834传热学大纲

834传热学大纲
834传热学大纲

2020年硕士研究生统一入学考试

《传热学》

第一部分考试说明

一、考试性质

传热学是动力工程及工程热物理和动力工程领域硕士研究生入学考试的专业基础课。

二、考试形式与试卷结构

(一) 答卷方式:闭卷,笔试,需考生自备计算器

(二) 答题时间:180分钟

(三) 题型及比例

基本概念25%

理论分析与推导15%

计算题60%

( 包括简单传热学问题计算和工程应用计算)

(四) 满分分值:150分

(五) 参考书目

杨世铭,陶文铨. 传热学(第四版). 高等教育出版社.2006年。

第二部分考试大纲

第1章绪论

热量传递的三种基本方式,以及由这些基本方式组合而成的传热过程。

涉及的主要内容有:热量传递的基本方式及机理、基本表达式和各物理量的意义、单位;热阻、传热系数等基本概念;传热方式的链接或叠加及其分析和简单计算等。

第2章稳态热传导

传导传热的基本定律及数学表达式和定解条件(如稳态导热问题的三类边界条件)、各物理量意义和单位,三种典型几何物体(平板、圆柱体、球体)及变截面物体(如肋片)的热阻、热流量和温度分布计算方法。

熟练掌握一维稳态导热的计算方法,了解多维或含内热源稳态热传导问题的求解。

掌握一些基本概念如:温度场、等温面、等温线,导热系数、热扩散率、形状因子、接触热阻、肋效率等。

第3章非稳态热传导

从非稳态导热的基本概念逐步深入到零维、一维、多维问题。

熟练掌握集总参数法及应用条件,一维非稳态问题特定条件下的分析解、近似解及海斯勒图法等。能求出温度随时间的变化或一段时间内的传热量。了解多维问题的一维乘积解法。

掌握涉及的概念如:非正规状况阶段、正规状况阶段、毕渥数、傅里叶数、时间常数等。

第4章热传导问题的数值解法

掌握数值求解导热问题的有限差分法和热平衡法的原理和实施步骤,能够分别针对边界、内部、角部节点就不同坐标系(直角坐标系、圆柱坐标系和圆球坐标系等)列出差分方程,以及边界条件的离散和源项的加入。

了解最终离散方程(代数方程)的求解方法。掌握非稳态问题离散时时间步长和空间步长对于最终收敛必须满足的条件。

掌握涉及的概念如:线性问题、非线性问题,向前差分、向后差分、中心差分,显式格式、隐式格式,网格傅里叶数。

第5章对流传热的理论基础

揭示表面传热系数与影响它的有关物理量之间的内在联系。

掌握对流传热过程热量传递的机理,了解应用边界层内微分方程组和积分方程组求解对流换热问题的过程;了解动量传递和热量传递的比拟理论;

掌握涉及的概念如:对流换热的分类;影响对流换热的因素;热边界层和流动边界层等。

第6章单相对流传热的实验关联式

掌握相似原理,明确实验求解方法中相似原理的重要指导意义;掌握实验求解的全过程及整理实验数据的方法。

能够正确选择关联式计算几种典型的对流换热系数及换热量(如管槽内强制对流、外掠平板、单管及管束强制对流、大空间及有限空间自然对流等)。

掌握涉及的概念如:相似、同类物理现象、特征长度、定性温度等;无量纲数Re、Pr、Nu、Gr等的物理意义和计算式。

第7章相变对流传热

掌握凝结和沸腾过程的基本特点,膜状凝结换热及大容器中的饱和沸腾换热的实验关联式,明确其应用条件,并能够应用实验关联式进行换热计算;掌握影响凝结换热与沸腾换热的主要因素及其强化方法。

掌握涉及的概念如:膜状凝结、珠状凝结,核态沸腾、膜态沸腾、临界热流密度等。

第8章热辐射基本定律和辐射特性

掌握黑体辐射的基本定律(普朗克定律、斯蒂芬-玻尔兹曼定律、兰贝特定律、维恩位移定律);掌握基尔霍夫定律及其适用条件;了解温室效应原理。

认识和掌握热辐射的本质及辐射能传递过程中的一些特性,了解实际物体(固体和液体)的辐射特性。

掌握涉及的概念如:黑体、灰体、吸收率、反射率、透射率、辐射力、黑度,黑体辐射函数及其应用。

第9章辐射换热计算

掌握角系数的定义、性质及其计算方法;能够计算充满透明介质的由两个到多个表面组成的封闭腔内辐射传热的计算方法;掌握热网络法的原理和应用;了解强化与削弱辐射换热的方法。

了解气体辐射的特点、贝尔定律及影响气体辐射黑度的因素,能确定二氧化碳和水蒸气混合物的黑度、吸收率及气体与包壳间的辐射换热。

掌握涉及的概念如:角系数、有效辐射、表面辐射热阻、空间辐射热阻、重辐射面,气体辐射与吸收的光谱特性等。

第10章传热过程分析与换热器热计算

掌握综合传热过程的分析和计算的方法与步骤;了解简笔式换热器热计算的两种基本方法——平均温压法和传热单元数法。

掌握涉及的概念如:换热器型式、对数平均温差、临界热绝缘直径、肋面总效率、肋化系数、污垢热阻等。

高等传热学知识重点(含答案)2019

高等传热学知识重点 1.什么是粒子的平均自由程,Knusen数的表达式和物理意义。 Knusen数的表达式和物理意义:(Λ即为λ,L为特征长度) 2.固体中的微观热载流子的种类,以及对金属/绝缘体材料中热流的贡献。 3.分子、声子和电子分别满足怎样的统计分布律,分别写出其分布函数的表达式 分子的统计分布:Maxwell-Boltzmann(麦克斯韦-玻尔兹曼)分布: 电子的统计分布:Fermi-Dirac(费米-狄拉克)分布: 声子的统计分布:Bose-Eisentein(波色-爱因斯坦)分布; 高温下,FD,BE均化为MB;

