实验5 水中细菌总数的检测

实验5 水中细菌总数的检测
实验5 水中细菌总数的检测

实验五水中细菌总数的检测

一、实验目的

1.采用标准平皿法对水样中细菌作计数。

2.掌握微生物实验中无菌操作技术方法。

二、实验原理

水中细菌总数往往同水体受有机物污染的程度呈正相关,它是评价水质污染程度的一个重要指标之一。由于重金属及某些其他有毒物质对细菌有杀灭或抑制作用,因此总细菌数少的水样,并不能排除已被这些物质所污染。

试验采用标准平皿法对水样中细菌作计数,这是一种测定水中好氧的和兼性厌氧的异养细菌密度的方法,由于细菌在水体中能以单独个体、成对、链状,成簇或成团的形式存在,此外没有单独的一种培养基或某一环境条件能满足一个水样中所有细菌的生理要求,所以由此法所得的菌落数实际上要低于被测水样中真正存在的活细菌的数目。细菌总数是指l ml水样在营养琼脂培养基中,37oC、24h 培养后所生长的菌落数。一般规定,1ml自来水中总菌数不得超过100个。

三、材料和器皿

1.培养基:营养琼脂培养基

牛肉膏:3-5 g ;NaCl :5 g ;蛋白胨:10 g ;琼脂:15-20 g;

H2O :1000 ml ;pH :7.0-7.2.

2.无菌采样瓶、灭菌移液管、灭菌培养皿,盛有90ml及9ml灭菌蒸馏水的锥形瓶和试管。

四、方法和步骤

1.采集水样。

2.吸取10ml水样(河水、污水、游泳池水或港湾水等),注入罐有90ml无菌水的三角瓶中,混匀成10-1稀释液,在吸水样前,水样应彻底搅动均匀。

3.按10倍稀释法将水样稀释成10-2、10-3、l0-4。

4.营养琼脂培养基(用于河水样)倒平皿(厚度约2-3毫米,12毫升)水平放置至固化。

5.根据水样的洁净程度,污染严重者选取10-2、10-3、l0-4稀释度;中等的选取10-1、10-2、10-3稀释度,每个稀释液分别注入两个培养皿,每皿0.2 ml,用

玻璃刮刀涂匀。稀释度的选择是本试验精确度的关键,选择适宜者,平皿上菌落总数介于30~300个之间。

6.将培养皿倒置于37oC 培养24h,可观察出明显菌落。

五、结果与分析

取同一稀释度的平板培养物,依菌落计算原则进行计算。

1.菌落计算原则

平皿菌落的计算,可用肉眼观察,必要时用放大镜检查,防止遗漏,也可借助于菌落计数器计数。对长得相当接近,但不相触的菌落,应予以一一计数。对链状菌落,应当作为一个菌落来计算。平皿中若有较大片状菌落时则不宜采用,若片状菌落少于平皿的一半时,而另一半中菌落分布又均匀,则可将其菌落数的2倍作为全皿的数目。算出同一稀释度的平均菌落数,供下一步计算时用。

2. 计算方法

2-1.首先选择平均菌落数在30~300个进行计算。当只有一个稀释度的平均菌落数符合此范围时,即可用它作为平均值乘其稀释倍数(见表1的例4)。

2-2.若有两个稀释度的平均菌落数都在30~300之间,则应按两者的比值来决定。若其比例小于2,应报告两者的平均数,若大于2,则报告其中较小的数字(见表1的例2和例3)。

2-3.如果所有稀释度的平均菌落数均大于300,则应按稀释度最高的平均菌落数乘以稀释倍数报告之(见表1的例4)。

2-4.若所有稀释度的平均菌落数均小于30,则应按稀释度最低的平均菌落数乘以稀释倍数报告之(见表1的例5)。

2-5.如果全部稀释度的平均菌落数均不在30~300之间,则以最接近300或30的平均菌落数乘以稀释倍数报告之(见表1的例6)。

2-6.菌落计数的报告,菌落在100以内时,按实有数报告;大于100时,采用二位有效数字,在二位有效数字后面的数值,以四舍五入方法计算,为了缩短数字后面的零数也可用10的指数来表示(见表1的“报告方式”栏)。

六、思考题

1、本实验为什么要选择适当的稀释度?

2、在本实验操作中应该注意什么问题?

附:

表1 稀释度选择及菌落报告方式

细菌总数测定操作规程

细菌总数检测操作规程 1 原理 试样经过处理,稀释至适当浓度,在一定条件(如使用特定的培养基,在温度30℃±1℃培养72h±3h等)下培养后,所得1g(mL)试样中所含细菌总数。 2 试剂与仪器 2.1 所用器具 三角烧瓶、玻璃珠、具塞试管、培养皿、1000μL枪头、5mL枪头、称量勺、接种环、接种针、移液器 2.2 仪器:分析天平、恒温培养箱、微型振荡器、超净工作台、高压灭菌锅 2.3 所用试剂和培养基 营养琼脂 取营养琼脂32.0g,加入蒸馏水1L,搅拌加热至完全溶解,分装三角瓶,121℃高压灭菌15min,备用。 3、操作步骤 3.1配制0.85%生理盐水。 称取氯化钠8.5g溶于1000mL蒸馏水中。 3.2三角烧瓶加入生理盐水90mL和玻璃珠,试管中加入生理盐水9mL,121℃灭菌30min。(三角烧瓶个数与样品数量一致,试管数量与稀释次数相关) 3.3将1000μL枪头、培养皿、5mL枪头、称量勺,121℃灭菌30min。(注意计算数量)3.4将枪头、培养皿置于烘箱103℃烘干。(1-3步需提前一天完成) 3.5对称量房间进行紫外灭菌30分钟,关灯静置60 min。以无菌操作取样品10g于含90mL 生理盐水三角烧瓶中,于振荡器上振荡30min,制成1:10的均匀稀释液。 3.6用1000μL枪头吸取1:10稀释液1mL,沿管壁慢慢注入含有灭菌生理盐水9mL的试管中,于振荡器上混合均匀,制成1:100的均匀稀释液。 3.7另去一只1mL灭菌吸管,按照上述操作方法,作10倍递增稀释,如此每递增稀释一次,即更换一支灭菌吸头。 3.8选择2个~3个适宜稀释度,分别在作10倍递增稀释的同时,即以吸取该稀释的吸管移1mL稀释液于灭菌平皿内,每个稀释度作两个培养皿。 3.9稀释液移入培养皿后,及时将凉至46℃±1℃的培养基(可放置46℃±1℃水浴锅内保温)注入培养皿约15mL,小心转动培养皿使试样与培养基充分混匀(从稀释试样到倾注培.

