转子绕组短路故障下不平衡电磁力计算方法_万书亭

转子绕组短路故障下不平衡电磁力计算方法_万书亭
转子绕组短路故障下不平衡电磁力计算方法_万书亭

电磁铁的设计计算

电磁铁的设计计算 1原始数据 YDF-42 电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数 额定工作电压UH=24V 额定工作电压时的工作电流IH ≤1A 2 测试数据 测试参数工作行程δ=1mm 吸力F=7.5kg 电阻R=3.5Ω 4 设计程序 根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能 4.1 确定衔铁直径dc 电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程δ=1mm 时的吸合力F=7.5kg 则电磁铁的结构因数 K = F/δ7.5/0.1=27 (1) 电磁铁的结构形式应为平面柱挡板中心管式 根据结构因数查参考资料,可得磁感应强度BP=10000 高斯 当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式 F= (Bp/5000)2×Π/4×dc2 (2) 式中Bp磁感应强度(高斯) dc 活动铁心直径(毫米) 可以求得衔铁直径为 dc= 5800×F Bp = 5800×7.510000 =1.59cm=15.9mm 取dc=16 mm 4.2 确定外壳内径D2 在螺管式电磁铁产品中它的内径D2与铁心直径dc之比值n 约为2~ 3 ,选取n=2.7 D2=n ×dc=2.76×16=28.16 毫米(3) 式中D2 外壳内径毫米 4.3 确定线圈厚度 bk= D2?dc 2 ?Δ(4) 式中bk -----线圈厚度毫米 Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7 毫米 bk= 28.16?16 2 ?1.7 =4.38毫米 今取bk=5 毫米 4.4 确定线圈长度 线圈的高度lk与厚度bk比值为β,则线圈高度

转子不平衡的故障机理与诊断

转子不平衡的故障机理与诊断(1) 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。据统计,旋转机械约有一半以上的故障与转子不平衡有关。因此,对不平衡故障的研究与诊断也最有实际意义。 一、不平衡的种类 造成转子不平衡的具体原因很多,按发生不平衡的过程可分为原始不平衡、渐发性不平衡和突发性不平衡等几种情况。 原始不平衡是由于转子制造误差、装配误差以及材质不均匀等原因造成的,如出厂时动平衡没有达到平衡精度要求,在投用之初,便会产生较大的振动。 渐发性不平衡是由于转子上不均匀结垢,介质中粉尘的不均匀沉积,介质中颗粒对叶片及叶轮的不均匀磨损以及工作介质对转子的磨蚀等因素造成的。其表现为振值随运行时间的延长而逐渐增大。 突发性不平衡是由于转子上零部件脱落或叶轮流道有异物附着、卡塞造成,机组振值突然显著增大后稳定在一定水平上。 不平衡按其机理又可分为静失衡、力偶失衡、准静失衡、动失衡等四类。 二、不平衡故障机理 设转子的质量为M,偏心质量为m,偏心距为e,如果转子的质心到两轴承连心线的垂直距离不为零,具有挠度为a,如图1-1所示。

图1-1 转子力学模型 由于有偏心质量m和偏心距e的存在,当转子转动时将产生离心力、离心力矩或两兼而有之。离心力的大小与偏心质量m、偏心距e及旋转角速度ω有关,即F=meω2。众所周知,交变的力(方向、大小均周期性变化)会引起振动,这就是不平衡引起振动的原因。转子转动一周,离心力方向改变一次,因此不平衡振动的频率与转速相一致,振动的幅频特性及相频特性。 三、不平衡故障的特征 实际工程中,由于轴的各个方向上刚度有差别,特别是由于支承刚度各向不同,因而转子对平衡质量的响应在x、y方向不仅振幅不同,而且相位差也不是90°,因此转子的轴心轨迹不是圆而是椭圆,如图1-2所示。 由上述分析知,转子不平衡故障的主要振动特征如下。 (1) 振动的时域波形近似为正弦波(图1-2)。 (2)频谱图中,谐波能量集中于基频。并且会出现较小的高次谐波,使整个 频谱呈所谓的“枞树形”,如图1-3所示。

电磁铁计算公式

第一章常用低压电器 电器:电能的生产、输送、分配与应用起着控制、调节、检测和保护的作用。 根据外界的信号和要求,自动或手动接通或断开电路,断续或连续地改变电路参数,以实现对电路或非电路对象的切换、控制、保护、检测、变换和调节用的电气设备。 定义:一种能控制电能的器件。 第一节电磁式低压电器的结构和工作原理 ●低压电器:用于交流1200V、直流1500V以下电路的器件 ●高压电器:用于交流1200V、直流1500V以上电路的电器。 电力传动系统的组成: 1)主电路:由电动机、(接通、分断、控制电动机)接触器主触点等电器元件所组成。 特点:电流大 2)控制电路:由接触器线圈、继电器等电器元件组成。 特点:电流小 ●任务:按给定的指令,依照自动控制系统的规律和具体的工艺要求对主电路进行控制。 一、低压电器的分类 1、按使用的系统