4.什么是光学声子和声学声子,其波矢或频谱分布各有特性? 答:声子:晶格振动能量的量子化描述,是准粒子,有能量,无质量; 光学声子:与光子相互振动,发生散射,故称光学声子; 声学声子:类似机械波传动,故称声学声子; 5.影响声子和电子导热的散射效应有哪些? 答:影响声子(和电子)导热的散射效应有(热阻形成的主要原因): ①界面散射:由于不同材料的声子色散关系不一样,即使是完全结合的界面也是有热阻的; ②缺陷散射:除了晶格缺陷,最典型的是不纯物掺杂颗粒的散热,散射位相函数一般为Rayleigh散 射、Mie散射,这与光子非常相似; ③声子自身散射:声子本质上是晶格振动波,因此在传播过程中会与原子相互作用,会产生散射、 吸收和变频作用。

6.简述声子态密度(Density of State)及其物理意义,德拜模型和爱因斯坦模型的区别。答:声子态密度(DOS)[phonon.s/m3.rad]:声子在单位频率间隔内的状态数(振动模式数)Debye(德拜)模型: Einstein(爱因斯坦)模型: 7.分子动力学理论中,L-J势能函数的表达式及其意义。 答:Lennard-Jones 势能函数(兰纳-琼斯势能函数),只适用于惰性气体、简单分子晶体,是一种合理的近似公式;式中第一项可认为是对应于两体在近距离时以互相排斥为主的作用,第二项对应两体在远距离以互相吸引(例如通过范德瓦耳斯力)为主的作用,而此六次方项也的确可以使用以电子-原子核的电偶极矩摄动展开得到。

高等传热学讲义

第2章边界层方程 第一节Prandtl 边界层方程一.边界层简化的基本依据 外:粘性和换热可忽略 )(t δδ , l l t <<<<δδ或内:粘性和换热存在 )(t δδ特征尺寸 —l

二.普朗特边界层方程 常数性流体纵掠平板,层流的曲壁同样适用)。 δ v l u ∞∞ ∞u l v v l u δδ~~,可见,0=??+??y v x u )()((x x R δ>>曲率半径y x u v ∞ ∞T u ,w T ∞ ∞T u ,δ l

)(122 22 y u x u x p y u v x u u ??+??+??-=??+??νρδ δ ∞ ∞ u u l l u u ∞∞ 2 l u ∞ν2 δ ν ∞ u ) (2 l u ∞ 除以无因次化11 Re 12 ) )(Re 1 (δ l

因边界层那粘性项与惯性项均不能忽略,故 项可忽略,且说明只有Re>>1时,上述简化才适用。)(12 2 22y v x v y p y v v x v u ??+??+??-=??+??νρ1~))(Re 1(2 δ l l δ ;可见22 22 x u y u ??>>??δδ 1 ) (2 ∞u l l u l u /)(∞∞δ 2 /)(l u l ∞δ ν2 /)(δδ ν∞u l : 除以l u 2 ∞ )(Re 1l δ))(Re 1(δ l l δ

可见,各项均比u 方程对应项小得多可简化为 于是u 方程压力梯度项可写为。 )(2 2 22y T x T a y T v x T u ??+??=??+??,0=??y p dx dp ρ1-),(l δ 乘了δθδ w u l )(∞l u w θ∞2 l a w θ除以: l u w θ∞Pe /12 )(/1δ l Pe 12δ θw a 1 ) (∞-=T T w w θPr) Re (?====∞∞贝克列数—导热量对流热量w w p l k u c a l u Pe θθρ

高等传热学相变导热解(移动边界)

高等传热学导热理论——相变导热(移动边界问题)讨论 第五讲:相变导热(移动边界问题): 移动边界的导热问题有许多种,本讲只讲固液相变时的导热模型。 5.1 相变换热特点与分类: 特点: (1) 相变处存在一个界面把不同相的物质分成两个区间(实际不是一个面, 而是一个区)。 (2) 相变面随时间移动,移动规律时问题的一部分。 (3) 移动面可作为边界,决定了相变问题是非线性问题。 分类: (1) 半无限大体单区域问题(Stefan Question ) (2) 半无限大体双区域问题(Neumman Question ) (3) 有限双区域问题 5.2 相变导热的数学描述和解: 假定:固液两相内部只有导热,没有对流(适用于深空中相变)。 物性为常量。不考虑密度变化引起的体积变化。 控制方程: 对固相: 2 21s s s t t a x τ ??=?? 对液相: 2 2 1l l l t t a x τ ??= ?? 初值条件:0:s l t t t τ∞=== 边界条件: 0:::s l w l s l s x t ort t x t ort or x t ort t ∞ ===∞≠∞ =?= 在相变界面,热量守恒,温度连续,Q l 为相变潜热: ()():s l s l l l s l p t t d x Q and t t t x x d δτδτλλρτ ??==+==?? 5.2.1 半无限大体单区域问题(Stefan Question )的简化解: 以融解过程为例: 忽略液相显热, 2 210l l l t t a x τ ??==??,方程解为一直线,由边界条件得: ()/l w p w t t t t x δ =+- 对固相,忽略温差:w p t t t ∞==,即固相温度恒等于相变温度等于初始温度。 由相变处得换热条件求δ的变化规律:

浙大高等传热学复习题部分答案

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 不论如何,求解导热微分方程主要依靠三大方法: 理论法、试验法、综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法(Laplace变换,Fourier变换),热源函数法,Green函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法(CA T)就是其中之一。 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? Schmidt假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。 1928年,Schmidt等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。Duffin应用变分法证明了Schmidt假定。Wikins[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。Liu和Wikins[4]等人还得到了有内热源及辐射换热时优化解。长期以来肋片的优化问题受到理论和应用两方面的重视。 对称直肋最优型线和尺寸的无量纲表达式分析: 假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲 线弧度): yd2θ/dx2+(dy/dx)dθ/dx-θh/λ=0 由Schmidt假定,对任意截面x: dθ/dx=-q/λ=const

