高韧性高铬铸铁衬板的研制与应用

高韧性高铬铸铁衬板的研制与应用
高韧性高铬铸铁衬板的研制与应用

高韧性高铬铸铁衬板的研制与应用

一.前言

据统计,我国每年消耗的金属耐磨材料约300万吨以上,其中仅冶金矿山消耗的衬板就达10万吨左右。目前我国各类矿山磨机等选矿山用磨机等选矿设备中的衬板等易损件一般都采用ZGMn13高锰钢材质。这类易损件在使用时要承受一定的冲击和磨料磨损,因此其材质应具良好的抗磨性能和一定的冲击韧性。ZGMn13奥氏体高锰钢的冲击韧性很高(ak达200J/cm2),原始硬度不超过HB230,但在高的冲击负荷作用下,工作表面层能够产生硬化效应,其表面硬度可达HRC42-48,而中心仍保持优良的韧性。但如果服役时冲击能量不够,奥氏体高锰钢表面冲击硬化效应不能充分产生,高锰钢表面达不到高硬度,则工体很快磨损。同时高锰钢的屈服极限(δ0.2)较低(约为350Mpa左右),在使用中,尤其是使用前期工件易发生塑性变形。另外球磨机衬板与研磨介质(如磨球)之间还存在一个硬度匹配问题,研磨介质硬度一般应高于衬板硬度HRC3左右较宜,但目前很多厂矿使用的低铬铸铁、高铬铸铁磨球的硬度大大高于高锰钢材板硬度。高锰钢在低冲击负荷下的上述不足常常导致工件的韧性有余而耐磨性不够,磨损失效快,而且变形严重,致使工体寿命短。

Cr>11%的高铬白口铸铁的共晶碳化物为六方晶系的M7C3,(CrFe)7C3硬度为

HRM501200-1800,比一般白口铸铁的共晶碳化物Fe3C3(HRV50840-1100)高,同时凝固时(CrFe)7C3 是孤立相,而奥氏体是连续相,因而韧性较普通白口铸铁大有改善,因此是搞磨粒磨损和抗切削磨损的首选材料。国外应用较多,主要用于中低冲击负荷工况条件的衬板、锤头、磨球、渣浆泵过流部件等大中型磨损件。国内外对高铬铸铁的磨损机制、断裂机制、断裂韧性(K1c值)、裂纹扩展机理进行了一系列的研究,结果表明高铬铸铁可通过调整碳化物的大小和形态、二次碳化物量及弥散度以及基体组织(马氏体、奥氏体、索氏体),从而调整性能、满足工作使用要求。近年来国内有关单位也开展了高铬铸铁衬板的研究,其耐磨性可达同工况下高锰钢的2倍以上。但这些材料的韧性仍嫌较低(10×10×55mm 无缺口试样的冲击值≤7.3J/cm2)而且含钼、铜等合金元素,生产成本较高。因此这类高铬铸铁仍有待进一步改进和完善。

二.高铬铸铁的成分设计

1.碳和铬

碳和铬的主要作用是保证铸铁中碳化物数量和形态。随着C量提高,碳化物增多;随着Cr/C 比的增加,共晶碳化物的形貌经历了由连续网状→片状→杆状连续程度减小的过程,共晶碳化物晶体类型经历由M3C→M3C+M7C3→M7C3的变化过程。有资料指出:当共晶碳化物不变,且Cr/C为6.6-7.1时,同铬铸铁的断裂纹扩展能力最强。根据这些原理,宜将C量定为3.1-3.6%,Cr量为20-25%。基体中的Cr还可以提高材料的淬透性。

2.镍

其作用是增加高铬铸铁的淬透性,抑制奥氏体基体向珠光体的转变,促进马氏体基的形成。

3.钨

其作用是细化晶粒,提高硬度,增加耐磨性。

4.高效稀土复合变质剂

其作用是脱氧和去硫,从而抑制夹杂物在晶界的偏聚,改善晶界状况;另外,由于稀土元素偏聚、吸附在碳化物择优长大的方向上,使碳化物的生长受到抑制,从而使其变得均匀、孤立,而其他变质元素可以形成弥散分布的碳、氮化合物,阻止晶粒长大,从而细化晶粒。稀土复合变质剂的以上作用不仅改善材料的显微组织,而且可使材料在硬度特别是冲击韧性明显提高。本高效稀土复合变质剂的加入量取0.2-0.5%为宜。

三.高铬铸铁的组织和性能

1.铸态

组织:索氏体+共晶碳化物及条状块壮棒状碳化物。

硬度:HRC48.6,49.3,46.0,49.4,51.7。平均硬度:HRC49。

2.热处理态

经过“正火空冷+回火空冷”的热处理后,硬度平均为HRC60.5,金相组织为马氏体+共晶碳化物+条状块状棒状碳化物。

四.衬板铸件试制

1.熔炼工艺

熔炼在500kg酸性中频电炉中进行

(1)先往500kg酸性中频电炉中加入废钢和生铁熔清,再加入铬铁、钨铁、镍调整铁水成分。

(2)在出铁前5-10钟内先后加入锰铁和硅铁。

(3)在出铁前2分钟左右加入0.05%纯铝脱氧。

(4)铁水出炉温度控制在1460-1500℃左右。

(5)在包内冲入1.4kg高效稀土复合变质剂进行孕育处理.

(6)往包内撒入适量保温聚渣剂覆盖,并镇静5分钟左右,扒渣。

(7)铁水浇注温度控制在1360-1400℃左右。

2.造型制芯工艺

造型工艺采用有机酯水玻璃砂工艺

配料:下箱砂与芯砂:原砂(40/70目)100%+水玻璃5%(占原砂重)+有机酯12%(占水玻璃重)+EZK型溃散剂2.5%(占原砂重)。

上箱砂:原砂100%+水玻璃4.5%(占原砂重)+有机酯12%(占水玻璃重)不加溃散剂。混砂工艺:原砂加溃散剂混1分钟→加有机酯混2-3分钟→加水玻璃混1-2分钟→出砂

型砂可使用时间:25-30分钟。

脱模时间:0.5-1.5小时。

涂料采用醇基锆英粉涂料,要求搅拌充分,均匀刷涂两次,占火快干。冒口采用漂珠保温套。

试生产的铸件表面质量好,无铸造缺陷。

3.热处理工艺

铸件清理后,进行热处理。热处理在台车式电阻炉内进行,热处理工艺为“正火空冷+回火空冷”。铸件热处理后硬度平均为HRC60.5,冲击韧性高达8.J/cm2(10×10×55mm无缺口试样)。

五.装机试用

试生产的衬板装机运行试验在武钢金山店铁矿生产率为115T/h的ф3.6×4m湿式球磨机中进行.铁矿石莫氏硬度F=7-8。新型高铬铸铁衬板与高锰钢(ZGMn13)衬板同时间隔安装。试验从2001年7月4日开始,在使用5081小时,处理铁石606720吨后,新型低合金钢衬板与相同工况下的高锰钢衬板的质量变化情况对比表1。由表1可知:高铬铸铁衬板的耐磨性是高锰钢(ZGMn13)衬板的2.6倍。