1)低压配电电器 用于低压供电系统。电路出现故障(过载、短路、欠压、失压、断相、漏电等)起保护作用,断开故障电路。(动动稳定性、热稳定性) 例如:低压断路器、熔断器、刀开关和转换开关等。 2)低压控制电器 用于电力传动控制系统。能分断过载电流,但不能分断短路电流。(通断能力、操作频率、电气和机械寿命等) 例如:接触器、继电器、控制器及主令电器等。 2、按操作方式 1)手动电器:刀开关、按钮、转换开关 2)自动电器:低压断路器、接触器、继电器 3、按工作原理 1)电磁式电器:电磁机构控制电器动作 2)非电量控制电器:非电磁式控制电器动作 ◆电磁式电器由感测和执行两部分组成。 感测部分(电磁机构):接受外界输入的信号,使执行部分动作,实现控制的目的。 执行部分:触点系统。 二、电磁机构

大型汽轮发电机转子绕组匝间短路的故障处理与分析(2010)

第23卷 第2期2010年6月江西电力职业技术学院学报 Journal o f Jiangx iV ocati ona l and T echnical Co ll ege o f E lectr i c ity V o.l 23N o .2J un .2010 大型汽轮发电机转子绕组匝间短路的故障处理与分析 张亮杰 (广东粤电靖海发电有限公司,广东 揭阳 515223) 摘 要:某公司一台国产600MW 汽轮发电机组,在开机过程中出现发电机轴振偏大,并且随励磁电流增大而增大,经 过振动分析、电气试验等一系列检测程序,快速对故障进行了准确判断和较精确的定位,为机组尽快消缺争取了宝贵时间,为同类大型发电机组积累了相关经验和提供了相应参考。 关键词:大型汽轮发电机;转子绕组;匝间短路;试验;诊断 中图分类号:TM 311;TM 307+.1 文献标识码:B 文章编号:1673-0097(2010)02-0033-02 收稿日期:2010-03-17 作者简介:张亮杰(1982- ),男,河南淮滨人,助理工程师. 0 引言 随着我国电力工业的发展,目前汽轮发电机的功率越来越大,特别是新建核电机组和超临界燃煤发电机组,基本上都是600MW 及以上,其汽轮发电机往往转速高,电压等级高,电流负荷大。比如某国产发电机的额定输出电压为22k V ,额定输出电流为17495A,额定励磁电流为4387A,额定转速为3000r/m i n 。由于发电机容量大,转速高,如果在设计和制造上存在不足,或者运行检修工艺不当,则转子出现问题几率就比较大。转子绕组出现的问题主要有接地、开路和匝间短路等故障,其中转子绕组的匝间短路故障占有非常大比例。轻微的转子匝间短路故障在开始阶段对发电机运行影响不大,但如果发展成严重的匝间短路后,会使励磁电流增大,线棒过热会导致变形,限制发电机无功功率,电压波形畸变,有时还会增加机组的振动幅值,甚至被迫停机,故障的进一步发展会造成短路点局部过热会使绝缘烧毁接地、护环烧坏、大轴磁化,甚至造成转子烧损事故 [1] 。 因此完善优化设计、改进制造和检修工艺尽可能避免在非正常工况下长期运行,就成为保障大型发电机组安全可靠运行的前提。本文就某600MW 燃煤发电机组发生的一次转子绕组匝间短路故障,进行分析和探讨。 1 设备概况 该机组为国产600MW 超临界燃煤发电机组,于 2007年6月投产发电,进入商业运行,期间进行过一次C 级检修和一次A 级检修。 发电机性能如下:型号为QFSN 600 2 22A;定子电压为22000V;转速为3000r/m i n ;转子电压为400V;接线方式为YY ;功率因数为0.9(滞后);功率为600MW;定子电流为17495A;容量为667M VA;转子电流为4387A 。 2 故障情况及诊断 2.1 故障情况 2010年2月,发电机在调峰消缺结束后并网发 电,在并网后带负荷过程中发现汽轮机轴振较大,并且随励磁电流的增大而增大,其中7Y 振动达到143u m,8Y 振动达到168u m (#7、#8瓦为发电机轴瓦),于是录取振动信号进行检测查找原因,对振动波形分析后发现其中除工频振动成分外,还包含了较多的高频振动成分,因此判断发电机转子可能存在问题。 2.2 诊断过程 为进一步确认故障原因,进行转子绕组的交流阻 抗测试、绝缘电阻测试和直流电阻测试,转子交流阻抗试验数据见表1。测试结果显示,在转速达3000r/m i n 时加220V 电压情况下,交流阻抗(3.658 )比2009年A 级检修后(4.27 )小0.61 (小14.3%);在盘车状态下,交流阻抗(4.23 )比2009年A 级检修后(4.72 )小0.5 (小10.6%),表明转子可能存在匝间短路故障。

发电机匝间短路故障诊断

目录 1 引言 (1) 1.1 研究目的与意义 (1) 1.2 发电机故障诊断技术的发展状况 (1) 1.3 发电机转子绕组匝间短路故障检测的研究现状 (2) 1.4 本文的内容和主要工作 (4) 2 汽轮发电机转子绕组匝间短路的理论分析 (6) 2.1 汽轮发电机的转子结构 (6) 2.2 转子绕组发生匝间短路的原因 (6) 2.3 匝间短路的磁场分析 (7) 2.3.1 发电机发生匝间短路的磁场分析 (9) 3 发电机转子绕组匝间短路故障的探测线圈法 (12) 3.1 探测线圈法的测试原理 (12) 3.2 探测线圈的结构及置放 (14) 3.2.1 诊断系统及其功能组成 (15) 3.2.2 基本参数 (16) 3.2.3 传感器安装和定位 (16) 3.3.3 故障判断 (16) 3.3 大亚湾核电站发电机组的探测线圈法实例分析 (17) 参考文献 (20)