《传热学与传质学》教学大纲

《传热学与传质学》教学大纲 一、课程基本信息 1、课程英文名称:Engineering Thermodynamics and Heat Transfer 2、课程类别:专业基础课程 3、课程学时:总学时48,实验学时4 4、学分:3 5、先修课程:高等数学;普通物理;普通化学;工程流体力学 6、适用专业:石油工程 7、大纲执笔:油气储运教研室李永杰 8、大纲审批:石油工程学院学术委员会 9、制定(修订)时间:2006.11 二、课程的目的与任务: 本课程是研究热能传递与能量转换规律的学科,是一门必修的技术基础课程。通过本课程的学习,应使学生掌握热能与机械能的转化规律,热能的合理利用。热能的传递原理与规律、换热设备的热工计算等基本知识,培养学生独立思考、分析推导问题简化问题的能力,为专业课程的学习提供必要的理论基础。 三、课程的基本要求: 1.了解工程热力学与传热学的宏观研究方法及特点,掌握工程热力学 与传热学的基本概念: 2.掌握工程热力学的两个基本定律,能正确分析能量转换与守恒关 系,对热能的可用性有基本的认识,了解合理用能的原则 3.能依据热能过程的特征,分析计算过程的功量与热量。掌握理想气 体的基本热力性质与计算方法。 4.掌握热量传递的三种基本方式的原理与工程常见条件下的简化、计 算。 5.理解传热过程及传热系数,能计算传热量,并能指出增大或减小传 热量的基本方法。 6.了解常用换热器类型,并能进行换热器的一般热力计算。 四、教学内容、要求及学时分配: 2.(一)理论教学:

1.基本概念及定义(2学时) 掌握基本概念:热力学系统;热力学的状态及基本状态参数;平衡状态:状态方程;热力过程的准静态过程;准静态过程的功;热量;热量和功的类比;热力循环。 重点:建立工程热力学的基本概念及定义 难点:准静态过程的功;热量:热量和功的类比。 2.热力学的第一定律(6学时) 掌握热力学第一定律;闭口系统能量方程式;稳定状态稳定流动能量方程;焓;轴功;稳定流动能量方程式应用举例。 重点:能量守恒方程式与应用 难点:焓参数的应用。 3.理想气体内能、焓、熵和比热(2学时) 掌握理想气体内能和从理想气体的比热;理想气体的熵:了解理想气体混合物。 重点:理想气体状态参数变化量的计算。 难点:理想气体的熵变计算。 4.理想气体的热力过程(4学时) 掌握热力过程分析概述:定容过程;定压过程:定温过程;定熵过程;多变过程。 重点:各热力过程中功量与热量、状态参数的计算。 难点:多变过程的计算分析,图示。 5.热力学第二定律(4学时) 掌握热机循环与制冷循环:热力学第二定律,可逆过程与不可逆过程,卡诺循环。卡诺定理;了解热能的可用性。 重点:理解热力学第二定律是判断过程方向性的定律 难点:热能的可用性分析 6.熵(4学时) 掌握状态参数熵的计算,了解不可逆过程熵的产生;理解孤立系统熵增原理;系统的作功能力与不可逆损失。 重点:掌握熵增原理,判断过程方向 难点:熵变计算与系统作功能力损失计算

高等传热学课件对流换热-第2章-3

2-3 管槽内层流对流换热特征 工程上存在大量的管槽内对流换热问题。本节对管槽内层流强制对流换热的流动与换热特征进行分析。 一、流动特征 当流体以截面均匀的流速0u 进入管道 后,由于粘性,会在 管壁上形成边界层。 边界层内相同r 处的轴向流速随δ的增加 而降低,导致对管中心势流区的排挤作用,使势流区流速增加。当边界层厚度δ达到管内半径时,势流区消失,边界层汇合于管轴线处,同时截面内速度分布不再变化。 u o

将管入口截面至边界层汇合截面间的流动区域称为入口段,或称为未充分发展流、正在发展流。该区域内,速度分布不断变化, (,)u u x r =,同时存在径向速度(,)v x r 。 边界层汇合截面以后的流动速度不再变化,()u u r =,而径向速度 0v =,这段流动区域称为充发展段或充分发展流。 所以,管内流动存在特征不同的两个区域:入口段,充分发展段。充分发展流动又分为:简单充分发展流、复杂充分发展流两种。 1). 简单充分发展流 是指只存在轴向速度分量,而其它方向速度分量为零的充分发展流动。 对圆管: ()u u r =,0v w ==; 对矩形管道:(,)u u x y =,0v w ==。 简单充分发展流任意横截面上压力均匀,沿轴向线性变化,即

dp const dx = 证明:对简单充分发展流,径向速度0v =,根据径向动量方程: 222211()v v p v v v u v x r r r r x r νρ??????+=?+++?????? ? 0p r ?=?, 即任意横截面上压力均匀,压力仅沿轴向变化。于是,轴向动量方程为: 222211(u u dp u u u u v x r dx r r x r νρ?????+=?+++????? 又发展流0u x ?=?(速度分布不变,或由连续方程得出)?