水中大肠杆菌的检测方法

水中大肠杆菌的检测方法 一、方法概要本方法系用以检测水中革兰氏染色阴性,不产生内生孢子之杆状好氧或兼性厌氧菌,且能在351 ℃、483小时发酵乳糖并产生酸及气体之大肠杆菌群(Coliform group);在不同体积或不同稀释度之水样所产生之结果,以「100 mL水中最大可能数(MPN/100 mL)」表示100 mL水中存在之大肠杆菌群数目。 二、适用范围本方法适用地面水体、地下水体、废水、污水及水源水质水样中大肠杆菌群之检验。 三、干扰(一)水样中含有抑制或促进大肠杆菌群细菌生长之物质。(二)检测使用的玻璃器皿及设备含有抑制或促进大肠杆菌群细菌生长的物质。 四、设备(一)量筒:100至1000 mL之量筒。(二)吸管:有 0、1刻度之10 mL灭菌玻璃吸管或市售无菌塑料吸管,或无菌微量吸管(micropipet)。(三)试管:大小约15015 mm之试管或有盖螺旋试管。(四)发酵管(fermentation tube):大小约229 mm 之玻璃管。(五)稀释瓶:容量约100 mL可灭菌之硼硅玻璃制品。 (六)锥形瓶:200至2000 mL之可灭菌硼硅玻璃制品。(七)采样容器:容量120 mL以上无菌之硼硅玻璃瓶或无菌塑料有盖容器,或市售无菌袋。(八)冰箱:温度能保持在42℃者。(九)天平:待测物重量大于2 g时,须能精秤至0、01 g;待测物重量不大于2 g

时,须能精秤至0、001 g。()培养箱:温度能保持在351℃者。 (一)高压灭菌釜:温度能维持在121℃(压力约15 lb/in2 或1、 1 Kg/cm2)灭菌15分钟以上者。(二)高温干热烘箱:如用于玻璃器皿等用具之灭菌,温度须能保持在160℃达2小时或170℃达1小时以上者。(三)接种环:为白金或镍铬合金制,适用于细菌接种或移植,亦可使用无菌塑料制品。(四)pH计:精确度达0、1 pH单位。 五、试剂(一)试剂水:蒸馏水或去离子水,导电度在25 ℃时小于2 μ mho / cm(μS / cm)。(二)培养基,应使用市售商品化培养基。1、硫酸月桂酸胰化蛋白胨培养基(Lauryl sulfate tryptose broth,简称LST) 1倍浓度LST培养基含有下列成份:胰化蛋白胨(Tryptose) 20、0g乳糖(Lactose) 5、0g氯化钠(NaCl) 5、0g磷酸氢二钾(K2HPO4) 2、75g磷酸二氢钾(KH2PO4) 2、75g硫酸月桂酸钠(Sodium lauryl sulfate) 0、1g试剂水 1L 配成2倍浓度(取 71、2 g LST培养基粉末溶于1 L试剂水),完全溶解后,分取10 mL注入装有倒置发酵管之试管内,经121℃灭菌15分钟,

细菌总数的测定

细菌总数的测定 水与人类的生产活动和日常生活息息相关。经济建设的高速发展,往往会使生活用水的水源水受到水中有害有毒物质的污染;而生活污水、人、畜粪便会使甚或用水的水源水受到腐生性微生物的污染。被污染的水都不宜饮用。当水体中含大量的病原问生物是往往会引起传染病的发生,人体和动物体的肠道中大约有400多种细菌,虽然,其中的腐生菌进入水体不会引发人类的疾病,但随着粪便一起排除的致病菌,如霍乱弧菌、伤寒沙门氏菌、痢疾志贺氏菌、阿米巴虫、脊髓灰质炎病毒和传染性感染病毒等致病性微生物,则会引发人体的肠道传染病。为保护人体健康,防止因水源水污染而造成的疾病发生和流行,必须对生活用水及其水源水进行严格的水中细菌学检查。 测定水样是否合乎引用标准,一般包括:水中细菌总数测定和大肠菌群测定。本实验以自来水和天然水为水样进行细菌总数的测定 一、实验目的 (1)学习水样的采取和水样中细菌总数测定的方法 (2)了解和掌握平板菌落计数的原则 二、试验原理 水中的细菌数可反映出水体被有机物污染的程度。细菌总数越多,说明水中有机物的含量就越高,本试验应用平板菌落计数来测定水样中的细菌总数。由于水中细菌的种属不一,它们对营养成分和生长条件的要求差别很大,不可能设计出一种培养基在同一固定的条件下,能满足水中所有细菌的营养要求使其都能生长繁殖,形成菌落。然而,肠道中的绝大多数腐生性和致病性的细菌,可在营养丰富的牛肉膏蛋白胨培养基上进行生长,出现肉眼可见的菌落,虽然这样设计出来的水中细菌的总数实际上是一种近似值,但它基本上能代表水样中细菌的数量。故而水中的细菌总数的测定和计算是指:在牛肉膏蛋白胨琼脂培养基上,1ml水样,经37℃,24h培养后所生出来的总菌数(包括腐生和致病细菌),我国饮用水的 卫生学指标规定:在1ml自来水中细菌总数不得超过100个(1×102)。 三、试验材料和用具 (1)培养基牛肉膏蛋白胨琼脂培养基 (2)用具灭菌三角烧杯(体积为50ml或100ml),具玻塞的试剂瓶(体 积为250ml,需灭菌),灭菌培养基(Ф=9cm ),灭菌吸管或灭菌的 塑料吸嘴,稀释水样用无菌水(在Ф16mm×160mm试管中加9ml 蒸馏水,灭菌),酒精 四、试验方法 (1)以无菌操作、用10倍稀释法稀释水样。 (2)用平皿倾注制备待测水样平皿。 五、实验内容 1、水样的采取 (1)自来水先将自来水龙头用火焰(酒精灯火用长柄镊子夹酒精棉球)灼烧2-3min灭菌,再开启水龙头水水流出5min。以灭菌三角烧杯接取水样,待测(为节约用水,自来水龙头一次灭菌后,试验者依次采取水样)。 (2)池塘水、河水或湖水应取距水面10-15cm的深层水样。先将已灭菌具玻

水中细菌总数的测定

水中细菌总数的测定 一、目的要求 l.学习水样的采取方法和水样细菌总数测定的方法。 2.了解水源水的平板菌落计数的原则。 二、基本原理 本实验应用平板菌落计数技术测定水中细菌总数。由于水中细菌种类繁多,它们对营养和其他生长条件的要求差别很大,不可能找到一种培养基在一种条件下,使水中所有的细菌均能生长繁殖,因此,以一定的培养基平板上生长出来的菌落,计算出来的水中细菌总数仅是一种近似值。目前一般是采用普通肉膏蛋白胨琼脂培养基。 三、器材 l.培养基肉膏蛋白胨琼脂培养基,无菌水。 2.仪器或其他用具灭菌三角烧瓶,灭菌的带玻璃塞瓶,灭菌培养皿,灭菌吸管,灭菌试管等。 四、操作步骤 l.水样的采取 (1)自来水先将自来水龙头用火焰烧灼3min灭菌,再开放水龙头使水流 5min后,以灭菌三角烧瓶接取水样,以待分析。 (2)池水、河水或湖水应取距水面l0~15cm的深层水样,先将灭菌的带玻璃塞瓶,瓶口向下浸入水中,然后翻转过来,除去玻璃塞,水即流入瓶中,盛满后,将瓶塞盖好,再从水中取出,最好立即检查,否则需放入冰箱中保存。 2.细菌总数测定 (1)自来水

