Star Formation in Clusters

Star Formation in Clusters
Star Formation in Clusters

a r

X

i

v

:a

s t

r o

-

p

h

/

4

8

2

1v

1

1

1

A

u

g

2

4

Star Formation in Clusters By S ?R E N S.L A R S E N ESO /ST-ECF,Karl-Schwarzschild Strasse 2,D-85748Garching bei M¨u nchen,Germany The Hubble Space Telescope is very well tailored for observations of extragalactic star clusters.One obvious reason is HST’s ability to recognize clusters as extended objects and measure sizes out to distances of several Mpc.Equally important is the wavelength range o?ered by the instruments on board HST,in particular the blue and near-UV coverage which is essential for age-dating young clusters.HST observations have helped establish the ubiquity of young massive clusters (YMCs)in a wide variety of star-forming environments,ranging from dwarf galaxies and spiral disks to nuclear starbursts and mergers.These YMCs have masses and structural properties similar to those of old globular clusters in the Milky Way and elsewhere,and the two may be closely related.Several lines of evidence suggest that a large fraction of all stars are born in clusters,but most clusters disrupt rapidly and the stars disperse to become part of the ?eld population.In most cases studied to date the luminosity functions of young cluster systems are well ?t by power-laws dN (L )/dL ∝L ?αwith α≈2,and the luminosity of the brightest cluster can (with few exceptions)be predicted from simple sampling statistics.Mass functions have only been constrained in a few cases,but appear to be well approximated by similar power-laws.The absence of any characteristic mass scale for cluster formation suggests that star clusters of all masses form by the same basic process,without any need to invoke special mechanisms for the formation of “massive”clusters.It is possible,however,that special conditions can lead to the formation of a few YMCs in some dwarfs where the mass function is discontinuous.Further studies of mass functions for star clusters of di?erent ages may help test the theoretical prediction that the power-law mass distribution observed in young cluster systems can evolve towards the approximately log-normal distribution seen in old globular cluster systems.

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters

excellent blue and UV quantum e?ciency have become available,a better understanding of“dome”seeing has led to improved image quality,and8–10m ground-based telescopes have made it possible to obtain high-quality spectra of faint objects detected in HST images.

2.Why star clusters?

While star clusters have been the subject of substantial interest for many years,it may be worth recalling some of the main motivations for studying them.

First,there are a number of problems which make clusters interesting in their own right. These involve both their formation,subsequent dynamical evolution and ultimate fate. At?rst glance,clusters appear deceptively simple:they are aggregations of a few hundred to about a million individual stars,generally constituting a gravitationally bound system (although the latter may not be true for some of the youngest systems).Yet,constructing realistic models of their structure and dynamical evolution has proven to be a major challenge,and it is only now becoming possible to carry out reasonably realistic N-body simulations including the e?ects of stellar evolution,external gravitational?elds,and the rapidly varying gravitational potential in the early phases of cluster evolution during which gas is expelled from the system(Joshi et al.2000;Giersz2001;Kroupa&Boily 2002).The models must be tested observationally,and HST data currently represent the only way to reliably measure structural parameters for extragalactic star clusters. Second,there is growing evidence that a signi?cant fraction of all stars form within clusters,although only a small fraction of these stars eventually end up in bound clusters (Lada&Lada2003;Fall2004).Therefore,the problem of understanding star formation is intimately linked to that of understanding cluster formation,and a theory of one cannot be complete without the other.It is of interest to investigate how the properties of star clusters might depend on environment,as this might provide important clues to any di?erences in the star formation process itself.In particular,HST has made important contributions towards establishing the presence of“young massive clusters”(YMCs?)in a variety of environments,which appear very similar to young versions of the old globular clusters which are ubiquitous around all major galaxies.Globular cluster formation was once thought to be uniquely related to the physics of the early Universe(e.g.Peebles& Dicke1968;Fall&Rees1985)but it now seems to be an ongoing process which can be observed even at the present epoch.

Third,star clusters are potentially very useful as tracers of the stellar populations in their host galaxies.Clusters can be identi?ed and studied at much greater distances than individual stars.In most cases,they are composed of stars which,to a very good approximation,formed at the same time and have the same metallicity.This is in contrast to the integrated light from the galaxies,which may originate from an unknown mix of stellar populations with di?erent ages and metallicities.Although the e?ects of stellar evolution alone cause a cluster to fade by5-6magnitudes(in V-band)over10Gyrs (Bruzual&Charlot2003),it is in principle possible to detect clusters which have formed during the entire lifetime of galaxies,out to distances of several Mpc.In particular, globular clusters have been used extensively in attempts to constrain the star formation histories of early-type galaxies.

?Also known as“super star clusters”,“populous clusters”or“young globular clusters”.

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters3 3.HST and Extragalactic Star Clusters

HST is almost ideally tailored for studies of extragalactic star clusters.Three main reasons for this are:

?Angular resolution:clusters typically have half-light radii of2–4pc(see Section5), and can thus be recognized as extended objects out to distances of10–20Mpc with the ~0′′.05resolution o?ered by WFPC2or ACS.With careful modeling of the point spread function(PSF)this limit may be pushed even further.

?Field size:At10Mpc,the ACS200′′×200′′?eld-of-view corresponds to about10 kpc×10kpc,making it possible to cover a signi?cant fraction of a typical galaxy in a single pointing.

?Spectral range:For studies of young stellar populations,optical and near-UV spectral coverage is essential,as discussed below.

There is currently no alternative to HST on the horizon which o?ers a similar combi-nation of capabilities.The James Webb Space Telescope(JWST),while o?ering vastly improved e?ciency in the IR,will o?er no signi?cant gain in resolution over HST,and will be limited to longer wavelengths.Ground-based adaptive optics(AO)can provide similar,or even better resolution than HST,but only within a small(~20′′)isoplanatic ?eld of view.Furthermore,AO lacks the stable PSF of HST which is critical for many purposes(e.g.when measuring structural parameters for star clusters at the limit of the resolution),and is in any case limited to the IR(at least for now).The GALEX mission o?ers wide-?eld UV imaging,but with a spatial resolution that is inferior by far to that of HST(about5′′).