1引言 1.1研究目的与意义 随着我国国民经济的快速发展,电力工业正处于大电机和大电网的发展阶段。人们的生活和生产水平迅速提高,使得电能需求量日益增长,进而对电力系统的供电质量、可靠性及经济性等指标的要求也不断提高。发电机是电能生产的重要设备,它为整个电力系统提供电能,是整个电网的心脏,因此如果发电机发生故障,可能会导致局部停电甚至整个系统崩溃。 发电机转子作为发电机的重要组成部分,主要由励磁绕组线圈、线圈引线以及阻尼绕组等部分组成。发电机运行时,由于转子处于高速旋转状态,这些部件将承受很大的机械应力和热负荷,若超过其极限值时将导致部件的损坏。转子绕组是发电机经常出现故障的部位,除本体故障外,主要是转子绕组的短路故障,如匝间短路、一点接地短路、两点接地短路等。发电机正常运行时,转子绕组对地之间会有一定的分布电容和绝缘电阻,绝缘甩阻的阻值通大于1兆欧。但是因某种原因导致对地绝缘损坏或绝缘电阻严重下降时,就会发生转子绕组接地事故。当发电机转子发生一点接地故障时,因为励磁电源的泄漏电阻很大,一般不会造成多大的伤害,限制了接地泄露电流的数值。但是,发电机转子两点接地故障将会产生很大的电流,经故障点处流过的故障电流会烧坏转子本体。而部分转子绕组的短接,励磁绕组中增加的电流可能会导致转子因过热而烧坏,气隙磁通也会失去平衡,从而引起发电机的振动,还可能使转子大轴磁化,甚至会导致灾难性的后果,因此两点接地故障的后果是很严重的。 目前,在国内运行的大型发电机组中,发电机匝间短路故障占故障总数的比重较大,大多数发电机都发生过或已经存在转子绕组匝间短路的故障。由于转子绕组绝缘的损坏,转子绕组匝间短路后会形成短路电流,从而导致局部过热。发电机长期在这种环境下运行,会进一步引起绝缘的损坏,导致更为严重的匝间短路,最终形成恶性循环。据统计资料表明,发电机转子匝间短路故障并不会影响机组的正常运行,所以常常被忽略,但是如果任其发展,转子电流将会显著增加,绕组温升过高,无功输出降低,电压波形畸变,机组振动加剧,并且还会引起其它的机械故障,严重时还会影响发电机的无功出力。如果发生的是不对称的匝间短路故障,发电机组的振动将会加剧,转子绕组的绝缘也有可能进一步的损坏,进而发展成为接地故障,对发电机组的安全稳定运行构成了严重的威胁。因此,对发电机绕组匝间短路故障的诊断与识别是十分必要的。 1.2 发电机故障诊断技术的发展状况 早期的故障诊断主要依靠人工经验,如:看、听、触、摸等方法进行诊断,

机械故障诊断论文 旋转机械故障诊断技术

XX大学机械交通学院 机械故障诊断论文 题目:旋转机械故障诊断技术 姓名学号: 指导教师: 年级专业:机械设计制造及其自动化084班所在学院:机械交通学院 课程评分: 二零一一年12月18日

旋转机械故障诊断技术 摘要:通过分析旋转式机械各种故障产生机理的基础上,归纳和概括了传统故障诊断的基本原理和典型故障振动特征分析方法及模糊理论、神经网络、遗传算法等在诊断决策算法研究中的应用,并对国内外旋转机械故障诊断的发展现状进行了详细论述最后对其发展趋势进行了展望。旋转机械是各种类型机械设备中数量最多应用最广的一类机械,特别是一些大型旋转机械,如汽轮机、球磨机、离心式压缩机等支持国家经济命脉的一些工业门是属于关键设备。由于检测技术在当今轻工业广泛应用,如电力、石化、冶金、汽车和造船等国民经济重要部门,都需要用机械振动的测试和分析,来检测机械是否正常运作。 关键字:机械故障诊断;旋转机械

前言 设备状态监测与故障诊断是通过掌握设备过去和现在运行中或基本不拆卸的情况下的状态量,判断有关异常或故障的原因及预测对将来的影响,从而找出必要对策的技术。它是一门综合性技术,涉及传感及测试技术、电子学、信号处理、识别理论、计算机技术以及人工智能专家系统等多门基础学科,是对这些基础理论的综合应用。 旋转机械的主要功能是由旋转动作完成的,转了是其最主要的部件。旋转机械发生故障的重要特征是机器伴有异常的振动和噪声,其振动信号从幅值域、频率域和时间域实时地反映了机器故障信息。转子常见的故障有转子不平衡、转子不对中、转子弯曲、油膜涡动和油膜振荡等[1]。 1.旋转机械故障诊断的内容 作为设备故障诊断技术的一个分支--旋转机械状态监测与故障诊断技术.其研究领域也同样主要集中在故障信息检测、故障特征分析、状态监测方法、故障机理研究、故障识别及其专家系统。 2.旋转机械的振动关系及故障分类 旋转式机械的主要组成部分是转轴组件,又称转子系统,它包括转子、轴承、支座及密封装置等部分。由于转子类型及振动性质的不同,其产生故障的原因,机理及振动特征各不相同。 2.1转子不平衡 2.1.1转子不平衡产生原因 在旋转机械中,若转子的质心与旋转轴不重合,就存在不平衡。转子不平衡包括转了系统的质量偏心及转子部件出现缺损。转子质量偏心是由于转子的制造误差、装配误差、材质不均匀等原因造成的,称此为初始不平衡。转了部件的缺损是指转子在运行中由于腐蚀、磨损、介质结垢以及转子受疲劳力的作用使转子的零部件(如叶轮、叶片等)局部损坏、脱落、碎块飞出,从而造成新的转了不平衡。转子质量偏心和转子部件缺损是两种不同的故障但其不平衡振动机理却有共同之处。 2.1.2转子不平衡的振动特征 转子不平衡故障的主要振动特征为:频谱图中,谐波能量集中于基频;振动的时域波形为正弦波;当工作转速一定时,相位稳定;转子的轴心轨迹为椭圆;转子的进动特征为同步正进动;转子振动的强烈程度对工作转速的变化很敏感,振动幅值与转速的平方成正比,而与负荷大小无关;当转速大于第一临界转速后,转速上升,振幅趋向于一个较小的稳定值。当转速接近第一临界转速时,发生共振,振幅具有最大峰值;不平衡故障主要有静不平衡和动不平衡两种。对于静不平衡,其振动方向主要反映在径向,与轴向振动无关,转子两端轴承同一方向的径向振动为同相。 2.2转子不对中 2.2.1转子不对中产生原因 机组各转子之间由联轴器联接构成轴系传递运动和转矩。由于机器的安装误