①用灭菌吸管吸取lml水样,注入灭菌培养皿中。共做两个平皿。 ②分别倾注约15mL己溶化并冷却到45℃左右的肉膏蛋白胨琼脂培养基,并立即在桌上作平面旋摇,使水样与培养基充分混匀。 ③另取一空的灭菌培养皿,倾注肉膏蛋白胨琼脂培养基15mL作空自对照。 ④培养基凝固后,倒置于37℃温箱中,培养24h,进行菌落计数。 ⑤两个平板的平均菌落数即为lml水样的细菌总数。 (2)池水、xx或xx等 ①稀释水样取3个灭菌空试管,分别加入9ml灭菌水。取lml水样注入第一管9ml灭菌水内、摇匀,再自第一管取1ml至下一管灭菌水内,如此稀释到第三管,稀释度分别为10- 1、10-2与10-3。稀释倍数看水样污浊程度而定,以培养后平板的菌落数在30~300个之间的稀释度最为合适,若三个稀释度的菌数均多到无法计数或少到无法计数,则需继续稀释或减小稀释倍数。 一般中等污秽水样,取10- 1、10- 2、10-3三个连续稀释度,污秽严重的取10- 2、10- 3、10-4三个连续稀释度。 ②自最后三个稀释度的试管中各取lmL稀释水加入空的灭菌培养皿中,每一稀释度做两个培养皿。 ③各倾注15ml已溶化并冷却至45℃左右的肉膏蛋白胨琼脂培养基,立即放在桌上摇匀。

水中细菌总数的检测

水中细菌总数的检测 1.?实验目的? 1、学习并掌握水的细菌学检测方法? 2、了解水质状况与细菌数量在饮用水检测中的重要性。? 2.?菌落总数standard?plate-count?bacteria? 水样在营养琼脂上、有氧条件下37°C培养48?h后,所得1?mL水样所含菌落的总数。?细菌总数是评价水质污染程度的主要卫生指标,所测定的细菌总数增多说明水被生活废弃物污染。由于结果不能说明污染的来源,因此必须结合总大肠菌群数来判断污染源和安全程度。? 3.?培养基与试剂? 2.1?营养琼脂成分? 2.2?制法:根据实际需要量,按照上述配方称取各成分混合后,加热溶解,调整pH为 7.4~7.6,分装于玻璃容器中(如用含有较多杂质的琼脂,应先过滤。),经103.43?kPa(121°C,15?lb)湿热灭菌20?min,储存于冷暗处备用。? 4.?仪器和材料? ?仪器:高压蒸汽灭菌器、干热灭菌箱、水热恒温培养箱、电炉、天平、冰箱。??材料:灭菌平皿(直径9?cm)、灭菌试管、刻度吸管、三角烧瓶、采样瓶、酒精灯、消毒水、镊子、试管架等。?放大镜或菌落计数器、pH计或精密pH试纸、火柴或打火机。? 5.?样品采集? ?自来水的取样:先将自来水龙头用酒精棉擦拭,再用酒精灯火焰灭菌,打开龙头放水3-5?min,用无菌空三角瓶接取水样200?ml。? ?纯净水取样:用消毒酒精棉擦拭纯水机出口后,先放走部分水,再用无菌空三角瓶接取水样200毫升。? ?地表水的取样:应取距水面10—15?cm的深层水样,先将灭菌的带玻璃塞瓶,瓶口向下浸入水中,然后翻转过来,除去玻璃塞,水即流入瓶中,盛满后,将瓶塞盖好,再从水中取出,最好立即检查,否则需放入冰箱中保存。? 6.?检验步骤? ?生活饮用水(自来水、纯净水):以无菌操作方法用灭菌吸管吸取1?mL充分混匀的水样,注入灭菌培养皿中,倾注约15?ml已融化并冷却到45°C左右的营养琼脂培养基,并立即旋摇平皿,使水样与培养基充分混匀。每次检验时应做一平行接种,同时另用一个平皿只倾注培养基作为空白对照。? 待冷却凝固后,翻转平皿,使底面向上,置于36°C±1°C条件下连续培养48?h,进行菌落计数,即为1?ml水样中的菌落总数。? ?水源水:以无菌操作方法吸取1?ml充分混匀的水样,注入盛有9?ml灭菌生理盐水的试管中,混匀呈1:10稀释液。? 吸取1:10稀释液1?ml,注入盛有9?ml灭菌生理盐水的试管中,混匀呈1:100稀释液。按同法依次稀释成1:1000、1:10000稀释液备用。如此递增稀释一次,必须更换一支刻度吸管。? 用灭菌吸管吸取1?ml未稀释的水样和2~3个适宜稀释度的水样,分别注入灭菌培养皿内,其余操作同6.1?生活饮用水的检验步骤。? 7.?菌落计数及报告方法? ?作平皿菌落计数时,可用眼睛直接观察,必要时用放大镜检查以防遗漏。在记下各平皿的菌落数后,应求出同稀释度的平均菌落数,供下一步计算时应用。在求同稀释度的平均数时,若其中一个平皿有较大片状菌落产生时,则不宜采用,而应以无片状菌落产生的平皿作为该稀释度的平均菌落数。若片状菌落不到平皿的一半,而其余一半中菌落数分布又很均匀,则可将此半皿计数后乘2以代表全皿菌落数。然后再求该稀释度的平均菌落数。??不同稀释度的选择及报告方法? ?首先选择平均菌落数在30~300之间者进行计算,若只有一个稀释度的平均菌落数符合此范围时,则将该菌落数乘以稀释倍数报告之(见表1中实例1)。?