开机检查,未见衬板有裂纹。这表明:这种高铬铸铁衬板的韧性能达到磨机的使用要求。

表1 两种材料质衬板的耐磨性对比

六.结语

新型高韧性高铬铸铁衬板(KmTBCr20NiWRe)不含价格昂贵的钼、铜、采用了适合我国资源特点的主效稀土复合变质剂和较多的铬,其硬度达到HRC60以上,冲击韧性达8J/cm2以上,耐磨性达到ZGMn13高锰衬板的2.6倍。

白口铸铁的分类及高铬白口铸铁的应用

白口铸铁的分类及高铬白口铸铁的应用 白口铸铁是应用较早也是比较广泛的一类耐磨材料,中国早在春秋时代就制成了抗磨性良好的白口铸铁,用作一些抗磨零件。白口铸铁包括普通白口铸铁、低合金白口铸铁、中合金白口铸铁,高合金白口铸铁。普通白口铸铁是不添加合金元素的普通白口铸铁,工程上被应用于耐磨性要求不高的抗磨铸件。低合金白口铸铁脆性仍较大,适用于对耐磨性和韧性要求不太高的场合。中合金白口铸铁以铬为主要合金元素,加入铬量达9%时,这种碳化物呈孤立杆状或板状形态,连续性差,所以韧性好、强度高。目前用得最广泛的是高合金白口铸铁中含铬量为12%~20%的高铬白口铸铁,具有较高的硬度,良好的耐磨性和韧性,广泛应用于采矿、水泥、电力、筑路机械等方面。 随着高铬白口铸铁的应用日益广泛,各种新型刀具如硬质合金刀具,陶瓷刀具和立方氮化硼刀具等超硬刀具的应用也日趋广泛。但只有选择正确的刀具,才能更好的解决高铬白口铸铁难加工的问题。以前和华菱刀具工程师交谈时听说华菱立方氮化硼刀具BN-K1加工高铬白口铸铁效果更明显。原因是华菱超硬立方氮化硼刀具BN-K1属于非金属粘合剂,是整体聚晶立方氮化硼刀具,其硬度高,具有良好的耐磨性和抗冲击性能,可有效提高加工效率。 华菱超硬是一家集超硬刀具设计,生产,技术服务于一体的中国民族企业,其刀具方案可全方位、高效的完成硬材料加工行业领域的各种零部件的车削、铣削等一系列加工。目前被广泛应用于高硬度材料,热处理后的高硬度工件,和其他难切削材料的零件领域。自创立以来,与多家机械零部件商家建立了长期合作伙伴关系。 以下是华菱立方氮化硼刀具BN-K1加工高铬白口铸铁的实际加工案例。 一、高铬白口铸铁的特性 高铬白口铸铁是继普通白口铸铁、镍硬铸铁发展起来的第三代白口铸铁。目前高铬铸铁已经是世所公认的优良的耐磨材料,在采矿、水泥、电力、筑路机械、耐火材料等方面应用十分广泛。高铬白口铸铁作为耐磨铸件在不做任何热处理的情况下,硬度一般在HRC45以上,抗拉强度为650~850MPa。并且高铬白口铸铁时铸造成型的,尤其铸造出的大件切削量余大,并且表面会有夹砂,气孔等铸造缺陷。所以在加工高铬白口铸铁时,选择正确的刀具很重要。 二、加工高铬白口铸铁的刀具选择 高铬铸铁作为难切削材料之一,由于硬度高,硬质合金刀具磨损较快,很难正常加工,而陶瓷刀具由于脆性大的原因,一般只用于精加工中;之后华菱推出的专为高铬白口铸铁研发的整体聚晶立方氮化硼刀具BN-K1,其硬度比硬质合金高四倍,比陶瓷刀具高两倍,并且立方氮化硼刀具BN-K1属于非金属粘合剂,具有良好的耐磨性和抗冲击性能,可提高加工效率,降低加工成本。

高铬铸铁热处理工艺

高铬铸铁热处理工艺 化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35 1、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行 200~260℃的低温回火。 2、2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。 高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。如果适当减少保温时间,对薄截面零件也可以取得效果。该工艺的不足是工艺消耗热能较多。 加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样? 要控制加热速度,最好在650? ?? ?750? ?? ?? ? 850? ?? ? 时保温一定时间。我以前做过,正火就可以了。硬度能做到61----65HRC 成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。 我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。价格要包括中间的软化退火和精加后的淬火及回火。楼主的材料应该叫Cr26 做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58 我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。磨球规格φ40-φ80。 工艺是1050淬火+250~350回火 金属耐磨材料在水泥企业的研究和应用 [摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。 [关键词] 金属耐磨材料水泥企业研究应用 一、金属耐磨材料的概述 材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。当Hm/Ha比值超过一定值后,磨损量便会迅速降低。 当Hm/Ha≤0.5-0.8时为硬磨料磨损,此时增加材料的硬度对材料的耐磨性增加不大。 当Hm/Ha>0.5-0.8时为软磨料磨损,此时增加材料的硬度,便会迅速地提高材料的耐磨性。 金属耐磨材料一般都指的是耐磨钢,能抵抗磨料磨损的钢。这类钢还没有成为一个完全独立的钢种,其中公认的耐磨钢是高锰钢。 二、水泥企业主要使用的耐磨钢

高铬铸铁金相组织

通过试验研究,得到铸态高铬白口铸铁的金相组织主要为:铬奥氏体加M7C3共晶碳化物和铬屈氏体加M7C3共晶碳化物;采用稀土变质处理,可使晶粒细化,从而有效地提高机械性能和抗磨性能。 关键词:铸态高铬白口铸铁;稀土;抗磨性能 高铬铸铁是一种常用的抗磨铸铁。铬的大量加入,使碳化物变成具有更高硬度(1300~1800HV)的M7C3型碳化物,从而提高了抗磨性。在此同时,凝固过程中M7C3型碳化物形成了孤立分布的杆状组织,使得高铬白口铸铁的韧性有了一定程度的改善。目前国内外生产的高铬白口铸铁大多要经过高温淬火加回火处理工艺,以获得马氏体基体,然而这种基体作为水泥磨机磨球材料在高应力小能量的三体磨损中,其韧性仍显不足。并且生产周期长,工艺复杂,设备投资、能源消耗和劳动强度均较大。 本文通过试验对含碳量在亚共晶区,含铬15%左右的高铬白口铸铁进行了铸态金相组织分析及性能研究。试验结果表明:铸态高铬白口铸铁的主要金相组织是铬奥氏体加M7C3共晶碳化物和铬屈氏体加M7C3共晶碳化物。经过稀土变质处理后,可有效改善碳化物形态及分布,均匀组织,细化晶粒,明显提高韧性和强度,提高抗磨性。 一、试验方法及结果 试验用的合金材料在酸性中频无芯感应电炉内熔化,熔化温度在1530℃以上,浇注温度为1380~1450℃,砂型铸造。化学成分、机械性能和金相组织见表l。