The need for optical and near-UV imaging in particular deserves some additional com-ments.Figure1shows simple stellar population(SSP)model calculations(Bruzual& Charlot2003)for the evolution of the U?B,B?V and V?K broad-band colors of a single-burst stellar population.The models are shown for metallicities Z=0.02(Solar) and Z=0.004between ages of106years and1010years.As seen from the?gure,the U?B color is an excellent age indicator in the range from107to a few times108years, increasing by more than0.5mag and with little metallicity dependence over this age range.The B?V color,in contrast,remains nearly constant over the same age range, and o?ers little leverage for age determinations.In practice,there are complicating prob-lems such as dust extinction,which in general will make it di?cult to obtain accurate age estimates from a single https://www.360docs.net/doc/ce7277284.html,ing a combination of two colors,such as U?B and B?V,will make it possible to constrain both age and reddening,while at the same time being relatively insensitive to metallicity e?ects.The relation between age and location of a cluster in the(U?B,B?V)two-color plane has been calibrated with clusters in the Large Magellanic Cloud through the so-called‘S’-sequence(Elson&Fall1985;Girardi et al.1995).For ages younger than about107years,line emission becomes important(An-ders&Fritze-v.Alvensleben2003),while the age-metallicity degeneracy(Worthey1994) becomes a di?culty at older ages.A more recent discussion of photometric age indica-tors,with emphasis on the importance of blue and UV data,is in Anders et al.(2004b). Use of e.g.the V?K color can help put further constraints on the metallicity and may also help constrain the ages of stellar populations in the range~200Myr to~500Myr (Maraston et al.2002),although the models are more uncertain and depend strongly on the stellar evolutionary tracks used in the construction of the SSP models(Girardi2000). High-resolution,wide-?eld imaging in the blue and/or UV will be especially important for attempts to constrain not only the luminosity function,but also the mass function of clusters.For a long time,WFPC2was the“workhorse”on HST,and it remains the only wide-?eld imager on board HST with U-band imaging capability.However,the sensitivity

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters

Figure1.Evolution of broad-band colors as a function of age and metallicity according to Bruzual&Charlot(2003)simple stellar population models.

of WFPC2in the U-band is rather low and the detectors are steadily degrading.The Wide Field Camera3,with its panchromatic coverage,would be an ideally suited instrument for such studies.

4.Setting the stage:early developments

Even within the Local Group,it has long been known that the traditional distinction between open and globular clusters that can be applied fairly easily in the Milky Way breaks down in some other galaxies.The classical example is the“blue globular”clusters in the Large Magellanic Cloud,which are not easily classi?ed as either open or globular clusters.The most massive of these objects have masses up to~105M⊙(Elson&Fall 1985;Fischer et al.1992;Richtler1993;Hunter et al.2003)similar to the median mass of old globular clusters and about an order of magnitude more massive than any young open cluster known in the Milky Way.Yet,these objects have young ages,and are still being produced today by the LMC.Similar clusters have been found in M33(Christian &Schommer1982,1988).

A good indication of the status of research in extragalactic young star clusters shortly prior to HST is provided by Kennicutt&Chu(1988;hereafter KC88).These authors compiled observations of what they refer to as“young populous clusters”(PCs)in14 galaxies for which data was available at that time.Half of the galaxies studied by KC88 were Local Group members(Milky Way,LMC,SMC,M33,M31,NGC6822and IC1613). As noted by KC88,a severe di?culty in comparing observations of PCs in di?erent galaxies,made by di?erent authors,is the widely variable completeness of the surveys, and the di?erent de?nitions of such clusters.KC88adopted a(somewhat arbitrary) de?nition of a young PC as an object with an estimated mass>104M⊙and a color

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters5 B?V<0.5.They noted a conspicuous de?ciency of populous clusters in the Milky Way and M31,the two only large Sb/Sbc-type spirals in the sample,and suggested that this might be linked to the de?ciency of giant H ii regions in the same two galaxies.By comparing the relative numbers of PCs and giant H ii regions in their sample of galaxies, KC88concluded that PCs may indeed form inside such regions,but not all giant H ii regions produce bound clusters.This is very much in line with recent indications that only a small fraction of star clusters of any mass remain bound(Fall2004).The galaxies which did contain PCs were all late-type,though not all late-type galaxies were found to contain PCs.A signi?cant exception is the Local Group dwarf irregular IC1613,which contains few if any star clusters at all(van den Bergh1979;Hodge1980)in spite of some on-going star formation.The near-absence of star clusters in IC1613may be as important a clue to the nature of the cluster formation process as the abundant cluster systems in starbursts and merger galaxies(Section5).

To a large extent,research in old globular clusters(GCs)remained detached from that of YMCs until fairly recently.It was well-known that early-type galaxies typically have many more GCs per unit host galaxy luminosity(Harris&van den Bergh1981)than spirals and irregulars,a fact that was recognized as a problem for the idea that early-type galaxies form by mergers of gas-rich spirals(van den Bergh1982).Schweizer(1987) proposed that this problem might be solved if new GCs form during the merger.This idea was further explored by Ashman&Zepf(1992),who predicted that the resulting merger product should contain two distinct GC populations:one metal-poor population inherited from the progenitor galaxies,and a new metal-rich population formed in the merger.The two GC populations should be identi?able in the color distributions of the resulting GC systems.Two highly in?uential discoveries soon followed:Bimodal color distributions were discovered in several GC systems around early-type galaxies(Zepf &Ashman1993;Secker et al.1995;Whitmore et al.1995),and highly luminous,com-pact young star clusters were found in ongoing or recent mergers like the Antennae and NGC7252(Whitmore et al.1993;Whitmore&Schweizer1995).In retrospect,it had al-ready been known for a long time that even the metallicity distribution of the Milky Way GC system is strongly bimodal(Zinn1985).The mean metallicities of the two modes in the Milky Way are in fact quite similar to those seen in early-type galaxies.The Milky Way is unlikely to be the result of a major merger,and there are also other indications that not all properties of GC systems in early-type galaxies can be explained by a naive application of the merger model.Alternative scenarios have later been put forward to ex-plain the presence of multiple GC populations(e.g.Forbes et al.1997;C?o t′e et al.1998), but it is beyond the scope of this paper to discuss any of these in https://www.360docs.net/doc/ce7277284.html,prehensive discussions can be found e.g.in Harris(2001)and Kissler-Patig(2000).Nevertheless,the discovery of young globular cluster-like objects in ongoing mergers was a tantalizing hint that it might be possible to study the process of globular cluster formation close-up at the present epoch,and not just from the fossil record.