细菌鉴定和耐药性检测方法的发展

细菌鉴定和耐药性检测对于指导临床精确用药和及时治疗患者具有重要意义。目前临床上进行细菌鉴定和耐药检测仍以表型检测方法为主,主要包括:传统手工鉴定与药敏实验方法、自动化药敏鉴定系统。传统方法虽然能够满足临床的部分需要,但这些方法仍然存在一些缺点,例如检测时间较长和检测结果不够准确等。因此,随着分子生物学技术在临床检验领域的应用,近年来发展了一系列快速细菌鉴定和(或)耐药检测技术,例如基于PCR技术和DNA探针杂交以及生物芯片技术等,这类方法的特点是快速而准确,一般在几个小时之内就可以得到检测结果。 1传统方法在细菌鉴定和耐药性检测中的应用临床手工细菌鉴定和细菌药敏实验,是临床上尤其在中小医院应用最广泛的方法。细菌鉴定主要是根据细菌对生化物质的代谢特点进行,药敏方法包括纸片扩散法(常规实验室使用较普遍)和抗生素稀释法(MIC法)等。这些方法的特点是方便、易操作,成本低,而且灵活性强,测定的细菌和药物可灵活选择。其缺点是操作烦琐、经验依赖性强、报告结果慢,不能完全适应临床治疗的需要。 使用自动化药敏和鉴定系统,是临床微生物学实验包括体外药物敏感实验的发展方向。最有代表性的是VITEK-AMS微生物自动分析系统,可同时完成细菌鉴定和药敏实验。该套系统的检测卡片分为14种,每一种鉴定卡片含有25种以上的生化反应指标,基本与常规检测鉴定相同。此方法的优点是简便、快速、鉴定范围广,受人为的影响小,可靠性高。但它仍需要细菌培养的步骤,准确性也受到一定限制,同时其耗材价格较为昂贵。使用这类仪器的主要是三级甲等以上的大型医院。在细菌快速鉴定方面最有代表性的是mini-Vidas全自动免疫分析仪,其原理是应用细菌的特异性抗体对细菌进行鉴定,以荧光为标记,进行自动化检测。其最大优点是速度快,可以在40min内快速鉴定沙门氏菌、大肠杆菌O157∶H7、单核李斯特菌,空肠弯曲杆菌和葡萄球菌肠毒素等。但检测指标过少,主要限于这几种菌,而且也不能进行药敏实验。 目前,微生物鉴定技术中除了少数医院使用半自动、全自动的细菌鉴定仪外,大多数医院主要还是使用常规鉴定技术进行细菌菌种的鉴定。 2分子生物学技术在细菌种属鉴定中的应用采用与系统发育学相关的基因实现对细菌血清型的分型,越来越成为一种趋势。目前,利用基因检测方法对细菌进行种属鉴定所涉及的基因包括细菌16srRNA基因或5SrRNA序列、HSP基因家族、gyrB基因以及细菌特异基因等。 2.1利用16SrRNA基因序列作为分类依据的原因利用16SrRNA基因序列对细菌进行菌种鉴定在目前应用较多,也越来越被临床所接受。在细菌分类学著作中,如《伯杰氏系统细菌学手册》,越来越倾向于选择16SrRNA基因序列作为分类的依据。主要原因有下面几点: 2.1.1rRNA存在于所有生物中,在生物进化过程中其功能保持不变。16SrRNA基因普遍存在于原核生物中,在真核生物中其同源分子是18SrRNA。2.1.216SrRNA最能反映细菌间的亲缘关系。在16SrRNA分子中,既含有高度保守的序列,又含 细菌鉴定和耐药性检测方法的发展文章编号:1672-3384(2006)-04-0039-06 【作者】杨华为蒋迪王璨赵传赞高华方 生物芯片北京国家工程研究中心(北京102206) 【中图分类号】R915【文献标识码】B

水中细菌总数的测定

水中细菌总数的检测 1.实验目的 1、学习并掌握水的细菌学检测方法 2、了解水质状况与细菌数量在饮用水检测中的重要性。 2.菌落总数standard plate-count bacteria 水样在营养琼脂上、有氧条件下37°C培养48 h后,所得1 mL水样所含菌落的总数。 细菌总数是评价水质污染程度的主要卫生指标,所测定的细菌总数增多说明水被生活废弃物污染。由于结果不能说明污染的来源,因此必须结合总大肠菌群数来判断污染源和安全程度。 3.培养基与试剂 营养琼脂成分 制法:根据实际需要量,按照上述配方称取各成分混合后,加热溶解,调整pH为~,分装于玻璃容器中(如用含有较多杂质的琼脂,应先过滤。),经 kPa(121°C,15 lb)湿热灭菌20 min,储存于冷暗处备用。 4.仪器和材料 4.1仪器:高压蒸汽灭菌器、干热灭菌箱、水热恒温培养箱、电炉、天平、冰箱。 4.2材料:灭菌平皿(直径9 cm)、灭菌试管、刻度吸管、三角烧瓶、采样瓶、酒精灯、消毒水、 镊子、试管架等。 4.3放大镜或菌落计数器、pH计或精密pH试纸、火柴或打火机。 5.样品采集 5.1自来水的取样:先将自来水龙头用酒精棉擦拭,再用酒精灯火焰灭菌,打开龙头放水3-5 min, 用无菌空三角瓶接取水样200 ml。 5.2纯净水取样:用消毒酒精棉擦拭纯水机出口后,先放走部分水,再用无菌空三角瓶接取水样 200毫升。 5.3地表水的取样:应取距水面10—15 cm的深层水样,先将灭菌的带玻璃塞瓶,瓶口向下浸入 水中,然后翻转过来,除去玻璃塞,水即流入瓶中,盛满后,将瓶塞盖好,再从水中取出,最好立即检查,否则需放入冰箱中保存。 6.检验步骤 6.1生活饮用水(自来水、纯净水):以无菌操作方法用灭菌吸管吸取1 mL充分混匀的水样,注 入灭菌培养皿中,倾注约15 ml已融化并冷却到45°C左右的营养琼脂培养基,并立即旋摇平皿,使水样与培养基充分混匀。每次检验时应做一平行接种,同时另用一个平皿只倾注培养基作为空白对照。 待冷却凝固后,翻转平皿,使底面向上,置于36°C±1°C条件下连续培养48 h,进行菌落计数,即为1 ml水样中的菌落总数。 6.2水源水:以无菌操作方法吸取1 ml充分混匀的水样,注入盛有9 ml灭菌生理盐水的试管中,

菌落总数测定

菌落总数的测定 基础知识: 菌落是指细菌在固体培养基上生长繁殖而形成的能被肉眼识别的生长物,它是由数以万计相同的细菌集合而成。当样品被稀释到一定程度,与培养基混合,在一定培养条件下,每个能够生长繁殖的细菌细胞都可以在平板上形成一个可见的菌落。 菌落总数是指在一定条件下(如需氧情况、营养条件、pH、培养温度和时间等)每g(mL)检测样品所生长出来的细菌菌落总数。由于厌氧或微需氧菌、有特殊营养要求的以及非嗜中温的细菌,现有条件不能满足其生理需求,故难以繁殖生长。因此菌落总数并不表示实际其中的所有细菌总数,也不能区分其中细菌的种类,所以有时被称为杂菌数、需氧菌数等。 菌落总数测定是用来判定食品被细菌污染的程度及卫生质量,它反映食品在生长过程中是否符合卫生要求,以便对被检样品做出适当的卫生学评价,菌落总数的多少在一定程度上标志着食品卫生质量的优劣。中国国家标准是国内常用的检验方法。 菌落总数测定的卫生学意义: 食品本身的新鲜程度 加工、贮存运输过程中是否受到污染 卫生学指标:食品中菌落总数越多,则食品含有致病菌的可能性越大,食品质量越差;菌落总数越小,则食品含有致病菌的可能性越小。须配合大肠菌群和致病菌的检验,才能对食品做出较全 面的评价。 细菌在平板计数琼脂上的菌落特征蔓延菌在平板计数琼脂上的菌落特征方法来源:

GB 4789.2-2016 食品安全国家标准食品微生物学检验菌落总数测定 1、范围 本标准规定了食品中菌落总数(Aerobic plate count)的测定方法。 本标准适用于食品中菌落总数的测定。 2、术语和定义 菌落总数aerobic plate count 食品检样经过处理,在一定条件下(如培养基、培养温度和培养时间等)培养后,所得每g(mL)检样中形成的微生物菌落总数。 3、设备和材料 除微生物实验室常规灭菌及培养设备外,其他设备和材料如下: 3.1 恒温培养箱:36℃±1℃。 3.2 冰箱:2℃~5℃。 3.3 恒温水浴箱:46℃±1℃。 3.4 天平:感量为0.1g。 3.5 无菌袋。 3.6 无菌吸管:1mL(具0.01mL刻度)、10mL(具0.1mL刻度)。 3.7 无菌培养皿:直径90mm。 3.8 放大镜或/和菌落计数器。 4、培养基和试剂 4.1 平板计数琼脂培养基 按照称取23.5g培养基溶于1000mL蒸馏水的比例进行配置,分装到锥形瓶,121℃高压灭菌15min。 4.2 0.85%无菌生理盐水 称取8.5g氯化钠溶于1000mL蒸馏水。一般用1000mL锥形瓶配置,称取6.8g的氯化钠,加入800mL蒸馏水,121℃高压灭菌15min。

临床微生物检验和细菌耐药性监测分析

临床微生物检验和细菌耐药性监测分析 摘要目的深入分析临床微生物检验和细菌耐药性监测。方法收集尿液、分泌物、血液等检测标本,对药敏使用常规方法以及KirbyBauer方法进行试验并鉴定分析。结果本次研究分离出的致病菌株共500株,其中包括革兰阳性球菌270株(54.0%),革兰阴性杆菌230株(46.0%);各个菌种对于抗菌药物的耐药率均不同。结论加强临床微生物的检验工作,以及对细菌耐药性进行监测,能够为临床抗菌药物的选择提供借鉴作用,对控制医院感染率具有十分重要的临床作用和意义,值得在临床实践中大力推广。 关键词临床微生物检验;细菌耐药性;监测 细菌耐药性(抗药性)指的是细菌对抗菌药物存在不同程度的耐受性,如果细菌产生耐药性后,会使临床抗菌药物的化疗效果受到很大的影响,使药物的治疗作用大大降低,从而直接影响到患者的治疗效果,因此加强临床微生物的检验工作,并对细菌耐药性进行监测具有十分重要的意义[1]。本次研究选取于2013年11月~2015年7月收集的尿分泌物、血液等检测标本进行微生物检验,以及对细菌耐药性进行监测,现报告如下。 1 资料与方法 1. 1 一般资料选取2013年11月~2015年7月本院收集的尿液、分泌物、血液等检测标本,按照常规方法对所有细菌进行培养、鉴定以及分离,共获得致病菌株500株。 1. 2 方法对收集的尿分泌物、血液等检测标本先采用常规方法分离病原菌,然后采用KirbyBauer 方法进行试验并鉴定分析,对相关抗菌药物最小的抑菌浓度使用肉汤稀释的方法进行检测,参考美国临床试验委员会制定的标准对以上检验结果进行鉴定并分析[2]。本次研究使用的抗菌药物药敏纸片为革兰阳性球菌药敏板条P535和革兰阴性杆菌药敏板条GN09、GN13,均为法国生物梅里埃公司生产。 2 结果 2. 1 菌种分布情况本次研究分离出的致病菌株共500株,其中包括革兰阳性球菌270株(54.0%),革兰阴性杆菌230株(46.0%)。其中67株(1 3.4%)凝固酶阴性葡萄球菌,66株(13.2%)铜绿假单胞菌,60株(12.0%)大肠埃希菌,57株(11.4%)金黄色葡萄球菌,57株(11.4%)枸橼酸菌属,50株(10.0%)不动杆菌属,44株(8.8%)变形杆菌属,36株(7.2%)克雷伯菌属,33株(6.6%)肠杆菌属,30株(6.0%)肠球菌。研究表明,凝固酶阴性葡萄球菌在耐甲氧西林中所占的比例要比金黄色葡萄球菌高很多,并且不动杆菌在革兰阴性菌中的比例也呈现出大幅度上升的趋势,同时发现的嗜麦芽寡养单胞菌以及洋葱克伯霍尔德菌均较为罕见。

水中细菌总数的检测

水中细菌总数的检测 Revised by Jack on December 14,2020

水中细菌总数的检测 1.实验目的 1、学习并掌握水的细菌学检测方法 2、了解水质状况与细菌数量在饮用水检测中的重要性。 2.菌落总数standardplate-countbacteria 水样在营养琼脂上、有氧条件下37°C培养48h后,所得1mL水样所含菌落的总数。细菌总数是评价水质污染程度的主要卫生指标,所测定的细菌总数增多说明水被生活废弃物污染。由于结果不能说明污染的来源,因此必须结合总大肠菌群数来判断污染源和安全程度。 3.培养基与试剂 营养琼脂成分 制法:根据实际需要量,按照上述配方称取各成分混合后,加热溶解,调整pH为~,分装于玻璃容器中(如用含有较多杂质的琼脂,应先过滤。),经kPa(121° C,15lb)湿热灭菌20min,储存于冷暗处备用。 4.仪器和材料 仪器:高压蒸汽灭菌器、干热灭菌箱、水热恒温培养箱、电炉、天平、冰箱。材料:灭菌平皿(直径9cm)、灭菌试管、刻度吸管、三角烧瓶、采样瓶、酒精灯、消毒水、镊子、试管架等。放大镜或菌落计数器、pH计或精密pH试纸、火柴或打火机。 5.样品采集 自来水的取样:先将自来水龙头用酒精棉擦拭,再用酒精灯火焰灭菌,打开龙头放水3-5min,用无菌空三角瓶接取水样200ml。

纯净水取样:用消毒酒精棉擦拭纯水机出口后,先放走部分水,再用无菌空三角瓶接取水样200毫升。 地表水的取样:应取距水面10—15cm的深层水样,先将灭菌的带玻璃塞瓶,瓶口向下浸入水中,然后翻转过来,除去玻璃塞,水即流入瓶中,盛满后,将瓶塞盖好,再从水中取出,最好立即检查,否则需放入冰箱中保存。 6.检验步骤 生活饮用水(自来水、纯净水):以无菌操作方法用灭菌吸管吸取1mL充分混匀的水样,注入灭菌培养皿中,倾注约15ml已融化并冷却到45°C左右的营养琼脂培养基,并立即旋摇平皿,使水样与培养基充分混匀。每次检验时应做一平行接种,同时另用一个平皿只倾注培养基作为空白对照。 待冷却凝固后,翻转平皿,使底面向上,置于36°C±1°C条件下连续培养48h,进行菌落计数,即为1ml水样中的菌落总数。 水源水:以无菌操作方法吸取1ml充分混匀的水样,注入盛有9ml灭菌生理盐水的试管中,混匀呈1:10稀释液。 吸取1:10稀释液1ml,注入盛有9ml灭菌生理盐水的试管中,混匀呈1:100稀释液。按同法依次稀释成1:1000、1:10000稀释液备用。如此递增稀释一次,必须更换一支刻度吸管。 用灭菌吸管吸取1ml未稀释的水样和2~3个适宜稀释度的水样,分别注入灭菌培养皿内,其余操作同生活饮用水的检验步骤。 7.菌落计数及报告方法 作平皿菌落计数时,可用眼睛直接观察,必要时用放大镜检查以防遗漏。在记下各平皿的菌落数后,应求出同稀释度的平均菌落数,供下一步计算时应用。在求同稀释度的平