机槭性能试验:冲击韧性在JB30A摆锤式冲击试验机上测定,试样尺寸10×lO×55mm,无缺口,不加工。 磨损性能试验在AMSLERAl35/138型动载磨损试验机上进行.试样尺寸Φ32×10mm.中心孔直径Φ6mm,磨料采用28/75目石英砂.试验前预磨lh,三体磨损加水平和垂直方向的冲击,冲击载荷为50~100kg.正式磨损时间20h。试验的失重值在自动电光分析天平上测定. 二、金相组织分析 1 含碳量对金相组织的影响 由表l可知lA、4A基体组织均为屈氏体加M7C3当成分中的含碳量增加时,共晶M7C3的数量增加,形态亦从短小片状向粗大片状发展。M7C3具有高的硬度和高的磨料磨损抗力,数量增加能提高抗磨性;但碳量超过共晶碳量,初生碳化物很粗,在磨料的冲击下会碎裂,从而增加了磨损时的失重。 2 混合稀土变质处理对金相组织的影响 图1 试样6B的金相组织200× 图2 试样10B的金相组织200× 图l、2分别为B组试验中碳铬含量相同.来经处理和经稀土变质处理的金相组织。基体组织主要为铬奥氏体加M7C3共晶碳化物。图示表明,稀土的加入对组织最直观的影响是细化晶粒改变碳化物形态

高韧性高铬铸铁衬板和ZGMn13高锰钢的区别研制与应用

高韧性高铬铸铁衬板和ZGMn13高锰钢的区别研制与应用据统计,我国每年消耗的金属耐磨材料约300万吨以上,其中仅冶金矿山消耗的衬板就达10万吨左右。目前我国各类矿山磨机等选矿山用磨机等选矿设备中的衬板等易损件一般都采用ZGMn13高锰钢材质。这类易损件在使用时要承受一定的冲击和磨料磨损,因此其材质应具良好的抗磨性能和一定的冲击韧性。ZGMn13奥氏体高锰钢的冲击韧性很高(ak达200J/cm2),原始硬度不超过HB230,但在高的冲击负荷作用下,工作表面层能够产生硬化效应,其表面硬度可达HRC42-48,而中心仍保持优良的韧性。但如果服役时冲击能量不够,奥氏体高锰钢表面冲击硬化效应不能充分产生,高锰钢表面达不到高硬度,则工体很快磨损。同时高锰钢的屈服极限(δ0.2)较低(约为350Mpa左右),在使用中,尤其是使用前期工件易发生塑性变形。另外球磨机衬板与研磨介质(如磨球)之间还存在一个硬度匹配问题,研磨介质硬度一般应高于衬板硬度HRC3左右较宜,但目前很多厂矿使用的低铬铸铁、高铬铸铁磨球的硬度大大高于高锰钢材板硬度。高锰钢在低冲击负荷下的上述不足常常导致工件的韧性有余而耐磨性不够,磨损失效快,而且变形严重,致使工体寿命短。 Cr>11%的高铬白口铸铁的共晶碳化物为六方晶系的M7C3,(CrFe)7C3硬度为HRM501200-1800,比一般白口铸铁的共晶碳化物Fe3C3(HRV50840-1100)高,同时凝固时(CrFe)7C3 是孤立相,而奥氏体是连续相,因而韧性较普通白口铸铁大有改善,因此是搞磨粒磨损和抗切削磨损的首选材料。国外应用较多,主要用于中低冲击负荷工况条件的衬板、锤头、磨球、渣浆泵过流部件等大中型磨损件。国内外对高铬铸铁的磨损机制、断裂机制、断裂韧性(K1c值)、裂纹扩展机理进行了一系列的研究,结果表明高铬铸铁可通过调整碳化物的大小和形态、二次碳化物量及弥散度以及基体组织(马氏体、奥氏体、索氏体),从而调整性能、满足工作使用要求。近年来国内有关单位也开展了高铬铸铁衬板的研究,其耐磨性可达同工况下高锰钢的2倍以上。但这些材料的韧性仍嫌较低(10×10×55mm无缺口试样的冲击值≤7.3J/cm2)而且含钼、铜等合金元素,生产成本较高。因此这类高铬铸铁仍有待进一步改进和完善。 二.高铬铸铁的成分设计 1.碳和铬 碳和铬的主要作用是保证铸铁中碳化物数量和形态。随着C量提高,碳化物增多;随着Cr/C比的增加,共晶碳化物的形貌经历了由连续网状→片状→杆状连续程度减小的过程,共晶碳化物晶体类型经历由 M3C→M3C+M7C3→M7C3的变化过程。有资料指出:当共晶碳化物不变,且Cr/C为6.6-7.1时,同铬铸铁的断裂纹扩展能力最强。根据这些原理,宜将C量定为3.1-3.6%,Cr量为20-25%。基体中的Cr还可以提高材料的淬透性。 2.镍 其作用是增加高铬铸铁的淬透性,抑制奥氏体基体向珠光体的转变,促进马氏体基的形成。 3.钨 其作用是细化晶粒,提高硬度,增加耐磨性。 4.高效稀土复合变质剂 其作用是脱氧和去硫,从而抑制夹杂物在晶界的偏聚,改善晶界状况;另外,由于稀土元素偏聚、吸附在碳化物择优长大的方向上,使碳化物的生长受到抑制,从而使其变得均匀、孤立,而其他变质元素可以形成弥散分布的碳、氮化合物,阻止晶粒长大,从而细化晶粒。稀土复合变质剂的以上作用不仅改善材料的显微组织,而且可使材料在硬度特别是冲击韧性明显提高。本高效稀土复合变质剂的加入量取0.2-0.5%为宜。 三.高铬铸铁的组织和性能 1.铸态 组织:索氏体+共晶碳化物及条状块壮棒状碳化物。 硬度:HRC48.6,49.3,46.0,49.4,51.7。平均硬度:HRC49。 2.热处理态 经过“正火空冷+回火空冷”的热处理后,硬度平均为HRC60.5,金相组织为马氏体+共晶碳化物+条状块状棒

高铬铸铁的热处理

高铬铸铁的热处理 1. 退火 由于高铬制品其铸态硬度较高,为改善工件的机械加工性能,所有毛坯必须进行必要的软化退火处理。 具体工艺( 以壁厚不超过100mm且外形较复杂铸件为例) 如下。 首先将需处理工件在室温下装入热处理炉,然后随炉缓慢升温至400 ℃左右进行保温1 ~2h,随后将炉温升至600 ℃再进行保温1 ~2h,之后以不超过150 ℃/ h的温升速度,将炉温快速升至950 ℃后进行2 ~3h 的保温,而后停止加热,待炉温自然降至820 ℃左右,此后可控制电炉以10 ~15 ℃/ h 的温降速度将炉温降至700 ~720 ℃,并在此温度保温4 ~6h ( 工件越厚其保温时间应越长) 后停炉,工件可视情况随炉冷却或出炉置于静止的空气中冷却至室温( 以获得珠光体基体,满足性能要求,便于切削加工) 。 具体生产中,若所处理工件形状较为简单,也可采用较快速的退火工艺,即在温升至950 ℃并保温3h 后停炉,之后可随炉冷却至400 ℃左右,然后打开炉门,继续冷却至300 ℃以下,工件即可出炉空冷。 工件退火后可进行机械加工,由于高铬白口铸铁在淬火过程中尺寸变化比铸钢和灰铸铁小的多,一般无须矫正尺