2021年电磁铁电磁力计算方法

电磁铁电磁力计算方法 欧阳光明(2021.03.07) 1磁动势计算(又叫安匝数)IN E = 匝数2 2)12(212d D D L d L d D D N -=-= 其中: -L 绕线宽度)(mm -2D 绕线外径)(mm -1D 绕线内径)(mm -d 漆包线直径)(mm 绕线长度 根据电阻公式 222223324(21)(21)41010()d 4L D D l L D D d R d S πρρρπ----==?=?Ω绕其中: 根据4322224 10(21)(21)d U U Ud I L D D R L D D ρρ===?-- 故磁动势

2磁感应强度计算(磁动势在磁路上往往有不同的磁降,但每一圈的磁降和应等于磁动势) 即:()IN HL =∑ 其中: 一般情况下,电磁阀除气隙处外,其余部分均采用导磁性能很好的材料,绝大部分磁动势降是在气隙处, 即0()IN HL H δ=≈?∑ 其中: 而000= B H μ 其中: 所以:30 00=10B IN H δδμ-≈?? 又因为23102(21) d U IN D D ρ=?+ 故:2600102(21)d U B D D μρδ=?+

3电磁力的计算 根据26000 1102F B S μ=? 其中: 又因为2600102(21)d U B D D μρδ=?+ 所以:2262600000110[]1028(21)S d U F B S D D μμρδ =?=?+ 其中: -70μπ-?导磁率,410亨/米; 20S mm -气隙面积(); -d 漆包线直径)(mm ; U -电压(V ) ; 20.0178./mm m ρ-Ω铜的电阻率; -2D 绕线外径)(mm ; -1D 绕线内径)(mm ; mm δ-气隙长度()即行程;

转子绕组匝间短路产生的原因和危害(正式版)

文件编号:TP-AR-L1649 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 转子绕组匝间短路产生的原因和危害(正式版)

转子绕组匝间短路产生的原因和危 害(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 (1)产生原因 ①制造工艺不良。例如:在下线、整形等工艺过 程中损伤匝间绝缘;铜线有硬块、毛刺,也会造成匝 间绝缘损伤。 ②运行中,在电、热和机械等综合应力的作用 下,绕组产生变形、位移,造成匝间绝缘断裂、磨 损、脱落;另外,由于脏污等,也可能造成匝间(尤 其是转子绕组的端部匝间)短路。

③运行年久、绝缘老化,也会造成匝间短路。 (2)危害 转子绕组匝间短路故障是发电机常见性缺陷;轻微的匝间短路,机组仍可继续运行,但应注意加强监视和试验;当匝间短路严重时,将使转子电流显著增大,转子绕组温度升高,限制了发电机无功功率的输出,或者使机组振功加剧,甚至被迫停机。因此,当转子绕组发生匝间短路故障时,必须通过试验找出匝间短路点,予以消除,使发电机恢复正常运行。 (3)匝间短路的分类

不平衡故障(附定向振动) (DEMO)

不平衡故障 一、 不平衡故障的产生机理 由于设计、制造、安装中转子材质不均匀、结构不对称、加工和装配误差等原因或由于机器运行时结垢、热弯曲、零部件脱落、电磁干扰力等原因而产生质量偏心。转子旋转时,由于转子质量中心偏离转动中心,将激起转子的振动,这是旋转机械最常见的故障。 由于有偏心质量m 和偏心距e 的存在,当转子转动时将产生离心力、离心力矩或两者兼而有之。离心力的大小与偏心质量m 、偏心距e 及旋转角速度ω有关,即2ωme F =。众所周知,交变的力(方向、大小均周期性变化)会引起振动,这就是不平衡引起振动的原因。转子每转动一周,离心力方向变化一周,因此不平衡振动的频率与转速相一致。 不平衡故障的主要振动特征: 1) 振动的时域波形近似为正弦波; 2) 频谱图中,谐波能量集中于基频。并且会出现较小的高次谐波,使整个频谱呈所谓的“枞树形”; 3) 当ω<n ω时,即在临界转速以下,振幅随着转速的增加而增大;当ω>n ω后,即在临界转速以上,转速增加时振幅趋于一个较小的稳定值;当ω接近于n ω时,即转速接近临界转速时,发生共振,振幅具有最大峰值。振动幅值对转速的变化很敏感。 4) 当工作转速一定时,相位稳定。 5) 转子的轴心轨迹为椭圆。(由于支撑刚度不同的影响) 6) 从轴心轨迹观察其进动特征为同步正进动。 对于原始不平衡、渐变不平衡和突发性不平衡这三种形式,其共同点较多,但可以从以下两个方面对其进行甄别。