水中细菌总数的检测

水中细菌总数的检测 1. 实验目的 1、学习并掌握水的细菌学检测方法 2、了解水质状况与细菌数量在饮用水检测中的重要性。 2. 菌落总数standard plate-count bacteria 水样在营养琼脂上、有氧条件下37°C培养48 h后,所得1 mL水样所含菌落的总数。细菌总数是评价水质污染程度的主要卫生指标,所测定的细菌总数增多说明水被生活废弃物污染。由于结果不能说明污染的来源,因此必须结合总大肠菌群数来判断污染源和安全程度。 3. 培养基与试剂 2.1 营养琼脂成分 2.2 制法:根据实际需要量,按照上述配方称取各成分混合后,加热溶解,调整pH为7.4~7.6,分装于玻璃容器中(如用含有较多杂质的琼脂,应先过滤。),经10 3.43 kPa(121°C,15 lb)湿热灭菌20 min,储存于冷暗处备用。 4. 仪器和材料 仪器:高压蒸汽灭菌器、干热灭菌箱、水热恒温培养箱、电炉、天平、冰箱。材料:灭菌平皿(直径9 cm)、灭菌试管、刻度吸管、三角烧瓶、采样瓶、酒精灯、消毒水、镊子、试管架等。放大镜或菌落计数器、pH计或精密pH试纸、火柴或打火机。 5. 样品采集 自来水的取样:先将自来水龙头用酒精棉擦拭,再用酒精灯火焰灭菌,打开龙头放水3-5 min,用无菌空三角瓶接取水样200 ml。 纯净水取样:用消毒酒精棉擦拭纯水机出口后,先放走部分水,再用无菌空三角瓶接取水样200毫升。 地表水的取样:应取距水面10—15 cm的深层水样,先将灭菌的带玻璃塞瓶,瓶口向下浸入水中,然后翻转过来,除去玻璃塞,水即流入瓶中,盛满后,将瓶塞盖好,再从水中取出,最好立即检查,否则需放入冰箱中保存。 6. 检验步骤 生活饮用水(自来水、纯净水):以无菌操作方法用灭菌吸管吸取1 mL充分混匀的水样,注入灭菌培养皿中,倾注约15 ml已融化并冷却到45°C左右的营养琼脂培养基,并立即旋摇平皿,使水样与培养基充分混匀。每次检验时应做一平行接种,同时另用一个平皿只倾注培养基作为空白对照。 待冷却凝固后,翻转平皿,使底面向上,置于36°C±1°C条件下连续培养48 h,进行菌落计数,即为1 ml水样中的菌落总数。 水源水:以无菌操作方法吸取1 ml充分混匀的水样,注入盛有9 ml灭菌生理盐水的试管中,混匀呈1:10稀释液。 吸取1:10稀释液1 ml,注入盛有9 ml灭菌生理盐水的试管中,混匀呈1:100稀释液。按同法依次稀释成1:1000、1:10000稀释液备用。如此递增稀释一次,必须更换一支刻度吸管。用灭菌吸管吸取1 ml未稀释的水样和2~3个适宜稀释度的水样,分别注入灭菌培养皿内,

细菌耐药性监测分析中应注意的问题

细菌耐药性监测分析中应注意的问题 摘要:细菌耐药性监测对于了解本地区细菌耐药性现状和发展趋势、指导临床合理使用抗生素具有重要意义。为此,临床微 生物学工作者应认真掌握临床常见细菌的某些特性及抗生素的相关知识,如天然耐药性、罕见耐药谱型、易产生选择性耐药的抗生 素及代表性药物在药敏试验中的作用。因为这些知识对于如何解释药敏试验结果和监测数据分析时至关重要。 关键词:耐药性监测;天然耐药性;耐药谱型 体外细菌药敏试验最重要的是如何对其结果进行分析和判读,而不是仅将结果记录并报告给临床医生。为此,本文简要介绍美国临床实验室标准委员会[1](CI。SI/NCCLS)和英国抗感染化疗委员会[2](BSAC)有关耐药谱型分析和解读的有关内容,其目的是帮助临床微生物实验室工作人员(1)了解临床常见菌种天然或固有耐药性;(2)发现异常和罕见的细菌耐药表型;(3)了解对特殊菌种易引起选择性耐药的抗菌药物,建议临床医生尽可能不用或避免长期使用;(4)认识代表性药物在药敏试验中的作用。 尽管国内临床常见菌种的耐药谱型与国外情况有不同之处,常出现与下述谱型存在差异和矛盾的地方,但这并不影响我们在监测数据分析时发现不足和缺点,提高监测数据的质量。1天然或固有耐药的菌属或菌种 有些菌属和菌种对某些抗菌药物天然耐药或固有耐药。因此,若药敏试验的结果为敏感应予以怀疑,有必要重复药敏试验和重新鉴定菌种,同时,细菌天然耐药也可作为菌种鉴定的辅助手段之一。表1列举了临床常见细菌的天然耐药表型。2罕见耐药谱型影响体外药敏试验结果的因素很多,因此,加强临床微生物实验室的质控工作至关重要[33。当质控菌的结果在CI.SI/NCCLS要求的允许范围内,所出现的异常或罕见耐药表型应引起实验室工作人员的注意。 表2中介绍的耐药谱型在世界范围内均属罕见,如在日常药敏试验中发现并经复试依然出现相同的结果,应该将菌株送到参考实验室进行核实。 3易产生选择性耐药的抗生素和致病菌组合 某些抗生素容易诱导某些菌种产生耐药性,因此,应避免选择这些抗生素进行特定感染的治疗,或尽可能避免长期使用这类抗生素。表3列举了主要易诱导产生耐药性的抗生素和致病菌组合。 4代表性药物在药敏试验中的作用 代表性药物在药敏试验中的作用不仅仅局限于该抗生素本身,还代表与其相关的抗菌药物。如葡萄球菌对头孢西丁耐药表明它对所有p一内酰胺类抗生素耐药(表4)。 5从耐药表型推论耐药机理 根据机制和表型的有关知识,可以从不同的细菌表型组合来推断其耐药机制,其目的可以(1)估计耐药特性菌株的分布;(2)确定菌种鉴定和药敏试验结果的正确性;(3)推荐抗菌药物的选择。 5.1β-内酰胺类抗生素 β-内酰胺类抗生素的耐药机制和表型很多,由于临床微生物实验室的常规试验不可能包括很多的p内酰胺类抗生素,因此,表5~8有一定的局限性。但根据表中的基本原则,依然可以提供有意义的参考价值。 诱导型AmpC酶(肠杆菌属、弗氏柠檬酸杆菌)头孢西丁耐药,但与甲氧亚氨基8一内酰胺类抗生素不交叉耐药;去阻遏AmpC酶头孢他啶、头孢噻肟和头孢西丁耐药。通过比较含酶抑制剂的复合口一内酰胺类和不耐酶青霉素类抗生素的药敏结果,可以得出较