寸,对于按工艺要求需磨削加工的工件所留磨削量也可很小。 2. 淬火 将机械加工后的工件室温装炉,以小于80 ℃/ h 的温升速度将炉温升至600 ℃( 若工件较厚或形状较复杂,可在温升至300 ℃、400 ℃、500 ℃、600 ℃时分别给予0. 5h 的保温) ,之后以不超过150 ℃/ h 的温升速度将炉温升至淬火温度950 ~980 ℃后进行保温,保温时间为2~4h ( 视工件厚薄不同保温时间有所差别,越厚保温时间越长) ,而后将工件快速出炉进行空冷,若遇环境气温较高,淬火时应辅以强风和水雾喷洒,以强化冷却,淬火工艺曲线如图2 所示。 3. 回火 为降低铸件残余应力和脆性,并保持其淬火得到的高硬度和耐磨性,同时也使马氏体得以回火,以及残余奥氏体有所减少,应对淬火后的工件再进行230 ~260 ℃的回火处理。具体工艺为: 将工件在室温状态下装炉,再升温至230 ~260 ℃,保温3 ~6h,之后出炉空冷。

高铬热处理工艺

高铬铸热处理工艺 化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35 1、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行 200~260℃的低温回火。 2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。 高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。如果适当减少保温时间,对薄截面零件也可以取得效果。该工艺的不足是工艺消耗热能较多。 加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样? 要控制加热速度,最好在650 750 850 时保温一定时间。我以前做过,正火就可以了。硬度能做到61----65HRC 成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。 我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。价格要包括中间的软化退火和精加后的淬火及回火。楼主的材料应该叫Cr26 做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58 我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。磨球规格φ40-φ80。 工艺是1050淬火+250~350回火 金属耐磨材料在水泥企业的研究和应用 [摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。 [关键词] 金属耐磨材料水泥企业研究应用 一、金属耐磨材料的概述 材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。当Hm/Ha比值超过一定值后,磨损量便会迅速降低。 当Hm/Ha≤0.5-0.8时为硬磨料磨损,此时增加材料的硬度对材料的耐磨性增加不大。 当Hm/Ha>0.5-0.8时为软磨料磨损,此时增加材料的硬度,便会迅速地提高材料的耐磨性。

简述高铬铸铁轧辊的铸造和应用

简述高铬铸铁轧辊的铸造和应用 摘要:高铬铸铁轧辊现已广泛应用于热轧中宽带钢精轧机组前架及部分小型棒线、型钢精轧机组,以其良好的耐磨性和抗“斑带”性能广受用户的青睐。本文对高铬铸铁轧辊的铸造、热处理过程进行简要阐述,对使用中易出现的问题加以分析。 关键词:高铬铸铁轧辊、耐磨、抗“斑带”、铸造、热处理 一、高铬铸铁轧辊的生产方式 当前,几乎所有的高铬铸铁轧辊均采用离心铸造方式,只是离心机有水平式、立式和倾斜式3中形式。相比较“溢流法”等以前的生产方式,离心铸造可以使少量的高铬铸铁外壳迅速冷却,以便获得更加细小分散的碳化物组织,且生产效率进一步提高。 轧辊的芯部通常采用高强度球墨铸铁,由于外层的铬含量较高,芯部成份中的硅含量和镍含量应较普通轧辊适当提高,以便减少芯部组织中碳化物含量、增强芯部强度。 通常情况下,为防止外层含量较高的铬成份在浇注芯部时向芯部扩散,要在外层浇注完毕时择机浇入过渡层,过渡层铁水可采用中铬铸铁、半钢、灰铸铁等材料。浇入的时间、温度和铁水量要进行严格控制。二、高铬铸铁轧辊的冶金性能 在Fe-Cr-C合金中,如果铬的含量超过15%,渗碳体就会变得不稳定,其将会被具有复杂结构的六边形碳化物M7C3代替,该种碳化物被称为铬碳化物,主要成分为铬和铁,可能含有少量的其它合金元素。高铬铸铁轧辊外层材质的基本特征是显微组织中共晶碳化物以(Cr,Fe)7C3型为主,其显微硬度为1500-1800HV,而渗碳体的显微硬度为1000-1200HV,这也是高铬铸铁轧辊有较强耐磨性能的原因。高铬铸铁轧辊的主要化学成分(%)为:C2.2~3.4,Cr10~25,Mo0.3~4,Ni0.3~3.0。铬碳比(Cr/C)决定了高铬铸铁外层组织中碳化物的类型,C、Cr、Mo等元素的含量决定了碳化物的数量。Ni和Mo的作用一方面是强化基体,另一方面是增加基体组织的淬透性。 对Fe-Cr-C合金系的研究大多基于以下Fe-Cr-C合金相图 生产工艺高铬铸铁一般采用感应电炉或电弧炉熔炼,常用的原料为生铁、废钢、回炉料、铬铁、钼铁,

高铬铸铁耐磨衬板的热处理工艺改进

高铬铸铁耐磨衬板的热处理工艺改进 我公司生产的2号和6号衬板是一种高铬合金铸铁,因其耐热耐磨性能好,广泛用于各大钢铁公司的高炉设备。但由于其脆性大,无论在铸造还是在热处理过程中、极易断裂。据我们过去统计,在热处理时,尺寸约在1000毫米×500毫米×25毫米以下的中小型衬板废品率一般在10~15%,尺寸在此以上的大衬板最高时甚至达到50%左右。由于规格繁多,几何形状多样,生产难度较大,每年的平均废品率一般都在16%左右。走访过一些单位,大家都认为衬板开裂的原因很多,与其铸造内在质量、外观质量、尺寸大小、几何形状、化学成分等多种因素有关。但我们认为主要是热处理加热和冷却条件。这种衬板在加热和冷却过程中体积变化特别突出。加热时其体积增大,而冷却时体积缩小。(1)对同一块衬板来说,加热速度过快,体积增大速度上下不一,造成较大应力,导致开裂。(2)衬板在砂箱中摆放过挤,受热后体积增大受到限制,也会迫使它以开裂方式释放体积变化受阻产生的应力。(3)开裂最多是在出炉后,衬板在砂箱中以空气风冷时,边缘冷却快,体积大幅度收缩,而中部不易冷却,其红热部分收缩量滞后,中部阻止外部收缩,这时中部承受边缘施加的压应力,而边缘收缩受阻承受很大的拉应力,而衬板的韧性又较低,当拉应力达到一定极限后,外部边缘以开裂形式来释放应力。这时如注意观察会发现,裂纹通常起源于衬板冷得最快的长边中段某处,因为这里的应力聚集最大,开口裂得较宽,裂口端部可达3~4毫米,当