5.Extragalactic Star Clusters in Di?erent Environments

Tables1–5are an attempt to collect a reasonably complete list of galaxies where YMCs have been identi?ed(until~May2004),along with some pertinent references.For each galaxy,the main facilities used for the observations are listed,although in many cases it is impossible to give a comprehensive listing.Standard abbreviations(ACS,FOC,GHRS, STIS,NICMOS,WFPC,WFPC2)are used for HST instruments.Other abbreviations are WIYN(Wisconsin Indiana Yale NOAO3.5m),UKIRT(United Kingdom Infra-Red Telescope),NTT(ESO3.5m New Technology Telescope),CFHT(3.6m Canada-France

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters

Hawaii Telescope),DK154(Danish1.54m at ESO,La Silla)and NOT(2.56m Nordic Optical Telescope).The level of detail provided in di?erent studies varies enormously–in some cases,identi?cations of YMCs are only a byproduct of more general investigations of galaxy properties(e.g.Meurer et al.1995;Scoville et al.2000)while other studies are dedicated analyses of cluster systems in individual galaxies.Galaxies marked with an asterisk(?)are used later(Section6.2)when discussing luminosity functions.In the following I brie?y discuss a few illustrative cases from each table and then move on to discuss more general properties of young cluster systems.

5.1.Starburst galaxies

The richest populations of YMCs are often found in major mergers(Section5.2).How-ever,there are also examples of YMCs in starbursts which are not directly associated with major mergers,although they may in some cases be stimulated by more benign interactions or accretion of companion satellites(Table1).In the case of NGC7673, for example,Homeier&Gallagher(1999)argue that the morphological features of the galaxy point toward a minor merger,while the starburst in M82may have been triggered by tidal interactions with M81.M82is also noteworthy for being the?rst galaxy in which the term‘super star cluster’was used.It was introduced by van den Bergh(1971), who was careful to point out that the nomenclature was not intended to imply that these objects are necessarily bound.The presence of SSCs in M82was con?rmed by O’Connell et al.(1995)who identi?ed about100clusters in WFPC images.An example of a starburst which is unlikely to be triggered by an interaction is NGC5253,which is located about600kpc from its nearest neighbor,M83(Harris et al.2004).

One of the?rst surveys to provide a systematic census of star clusters in a sample of starburst galaxies was the work by Meurer et al.(1995),who observed9galaxies with HST’s Faint Object Camera(FOC).Meurer et al.noted that a high fraction,on average about20%,of the UV luminosity in these starbursts originated from clusters or compact objects,and a hint of a trend for this fraction to increase with the underlying

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters7

UV surface brightness.They also measured cluster sizes similar to those of Galactic globular clusters,and found the luminosity functions to be well represented by a power-law dN(L)/dL∝L?αwithα≈2.

YMCs have been identi?ed in several nuclear and circumnuclear starburst regions,often associated with barred spiral galaxies(Table2).Maoz et al.(1996)studied5circumnu-clear starbursts and found that as much as30%–50%of the UV light came from compact, young star clusters with half-light radii<5pc and estimated masses up to about105M⊙. Again they found the luminosity functions to be well approximated by power-laws with slopeα≈2.Buta et al.(2000)found a much steeper slope(α=3.7±0.1)in their study of the circumnuclear starburst in NGC1326,but noted that their sample might be contaminated by individual supergiant stars.In some cases the ring-like structure of the nuclear starburst is not quite so evident.Watson et al.(1996)discovered4lu-minous clusters in the central starburst region of NGC253,the brightest of which has M V=?15,an inferred mass in excess of1.5×106M⊙and a half-light radius of2.5pc. However,these clusters may be part of a compact ring-like structure with a radius of about50pc(Forbes et al.2000).Most of the clusters in the nuclear starburst of M83 are also located within a semicircular annulus(Harris et al.2001),but again the ring is more poorly de?ned.

5.2.Mergers

Many of the most spectacular YMC populations have been found in merger galaxies. NGC1275was one of the?rst galaxies in which HST data con?rmed the existence of YMCs,although at least one object in this galaxy was already suspected to be a massive cluster based on ground-based data(Shields&Filippenko1990).With the Planetary Camera on HST,Holtzman et al.(1992)identi?ed about60cluster candidates with ab-solute magnitudes up to M V=?https://www.360docs.net/doc/ce7277284.html,ing WFPC2data,Carlson et al.(1998)identi?ed about3000clusters,of which about1200have blue integrated colors and estimated ages between0.1and1Gyr.The young clusters had estimated masses and sizes similar to those of old globular clusters,although Brodie et al.(1998)found that the Balmer line equivalent widths measured on spectra of5clusters were too strong to be consistent with standard SSP models,unless a stellar mass function truncated at2M⊙?3M⊙was

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters

adopted.With accurate modeling of the HST point spread function and high dispersion spectroscopy with8–10m class telescopes,it might be possible to constrain the virial masses of some of the brightest clusters,and thereby provide independent constraints on their stellar IMF.