污水中细菌总数测定

污水中细菌总数测定 (一)实验目的: (1)了解和学习水中细菌总数 (2)学习和掌握用稀释平板计数法测定水中细菌总数的方法 (二)实验原理 水中的病菌如伤寒杆菌、痢疾杆菌、霍乱弧菌、钩端螺旋体等主要来自人和动物的粪便及污染物。因此,粪便管理在控制和消灭消化道传染病有重要意义。但直接检查水中的病原菌是比较困难的,常用测定细菌总数和大肠杆菌菌群数,来判断水的污染程度,目前我国规定生活饮用水的标准为1m1水中细菌总数不超过100个, 超过此数,表示水源可能受粪便等污染严重,水中可能有病原菌存在。 所谓细菌总数是指1mL或1g检样中所含细菌菌落的总数,所用的方法是稀释平板计数法,由于计算的是平板上形成的菌落(colony-forming unit,cfu)数,故其单位应是cfu/g(mL)。它反映的是检样中活菌的数量。 (三)实验器材 (1) 菌落总数的测定: 1)培养基:牛肉膏蛋白胨琼脂培养基,无菌生理盐水。 2)器材:灭菌三角瓶,灭菌的具塞三角瓶,灭菌平皿,灭菌吸管,灭菌试管等。 (四)实验方法 (1)水样的采集: 1)自来水:先将自来水龙头用酒精灯火焰灼烧灭菌,再开放水龙头使水流5min,以灭菌三角瓶接取水样以备分析。 2)池水、河水、湖水等地面水源水:在距岸边5m处,取距水面10-15cm的深层水样,先将灭菌的具塞三角瓶,瓶口向下浸入水中,然后翻转过来,除去玻璃塞,水即流入瓶中,盛满后,将瓶塞盖好,再从水中取出。如果不能在2h内检测的,需放入冰箱中保存。 (2)细菌总数的测定: 1)水样稀释及培养: ①按无菌操作法,将水样作10倍系列稀释: ⑦根据对水样污染情况的估计,选择2-3个适宜稀释度(饮用水如自来水、深井水等,一般选择1、1:10两种浓度;水源水如河水等,比较清洁的可选择1:10、1:100、1:1000 三种稀释度;污染水—被选择1:100、1:1000、1:10000三种稀释度),吸取1mL稀释液于灭菌平皿内,每个稀释度作3个重复。

水中大肠杆菌的检测方法

附件 水肠杆菌群检测方法-多管发酵法 NIEA E201.54B 一、方法概要 本方法系用以检测水中革兰氏染色阴性,不产生生孢子之杆状好氧或兼性厌氧菌,且能在35 ± 1 ℃、 48 ± 3小时发酵乳糖并产生酸及气体之大肠杆菌群(Coliform group);在不同体积或不同稀释度之水 样所产生之结果,以「100 mL水中最大可能数(MPN/100 mL)」表示 100 mL水中存在之大肠杆菌群数目。 二、适用围 本方法适用地面水体、地下水体、废水、污水及水源水质水样肠杆菌群之检验。 三、干扰 (一) 水样中含有抑制或促进大肠杆菌群细菌生长之物质。 (二) 检测使用的玻璃器皿及设备含有抑制或促进大肠杆菌群细菌生长的物质。 四、设备 (一) 量筒:100至1000 mL之量筒。 (二) 吸管:有0.1刻度之10 mL灭菌玻璃吸管或市售无菌塑料吸管,或无菌微量吸管(micropipet)。 (三) 试管:大小约150 × 15 mm之试管或有盖螺旋试管。 (四) 发酵管(fermentation tube):大小约22 × 9 mm之玻璃管。 (五) 稀释瓶:容量约100 mL可灭菌之硼硅玻璃制品。 (六) 锥形瓶:200至2000 mL之可灭菌硼硅玻璃制品。 (七) 采样容器:容量120 mL以上无菌之硼硅玻璃瓶或无菌塑料有盖容器,或市售无菌袋。 (八) 冰箱:温度能保持在4 ± 2℃者。 (九) 天平:待测物重量大于2 g时,须能精秤至0.01 g;待测物重量不大于2 g时,须能精秤至0.001 g。 (十) 培养箱:温度能保持在35 ± 1℃者。 (十一) 高压灭菌釜:温度能维持在121℃(压力约15 lb/in2或 1.1 Kg/cm2)灭菌15分钟以上者。

水 中 细 菌 总 数 的 检 测

水中细菌总数的检测 一、实验的目的要求 1、学习并掌握水的细菌学检测方法 2、了解水质状况与细菌数量在饮用水检测中的重要性。 二、实验原理 细菌总数是指1ml水样在营养琼脂培养基中,于37℃经24h培养后,所生长的细菌菌落的总数。细菌总数是评价水质污染程度的主要卫生指标。我国现行的生活饮用水标准检验方法GB5750—85规定水样中细菌总数测定是1ml水样在普通营养琼脂培养基中37℃经24小时培养所生长的细菌菌落的总数。所测定的细菌总数增多说明水被生活废弃物污染,但不能说明污染的来源。因此必须结合总大肠菌群数来判断水污染的来源和安全程度。 本实验应用平板计数技术测定水中细菌总数。由于水中细菌种类繁多,它们对营养和其他生长条件的要求差别很大,不可能找到一种培养基在一种条件下,使水中所有的细菌均能生长繁殖,因此,以一定的培养基平板上生长出来的菌落,计算出来的水中细菌总数仅是一种近似值。目前一般是采用普通牛肉膏蛋白胨琼脂培养基。 平板菌落计数法的优点: 能测出样品中的活菌数。此法常用于某些成品和生物制品检定以及食品、水源的污染程度的检定等。 缺点:手续较繁,而且测定值常受各种因素的影响。 生活饮用水细菌卫生标准 我国饮用水卫生标准: ≤3个大肠菌群/1L饮水,≤100个细菌总数/1ml饮水

三、实验仪器和材料 1、高压蒸汽灭菌锅、恒温箱、冰箱、无菌接种间。 2、消毒酒精、消毒水。 3、试管、三角瓶、平皿、刻度吸管、涂布器等(实验前包扎灭菌处理好备用) 4、培养基 蛋白胨10g 牛肉膏3g 氯化钠5g 琼脂10~20g 蒸馏水1000ml 制备方法: 按照实际的需要量,按上述配方称取各成分混合后,加热溶解,调整pH 为7.4~7.6,,分装于玻璃容器中,用高压蒸汽灭菌锅121℃灭菌20min,倒制成平板后储存于冷处备用。 5、水样:自来水、中水。 四、实验内容: (一)、培养基的制备: 实验前事先准备好培养基平板(方法见上),每小组2-4个平板。(二)、取水样: 1、自来水的取样:先将自来水龙头用酒精棉擦拭,再用酒精灯火焰灭菌, 打开龙头放水1-2分钟,用无菌空三角瓶接取水样200毫升。 2、纯净水取样:用消毒酒精棉擦拭纯水机出口后,先放走部分水,再用