浙江大学传热学复习题参考答案

高等传热学复习题答案 热动硕士2015 吕凯文 10、燃用气、液、固体燃料时火焰辐射特性。 答:燃料的燃烧反应属于比较剧烈的化学反应。由于燃烧温度较高,而且燃料的化学成分一般都比较复杂,所以燃烧反应的过程是非常复杂的过程,一般的燃料燃烧时火焰的主要成分还有CO 2、H 2O 、N 2、O 2等,有的火焰中还有大量的固体粒子。火焰中还存在大量的中间参悟。在不同的工况下,可能有不同的中间产物和燃烧产物。火焰的辐射光谱是火焰中的各种因素作用的结果。 燃烧中间产物或燃烧产物受火焰加热,要对外进行热辐射。在火焰的高温环境下,固体粒子的辐射光谱多为热辐射的连续光谱,而气体分子的发射光谱多为分段的发射或选择性吸收。此外,还有各物质的特征光谱对火焰的辐射的影响。在工业火焰的温度水平下,氧、氢等结构对称的双原子分子没有发射和吸收辐射的能力,它们对于火焰光谱的影响比较小。而CO 2和H 2O 等结构不对称的分子以及固体粒子对火焰光谱的影响起主导作用。在火焰中大量的中间产物虽然存在时间很短,但对火焰辐射光谱也有一定的影响。(该答案仅供参考) 11、试述强化气体辐射的各种方法。 答:气体辐射的特点有:①不同种类的气体的辐射和吸收能力各不相同;②气体辐射对波长具有强烈的选择性;③气体的辐射和吸收是在整个容积中进行的,辐射到气体层界面上的辐射能在辐射行程中被吸收减弱,减弱的程度取决于辐射强度及途中所遇到的分子数目。 气体的辐射和吸收是气层厚度L 、气体的温度T 和分压p (密度)的函数,(,)f T pL λα=。由贝尔定律,,0k L L I I e λλλ-=?可知,单色辐射在吸收性介质中传播时其强度按指数递减。 由上述可知,强化气体辐射的方法有:提高气体的温度;减小气体层的厚度,;选择三原子、多原子及结构不对称的双原子气体;减小气体的分压。(该答案仅供参考) 12、固体表面反射率有哪几种? 答:被表面反射的能量与投射到表面的能量之比定义为表面反射率。固体表面反射率有: ①双向单色反射率;②单色定向-半球反射率;③单色半球-定向发射率。

80210127传热学C

《传热学C》课程教学大纲 课程编号:80210127 课程名称:传热学C 英文名称:Heat Transfer C 总学时:24 学分:1.5 适用对象:机械工程及其自动化专业,测控技术及仪器专业 先修课程:高等数学,流体力学 一、课程性质、目的和任务 传热学C是机械工程及其自动化专业和测控技术及仪器专业的一门专业选修课程。其目的在于使学生掌握有关热量传递的基本理论知识,具备一定的传热学分析计算能力。它不仅为以后专业课的学习提供必要的理论基础,也是培养提高学生综合分析能力和解决工程实际问题能力的重要环节之一。 二、教学内容、方法及基本要求 教学内容 1.绪论 了解传热学与工程热力学在研究内容和方法上的异同。认清传热学的研究对象及其在工程和科学技术中的应用。掌握热量传递的基本方式:导热、对流和热辐射的概念和所传递热量的计算公式。了解复合换热过程的计算方法,了解辐射换热表面传热系数的概念。认识到工程实际问题的热量传递过程往往不是单一的方式而是多种形式的组合,以加深传热过程的概念及传热方程的理解。初步理解热阻在分析传热问题中的重要地位。 2.导热基本定律及稳态导热 掌握傅里叶定律的意义和应用方法,了解常见材料导热系数的大致范围。理解推导导热微分方程的理论依据和思路,以及导热微分方程中各项的物理意义,能够正确书写导热问题的初始条件和三类边界条件。能应用傅里叶定律或导热微分方程对常物性、无内热源的一维稳态导热问题(平壁、圆筒壁)进行分析求解,得出温度场及导热量的计算公式。了解肋片在工程中的应用场合。加深理解热阻概念及其在分析导热问题时的重要性。 3.非稳态导热 了解非稳态导热过程的特点。掌握集总参数法的分析求解方法,了解其限制条件。 4.对流换热 牛顿冷却公式是对流换热计算的基础,要求重点掌握。理解影响对流换热的因素。掌握流动边界层和温度边界层的概念。理解相似原理在指导对流换热实验中的作用,准则方程的导出。掌握实验数据的整理方法。掌握管内换热入口段与充分发展段的概念。掌握定型尺寸和定性温度的概念。能正确和熟练地运用准则方程(实验关联式)计算简单的对流换热问题。了解有限空间自然对流换热的概念。掌握强化单相流体对流换热的途径。 5.凝结与沸腾换热

高等传热学部分答案.

7-4,常物性流体在两无限大平行平板之间作稳态层流流动,下板静止不动,上板在外力作用下以恒定速度U 运动,试推导连续性方程和动量方程。 解:按照题意 0, 0=??=??=x v y v v 故连续性方程 0=??+??y v x u 可简化为 0=??x u 因流体是常物性,不可压缩的,N-S 方程为 x 方向: )(12222y u x u v y p F y u v x u u x ??+??+??-=??+??ρρ 可简化为 022=??+??-y v x p F x η y 方向 )(12222y v x v v y p F y v v x v u y ??+??+??-=??+??ρρ 可简化为 0=??= y p F y 8-3,试证明,流体外掠平壁层流边界层换热的局部努赛尔特数为 12121 Re Pr x Nu r = 证明:适用于外掠平板的层流边界层的能量方程