While NGC1275may have experienced a recent merger/accretion event(Holtzman et al.1992),it is hardly one of the classical“Toomre”mergers(Toomre&Toomre 1972).One of the nearest ongoing,major mergers is the“Antennae”NGC4038/39, where HST observations have revealed a rich population of luminous,compact young star clusters with typical half-light radii~4pc(Whitmore&Schweizer1995;Whitmore et al.1999).The brightest of them reach M V≈?14and have estimated masses close to 106M⊙(Zhang&Fall1999).Similar rich populations of YMCs have been found in many other mergers,like NGC3256where Zepf et al.(1999)identi?ed about1000compact bright,blue objects on WFPC2images within the central7kpc×7kpc region.Again, the young clusters contribute a very signi?cant fraction(15%–20%)of the blue light within the starburst region.Zepf et al.(1999)estimated half-light radii of5–10pc for the clusters in NGC3256,somewhat larger than for the Antennae,but note that1PC pixel corresponds to a linear scale of8pc at the distance of NGC3256,so that the

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters9

clusters are only marginally resolved.Interestingly,only a shallow trend of cluster size

versus luminosity was found,with radius r scaling with luminosity L roughly as r∝L0.07.

NGC7252is a somewhat more advanced system than NGC3256or the Antennae.

Miller et al.(1997)date the cluster system at between650Myr and750Myr.Remark-

ably,both photometry and dynamical measurements yield a mass of about8×107M⊙

for the most massive object(W3)(Maraston et al.2004),making it about an order of magnitude more massive than any old globular cluster in the Milky Way.With a half-

light radius of17.5±1.8pc,this object is much larger than a normal star cluster,and

may be more closely associated with the“Ultra Compact Dwarf Galaxies”in Fornax (Hilker et al.1999;Drinkwater et al.2003).

5.3.Dwarf/Irregular galaxies

The bright“central condensations”in NGC1569were noted already by Mayall(1935)on

plates taken with the36inch Crossley re?ector at Lick Observatory,though Arp&Sandage(1985) were probably the?rst to recognize them as likely star clusters.At a distance of only

~2Mpc(Makarova&Karachentsev2003),these clusters appear well resolved on HST images with half-light radii of about2pc(O’Connell et al.1994;de Marchi et al.1997).

One of the clusters,NGC1569-A,is actually a double cluster,and STIS spectroscopy

has shown that one component exhibits Wolf-Rayet features while the other component

is devoid of such features,suggesting an age di?erence of a few Myrs between the two components(Maoz et al.2001b).Using high-dispersion spectroscopy from the NIRSPEC spectrograph on the Keck II telescope,Gilbert&Graham(2003)derived dynamical mass estimates of about0.3×106M⊙for each of the two components of NGC1569-A,and

0.18×106M⊙for NGC1569-B,again very similar to the typical masses of old globular clusters,and consistent with the clusters having“normal”stellar mass functions(see also Section6.4).

A peculiar feature of the NGC1569cluster population is that the next brightest clusters

after NGC1569-A and NGC1569-B are more than2magnitudes fainter(O’Connell et

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters

al.1994).An even more dramatic discontinuity in the luminosity function is seen in NGC1705which has only a single bright cluster,and in NGC4214there is a gap of about1.5mag from the brightest2clusters down to number3(Billett et al.2002). Interestingly,while the clusters in NGC1569and NGC1705are young(~107years),the two clusters in NGC4214are both about250Myrs old(Billett et al.2002),demonstrating that massive clusters are capable of surviving for substantial amounts of time at least in some dwarf galaxies.

5.4.Spiral galaxy disks

Most of the YMCs discussed in the preceding sections are located in environments that are peculiar in some way,or at least di?erent from what we see in the solar neighborhood. Thus,it is tempting to speculate that the absence of YMCs in the Milky Way indicates that their formation somehow requires special conditions.There is,however,increasing evidence that YMCs can form even in the disks of spiral galaxies.Table5lists a number of nearby spirals in which YMCs have been identi?ed.A few(e.g.M51)are clearly involved in interactions,but none of them are disturbed to a degree where they are not clearly recognizable as spirals.The nuclear starburst in M83was already mentioned in Section5.1,but there is also a rich population of young star clusters throughout the disk (Bohlin et al.1990;Larsen&Richtler1999),the most massive of which have masses of several times105M⊙.An even more extreme cluster is in NGC6946,with a dynamical mass estimate of about1.7×106M⊙(Larsen et al.2001).The disks of spiral galaxies can evidently form star clusters with masses as high as those observed in any other environment,including merger galaxies like the Antennae and starbursts like M82. Most of the spirals in Table5are type Sb or later,but one exception is NGC3081.In this barred S0/Sa-type spiral,Buta et al.(2004)detected a number of luminous young clusters in the inner Lindblad resonance ring at5kpc.Buta et al.(2004)found rather large sizes for these clusters,with estimated half-light radii of about11pc.This is much larger than the typical sizes of Milky Way open and globular clusters and indeed of YMCs found in most other places,and raises the question whether these objects might be related to the“faint fuzzy”star clusters which are located in an annulus of similar radius in the lenticular galaxy NGC1023(Larsen&Brodie2000;Brodie&Larsen2002), but have globular cluster-like ages.

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters11 6.General properties of cluster systems

Just how similar are the properties of star clusters in di?erent environments,and what might they tell us about the star formation process?Objects like NGC1569-A appear extreme compared to Milky Way open clusters or even to young LMC clusters: O’Connell et al.(1994)estimate that NGC1569-A has a half-light surface brightness over 65times higher than the R136cluster in the LMC,and1200times higher than the mean rich LMC cluster after allowing for evolutionary fading.Do such extreme objects constitute an altogether separate mode of star/cluster formation,or do they simply represent a tail of a distribution,extending down to the open clusters that we encounter locally?And are YMCs really young analogs of the old GCs observed in the Milky Way and virtually all other major galaxies?