1)振动趋势不同 原始不平衡:在运行初期机组的振动就处于较高的水平。 渐变不平衡:运行初期机组振动较低,随着时间的推移,振值逐步升高。 突发不平衡:振动值突然升高,然后稳定在一个较高的水平; 2)矢量域变化不同 原始不平衡:矢量域稳定于某一允许的范围。 渐变不平衡:矢量域逐渐变化; 突发性不平衡:矢量域某一时刻发生突变,然后稳定。 2.转子不平衡可能导致的后果 对于柔性转子还可能由于动挠度产生附加的惯性离心力而造成不平衡。不同原因所引起的转子不平衡故障是具有基本上一致的规律。归结起来,转子不平衡可能会导致下列不良后果; (1)造成转子的反复弯曲和内应力,从而引起转子疲劳,甚至引起转子断裂; (2)使机器在运转过程中产生过度振动和噪声,从而会加速轴承等零件的磨损及缩短使用寿命。

振动故障诊断及其转子平衡

振动故障诊断及其转子平衡 一、振动基础理论知识简介 1、基本概念: ▲振动:一个弹性体或弹性系统(几个弹性体连在一起)离开其平衡位置做周期性往复运动就叫振动。 其振动量有:极值(峰值),其中单峰值X m,峰-峰值X m-m,X m-m=2 X m;平均值(X i)和均方根值(有效值-X S)。 ▲简谐振动:能用一项正弦或余弦函数表示其运动规律的周期性振动,现场发生的一些复杂振动均是几种不同频率的简谐振动的合成,因此一些资料或书籍均以简谐振动为主加以分析和研究。 X=A.cos(ωt+Φ) ▲通频振幅、基频振幅/基频相位:目前测量振动的仪表按功能来分有两种,一种只能测量振幅值,称为振动表;另一种除能测量幅值外,还能测量振动相位和不同频率下的振动分量,称作振动仪。 振幅有两个含义:1.振幅的表示方法;2.振幅中所含的频率成分。 描述振动的几个物理量: 振动速度:X=A.sin ωt 振动位移:Y=dx/dt=ωt sin(ωt+900) 振动加速度:Z= d2x/dt2=ω2t sin(ωt+1800) X、Y、Z:ω相同,A(最大位移),ωA,ω2A; Y比X矢量超前900;Z比X矢量超前1800。

表示振动强度,位移是最有效的;表示振动平均能量的振动速度是有效的;表示振动冲击强度,振动加速度是最有效的。 ▲极值(幅值)、有效值、平均值的关系: X S =Xm Xi 2 1223600= 极值(幅值):单峰值X (t )=1;峰-峰值=2 平均值:( X )=A dt t x T T 636.0)(10=? 均方根值(有效值):X S =A dt t x T T 707.0120 =?)( 三者之间的关系:双振幅近似等于3倍的有效值或平均值。 轴承振动烈度是以振动速度的均方根值, 我们现在一直沿用的是轴承振动位移峰-峰值S P-P ,国外和国内某些制造厂有用轴承烈度表示 振动,上述换算关系只是指单一频率的振动,如果是混频振动不能直接换算。 ▲通频振幅:用普通振动表(不带滤波器)测得的振幅值是各种频率振动分量的叠加值,如果振幅是由几种不同频率的周期振动叠加而成,其叠加后的振动仍是周期振动,A 在各个周期内保持不变,仪表指示稳定,如果表记示值不稳定,说明由非周期成分存在。 ▲基频振幅:通频振动只能反映物体总的状态,如果要反映振动故障的性质和计算转子重量,就要获取基频振幅。所谓基频振幅是指基波振动频率(机组振动的基波频率等于转子工作频率)下运动量值按正弦规律变化的幅值。测取的方法是采用可调滤波器,可调滤波器

电磁铁电磁力计算方法

电磁铁电磁力计算方法 1磁动势计算(又叫安匝数)IN E = 匝数2 2)12(212d D D L d L d D D N -=-= 其中: -L 绕线宽度)(mm -2D 绕线外径)(mm -1D 绕线内径)(mm -d 漆包线直径)(mm 绕线长度 2 22322121(21)=222(21)10()4D D D D L D D l DN N d L D D m d ππππ-++-==-=?绕

根据电阻公式 222223324(21)(21)41010()d 4L D D l L D D d R d S πρρρπ----==?=?Ω绕其中: 20.0178./mm m ρ-Ω铜的电阻率 2S mm -漆包线的截面积() 根据4322224 10(21)(21)d U U Ud I L D D R L D D ρρ===?-- 故磁动势 23102(21) d U IN D D ρ=?+ 2磁感应强度计算(磁动势在磁路上往往有不同的磁降,但每一圈的磁降和应等于磁动势) 即:()IN HL = ∑ 其中: H -磁场强度(A/m) L m -该段磁介质的长度() 一般情况下,电磁阀除气隙处外,其余部分均采用导磁性能