22t t t u v a x y y ???+=??? 常壁温边界条件为 0w y t t y ∞ ==→∞时,时,t=t 引入量纲一的温度w w t t t t ∞-Θ= - 则上述能量方程变为22u v a x y y ?Θ?Θ?Θ+=??? 引入相似变量1Re ()y y x x ηδ= == 有 11()(()22x x x ηη ηηη?Θ?Θ?''==Θ-=-Θ??? ()y y ηηη?Θ?Θ?'==???;22()U y x ηυ∞ ?Θ''= Θ? 将上三式和流函数表示的速度代入边界层能量方程,得到 1 Pr 02 f '''Θ+Θ= 当Pr 1时,速度边界层厚度远小于温度边界层厚度,可近似认为温度边界层内 速度为主流速度,即1,f f η'==,则由上式可得 Pr ()2d f d η''Θ'=-'Θ,求解可得 12 12 ()()Pr 2 Pr (0)()erf η ηπ Θ='Θ= 则1212 0.564Re Pr x x Nu = 8-4,求证,常物性不可压缩流体,对于层流边界层的二维滞止流动,其局部努

传热学课程简介 - 燕山大学教务在线

传热学教学大纲 (04级后新教学计划) 课程名称:传热学课程编码: 英文名称:heat transfer 学时:24 学时学分:1.5学分 开课学期:第五学期 适用专业:机械类 课程类别:必修 课程性质:技术基础课 先修课程:高等数学、大学物理 教材:《传热学》张兴中编燕山大学校内印刷 一、课程的性质及任务: 本课程是机械类专业的主要专业技术基础课。 课程教学所要达到的目的是:1、了解热量传递的基本方式。2、掌握温度场、传热量的基本分析方法和计算方法。3、在实验技能方面比较熟练地掌握常用热工测试仪器的使用方法与基本热工参数的测试技术。 二、课程的基本内容: 1、绪论 传热学的任务;热量传递的三种基本形式:热传导、热对流、热辐射;传热过程。 2、导热理论和一维稳态导热 傅里叶定律及导热系数:介绍导热理论的基本概念、傅里叶定律及导热系数;导热微分方程及单值性条件:推导导热微分方程、介绍单值性条件。 几个典型的稳态导热问题:单层平壁的稳态导热、多层平壁的稳态导热、无限长圆筒壁的稳态导热、球壁的稳态导热、通过等截面棒的稳态导热的温度场及热流量计算方法以及各种肋片散热量的计算。 3、非稳态导热 非稳态导热过程的特点:介绍非稳态导热过程的特点及非稳态导热过程的三个阶段。 无限大平板的加热或冷却:应用分离变量法对无限大平板非稳态导热的温度场及热流量的计算。 半无限大物体的非稳态导热:介绍求解思想。 有限大物体的非稳态导热:介绍求解思想。 集总参数法:介绍基本思想及温度场、热流量的求解方法。 4、导热问题的数值解法 有限差分法的基本原理:一阶、二阶导数的向前、向后、中心差分公式。 稳态导热问题的差分表达式:二维问题内部节点的差分方程式、边界上节点的差分方程式。 非稳态导热问题的有限差分法:一维问题内部节点的差分方程式、边界上节点的差分方程式。 线性代数方程组的求解:直接法、迭代法。 计算机求解导热问题简介:二维稳态问题、一维非稳态问题。

高等传热学课件对流换热-第5章-1

第五章自然对流换热 当流体内部的温度分布或浓度分布不均匀时,会造成密度分布的不均匀,在体积力场的作用下,形成浮升力,而引起流体的流动与换热,这种现象称为自然对流。 在自然界与工程技术中,自然对流现象很多,譬如:地面与大气间温度差引起的复杂大气环流,工业排烟在大气中的混合与蔓延,工业废水在水域中的混合与扩散,各种电子器件的散热冷却,建筑物内的采暖,炉中的火焰与烟气的蔓延等。 在铸造、温控等涉及固/液相变的技术过程中,自然对流也是重要的物理过程。 与强制对流换热一样,自然对流也有层流与湍流,内部流动与外部流动的区别。

5-1 自然对流边界层分析 一、自然对流边界层的特点 以放置于静止流体中的竖壁为例。流体温度为T ∞,壁面温度为w T ,当w T T ∞>时,壁面附近的流体被加热,温度升高,密度变小,在重力场作用下产生浮力,使流体向上运动,如图。 (a) Pr 1=, ()T δδ= (b)Pr >>1, ()T δδ>

一般来说,不均匀的温度场仅出现在离壁面较近的流体层内,表现出边界层的特性。与强制对流不同,离壁面较远的流体静止不动。 对不同类的流体,其边界层内的速度分布、温度分布及控制机理有所不同。 (a) 当Pr 1=时,T δδ=,温度分布单调,速度分布在离壁面一定距离 处取得较大值,从壁面到速度极大值处,浮升力克服粘性力产生惯性力(速度)。随着离开壁面的距离的增加,浮升力减小,但粘性力以更快的速度减小,直至为零,即在此处取得极大值。从该点向边界层外缘,由于浮升力进一步减小,不足以维持如此大的惯性,所以速度又逐渐降低。 (b)Pr >>1时,T δδ>。在T y δ<区域,浮升力克服粘性力产生惯性;在T y δ>区域浮升力为零,流体靠消耗惯性力来克服粘性力。此时,温度分布与速度分布的宽度不同。 (c) Pr <<1时,T δδ<,热扩散能力大于粘性扩散能力。在y δ<区域,