6.1.Luminosity-and mass functions

One of the best tools to address these questions is the cluster mass function(MF).In the Milky Way and the Magellanic Clouds,the MF of young star clusters is well approximated by a power-law dN(M)/dM∝M?αwhereα≈2(Elmegreen&Efremov1997;Hunter et al.2003).This is deceptively similar to the luminosity functions derived in many young cluster systems,but it is important to recognize that luminosity functions are not necessarily identical,or even similar to the underlying MFs(unless the age distribution is a delta function).Unfortunately,MFs are di?cult to measure directly.The only practical way to obtain mass estimates for large samples of clusters is from photometry,but because the mass-to-light ratios are strongly age-dependent masses cannot be estimated without reliable age information for each individual cluster.As discussed in Section3,this is best done by including U-band imaging,which is costly to obtain in terms of observing time. So far,MFs have only been constrained for a few,well-studied systems.In the Antennae, Zhang&Fall(1999)found a power-law shape with exponentα≈2over the mass range 104M⊙to106M⊙,similar to the MF of young LMC clusters.Bik et al.(2003)?nd α=2.1±0.3over the range103M⊙to105M⊙for M51,and de Grijs et al.(2003a)?nd α=2.04±0.23andα=1.96±0.15in NGC3310and NGC6745.

The many studies which have found similar power-law luminosity functions are of course consistent with these results,but should not be taken as proof that the MF is as universal as the LF.Conversely,any di?erences in the LFs observed in di?er-ent systems would not necessarily imply that the MFs are di?erent.There are some hints that slight LF variations may be present:Elmegreen et al.(2001)?nd LF slopes ofα=1.58±0.12andα=1.85±0.05in NGC2207and IC2163,while Larsen(2002) and Dolphin&Kennicutt(2002)?nd somewhat steeper slopes(α=2.0?2.5)in several nearby spiral galaxies.While Whitmore et al.(1999)?ndα=2.12±0.04for the full sample of Antennae clusters,there is some evidence for a steepening at brighter mag-nitudes withα=2.6±0.2brighter than M V=?10.4.However,measurements of LF slopes are subject to many uncertainties,as completeness and contamination e?ects can be di?cult to fully control,and it is not presently clear how signi?cant these di?erences are.More data is needed.

Another important question is how the MF evolves over time.While the evidence avail-able so far indicates that the MF in most young cluster systems is well approximated by a uniform power-law with slopeα≈2down to the detection limit,old GC systems show a quite di?erent behavior.Here,the luminosity function is well?t by a roughly log-normal distribution with a peak at M V~?7.3(about105M⊙for an age of10–15 Gyr)and dispersion~1.2mag(e.g.Harris&van den Bergh1981).Thus,old globu-lar clusters appear to have a characteristic mass of about~105M⊙,while there is no characteristic mass for young clusters.This di?erence might seem to imply fundamen-

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters

tally di?erent formation mechanisms.However,model calculations for the Milky Way GC system by Fall&Zhang(2001)indicate that this di?erence can be accounted for by dynamical evolution of the cluster system,which makes the low-mass clusters disrupt more quickly and thereby causes an initial power-law mass distribution to eventually ap-proach the bell-shaped MF seen in old GC systems.Simulations by Vesperini et al.(2003) and Vesperini&Zepf(2003)suggest that an initial power-law MF can evolve towards a bell-shaped distribution also in ellipticals.

It is puzzling,however,that the“faint fuzzy”star clusters in NGC1023do not show a turn-over in the MF at~105M⊙even though they appear as old as the normal GCs in NGC1023(which do show the usual turn-over).Instead,there is a steady increase in the number of faint fuzzies at least down to the detection limit at M V~?6(Larsen &Brodie2000).It appears counter-intuitive that these di?use objects should be more stable against disruption than compact GCs,although it may be signi?cant that the faint fuzzies seem to be on roughly circular orbits in the disk of NGC1023(Burkert et al.,in preparation).

Deriving a MF for an intermediate-age sample of clusters would provide an important observational constraint on models for dynamical evolution.In the~1Gyr fossil star-burst M82B,the analysis by de Grijs et al.(2003b)indicates a turn-over in the MF at a mass of about105M⊙,making the MF rather similar to that of old globular clusters. This would suggest that the erosion of the MF is already well advanced at an age of ~109years in this system.On the other hand,Goudfrooij et al.(2003)?nd no turn-over in the mass distribution of3–Gyr old clusters in the merger remnant NGC1316down to their completeness limit at M B≈?6,or about1mag below the mass corresponding to the turn-over observed in old GC systems(accounting for evolutionary fading from3Gyr to10Gyrs).Thus,while it appears plausible that the MF observed in old GC systems may indeed have evolved from an initial power-law distribution as seen in young clus-ter systems,more observational constrains would be highly desirable.Here,observations with ACS or WFC3would play a crucial role,since high spatial resolution is required to detect the faintest clusters and separate them from stars and background galaxies.

6.2.Size-of-sample e?ects

Because power-laws have no characteristic scale,it is hard to make a meaningful division between low-mass open clusters and higher-mass“super”clusters in cluster systems with a power-law MF.The lack of a characteristic mass suggests that there is no fundamental di?erence between the physical processes behind formation of clusters of various masses. Nevertheless,there are evidently di?erences in the numbers of YMCs(according to any-one’s preferred de?nition)from one galaxy to another.But how signi?cant are these di?erences?And in particular,is there an upper limit to the mass of a star cluster that can form in a given galaxy?

Size-of-sample e?ects may play an important role in explaining the apparent di?erences between cluster systems in di?erent galaxies.As demonstrated by Whitmore(2003), Billett et al.(2002)and Larsen(2002),there is a strong correlation between the lumi-nosity of the brightest cluster in a galaxy and the total number of young clusters down to some magnitude limit.Moreover,this relation has the same form as one would expect if the luminosity function is a power-law where the maximum luminosity is simply dictated by sampling statistics(Fig.10in Whitmore2003).Monte-Carlo simulations indicate that the scatter around the expected relation(about1mag)is also consistent with sampling statistics(Larsen2002).In other words,current data are consistent with a universal, power-law luminosity function for young clusters in most galaxies,with the brightest clusters simply forming the tail of a continuous distribution.A similar analysis has yet

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters13

Figure2.Magnitude of brightest cluster versus total surveyed area(left),area-normalized star formation rate(center),and total star formation rate(right).NGC1569and NGC1705are marked with diamonds.

to be carried out for the mass distributions of star clusters in a signi?cant sample of galaxies.