很好的材料,绝大部分磁动势降是在气隙处, 即0()IN HL H δ= ≈?∑ 其中: 0H -气隙处磁场强度(A/m) mm δ-气隙长度()即行程 而0 00=B H μ 其中: 0B -气隙中的磁感应强度(特斯拉) -70μπ-?导磁率,410亨/米 所以:30 00=10B IN H δδμ-≈?? 又因为23102(21) d U IN D D ρ=?+ 故:2600102(21)d U B D D μρδ=?+ 3电磁力的计算 根据26000 1102F B S μ=? 其中:

转子绕组匝间短路产生的原因和危害

安全管理编号:LX-FS-A53839 转子绕组匝间短路产生的原因和危 害 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

转子绕组匝间短路产生的原因和危 害 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 (1)产生原因 ①制造工艺不良。例如:在下线、整形等工艺过程中损伤匝间绝缘;铜线有硬块、毛刺,也会造成匝间绝缘损伤。 ②运行中,在电、热和机械等综合应力的作用下,绕组产生变形、位移,造成匝间绝缘断裂、磨损、脱落;另外,由于脏污等,也可能造成匝间(尤其是转子绕组的端部匝间)短路。

③运行年久、绝缘老化,也会造成匝间短路。 (2)危害 转子绕组匝间短路故障是发电机常见性缺陷;轻微的匝间短路,机组仍可继续运行,但应注意加强监视和试验;当匝间短路严重时,将使转子电流显著增大,转子绕组温度升高,限制了发电机无功功率的输出,或者使机组振功加剧,甚至被迫停机。因此,当转子绕组发生匝间短路故障时,必须通过试验找出匝间短路点,予以消除,使发电机恢复正常运行。 (3)匝间短路的分类

电磁铁电磁力计算方法之令狐文艳创作

电磁铁电磁力计算方法 令狐文艳 1磁动势计算(又叫安匝数)IN E = 匝数2 2)12(212d D D L d L d D D N -=-= 其中: -L 绕线宽度)(mm -2D 绕线外径)(mm -1D 绕线内径)(mm -d 漆包线直径)(mm 绕线长度 根据电阻公式 222223324(21)(21)41010()d 4L D D l L D D d R d S πρρρπ----==?=?Ω绕其中: 根据4322224 10(21)(21)d U U Ud I L D D R L D D ρρ===?-- 故磁动势

2磁感应强度计算(磁动势在磁路上往往有不同的磁降,但每一圈的磁降和应等于磁动势) 即:()IN HL = ∑ 其中: 一般情况下,电磁阀除气隙处外,其余部分均采用导磁性能很好的材料,绝大部分磁动势降是在气隙处, 即0()IN HL H δ= ≈?∑ 其中: 而000= B H μ 其中: 所以:30 00=10B IN H δδμ-≈?? 又因为23102(21) d U IN D D ρ=?+ 故:2600102(21)d U B D D μρδ=?+

3电磁力的计算 根据26000 1102F B S μ=? 其中: 又因为2600102(21)d U B D D μρδ=?+ 所以:2262600000110[]1028(21)S d U F B S D D μμρδ =?=?+ 其中: -70μπ-?导磁率,410亨/米; 20S mm -气隙面积(); -d 漆包线直径)(mm ; U -电压(V ) ; 20.0178./mm m ρ-Ω铜的电阻率; -2D 绕线外径)(mm ; -1D 绕线内径)(mm ; mm δ-气隙长度()即行程;

发电机转子绕组匝间短路故障的诊断分析

发电机转子绕组匝间短路故障的诊断分析 摘要:本文通过对车间24MW汽轮发电机1#发电机内部转子绕组匝间运作时出 现的短路故障进行分析和讨论,并结合积累的运行经验,对其故障诊断技术所存 在的问题及其特点进行深入性的探讨。并据此提出转子绕匝组间发生短路故障的 几种常见形态,同时对各种状态模式下所选用的检测方法其自身的适用性进行有 效评价,对未来一段时间内进一步提高匝间短路故障的检测以及诊断水平提供了 一些建议。 关键词:短路故障;汽轮发电机;转子绕组;诊断 前言:2012年11月2日,车间按照检修工作计划对1#汽轮发电机组进行同 轴度调整时,检修人员揭开4#瓦上轴承盖后,发现轴承座底部有大量金属铁削,于是立即对4#瓦进行检查,结果发现4#瓦处发电机转子轴颈磨损严重,下瓦口 与轴颈接触面处挤有数块金属脱落物,上瓦有较严重的划痕,下瓦磨损严重,磨 蚀区已失去金属光泽,表面巴氏合金磨损严重,于是发电机转入大修,委托济南 宏宝高压电机大修厂进行维修。维修后试运行,发电机组振动值偏高,对发电机 做转子交流阻抗试验,根据试验数值,怀疑发电机存在匝间短路故障。 当前发电机转子绕组在实际运行过程中,其出现匝间短路的主要表现有:发 电机组本身无功率不断下降;轴系振动逐渐加大;轴电压不断升高等等。上述所 讲的几种现象都是转子出现匝间短路的典型特征。因此我们在实际的检测以及诊 断过程中,可以根据这些特征来做出正确的判断以及评价。 为了以后更好的点检发电机组运行状态,及时发现并处理匝间故障现象,定 时对发电机轴电压进行检测,增加轴振监测点,并对匝间短路故障进行检测和诊 断的方法作以下研究。 一、对匝间短路故障进行检测和诊断的方法 应该说,现阶段发电机转子绕组在运行过程中出现匝间短路问题,依据机组 运行时转速与温度等内容,可以将其划分成为非稳定性短路以及稳定性短路。按 照机组本身的停运状态,检测方法可以将其分为静态检测以及动态检测。 在对匝间短路进行诊断和检测时,会涉及到两个重要点,一个就是对于出现 匝间短路转子机组的早期发现;另一个就是对于匝间短路故障的正确定位。而在 真正诊断过程中,能够及早发现转子匝间短路的诊断方法主要有RSO重复脉冲法 以及相应的探测线圈波形测量法。 1、RSO重复脉冲检测法 该检测方法能够实现对转子绕组运行中出现的匝间短路以及断线还有绕组接 地故障进行有效检测,并能确定出故障的准确位置。这种检测技术所遵循的工作 机理就是通过使用专业的双脉冲信号设备对运行中的发电转子两级,同步施以一 段高频率的冲击脉冲波,并利用双线示波器将两组发生响应的特性曲线记录下来,借以实现对其波形响应时间的有效测定,然后通过专业的计算分析或者是将所得 到的检测结果同设备出厂时所自带的标准波形进行认真比对,就能够准确的判断 出转子绕组匝间在运行过程中有没有出现短路状况,以及出现短路状况的具体位 置等等。图1所示即为一台发电机组在检修时所记录的RSO波形。记录中两条响 应曲线相同时,所得出的差值为一条直线,这就说明匝间在运行中没有出现短路 现象。相反,则说明在发电机组运行中出现匝间短路现象。 2、气隙探测线圈波形法 (1)发电机内部气隙探测线圈的具体设置