2012高等传热学试卷

合肥工业大学机械与汽车工程学院研究生考试试卷 课程名称 高等传热学 考试日期 2012-12-19 姓名 年级 班级 学号 得分 所有答案写在答题纸上,写在试卷上无效!! 一、简答题(每题10分,共50分) 1. 简述三种基本传热方式的传热机理并用公式表达传热定律;传热问题的边界条件有哪两类? 2. 有限元法求解传热问题的基本思想是什么?基本求解步骤有哪些?同有限差分方法相比其优点是什么? 3. 什么是形函数?形函数的两个最基本特征是什么? 4. 加权余量法是建立有限元代数方程的基本方法,请描述四种常见形式并用公式表达。 5. 特征伽辽金法(CG )在处理对流换热问题时遇到什么困难?特征分离法(CBS )处理对流换热问题的基本思想是什么? 二、计算题(第1, 2题各15分,第3题20分,共50分) 1. 线性三角元的顶点坐标(单位:cm )为:i (2, 2)、j (6, 4)、k (4, 6),温度分别为 200℃, 180℃和 160℃,热导率k =0.5W/m ℃。试计算: (1)点(3,4)的温度及x 和y 方向的热流分量; (2)绘制170℃等温线。 2. 计算图1所示的二次三角元在点(2, 5)处的y N x N ????66和。 3. 图2所示一维方肋处于热稳定状态,截面2mm ×2mm ,长3cm ,热导率为k =100W/m ℃。左端面维持恒定温度150℃,右端面绝热,其余表面和空气间的对流换热系数h =120W/m 2,空气温度T a =20℃。请采用3个一维线元计算距左侧端面分别为1cm 、2cm 的截面和右侧端面的温度。提示:稳态导 热有限元代数方程:[]{}{}f T K =。单元截面积A ,截面周长P ,单元刚度矩阵:[]??????+??????--=211261111hPl l Ak e K ,单元载荷项:{}??????=112Pl hT a e f 。 -------------------------------------------------------------------------------------------------------------------------------------------------------- 装 订 线 T=150℃ 绝热 3cm 2mm 图1 图2

10高等传热学标准答案

2010高等传热学标准答案 合肥工业大学机械与汽车工程学院研究生考试试卷课程名称高等传热学考试日期2011-12-30姓名年级班级学号得分--------------------------------------------------------------------------------------------------------------------------------------------------------共 4 页第 1 页本试卷共5题,每题20分一、厚度为50mm的无限大平壁在稳态时壁内温度分布为t=100-10000x2,平壁材料的导热系数为40W/(),试计算:壁内单位体积内热源生成热;平壁中心面、两外表面的热流密度及这三个热流密度与内热源生成热之间的关系。2?d2t?d????t??40??2?104?8?105W/m3 ?0求得?解:根据2??dxdx2??(2)q???dt??40??2?104x?8?105

x dx??装订线平壁中心面:x=0,q=0;中心面是对称面;左外表面:x=-25mm,q=-2×104W/m2 右外表面:x=25mm, q=2×104W/m2 2d????t,所以q???dt???dx???x 因为:?2?dxdx0x二、用热电偶测量气流的温度,热电偶结点看成圆球,若气流和热电偶结点间的对流表面换热系数h=400W/m2K,定压比热容cp=400J/(),密度ρ=8500kg/m3 (1) 若时间常数为1s,求热电偶结点的直径; (2) 若将初始温度为25℃,时间常数为1s的热电偶放入200℃的气流中,热电偶结点温度达到199℃需要多少时间? (3) 若环境温度为25℃的大空间,热电偶结点的发射率为,忽略热电偶的导热损失,热电偶测得的气流温度为195℃,求气流的实际温度。解:时间常数:4?cpV?cpR3?c????1hA3hh?4?R23h?c3?4 00?1R???? ?cp8500?400?cp?R3D?2 R???hA???exp???可得???0?cVp??????cpVhAln?8500?400?? 200??ln? ?03?40025?200 考虑到辐射影

燃烧学》课程教学大纲

本科《工程燃烧学》课程教学大纲 课程中英文名称:工程燃烧学/Combustion Engineering 课程编码:012232309 课程性质:学科基础选修课 适用专业:安全工程 学时数: 48 ;其中:理论学时: 48 ;实践学时: 0 ;学分数: 3 ; 编写人:;审定人:; 一、课程简介 (一)课程教学目的与任务 课程教学目的:通过本课程的学习,使学生掌握燃料的分类及各种燃料的化学组成、定义、及燃烧计算方法。并能用所学的理论知识解释指导工程燃烧中遇到的问题,同时能够熟练的解决工程改造和设计中相关的燃烧计算问题。 课程教学任务:通过教学使学生掌握工程燃烧学的基本概念、基本理论,一方面为学生学习相关后续课程及进一步扩大专业知识面奠定坚实的基础;另一方面培养学生应用燃烧计算知识分析、解决工程实际中的燃烧问题的能力。 (二)课程教学的总体要求 使学生了解本课程的全部内容,理解大部分内容,掌握主要内容。 (三)课程教学内容 本课程主要内容包括:燃料概论、工程燃烧计算、燃烧理论基础、燃烧方法与燃烧装置、燃烧污染控制技术。 (四)先修课程及后续课程 先修课程:工程热力学与传热学、流体力学。 后续课程:矿井热灾害防治、矿井火灾防治。 二、课程教学总体安排 (一)学时分配建议表 学时分配建议表

(二)推荐教材及参考书目 1.教材 《工程燃烧学》.汪军,马其良,张振东中国电力出版社,2008年7月 2.参考书目 (1)《工程燃烧学》.童正明,张松寿,周文铸.中国计量出版社,2008年(2)《燃烧学》.徐通模.机械工业出版社,2011年 (三)课程考核方式 1.考核方式:期末闭卷笔试。 2.成绩构成:平时成绩占30%,期末考试占70%。 三、课程教学内容及基本要求 (一)燃料概论(6学时) 1.教学目的 使学生理解各种燃料的特点和使用性能。 2.教学重点与难点 (1)教学重点 固体及气体燃料成分表示方法及其换算,发热量计算。 (2)教学难点 燃料分析方法。 3.教学方法 以课堂讲授为主,课堂讨论、展示,上自习课,课下辅导等为辅的教学方法。4.教学内容: (1)燃料的概念与分类 (2)燃料的组成和特性 (3)固体燃料、液体燃料、气体燃料 (4)燃料分析方法 5.教学要求 理解:固体燃料、液体燃料、气体燃料的组成和特性; 了解:燃料分析方法; 掌握:固体及气体燃料成分表示方法及其换算,发热量计算。 6.学生练习 选取3~5个本章习题作为课后作业。 (二)工程燃烧计算(17学时) 1.教学目的 使学生理解并掌握燃烧过程中各项参数的基本计算。 2.教学重点与难点 (1)教学重点 燃烧空气量、烟气量、温度的相关计算。