While the comparison of maximum cluster luminosity versus total cluster population is suggestive,it has its di?culties.Estimating the total cluster population to some mag-nitude limit is subject to uncertainties,due to the di?erent completeness limits and detection criteria applied in various https://www.360docs.net/doc/ce7277284.html,rsen(2002)attempted to circumvent this problem by assuming that the total cluster population scales with the galaxy SFR,but here the di?culty is to determine the proper normalization and account for the possibility that the scaling may not be linear(Meurer et al.1995;Larsen&Richtler2000).

Fig.2shows the magnitude of the brightest cluster M br V in the sample of galaxies studied by Larsen(2002)versus total surveyed area A(left panel),area-normalized star formationΣSFR(center)and total star formation rate,SFR=A×ΣSFR(right).All three panels show some degree of correlation,emphasizing the di?culty of disentangling size-of-sample e?ects from physical e?ects.The most obvious interpretation of the correlation between M br V and A is a purely statistical one,https://www.360docs.net/doc/ce7277284.html,rger galaxies have more clusters on average,and therefore M br V becomes brighter,by the size-of-sample e?ect.TheΣSFR vs. M br V relation,on the other hand,is suggestive of a physical explanation:ΣSFR correlates with the gas density,for example(Kennicutt1998),and the higher gas densities and -pressures in galaxies with highΣSFR might provide conditions which are conducive for YMC formation(Elmegreen&Efremov1997).An important clue may lie in the fact that the third plot,SFR vs.M br V,shows the tightest correlation of all.This suggests that global galaxy properties(SFR)are more important than local ones(ΣSFR)for a galaxy’s ability to form massive clusters.

An alternative metric is to simply compare the luminosities of the two brightest clus-ters in galaxies.If the luminosity function is an untruncated power-law,this magnitude di?erence(?Mag)should behave in a predictable way which can then be compared with observations.From an observational point of view,this approach has a number of at-

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters

Figure3.Simulated distribution of the di?erence?Mag,de?ned as the magnitude di?erence between two random clusters drawn from a power-law luminosity distribution,for10000ex-periments.This is equivalent to simulating the distribution of magnitude di?erences between the brightest and second-brightest cluster drawn from a power-law luminosity distribution in a sample of galaxies.The median?Mag is0.76mag,while25%,75%and90%of the experiments have?Mag less than0.31mag,1.50mag and2.51mag.

tractive features:only the two brightest clusters in a galaxy need be detected,distance uncertainties are irrelevant,and heterogeneous data(https://www.360docs.net/doc/ce7277284.html,e of di?erent bandpasses in di?erent galaxies)do not constitute a problem.An obvious disadvantage is that this metric does not“catch”cases like NGC1569,where the magnitude di?erence between the two brightest clusters will not reveal the gap down to number3.Also,a large sample of galaxies is needed to get meaningful results.

Figure3shows a simulation of the distribution of?Mag,obtained in a series of10000 experiments where cluster populations were drawn at random from a power-law distri-bution with exponentα=2.Fig.4shows the distribution of observed?Mag values for a sample of57galaxies,consisting of the spirals and dwarf galaxies surveyed by Larsen&Richtler(1999)and Billett et al.(2002)and data from the sources listed in Tables1–5(galaxies marked with asterisks)where photometry is given for individual clusters.The observed?Mag distribution in Fig.4is qualitatively similar to that in Fig.3,peaked towards?Mag=0and with a tail extending up to larger?Mag values. Quantitatively,a Kolmogov-Smirnov test returns only a3%probability that the distri-bution in Fig.4is drawn from that in Fig.3,but the agreement improves greatly for a somewhat steeper power-law slope:Forα=2.2andα=2.4,the K-S test returns a probability of30%and77%that the observed?Mag distribution is consistent with the equivalent of Fig.3.Since this comparison is only sensitive to the very upper end of the LF,it may indicate that the slope at the bright end of the LF is typically somewhat steeper thanα=2.

One remaining issue is the apparently discontinuous luminosity function in some dwarf

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters15

Figure4.Observed distribution of?Mag values for51galaxies.

galaxies,where the brightest clusters are much too luminous for the total number of clusters.It has been suggested that these cases may represent a mode of star formation which is distinct from that operating in larger galaxies,possibly caused by transient high-pressure disturbances(Elmegreen2004).Again,it may be worth asking how signi?cant these exceptions are.The median?Mag from Fig.3is0.76mag,but in25%of the cases there is a di?erence of?Mag=1.50mag or more,and a?Mag>2.5mag is found in10%of the cases.Thus,it is not entirely unlikely to?nd a gap of2mag from the brightest to the second-brightest cluster.

One might argue that it does seem unlikely to form two or more very massive clusters by chance.However,the luminosity-(or mass)function is a statistical tool which may not apply within small regions,but only when averaged over an entire galaxy.A dwarf galaxy like NGC1569may be considered as essentially a single starburst region,whereas a larger galaxy contains a multitude of starforming regions of various sizes.The experiment on which Fig.3is based does not apply within a region that has been selected a priori to contain a massive cluster.For example,if one selects a small subregion around the brightest cluster in a large galaxy,it would be very unlikely to?nd the second-brightest cluster in the galaxy within that subregion by chance.A related question is whether the formation of massive clusters is correlated–is there an increased probability of?nding one massive cluster forming next to another one?The answer appears to be a?rmative. In addition to the case of NGC1569-A,there are several examples of binary clusters with roughly equal masses in the Large Magellanic Cloud(Dieball et al.2002).Closer to home,the famous“double cluster”h andχPer is another example.The double cluster, incidentally,is also among the most luminous open clusters known in the Milky Way.