中部随时间延长逐渐降温收缩后,边缘与中部的收缩量接近一致,裂口便闭合在一起,然而,很长的裂纹已经产生,甚至断开。 所以我们认为冷却和加热过程中,在同一块衬板上的温度一致性,是保证衬板不裂的决定性因素。裂因明确后,在加热过程中,我们采取逐步升温、均温的方法,这与老方法基本相同,目的使同一块衬板均匀受热,各部分膨胀系数基本一样,但必须注意要将大衬板摆放在宽松的工装或砂箱内,让其可以有足够的空间膨胀。这样通常可以保证衬板在炉中不裂。衬板出炉时是最关键的步骤。冷却速度的快慢决定着硬度的高低,而同一块衬板上如何均温冷却,决定着裂与不裂。为此,我们做了大量的工作,用风吹、向中部喷水雾,但都不具备良好的可操作性,尤其是喷水雾,尽管可以使硬度提高、开裂率下降,但对操作者的要求太严,不能有任何粗心大意,在生产实际中很难实施,只能停留在实验中。最后,我们采取分批单件散开,即在台车炉加热衬板出炉时,迅速将其中的一砂箱吊离炉底板,并立刻一块一块散开空冷。为防止台车上的衬板出炉后,边缘与其中部随时间延长造成较大温差,一定要及时将台车开进炉内均温,均温时不送电、炉门可以不全关。目的是防止衬板边沿变暗或使已稍变暗的边沿回温,以保证其均温效果。第一批散开后,再出第二批砂箱,如此直到全炉衬板出完。最后一批出炉的衬板,温度一般控制在仪表显示760℃以上,其硬度值不受影响。这样便解决了衬板均温快速冷却的问题。这一方法效果非常明显,不仅不易出现开裂,而且衬板中部与边缘基本同时冷却,冷却过程中各处的体积收缩速度趋于一致,产生的

高铬铸铁(上篇)

铮铮硬骨高铬铸铁(上篇)2009-8-5 17:20:49 高铬白口抗磨铸铁(以下简称高铬铸铁)是一种性能优良而受到特别重视的抗磨材料。它以比合金钢高得多的耐磨性,和比一般白口铸铁高得多的韧性、强度,同时它还兼有良好的抗高温和抗腐蚀性能,加之生产便捷、成本适中,而被誉为当代最优良的抗磨料磨损材料之一。 高铬铸铁属金属耐磨材料、抗磨铸铁类铬系抗磨铸铁的一个重要分支,是继普通白口铸铁、镍硬铸铁而发展起来的第三代白口铸铁。早在1917年就出现了第一个高铬铸铁专利。高铬铸铁一般泛指含Cr量在11-30%之间,含C量在2.0-3.6%之间的合金白口铸铁。我国抗磨白口铸铁国家标准(GB/T8623)规定了高铬白口铸铁的牌号、成分、硬度及热处理工艺和使用特性。其典型成分及工艺如下表: 表1高铬铸铁的牌号及化学成分(GB/T 8623) %

表2高铬铸铁的硬度(GB/T 8623)

表3 高铬铸铁件热处理规范(GB/T 8623)

美国高铬铸铁执行标准为ASTMA532M,英国为BS4844,德国为DIN1695,法国为NFA32401。俄罗斯在前苏联时期曾研制了12-15%Cr、3-5.5%Mn,壁厚达200mm 的球磨机衬板,现执行?OCT7769标准。特别值得一提的是在近一个世纪里,曾为抗磨白口铸铁做出了卓越贡献的美国克莱梅克斯(Climax)钼业公司。1928年该公司首先发明了镍硬铸铁,把抗磨铸铁科技推向了一个空前高度。1974年为纪念国际GIFA,在杜赛尔多夫展览会上展示了名为“神秘1号”和“神秘2号”。即经典的高铬抗磨铸铁153(Cr15Mo3)和1521(Cr15Mo2Cu),现如今克莱梅克斯公司执行高铬铸铁标准如下,栏主提示大家这是特别值得一看的。

高铬铸铁衬板裂纹原因分析.

第29卷第6期 2008年12月 热处理技术与装备 RECH砌JISHU YUZHUANGBEI Vd.29.No.6 Dec.,2008 ?现场经验? 高铬铸铁衬板裂纹原因分析 李振球1,付向上1,杨乘东2,程翔1 (1.江铜集团德兴铸造有限公司,德兴江西334224;2.昆明理工大学材料学院,云南昆明650021)摘要:分析高铬铸铁的大型立磨机衬板热处理过程中产生裂纹的原因,结果表明:预埋铁设计放置 位置欠佳,造成产品的铸造残余应力过大。以至于在热处理加热时的临时热应力与铸造残余应力叠 加,而使预埋铁的近区产生裂纹。 关键词:裂纹;铸造残余应力;临时热应力;预埋铁中图分类号:TGl63文献标识码:A 文章编号:1673-4971(2008)06—0061-02

TheAnalysisofReasonsFormedCracklesinthe??Underboardingof IIigh CrCastIron LI Zheng—qiul,Fu Xing—shan91,YANG Cheng-don矿,CHENG Xiang (1.DebugCastingCo.Ltd.,JiangxiCopper Corporation,Sexing JiaII鲥334224,China; 2.ConegeofMaterials,KunmingUniversityofScienceandTechnoloffl,KunmingYunnan650021,China) Abstract:Thispaperanalysisedthe r,BR,.qon8 formedcrackl伪intheunderboardingthatlnadeofhi曲Cr

高铬铸铁铸造工艺

锤头高铬铸铁铸造工艺 高铬铸铁化学成分设计:(一般采用亚共晶高铬铸铁) 1、工艺上常常通过调整碳含量来达到改变碳化物数量。 2、不含其他合金元素的高铬铸铁,空淬能淬透的最大直径为20mm,要提高淬透性,必须加入合金元素。 3、锰剧烈降低Ms,会使高铬铸铁在淬火后有较多的残留奥氏体,因此,一般控制在1.0%以下。 4、铜降低Ms,会造成许多的残留奥氏体,因此,一般控制在1.5%以下。 5、由于V价格高,通常只适用于不易热处理的铸件。 6、硅提高Ms,会减少残留奥氏体,同时降低淬透性,因此,一般应控制。 7、高铬铸铁感应炉熔炼温度1480℃,已经足够,不必太高。 8、高铬铸铁浇注温度不希望太高,以免收缩过大和粘砂。浇注温度厚大件1350-1400℃,(一般件1380-1420℃)。高的浇注温度加重冒口下的缩孔,而且会造成浓密的显微缩松,同时使晶粒组织粗大。 9、高铬铸铁模型收缩率2%。 10、高铬铸铁冒口尺寸按碳钢设计,浇注系统按灰铸铁设计。采用气割法切割浇冒口,容易产生热裂纹,故设计时采用易割冒口或者侧冒口,采用敲击法去除。 11、高铬铸铁寿命短的原因,不是金相不合格,而是,铸件