旋转机械不平衡故障的诊断

《机械故障诊断技术》 读书报告 院系:机械与汽车工程学院 专业:机械设计制造及自动化 班级:13机制(升) 姓名:林媛 学号:1302224001 指导老师:王平 学年:2014-2015学年第一学期

旋转机械不平衡故障的诊断案例综述 The Summary of Unbalanced Rotating Machinery Fault Diagnosis Cases 【摘要】: 在理想的情况下回转体旋转与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。但在实际应用中的各种回转体,由于材质不均匀 或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状 等多种因素,造成了回转体的不平衡,即使静态平衡了,回转体在旋转时,其 上每个微小质点产生的离心惯性力不能相互抵消,从而产生了不平衡的离心力,就造成了动态的不平衡。转子不平衡是由于转子部件质量偏心或转子部件出现 缺损造成的故障,它是旋转机械最常见的故障。据统计,旋转机械约有70%的 故障与转子不平衡有关。因此,对不平衡故障的研究与诊断也最有实际意义。 【关键词】: 旋转机械转子不平衡故障诊断 【Abstract】: In the ideal case, no matter how the rotary body is rotating or not rotating, the pressure on the bearings is the same, so that the rotary body is balanced. However, b ecause material is unevenblank has some defect and machining and assembling gene rate errors,even designing has been asymmetrical geometry and so on,the various rot ary body of the practical application become to be unbalanced. Even under Static bal ance.When the rotary body is rotating,centrifugal force of inertia generated on each t

电磁铁的吸力计算

我将有关电磁铁吸力的计算方法稍作整理,如下: 1、凡线圈通以直流电的电磁铁都称之为直流电磁铁。通常,直流电磁铁的衔铁和铁心均由软钢和工程纯铁制成。当电磁线圈接上电源时,线圈中就有了激磁电流,使电磁铁回路中产生密集的磁通。该磁通作用于衔铁,使衔铁受到电磁吸力的作用产生运动。 从实践中发现,在同样大小的气隙δ下,铁心的激磁安匝IW越大,作用于衔铁的电磁吸力Fx就越大;或者说,在同样大小的激磁安匝IW下,气隙δ越小,作用于衔铁的电磁吸力Fx就越大。通过理论分析可知,电磁吸力Fx与IW和δ之间的关系可用下式来表达: Fx=5.1×I2×(dL/dδ)(其中L—线圈的电感) (1~1) 在电磁铁未饱和的情况下,可以近似地认为线圈电感L=W2Gδ(式中Gδ—气隙的磁导)。 于是式(1~1)又可写为Fx=5.1×(IW)2×d Gδ/dδ(1~3)这就是说,作用于衔铁的电磁吸力Fx是和电磁线圈激磁安匝数IW的平方以及气隙磁 导随气隙大小而改变的变化率d Gδ/dδ成正比。 气隙磁导Gδ的大小是随磁极的形状和气隙的大小而改变的。如果气隙中的磁通Φδ为均匀分布,则气隙磁导可以表示为: Gδ=μ0×(KS/δ)(亨)(1~4) 式中:μ0—空气的磁导率,=1.25×10-8(亨/厘米); S-决定磁导和电磁吸力的衔铁面面积(厘米2); δ—气隙长度,即磁极间的距离(厘米); K—考虑到磁通能从磁极边缘扩张通过气隙的一个系数,它大于1,而且δ值越大,K值也就越大。 可以推导出:d Gδ/dδ=-μ0×(S/δ2) 于是有:F x=-5.1×{μ0 (IW)2S/δ} 式中的负号表示随着气隙δ的减小,电磁吸力Fx随之增大,若不考虑磁极边缘存在的扩散磁通的影响(K≈1),则气隙磁感强度为: B=Φ/S={(IW)Gδ}/S={(IW)μ0S}/Sδ=(IWμ0)/δ 所以电磁吸力的公式还可写为:F x=5.1B2S/μ0