高等传热学作业要点

1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: →→→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθd r rd t T k q r r sin ???-= ?θθ θθd r dr T r k q sin ???-= (1-3) θ? θ? ?rd dr T r k q ???- =sin 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ?θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6)

2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组 ????? ??? ?? ?=+??==??======??+??00 000212222θθ λθθθδθθθ θh y L y y y x x y x (2-1) 解上述方程可以把θ分解成两部分I θ和∏θ两部分分别求解,然后运用叠加原理∏+=θθθI 得出最终温度场,一下为分解的I θ和∏θ两部分:

高等传热学考试范围(答案)

1.强迫流动换热如何受热物性影响? 答:强迫对流换热与Re和Pr有关;加热与对流的粘性系数发生变化。 2.强化传热是否意味着增加换热量?工程上强化传热的收益和代价通常是指什么? 答:不一定,强化传热是指在一定条件(如一定的温差、体积、重量或泵功等)下增加所传递的热量。工程上的收益是减小换热器的体积节省材料和重量;提高现有换热器的换热量;减少换热器的阻力,以降低换热器的动力消耗等。代价是耗电,并因增大流速而耗功。 3.传热学和热力学中的热平衡概念有何区别? 答:工程热力学是温度相同时,达到热平衡,而传热学微元体获得的能量等于内热源和进出微元体热量之和,内热源散热是有温差的。 4.表面辐射和气体辐射各有什么特点? 为什么对辐射板供冷房间,无需考虑气体辐射的影响,而发动机缸内传 热气体辐射却成了主角? 答:表面辐射具有方向性和选择性。气体辐射的特点:1.气体的辐射和吸收具有明显的选择性。2. 气体的辐射和吸收在整个气体容器中进行,强度逐渐减弱。空气,氢,氧,氮等分子结构称的双原子分子,并无发射和吸收辐射能的能力,可认为是热辐射的透明体。但是二氧化碳,水蒸气,二氧化硫,氯氟烃和含氯氟烃的三原子、多原子以及不对称的双原子气体(一氧化碳)却具有相当大的辐射本领。房间是自然对流,气体主要是空气。由于燃油,燃煤及然气的燃烧产物中通常包含有一定浓度的二氧化碳和水蒸气,所以发动机缸内要考虑。 5.有人在学完传热学后认为,换热量和热流密度两个概念实质内容并无差别,你的观点是? 答:有差别。热流密度是指通过单位面积的热流量。而换热量跟面积有关。 6.管内层流换热强化和湍流换热强化有何实质性差异?为什么? 答:层流边界层是强化管内中间近90%的部分,层流入口段的热边界层比较薄,局部表面传热系数比充分发展段高,且沿着主流方向逐渐降低。如果边界层出现湍流,则因湍流的扰动与混合作用又会使局部表面传热系数有所提高,再逐渐向于一个定值。而湍流是因为其推动力与梯度变化和温差有关,减薄粘性底层,所以强化壁面。 7.以强迫对流换热和自然对流换热为例,试谈谈你对传热、流动形态、结构三者之间的关联 答:对流换热按流体流动原因分为强制对流换热和自然对流换热。一般地说,强制对流的流速较自然对流高,因而对流换热系数也高。例如空气自然对流换热系数约为5~25 W/(m2?℃),强制对流换热的结构影响了流体的流态、流速分布和温度分布,从而影响了对流换热的效果。流体在管内强制流动与管外强制流动,由于换热表面不同,流体流动产生的边界层也不同,其换热规律和对流换热系数也不相同。在自然对流中,流体的流动与换热表面之间的相对位置,对对流换热的影响较大,平板表面加热空气自然对流时,热面朝上气流扰动比较激烈,换热强度大;热面朝下时流动比较平静,换热强度较小。 8.我们经常用Q=hA·Δt.计算强迫对流换热、自然对流换热、沸腾和凝结换热,试问在各种情况下换热系数与 温差的关联? 答:强迫对流的换热系数与Re,Pr有关但与温差无关,自然对流与Gr的0.25次方有关联,即与温差有关,凝结换热换热系数是温差的-0.25次方。 9.试简述基尔霍夫定理的基本思想 答:一、基尔霍夫第一定律:汇于节点的各支路电流的代数和等于零,用公式表示为: ∑I=0 又被称作基尔霍夫电流定律(KCL)。 二、基尔霍夫第二定律:沿任意回路环绕一周回到出发点,电动势的代数和等于回路各支路电阻(包括电 源的内阻在内)和支路电流的乘积(即电压的代数和)。用公式表示为: ∑E=∑RI 又被称作基尔霍夫电压定律(KVL)。 10.简述沸腾换热与汽泡动力学、汽化核心、过热度这些概念的关联 答:沸腾是指在液体内部以产生气泡的形式进行的气化过程,就流体运动的动力而言,沸腾过程又有大容器沸