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters

6.3.Cluster sizes

Another point hinting at a universal cluster formation mechanism is the observation that most star clusters seem to have about the same size.The initial WFPC data for young clusters in the Antennae indicated a mean half-light radius of about18pc(Whitmore& Schweizer1995),rather large compared to the~3pc typical of old globular clusters.This was used as an argument against the idea that the young clusters in the Antennae are young globular clusters(van den Bergh1995),but with WFPC2data the mean size was revised to4±1pc(Whitmore et al.1999).Similar results have since been found for star clusters in many other galaxies(see examples in preceding sections).The discrepancy between size measurements of Antennae clusters carried out on WFPC and WFPC2 images illustrates the importance of having su?cient spatial resolution,however. Naively,one might expect clusters to form with a constant density rather than a con-stant size,but intriguingly,there is little to suggest any signi?cant size-mass correlation for star clusters.This has now been demonstrated both in young cluster systems in star-burst regions(Zepf et al.1999;Carlson&Holtzman2001),in spiral galaxies(Larsen 2004),for old globular clusters in the Milky Way(van den Bergh et al.1991)and else-where(Kundu&Whitmore2001),and even in nuclear star clusters(B¨o ker et al.2004). In the absence of any such relation,it is clear that the most massive clusters will also tend to have very high densities,and explaining these high densities is therefore just a special case of the more general problem why star clusters form with a nearly constant size,rather than with a constant density.Ashman&Zepf(2001)proposed that the lack of a size-mass relation may be related to a higher star formation e?ciency in high-mass clusters,causing them to expand less than lower-mass clusters after the residual gas is blown away,but more work is required to obtain a deeper understanding of this issue. The lack of a size-mass relation is all the more puzzling because there are real variations in the sizes of star clusters.The half-light radii of old globular clusters correlate with galactocentric distance(van den Bergh et al.1991;McLaughlin2000),and some lenticular galaxies have“faint fuzzy”star clusters with much larger sizes than normal open and globular clusters(Larsen&Brodie2000).This issue clearly merits further investigation.

6.4.E?ciency of cluster formation and disruption

Many of the studies cited in Section5have found that a high fraction of the luminosity in starburst regions is emitted by clusters or compact sources,although a direct intercom-parison is di?cult because of the di?erent bandpasses used(UV through IR)and di?erent detection limits.Meurer et al.(1995)warn that some of their compact sources may not be individual star clusters,and similar caution applies in other systems,especially as ob-servations are pushed to greater distances where the nature of cluster candidates cannot be veri?ed because of insu?cient resolution.Nevertheless,there are strong indications that most stars tend to form in groups or clusters,although only a small fraction of all stars eventually end up in bound clusters.In the Milky Way,Lada&Lada(2003) estimate that the vast majority(70%-90%)of star formation in nearby molecular clouds takes place in embedded clusters,while only4%–7%of these embedded clusters survive to become bound clusters with ages similar to that of the Pleiades(~108years).Similar results have been found in other galaxies:In NGC5253,Tremonti et al.(2001)found their data to be consistent with a scenario where all stars are initially born in clusters,of which most disperse on a short time scale(~10Myrs).In the Antennae,Fall(2004)esti-mates that at least20%,and possibly all star formation takes place in clusters,although he also concludes that most are unbound and short-lived.This also seems consistent with the?nding by Kennicutt&Chu(1988)(Sec4)that only a small fraction of giant H ii

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters17 regions in late-type galaxies form massive,bound clusters,while the rest are forming unbound associations.

It is unclear how these?ndings relate to the apparent variations in speci?c cluster luminosity T L with host galaxy star formation rate(Larsen&Richtler2000).These authors found that the fraction of U-band light from star clusters relative to their host galaxies increases with the area-normalized SFR,from0.1%–1%for most normal spiral galaxies up to the very large fractions(20%–50%)found in starbursts.If nearly all stars initially form in clusters,T L may re?ect a survival-rather than a formation e?ciency. However,other factors such as dust extinction and the details of the star formation history of the host galaxy could also a?ect T L.Within an on-going,strong starburst, a large fraction of the light comes from clusters,leading to a high T L.After the burst, fading alone would not a?ect T L(since?eld stars and clusters will fade by the same amount)but cluster disruption would cause T L to gradually decrease by an amount that depends on the disruption timescale(Boutloukos&Lamers2003).

Cluster disruption occurs on several timescales(Whitmore2004).Initially,the star formation e?ciency(SFE)within the parent molecular cloud is a critical factor in deter-mining whether or not a given embedded cluster remains bound.Unless the SFE exceeds 30%–50%(Hills1980;Boily&Kroupa2003),the cluster is likely to become unbound once the gas is expelled.Even when the SFE is high,a large fraction of the stars may be unbound and eventually disperse away(Kroupa et al.2001).The high“infant mor-tality”for clusters may represent a combination of rapid disruption of clusters which are unbound altogether and clusters which retain a bound core containing only a small fraction of the initial mass,but interestingly,this e?ect appears to be largely indepen-dent of cluster mass(Fall2004).On longer timescales,clusters continue to disrupt due to two-body relaxation,tidal shocks and other e?ects(Boutloukos&Lamers2003)which may be instrumental in shaping the globular cluster mass function(Section6.1).