测量发电机转子绕组短路故障的方法(新编版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 测量发电机转子绕组短路故障的 方法(新编版)

测量发电机转子绕组短路故障的方法(新编 版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 (1)有效性的原因 这一试验是在转子绕组上施加工频交流电压,测量交流阻抗和功率损耗、若绕组中存在匝间短路,当交流电压作用时,在短路线匝中产生的短路电流,约是正常线匝电流的n倍(n为一个槽内绕组总匝数),它有着强烈的去磁作用,从而导致绕组的交流阻抗大大下降,电流大大增大,因功率损耗与电流的平方成正比,所以功率损耗也显落增大,通过测量转子绕组的交流阻抗和功率损耗,与原始(或以前)数据比较,即可灵敏地判断出转子绕组是否存在匝间短路缺陷。 (2)试验方法 ①试验接线:测量发电机转子绕组的交流阻抗和功率损耗试验接线如图8—14所示。图中仪表的量限应按具体机组而定,准确度不得低于0.5级。 ③注意事项:

a.要求试验电压为正弦波,为了减小高次谐波,最好试验电源取自线电压。 b.试验电压的峰值不得超过转子额定励磁电压。 c.试验时,先升至最高电压,然后下降分段测量,目的是为了减小剩磁对阻抗的影响。 d.交流阻抗和功率损耗与许多因素有关,试验时必须注意在相同的状态(指静态、动态,定子膛内、膛外,护环和槽楔与本体的结合状态)和相同参数(指转速、电压)下进行测量比较。 e.当转子绕组存在一点接地时,试验电源不能采用具有地线的电源,否则,试验电路中应另加隔离变压器,以免造成绕组和铁芯烧损事故。 f.对隐极式转子应在定子膛内或膛外测量。在膛内测量时,定子回路必须断开,以免因定子绕组中产生的感应电动势引起环流,影响测量结果,另外应注意安全。在膛外测量时,转子最好与周围的铁磁物质相距0.5m以上,距离有钢筋的地面0.3m以上。 e.对于显极式转子一般仅要求在膛外测量,除测量整个转子绕组的交流阻抗和功率损耗外,还应在相同的电流条件下测量各磁极绕组的电压,试验电路如图8—15所示。

发电机转子匝间短路的原因与分类

发电机转子匝间短路的原因与分类 核心提示:现场运行经验表明,发电机转子绕组匝间短路故障多发生在绕组端部,尤其是在有过桥连线的一端居多。造成发电机转子绕组匝间短路故障的原因很多,总体上可分为制造和运行两大方面。 1.匝间短路产生的原因 (1)设计制 现场运行经验表明,发电机转子绕组匝间短路故障多发生在绕组端部,尤其是在有过桥连线的一端居多。造成发电机转子绕组匝间短路故障的原因很多,总体上可分为制造和运行两大方面。 1.匝间短路产生的原因 (1)设计制造方面 1)设计不够合理有的转于结构设计不够合理,如端部弧线转弯处的曲率半径偏小,致使外弧翘起,运行中在离心力的作用下,匝间绝缘被压断,造成了匝间短路。 2)制造质量不良 ①转子端部绕组固定不牢,垫块松动。发电机运行中由于铜铁温差引起的绕组相对位移,设计上未采取相应的有效措施。 ②有的转子绕组在制造时所应用的匝同绝缘材料材质不良,含有金属性硬刺,绕组铜导线加工成形后不严格的倒角与去毛刺,运行中在离心力的作用下刺穿了匝间绝缘,造戒匝间短路。 ③端部拐角整形不好和局部遗留褶皱或凸凹不平;匝间绝缘垫片垫偏、漏垫或堵孔(直接冷却的绕组通风孔);绕组导线的焊接头和相邻两套绕组间的连接线焊口整形不良;制造工艺粗糙留下的工艺性损伤;转子护环内残存加工后的金属切屑等异物。

④有的转子线匝局部未铣风孔扎或风量不合格造成严重过热,从而引起匝间短路。 2.转子绕组匝间短路的分类 转子绕组匝间短路按照短路是否随着转子的转动状态和运行工况发生变化,可以分为稳定性匝间短路和不稳定性匝间短路(或称为动态匝间短路).其中动态匝间短路又占多数。 就故障发展的过程来分,可以分为三个阶段:萌芽期、发展期和故障期。在萌芽期,转子绕组匝间出现初始异常征兆,机组运行还未受到影响,发电机组振动、励磁电流、机组无功及轴电压等均符合正常运行工况。故障表现为局部过热、匝间以稳定的高阻短路或匝间绝缘间存在油污、漆片等污染物。在发展期,机组运行已经出现异常,匝间短路基本或已经具备稳定特征。发电机在运行状态下振动增大、机组励磁和无功受到影响,但运行工况限制尚未突破。在故障期,绕组匝间绝缘已经出现明显的严重短路征兆,发电机组振动超标、无功严重降低(励磁电流超过额定要求)、转于温度高等异常运行工况,已危及发电机组的安全运行,甚至包括已经促发转子接地等故障的发生。因此,在这种状态下要求机组立即停机,进行故障处理和全面检修。 发电机转子绕组匝间短路故障诊断的目的是尽可能在故障的萌芽期和发展期准确地诊断出稳定性匝间短路和动态匝问短路,分析故障发生的原因,并确定故障发生的部位和严重程度。

相关文档
最新文档