内存在缩孔、气孔、夹杂等铸造缺陷,因此必须足够重视铸造工艺。 12、高铬铸铁容易开裂。在铸造工艺设计上注意不让铸件收缩受阻,以免造成开裂。 13、高铬铸铁铸件在铸型中应充分冷却,然后开箱。开箱过早,开箱温度过高,是铸件开裂的主要原因。 14、高铬铸铁采用金属型铸造时,浇注温度应保持在150℃以上,以免铸件冷却太快开裂。 15、高铬铸铁采用高温空淬,中低温回火的热处理,获得高硬度的马氏体基体。 16、高铬铸铁在热处理前的铸态基体组织取决于铸态冷却速度的高低。冷却速度高时通常为奥氏体基体:随冷却速度降低逐渐开始析出部分马氏体、珠光体和奥氏体的混合物。:冷却速度进一步降低,可能获得珠光体基体的组织。 17、高铬铸铁一般根据铬含量和零件壁厚选择最佳淬火温度。淬火温度越高,淬透性越高,但淬火后形成残留奥氏体数量有可能越多。Cr15高铬铸铁的淬火温度940-970℃,Cr20高铬铸铁的淬火温度960-1010℃。保温时间根据壁厚选择。一般2-4h,壁厚零件4-6h。 18空淬后的高铬铸铁存在较大的内应力,应尽快进行回火热处理。 19、对一些形状复杂、壁厚形成悬殊的高铬铸铁铸件应严格

金属零件激光增材制造技术及其应用

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 传统零件制备工艺主要是减材制造。从一块原材料开始,通过切割、钻、铣削等机械工艺方式去除部分材料,从而获得一个三维物体形态,这个过程中材料的利用率较低。而增材制造通过极小单位的原材料的叠加产生三维物体形态,虽然后期也可能通过再加工产生废料,但总体来说对材料的浪费是很少的。这在原型制作以及小批量生产上明显优于传统减材技术。 激光增材制造技术是一种基于离散/ 堆积成形思想的新型制造技术,是集成计算机、数控、激光和新材料等新技术而发展起来的先进产品研究与开发技术。其基本过程是将三维模型沿一定方向离散成一系列有序的二维层片;根据每层轮廓信息,进行工艺规划,选择加工参数,自动生成数控代码;成形机制造一系列层片并自动通过激光熔敷、烧结、沉积等将它们联接起来,得到三维物理实体。这样将一个物理实体的复杂三维加工离散成一系列层片的加工,大大降低了加工难度,且成形过程的难度与待成形的物理实体形状和结构的复杂程度无关。该技术的主要特点有:高柔性,可以制造任意复杂形状的三维实体;CAD模型直接驱动,设计制造高度一体化;成形过程无需专用夹具或工具;无需人员干预或只需较少干预,是一种自动化的成形过程;成形全过程的快速响应,适合现代激烈的产品市场。 尤其是金属零件,其主要采用激光增材制造技术,以高功率或高亮度激光为热源,逐层熔化金属粉末,直接制造出任意复杂形状的零件。其主要方法有: 1、激光直接沉积增材制造技 该技术可追溯到20 世纪70 年代末期的激光多层熔覆研究,但直到20世纪90年代,国内外众多研究机构才开始对同轴送粉激光快速成形技术的原理、成形工艺、熔凝组织、零件的几何形状和力学性能等基础性问题开展大量的研究工作。

高锰钢、高铬铸铁

高锰钢衬板、锤头、筛条、颚板等是目前水泥厂最为广泛使用的铸钢件,它以高的耐磨性,良好的韧性和经济性深受欢迎。 高锰钢的特点:高锰钢具有良好的塑性和冲击韧性,在外力冲击下表面产生硬化层,已硬化的表面层被磨损以后,出现新的表面层,又继续被加工硬化。因此,高锰钢铸件是有高的表面耐磨性,·里面部分仍保留原机械性能。因为高锰钢具有以上特点,所以目前世界上还未有任何耐磨材料可完全代替高锰钢。 高铬抗磨铸铁的特性及应用 含铬量为12。30%,含碳量为2.4。3.6%的高铬铸铁,通过高合金化 和热处理手段可得到马氏体或奥氏体或二者混合型的基体以及铬的特殊 碳化物。这种特殊碳化物为呈六角晶系的Me,C,,其硬度高达HVl200。1600,远高于渗碳体型碳化物和常见的矿物磨检的硬度。这类碳化物的存 在是高铬铸铁获得高抗磨性的主要原因、此外,高铬铸铁中的共晶结构与 一般铸铁中的莱氏体不同。一般铸铁中的莱氏体呈连续网状,而合高铬的 共晶碳化物呈断开的块、条状态。相当于在基体上镶嵌入高硬度的颗粒。 因此,不仅抗磨性好,而且大大削弱了高硬度相的脆化作用,相对而言有 较好的韧性。 高铬铸铁中的高硬度马氏体基体,强有力地支承碳化物颗粒,避免工 作过程中碳化物从磨损表面脱落,保证了材料的高抗磨性。因此高铬铸铁 作为高抗磨材料已有效地应用于破碎、研磨、物料输送等机械和冶金设 备。尤其在磨料磨损和冲击磨损的机件(如:破碎机滚筒、料仓衬板、高 炉料钟、料斗、运煤槽衬板、磨煤机辊套、轧辊、渣浆泵过流部件等)方 面应用更为广泛。 通过分析衬板在正常的工况条件下的磨损机理及材料相应的特性,确定衬板合理的 组织和化学成分,研制中碳低合金耐磨钢ZG40Cr2SiMnMoV,机械性能:σb≥1 200 MPa, HRC≥50, αK≥18 J/cm2.试制后测定工艺性,结合生产实际,制订各工序的操作要点和工艺参数,正式投产,产品符合设计要求,使用寿命为高锰钢衬板的2~3倍,成本持平,是高锰钢理想的替代材料.