工程热力学和传热学课程教学大纲

《工程热力学与传热学》课程教学大纲 Thermodynamics and Heat Transfer 课程名称:工程热力学与传热学课程编号:130106009 课程性质:专业基础课(必修) 学时:32(含4学时实验学时)学分:2.0 适用对象:机械设计制造及其自动化专业、机械设计制造及其自动化专业(卓越计划试点专业)、机械设计制造及其自动化专业(核电装备工程)、机械设计制造及其自动化专业(机械电子)、材料控制与成型专业 先修课程:《高等数学》、《大学物理》等 课程负责人:肖佩林大纲执笔人:肖佩林审核人:罗金良 一、课程目标 该课程为专业基础课程可以支撑毕业要求1、2的达成。在阐述热力学普遍原理、热量传递机理的基础上,从工程观点来研究热能与其他形式能量间的转换规律、热量传递规律,研究热力学原理、传热学原理在技术上的各种具体应用。通过本课程的学习可以使同学们掌握遵循能量传递和转换技术的客观规律来合理组织和优化各种热力系统的工程方法;能有效地使用增强或削弱传热的措施来解决工程实际问题。 二、课程的主要教学内容和教学方法 第一篇工程热力学 第一章基本概念 1.基本内容: 热力系统;平衡状态及状态参数;状态方程与状态参数坐标图;准平衡过程与可逆过程;功量与热量。 2.教学基本要求: 了解:热功转换关系;热力循环及其性能指标。 掌握:热力系统及其分类;平衡状态及状态参数;状态参数的数学特征;准平衡过程和可逆过程的定义及区分;可逆过程功和热量的计算。 3.教学重点难点: 重点:热力系统及其分类;平衡状态及状态参数;可逆过程与准平衡过程的区别与联系。 难点:准平衡过程和可逆过程。

4.教学方法: 多媒体教学法、提问法、课堂讨论法。 5.与毕业要求的对应关系: 学生能正确理解热能转换中常用的一些术语,基本概念;掌握热力系及其分类,平衡状态和状态参数,状态参数的数学特征;了解实际热力循环的类型及其性能指标。 第二章热力学第一定律 1.基本内容: 热力系统的储存能;热力学第一定律的实质;闭口系统的热力学第一定律表达式;开口系统的稳定流动能量方程式;稳定流动能量方程式的应用。 2.教学基本要求: 了解:热力系统储存能的组成;热力学第一定律的实质; 掌握:热力学第一定律应用于闭口系统、稳定流动开口系的能量表达式;稳定流动能量方程式在实际热工设备中的应用。 3.教学重点难点: 重点:热力学能、焓的概念及其物理意义;推导热力学第一定律应用于闭口系统、稳定流动开口系的能量表达式;稳定流动能量方程式在实际热工设备中的应用 难点:稳定流动开口系能量表达式的推导及其在实际热工设备中的应用。 4.教学方法: 多媒体教学法、公式推导、案例教学法。 5.与毕业要求的对应关系: 通过学习相关理论知识,是学生掌握能量传递和转换时在数量上遵循的规律——热力学第一定律,学会用热力学第一定律判定第一类永动机不能实现;学会分析实际热工设备中能量转换关系。 第三章理想气体的性质与热力过程 1.基本内容: 理想气体状态方程式;理想气体的热容、热力学能、焓和熵;理想混合气体;理想气体的热力过程; 2.教学基本要求: 了解:理想气体与实际气体的区别;理想混合气体的成分表达; 掌握:克拉贝隆方程的不同形式并进行相关计算;理想气体热容、热力学能、焓和熵的概念及其计算;理想气体热力过程分析及计算。 3.教学重点难点: 重点:理想气体热容、热力学能、焓和熵的概念及其计算;理想气体热力过程分析及计算。

高等传热学课件对流换热-第6章-1

第六章 高速流动对流换热
在前面几章介绍的强制对流换热中, 我们假设速度和速度梯度充 分小,以致动能和粘性耗散的影响可以忽略不计。现在考虑高速和粘 性耗散的影响。我们主要介绍有更多重要应用的外部边界层。
6.1 高速流对流换热基本概念
高速对流主要涉及以下两类现象: z 从机械能向热能的转换,导致流体中的温度发生变化; z 由于温度变化使流体的物性发生变化。 空气一类气体若具有极高的速度,将会导致超高温离解、质量浓 度梯度,并因此发生质量扩散,使问题变得更加复杂。这里仅限于关 注未发生化学反应的边界层;对空气来说,这意味着我们将不考虑温

度超过 2000K 或者马赫数高于 5 的情况。对液体,如果普朗特数足 够高的话,粘性耗散实际上在中等速度时就具有很可观的作用。 我们的讨论仅限于普朗特数接近于 1 的气体。 有关高速对流的研究大都涉及对机械能转换和流体物性随温度 变化两个因素的总体考虑,很难看到它们单独的影响。这里,我们暂 不考虑变物性的影响,首先讨论能量转换问题。 能量转换过程能可逆地发生,也能不可逆地发生。比如,在边界 层内,激波与粘性的相互作用使得机械能与热能间的不可逆转换增 大,无粘性的速度变化(比如在接近亚音速滞止点附近流体的减速) 则产生可逆的,或者非常接近可逆的能量转换。高速边界层滞止点的 比较能很好地说明这两种情况的明显区别。 z 在滞止点(图 6-1)处速度降低,边界层以外的压力和温度提高。 对于亚音速流动, 该过程几乎是等熵的, 流体粘度不起什么作用。 无论减速可逆还是不可

逆,滞止区边界层以外的流体 温度等于滞止温度, 也就是说, 流体温升来自于绝热减速:
? T∞
V2 = T∞ + 2c
(6.1.1)
V
若不考虑变物性影响,并
* 用 T∞ 代替 T∞ , 低速滞止点的解
也能适用于高速滞止点问题:
? qw = h (Tw ? T∞ )
图 6-1 滞止点的流动
(6.1.2)
z 但高速边界层问题有所不同。 如果自由速度很高, 边界层以内速 度梯度很大, 边界层内因粘性切应力产生粘性耗散。 如果物体是 绝热的,那么耗散产生的热量可以靠分子或者涡漩传导的机理, 从靠近表面的向边界层外传递出去, 如图 6-2 所示。 稳态条件下, 在粘性耗散和热传导之间存在一种平衡状态, 导致图 6-2 所示的 温度分布。此条件下的表面温度就等于绝热壁面温度 Taw 。

相关文档
最新文档