3M细菌总数测试片操作以及判读

3M细菌总数测试片操作以及判读一、测试细菌总数操作方法 1、未开封时,冷 藏于≤8℃(≤46 ℉),并在保存期 内用完,高温度时, 凝固水可以排除,包装物最好于室温启开。2、已开封的,将封口以胶带封紧。 3、保存再封的袋 于≤25℃(≤77 ℉)和温度<5 0%,不要冷藏已 开启的包装袋,并于一个月内使用完。 4、制备1:10和更 大稀释的食物样品 稀释液,0称取或吸 取食物样品,置入适 宜的无菌容器内,如均质袋、稀释瓶、WhirlPak bag或者其他灭菌容器内. 5、加入适量的无 菌稀释液,包括Bu ffered peptone Buffer(IDF pho psphate buffer ,用0.0425g/L的KH2PO4调PH7. 2) 、0.1%的蛋白胶水(ISO方法68 87) 、缓冲蛋白胶水(ISO方法6579)、盐溶液(0.85-0.90%)、bisulfite -free letheen broth或蒸馏水. 不可使用含有枸橼酸盐、酸性亚硫酸盐或硫代硫酸盐的缓冲液. 因为它们能抑止菌生长。 6、搅拌或均质样品。 样品的稀释液调PH 6.5- 7.2 对酸性样品的稀释 液用IN NaOH 对碱性样品用IN HCL调PH 7、将测试片置于平坦表面处,揭开上层膜。8、使用吸管将1mL 样液垂直滴加在测试片的中央处。 9、允许使用上层膜直接落下,切勿向下滚动上层膜。10、使用压板隆起面底朝下,放置在上层膜中央处。

11、轻轻的压下,使样液均匀覆盖于圆形的培养面积上,切勿扭转压板。12、拿起压板,静置至少1分钟以使培养基凝固。 13、测试片的透明 面朝上,可堆叠至 20片,对有一定 湿度养箱能保持最 少份损失是需要的。14、可目视及用标准菌落计数器或其它的照明放大镜计数,并可参考判读卡计算菌落数。 15、可以分离菌落 作进一步鉴定,即 掀起上层膜,由培 养胶上挑取单个菌 落。 二、测试细菌总数判读方法 Aerobic bacter ia coun t=152 测试片 中含有 一种红 色指示 染剂可 使菌落着色,计算所有红色菌落(不论其大小和颜色深浅均计算之). Count=0 在petrifil m AC测试片上,很容易解释,图2测试片上没有任何菌落生长. Count= 16 图3示有不多的菌落. Count=1 43 Petrifilm AC测试片菌落数适宜计数范围是25 -250,见图 4

细菌的耐药性及检测

细菌的耐药性及检测:体外抗生素敏感试验方法 近年来,由于细菌耐药性不断增加,新的耐药机制和耐药菌株不断被发现,如MRSA、耐万古霉素肠球菌(VRE)、耐青霉素肺炎链球菌(PRP)以及β内酰胺酶中的超广谱β内酰胺酶(ESBLs)、去阻遏持续高产AmpC酶和金属β内酰胺酶等。临床抗生素的选择使用非常困难。因此必须开展体外抗生素敏感试验,了解细菌耐药谱,对抗菌药物的临床使用效果进行预测,对患者选择个体化的治疗方案;同时通过耐药检测及流行病学调查,为医院感染控制方案制订提供依据;也有助于新药的抗菌特性研究。临床细菌学实验室应选择合适的抗菌药物用于体外药敏试验,为临床抗感染治疗提供依据。 (一)药敏试验中抗菌药物的选择原则 抗菌药物药敏试验中测试药物种类的选择,应依据各医院院内感染控制委员会、临床医师、药剂人员及微生物学检验医师等相互协商按本单位的实际情况制订,但必须满足以下条件: 1.选用的抗菌药物应具备一组或一群代表性及预示性,如具有共同的耐药机制,或对某类菌株具有特定的意义等。 2.有助于指导临床抗感染治疗与流行病学的调查。 3.应充分考虑分离菌株的来源部位,如从脑脊液分离的菌株,应选用能通过血脑屏障的抗菌药物进行体外药敏试验等。 4.根据细菌种类或来源,通常选择6~16种不同抗菌药物。 (二)选择方案 在遵循上述原则基础上,可以参照美国CLSI推荐的各菌种抗菌药物的分组选择。结合本院实际情况制定选用方案。 1.肠杆菌科细菌抗菌药物药敏试验抗菌药物选择方案 (1)首选试验和报告的抗菌药物:氨苄西林、氨苄西林/舒巴坦或阿奠西林/克拉维酸或哌拉西林/他唑巴坦或替卡西林/克拉维酸中任一种;头孢唑林或头孢噻吩、头孢呋辛或头孢孟多、头孢西丁或头孢替坦、头孢噻肟或头孢他啶或头孢曲松或头孢哌酮中任选二种;头孢吡肟或头孢匹罗;庆大霉素;环丙沙星或左氧氟沙星或培氟沙星任选1~2种;亚胺培南,复方新诺明。 (2)次选试验和报告的抗菌药物:呋喃妥因、氯霉素、妥布霉素、卡那霉素、阿米卡星、氨曲南、奈替米星、四环素、诺氟沙星或氧氟沙星。 (3)从肠道标本中分离的沙门菌属与志贺菌属细菌常规只应试验和报告氨苄西林、复方新诺明及一种喹诺酮类抗菌药物;分离自肠道以外的沙门菌属菌株应试验和报告多种抗菌药物的药敏试验与报告,包括氯霉素和三代头孢菌素。 (4)分离自脑脊液的肠杆菌科细菌,只需报告氨苄西林、头孢噻吩、头孢唑啉、庆大霉素的药敏结果。 (5)采用合适的方法如双纸片法等检测ESBLs;对产ES-BLs细菌,不管实际药敏检测结果如何,所有青霉素类、头孢菌素类和氨曲南的试验结果报告耐药。 2.铜绿假单胞菌和不动杆菌属等药敏试验抗菌药物选择方案 (1)首选试验和报告的抗菌药物:替卡西林或哌拉西林或美洛西林中的一种,头孢他啶、头孢哌酮、头孢吡肟、氨曲南、亚胺培南或美洛培南;庆大霉素、阿米卡星、妥布霉素;环丙沙星等。 (2)次选试验和报告的抗菌药物:羧苄西林、头孢噻肟或头孢曲松、奈替米星、氯霉素、四环素、左氧氟沙星或诺氟沙星或氧氟沙星、复方新诺明等。 (3)除铜绿假单胞菌和不动杆菌可用纸片扩散法进行药敏试验,对其他非发酵菌应使用稀释法进行药敏试验。

相关文档
最新文档