高铬铸铁的熔炼

一、高铬铸铁的熔炼 1. 高铬铸铁化学成分( 见下表) 2. 原料要求 另外,还需工业纯铜和废旧电极块( 用于调整碳含量) 等。 3. 熔炼工艺要求 ( 1) 出炉温度高铬铸铁的熔点比一般铸铁高,约为1200 ℃,出炉温度约为1500 ℃,熔炼选用中频感应电炉。 ( 2) 炉衬采用酸性或碱性炉衬均可,炉衬的配比、打结、烘干和烧结均按常规工艺进行。 ( 3) 装料一般按正常顺序加料,先将灰生铁、钼铁等难熔铁合金装入炉底,而后将废钢等按照下紧上松的原则装填( 有助于塌料) 。 ( 4) 送电熔化将电炉功率调至最大进行熔化,由于Cr 的熔炼损耗较大( 约 5 % ~15 %) ,故铬铁应在最后加入,通常是待废钢全部熔化后加入烤红的铬铁。 ( 5) 脱氧待金属炉料全部熔化并提温至1480 ℃后,再加入锰铁、硅铁及铝进行脱氧。 ( 6) 浇注在中频感应炉中熔化,温度不必太高,温度达到1480 ℃时即可出炉,铁液在包内应停留一段时间进行镇静,视工件大小不同可在1380 ~1410 ℃之间进行浇注。 二、生产工艺要点 (1) 高铬铸铁铸造性能较差,其热导率低,塑性差,收缩量大,且有大的热裂和冷裂倾向,在铸造工艺上要将铸钢和铸铁的特点结合起来考虑,必须充分注意铸件的补缩问题,其原则与铸钢件相同( 采用冒口和冷铁,且遵循顺序凝固原理) 。由于合金中铬含量高,易在铁液表面结膜,所以看起来铁液流动性差,但实际上流动性较好。 ( 2) 造型宜采用水玻璃硅砂等强度高且透气性好的砂型,涂料应采用耐火度高的高铝粉或镁粉与酒精混合拌制。另外,为获得细晶粒组织和好的表面质量,在铸件外形不太复杂的情况下,金属型铸造也被广泛采用。

高铬合金耐磨铸铁生产技术

高铬合金耐磨铸铁生产技术(转 一、高铬铸铁的熔炼 1. 高铬铸铁化学成分( 见下表) 2. 原料要求 另外,还需工业纯铜和废旧电极块( 用于调整碳含量) 等。 3. 熔炼工艺要求 ( 1) 出炉温度高铬铸铁的熔点比一般铸铁高,约为1200 ℃,出炉温度约为1500 ℃,熔炼选用中频感应电炉。 ( 2) 炉衬采用酸性或碱性炉衬均可,炉衬的配比、打结、烘干和烧结均按常规工艺进行。 ( 3) 装料一般按正常顺序加料,先将灰生铁、钼铁等难熔铁合金装入炉底,而后将废钢等按照下紧上松的原则装填( 有助于塌料) 。 ( 4) 送电熔化将电炉功率调至最大进行熔化,由于Cr 的熔炼损耗较大( 约5 % ~15 %) ,故铬铁应在最后加入,通常是待废钢全部熔化后加入烤红的铬铁。 ( 5) 脱氧待金属炉料全部熔化并提温至1480 ℃后,再加入锰铁、硅铁及铝进行脱氧。 ( 6) 浇注在中频感应炉中熔化,温度不必太高,温度达到1480 ℃时即可出炉,铁液在包内应停留一段时间进行镇静,视工件大小不同可在1380 ~1410 ℃之间进行浇注。 二、生产工艺要点

(1) 高铬铸铁铸造性能较差,其热导率低,塑性差,收缩量大,且有大的热裂和冷裂倾向,在铸造工艺上要将铸钢和铸铁的特点结合起来考虑,必须充分注意铸件的补缩问题,其原则与铸钢件相同( 采用冒口和冷铁,且遵循顺序凝固原理) 。由于合金中铬含量高,易在铁液表面结膜,所以看起来铁液流动性差,但实际上流动性较好。 ( 2) 造型宜采用水玻璃硅砂等强度高且透气性好的砂型,涂料应采用耐火度高的高铝粉或镁粉与酒精混合拌制。另外,为获得细晶粒组织和好的表面质量,在铸件外形不太复杂的情况下,金属型铸造也被广泛采用。 ( 3) 高铬铸铁的收缩量与铸钢相近,模样制作上其线收缩率可按1. 8 % ~2 % 进行计算。在砂型制作上,其冒口大小可按碳钢的规定进行计算,而浇注系统则按灰铸铁计算,但需把各截面积增加20 % ~30 % 。浇冒口的选择应注意两个方面: 一是要保证铸件工作带( 使用部位) 的质量; 二是要尽量提高铸件的成品率。 ( 4) 由于高铬铸件的冒口不易切除,因此造型时在冒口形式上宜采用侧冒口或易割冒口。 ( 5) 在具体零件的铸造工艺设计上,要注意不能让铸件出现受阻收缩,以免造成开裂。另外,浇注后开箱温度过高也极易造成铸件开裂,540 ℃以下的缓冷是十分必要的,应使铸件在铸型中充分冷却,然后再开箱清砂,或开箱后先勿清砂而堆在一起( 铸件、浇冒系统等) 围干砂缓冷。开箱周围环境必须保持干燥,不得潮湿有水,否则极易造成铸件裂纹。 ( 6) 浇注温度要低,有利于细化树枝晶和共晶组织,而且可避免出现因温度过高而造成的收缩过大及表面粘砂等缺陷。浇注温度一般比其液相线( 1290 ~1350 ℃) 高55 ℃左右,轻小件一般控制在1380 ~1420 ℃,壁厚100mm以上的厚重件控制在1350 ~1400 ℃。 三、高铬铸铁的热处理 1. 退火 由于高铬制品其铸态硬度较高,为改善工件的机械加工性能,所有毛坯必须进行必要的软化退火处理。 具体工艺( 工艺曲线见图1 ,以壁厚不超过100mm且外形较复杂铸件为例) 如下。 首先将需处理工件在室温下装入热处理炉,然后随炉缓慢升温至400 ℃左右进行保温1 ~2h,随后将炉温升至600 ℃再进行保温1 ~2h,之后以不超过150 ℃/ h的温升速度,将炉温

高铬耐磨铸铁

2)高铬耐磨铸铁 70年代西安交通大学等单位开始引入高铬白口铁作为衬板及其它零件材料,并在热处理及推广应用上做了不少工作;同期山东工业大学率先在高铬及锰、钨、钒系白口铁的碳化物团球化方面开展了卓有成效的研究,使白口铁韧性有了成倍的提高,并成功地将球化高铬白口铁用于生产衬板及其它零件,不仅用于国内,还有批量出口,为此于1988年获得国家发明二等奖。此后,合肥工业大学、北京钢院、沈阳铸造所等单位在这一领域也做了大量的研究和推广应用工作。高铬铸铁中含Cr高达12--28%。由于Cr的大量加人,其组织中碳化物由连续网状的M3C型转变为断续板条状的M7C3型,从而使得其对基体的破坏作用大为减小,材质韧性有所提高。但因高铬白口铁固有的韧性偏低 (ak=3--5J/cmZ)、耐蚀性差的缺点、成本偏高以及它在湿态下的磨损寿命并不高,致使其在国内应用还是有限。尽管如此,其在一般工矿条件下表现出的优良耐磨性仍使其得到广泛应用。 高铬铸铁是抗磨料磨损的王牌材料,该材料的初始硬度高,但是冲击韧度差不抗冲击,如果是单纯的磨料磨损,它的使用寿命是高锰钢的5-10倍。 化学成分: 机械性能: Cr>11%的高铬白口铸铁的共晶碳化物为六方晶系的M7C3,(CrFe)7C3硬度为HRM501200-1800,比一般白口铸铁的共晶碳化物Fe3C3(HRV50840-1100)高,同时凝固时(CrFe)7C3 是孤立相,而奥氏体是连续相,因而韧性较普通白口铸铁大有改善,因此是搞磨粒磨损和抗切削磨损的首选材料。国外应用较多,主要用于中低冲击负荷工况条件的衬板、锤头、磨球、渣浆泵过流部件等大中型磨损

