵剖线图、横剖线图、半宽水线图和型值表组成; 8浮性:船舶在给定载重条件下,能保持一定的浮态的性能; 9平衡条件:作用在浮体上的重力与浮力大小相等、方向相反并作用于同一铅垂线上; 10净载重量NDW:指船舶在具体航次中所能装载货物质量的最大值 11漂浮条件:满足平衡条件,且船体体积大于排水体积; 12浮心:浮心是船舶所受浮力的作用中心,也是排水体积的几何中心; 13漂心:船舶水线面积的几何中心; 14平行沉浮:船舶装卸货物前后水线面保持平行的现象; 15每厘米吃水吨数(TPC):船舶吃水d每变化1cm,排水量变化的吨数,称为TPC。 16储备浮力:满载吃水以上的船体水密容积所具有的浮力 17干舷:在船长中点处由夏季载重水线量至上甲板边线上缘的垂直距离 18船舶稳性:船舶在外力(矩)作用下偏离其初始平衡位置,当外力(矩)消失后船舶能自行恢复到初始平衡状态的能力 19静稳性曲线:稳性力臂GZ或稳性力矩Ms随横倾角?变化曲线 20动稳性曲线:稳性力矩所做的功Ws或动稳性力臂I d随横倾角?变化的曲线 21吃水差比尺:是一种少量载荷变动时核算船舶纵向浮态变化的简易图表,它表示在船上任意位置加载100t后,船舶首、尾吃水该变量的图表 22最小倾覆力矩(力臂):船舶所能承受动横倾力矩(力臂)的极限 23进水角:船舶横倾至最低非水密度开口开始进水时的横倾角 24可浸长度:船舶进水后的水线恰与限界线相切时的货仓最大许可舱长称为可浸长度 25稳性衡准数K是指船舶最小倾覆力矩(臂)与风压倾侧力矩(臂)之比 26稳性的调整方法:船内载荷的垂向移动及载荷横向对称增减 27静稳性力臂的表达式:1)基点法2)假定重心法3)初稳心点法 28船体强度:为保证船舶安全,船体结构必须具有抵抗各种内外作用力使之发生极度形变和破坏的能力 29局部强度表示方法:①均布载荷;②集中载荷;③车辆甲板载荷;④堆积载荷 30MTC为每形成1cm吃水差所需的纵倾力矩值,称为每厘米纵倾力矩 31载荷纵向移动包括配载计划编制时不同货舱货物的调整及压载水、淡水或燃油的调拨等情况 32重量增减包括中途港货物装卸、加排压载水、油水消耗和补给、破舱进水等情况 33抗沉性:是指船舶在一舱或数舱破损进水后,仍能保持一定浮性和稳性,使船舶不致沉没或延缓沉没时间,以确保人命和财产安全的性能

船舶概论课程总结

《船舶概论》课程总结 本学期安管1101班的《船舶原理》课程已经考试结束,现将教学及考试情况小结如下: 一、教学情况。 本门课程采用多媒体课件进行教学,通过大量图片和视频,结合适度的现场教学,有利于学生对理论知识、设备和工艺的理解。本门课程使用的教材为人民交通出版社出版、邓召庭主编的《船舶概论》,内容涉及船舶类型、基本性能、船体结构、设备与系统和建造工艺。课程内容涉及面广,但内容深度不大,没有难以理解的理论和复杂的计算,但需要学生认真听讲、认真复习。教学评价采用形成性评价,因此在教学过程中注重对学生作业、测验等日常学习的把握,抓好课堂出勤和课堂控制,努力使学生掌握相关知识要点。 在教学过程当中,教师发现本门课程内容涉及面很广,但学生之前缺乏相关的知识基础,加之本门课程教学时数不多、进度较快,因此学生在学习的时候对知识的消化有一定的困难,也在一定程度上影响了同学们学习的兴趣和对知识的掌握。 二、考试分析。 此次考试是由任课教师统一出题,试卷标准符合学院要求。 试卷难易程度中等,题目范围涉及教材的全部内容,有船舶分类与用途、船舶几何形状、船舶航行性能、船体结构、船舶舱室设计、船舶设备与系统和船舶建造工艺。试题内容结合学生专业特点及日后工作的实际情况,题型有选择、判断题、名词解释、简答题和识图体,分值分别为:1,1,2,5和1分。 安管1101班共有29名学生中参加期末考试,其中卷面分数90~100分无;80~89分7人,占24.1%;70~79分11人,占37.9%;60~69分8人,占到27.6%;60分以下3人,占10.3%,最高分85,最低分24分。结合平日的各项考核成绩,形成性评价的总评平均分为75分。 三、改进教学及考核方法的建议。 安全管理专业的学生缺少船舶专业相关知识的积累,因此提高教学质量应该从研究教学方法和提高学生学习积极性两方面入手,进一步增加教学用实图、实物设备,尽量多的通过现场教学的方法展开教学;认真研究学生的学习心理,适当增加船舶方面专业知识的了解,激发他们的学习兴趣。 船体教研室:卢永然 2012.12.10

船舶原理习题20151116

《船舶原理》习题 船体形状 1.名词解释:垂线间长;设计水线长;型宽;型深;型吃水;干舷;水线面系数;中横剖面系数;方形系数;棱形系数。 2.已知某船船长L=100m;吃水d=5.0m;排水体积V=7500m3,方形系数C b=0.6;中横剖面系数 C m=0.9,试求:①中横剖面面积A M;②纵向棱形系数C p。 近似计算方法 1.已知某船吃水为4.2m的水线分为10等分,其纵坐标间距l=3.5m,自首向尾的纵坐标值(半宽,m)分别为: 站号012345678910 半宽值0 3.3 5.3 5.9 5.9 5.9 5.9 5.85 5.22 3.66 1.03 用梯形法则计算其水线面积? 浮性 1.名词解释:浮性,排水量,正浮,横倾,纵倾,每厘米吃水吨数,水线面面积曲线。 2.简述浮体的平衡条件。 3.简述水的密度变化对浮态的影响。 稳性 1.名词解释:稳性,静稳性,初稳性,稳心,初稳性高度,纵倾1cm力矩。 2.简述稳性分类 3.简述根据初稳性公式判断船舶的平衡状态? 4.三心(浮心、重心、稳性)之间的关系 5.静稳性图的特征 6.提高船舶稳性的措施 7.某船正浮时初稳性高GM=0.6m,排水量△=10000t,把船内100t货物向上移动3m,再向右舷横向移动10m,求货物移动后船的横倾角φ。 8.某船排水量D=17000t,稳性高GM=0.76m。若要GM达到1m,需从甲板间舱向底舱移动货物,设垂向移动距离l z=8m,问应移动多少吨货物? 抗沉性 1.名词解释:抗沉性,渗透率,限界线,可浸长度 2.根据船舱进水情况可将船舱分为三类舱,分别作出简略介绍 快速性 1.名词解释:船舶阻力,推进器,螺旋桨直径,螺距比,盘面比 2.简述阻力分类及其产生原因 3.简述螺旋桨产生推力的原因 4.简述船体伴流产生原因及分类 5.简述螺旋桨产生空泡原因 6.简述空泡对螺旋桨的影响 7.某船装有功率为2000马力的主机,正常航速为12节,因锅炉故障,使主机功率下降10%,试估算航速将下降多少? 操纵性与耐波性 1.名词解释:船舶操纵性,船舶耐波性,航向稳定性,回转性,反横距,正横距,纵距,战术直径,定常回转直径。

相关文档
最新文档