件。国内外对高铬铸铁的磨损机制、断裂机制、断裂韧性(K1c值)、裂纹扩展机理进行了一系列的研究,结果表明高铬铸铁可通过调整碳化物的大小和形态、二次碳化物量及弥散度以及基体组织(马氏体、奥氏体、索氏体),从而调整性能、满足工作使用要求。近年来国内有关单位也开展了高铬铸铁衬板的研究,其耐磨性可达同工况下高锰钢的2倍以上。但这些材料的韧性仍嫌较低(10×10×55mm无缺口试样的冲击值≤7.3J/cm2)而且含钼、铜等合金元素,生产成本较高。因此这类高铬铸铁仍有待进一步改进和完善。 3)中碳合金钢 这类合金钢衬板组织类型有马氏体、马氏体一贝氏体、贝氏体等,热处理工艺上有水淬、油淬、空淬、等温淬火、分级淬火、亚临界处理等,且大多都是瞄准湿态工况下的磨机衬板。如贝氏体组织强韧性配合良好,自从Bain在上世纪20年代末发现这种组织以来,贝氏体组织的特殊性能日益受到重视,其研究应用工作得到广泛开展。上世纪70年代,贝氏体球墨铸铁的发明,被誉为“本世纪铸铁冶金领域重大发明”。贝氏体钢和贝氏体球墨铸铁目前正成为耐磨材料领域的研究热点。这类合金钢衬板从应用效果上看,寿命比锰钢衬板有一定幅度的提高。如合肥水泥研究院研制的高碳中铬钢、中碳多元合金钢衬板,在湿法水泥磨、铜矿、钥矿等方面的多家用户使用中取得了良好的效果;西安交通大学等单位研制的中铬钢,在湿法铁矿下的寿命预计可达4400小时;洛阳工学院40SIMnZCrM。Cu衬板在金矿湿式磨机上试用寿命为2一10个月;50siMnZcrMocu 衬板,在湿式碱性铝矿磨机上应用,按4个月时检查的情况推测寿命为一年。但是,中碳合金钢韧性与耐蚀性不够。 4)橡胶 橡胶衬板己经在湿磨机上得到应用,取得了良好的使用效果,特别是降低噪音方面。各种系列的材质都各有优缺点,在选用衬板材质时首先考虑到不同工况条件下材料表现出不同的耐磨性;同时保证衬板安全可靠使用的前提。橡胶内衬选用的是耐磨橡胶,厚度约为50~,比石质衬板薄(约1/3~1/4),同时因为橡胶比重较小,故其总重量只有石质衬板的1/6左右,且具有以下优点:(l)同型号球磨机内部有效工作空间增加10%一20%;(2)球磨机自重小,为石质衬板的500/0左右,工作电耗大大降低;(3)工作噪音低;(4)使用寿命长,更换容易。

对高铬铸铁的一些认识

对高铬铸铁的一些认识 高铬铸铁是最重要的耐磨材料之一,适用于各种高应力磨料磨损的工况条件,广泛应用于机械、冶金、采矿及矿产品加工等行业。近年来,各工业国家都很重视对高铬铸铁的研究工作,以期充分利用其优异的耐磨性能。 含铬量在12%以上的高铬铸铁,开发于20世纪初期,1917年获得了美国专利。当时,由于对高铬铸铁的特点了解不多,其潜能未能充分发挥,因而未被广泛采用。 20世纪中期,美国国际镍公司研究开发了镍硬系列共4种耐磨铸铁(Ni Hard 1~4),其中,镍硬4(Ni Hard 4)于1951年获得了美国专利,逐渐成为大家所熟知的耐磨材料,广泛应用于矿产品加工行业。镍硬4的耐磨性能很好,且有适当的抗冲击能力,但是,仍然因其抗冲击能力欠佳而限制了其在高应力磨料磨损条件下的应用。 20世纪60年代,美国Abex 公司,为改善高铬铸铁的性能,进行了大量的研究工作,系统研究了Ni、Mo、Mn、Si、Cr和C等元素在高铬铸铁中的作用。随后,美国Climax Molybdenum 公司又对Mo和Cu在高铬铸铁中的作用进行了系统的研究。80年代,美国内政部矿业局的研究中心又对高铬铸铁的热处理进行了研究。 美国材料试验学会制定的标准ASTM A532《抗磨铸铁》中基本体现了上述研究工作的成果。 我国标准GB/T 8263-1999 《抗磨白口铸铁件》中,等效采用了ASTM A532-93a 标准中所列的8个牌号中的7个,其中,属于高铬铸铁的4个牌号全都采纳了。 高铬铸铁耐磨件,在我国应用很广,随着矿业和冶金行业的迅速发展,对高铬铸铁件的需求增长很快,目前,年产量已超过50万吨,不仅供国内各行业使用,也有相当数量的铸件出口。 尽管高铬铸铁的应用已有80多年的历史,而且对其进行过很多研究工作,但是,到目前为止,我们对高铬铸铁的了解仍然不够全面,还有待在生产实践中进一步深化认识,如:(1)为了适应不同的工况条件,高铬铸铁已有多种牌号,但总体而言,化学成分的变化范围还太宽。例如:当前的牌号中,铬含量在8%~30%之间,需要优选而不宜随意确定;碳含量一般在2.0%~3.9%之间,Climax Molybdenum公司的超高碳牌号甚至可达4.3%,范围也不可谓不小。 此外,合金元素钼、镍、锰和铜的合理用量及其间的互补关系,也有待更深入的探讨。 总之,在优化成分配比方面还大有可为。 (2)化学成分的变化范围很大,而热处理工艺却相对地比较简单,只有软化退火、硬化处理、回火等几种方式,加热温度的控制范围差别也不大。 应该提到的是:目前,我国生产高铬铸铁件的厂家很多,但其中有不少企业只是简单地按规定的化学成分生产,而对这种材料的特性知之甚少,不能够根据企业的具体条件和铸件的特点不断优化生产工艺,这样,当然难以制造出高质量的产品,更不用说自行研究开发新产品了。因此,有必要将高铬铸铁的一些特性和工艺要点向有关企业作简要的介绍。 一、作为抗磨材料的高铬铸铁 磨料磨损(Abrasive Wear)是机件磨损方式的一种,通常是指处理砂土、矿石、岩石、等物料时,由这类物料造成机件的磨损。这类物料与机件表面相互作用的方式很多,有冲击、滚动、滑动和冲刷等。 关于磨料磨损的分类,当前世界各国广泛认同的是H. S. Avery 提出的分类方法,将磨料磨损分为三类。 (1)凿削性碰撞磨损 这是指较大块磨料与机件表面相互撞击而造成机件的磨损,是最严重的磨料磨损,如破碎机颚板

相关文档
最新文档