6.5.Dynamical Masses and the Distribution of Stellar Masses

A somewhat controverial question,which is related to the disruption timescales,con-cerns the universality of the stellar mass function(SMF)in YMCs.Note that the term “IMF”(initial mass function)is deliberately avoided here,since the present-day mass function in a star cluster may di?er from the initial one.If the SMF is biased towards high-mass stars,compared e.g.to a Kroupa(2002)-type function,the clusters might be rapidly disrupted(Goodwin1997).Direct observations of individual stars in YMCs are usually beyond reach even with HST,especially at the low-mass end of the SMF. However,by measuring structural parameters on HST images and using ground-based high-dispersion spectra to estimate the line-of-sight velocity dispersions of the cluster stars,dynamical mass estimates can be obtained by simple application of the virial the-orem.If the cluster ages are known,the masses thus derived can be compared with SSP model calculations for various SMFs.An increasing amount of such data is now becoming available,but the results remain ambiguous.Based on observations by Ho& Filippenko(1996a,1996b),Sternberg(1998)found some evidence for di?erences in the SMF slopes of NGC1569-A(SMF at least as steep as a Salpeter law down to0.1M⊙) and NGC1705-1(SMF may be shallower than Salpeter or truncated between1M⊙and 3M⊙),and Smith&Gallagher(2001)also concluded that M82-F has a top-heavy SMF. However,Gilbert&Graham(2003)found M/L ratios consistent with“normal”SMFs for three clusters in NGC1569,Maraston et al.(2004)reported“excellent”agreement between the dynamical mass of the W3object in NGC7252and SSP model predictions, and Larsen&Richtler(2004)and Larsen et al.(2004)found standard Kroupa(2002)-like SMFs for7YMCs in a sample of dwarfs and spiral galaxies.Other authors have

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters

found a mixture of normal and top-heavy SMFs(Mengel et al.2002;McCrady et al. 2003).At present,it is not clear to what extent these di?erences are real,or could be a result of di?erent measurement techniques,crowding and resolution e?ects,as well as the inherent uncertainties in the analysis(e.g.assumption of virial equilibrium,e?ects of mass segregation,di?erent macroturbulent velocities in the atmospheres of the clus-ter supergiants and the template stars).However,this aspect of YMC research would have been virtually impossible without the symbiosis between HST and high-dispersion spectrographs large ground-based telescopes.

7.Summary and outlook

Over the past decade,research in extragalactic young star clusters has evolved into a mature?eld.This is in no small part due to the complement of instruments available on HST,although the impact of parallel developments in ground-based instrumentation should not be underestimated.

One major advance has been to establish the ubiquity of young massive,globular-like clusters in a wide variety of star-forming environments.These objects can have sizes and masses which make them virtually identical to the old globular clusters observed in the Milky Way and indeed around all major galaxies.

With few exceptions,the luminosity functions of young cluster systems are well ap-proximated by a power-law with exponent~2.It appears that random sampling from such a luminosity function can account,to a large extent,for di?erences in the numbers of YMCs and in the luminosity of the brightest star clusters observed in di?erent galaxies. So far,no case has been found in which the luminosity of the brightest cluster is limited by anything other than sampling statistics.In other words,YMCs are present whenever clusters form in large numbers.Studies of the mass functions of young star clusters are more di?cult,but the few studies that have been made seem to indicate that the mass functions are also well approximated by power-laws.

It remains unclear to what extent dwarf galaxies like NGC1569and NGC1705,with only a few very bright clusters,pose a problem for the idea of a universal cluster luminos-ity(or mass)function and a universal cluster formation mechanism.Billett et al.(2002) noted that massive star clusters are rare even in actively star forming dwarfs,but when they do form they are accompanied by a high level of star formation activity.Billett et al.suggested that large-scale?ows and gravitational instabilities in the absence of shear may favor the formation of massive clusters in dwarf galaxies.

By focusing on the most extreme starburst environments,one naturally?nds the most extreme cluster populations.However,a complete picture can only be formed by exam-ining the whole range of environments,from very quiescent,over normal star-forming galaxies,to starbursts,and good progress is being made towards this goal.An example of the?rst extreme is IC1613,whose extremely low(but non-vanishing)star formation rate has produced only a very feeble cluster system.Even among“normal”spiral galaxies there are substantial variations in the SFR,and this translates directly to corresponding di?erences in the richness of the cluster systems.At the other extreme are starbursts like the Antennae and M82,with their exceedingly rich young cluster systems.

While special conditions may lead to the formation of a few massive clusters in some dwarfs,YMC formation apparently does not require special triggering mechanisms.This is supported by the study of young clusters in the Antennae by Zhang et al.(2001),who found no correlation between strong gradients in the velocity?eld and the formation sites of star clusters,although it was noted that some clusters might have been triggered by

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters19 cloud-cloud collisions.By a slight extrapolation of this argumentation,globular clusters could also have formed by normal star formation processes in the early Universe.

A large fraction,possibly the majority,of all stars form in star clusters.However,only a small fraction of these stars eventually end up as members of bound star clusters,due to an initially rapid disruption of clusters on timescales of107years which appears to be largely independent of mass.Clusters which survive the initial phase of rapid destruction continue to dissolve on longer timescales,and this process may cause an initial power-law mass function to evolve towards the approximately log-normal MF observed in old globular cluster systems.

Further progress is likely to come from multi-wavelength campaigns,which will allow detailed analyses of the age-and mass distributions of cluster systems.Is there a universal cluster mass function,as hinted at by the many studies which have found similar power-law luminosity functions?Is the“infant mortality”rate everywhere the same?Can we see the signatures of dynamical evolution?A good place to look for such signatures might be in galaxies with rich cluster systems formed over an extended period of time.Also,what are the properties of young clusters in early-type(Sa/Sb)spirals and other environments (e.g.low surface brightness galaxies)which remain poorly studied?

Over its lifetime HST has been upgraded several times,each time essentially leaving us with a new,much more capable observatory.The Wide Field Planetary Camera2has now been in operation for more than10years,and has produced many spectacular results. We have only just started to see the potential of the Advanced Camera for Surveys,and the Wide Field Camera3with its panchromatic wavelength coverage from the near-ultraviolet to the infrared has the potential to once more boost the power of Hubble by a signi?cant factor.

REFERENCES

Alonso-Herrero, A.,Engelbracht, C.W.,Rieke,M.J.,et al.2001,NGC1614:A Laboratory for Starburst Evolution,ApJ546,952–965

Alonso-Herrero,A.,Ryder,S.D.,&Knapen,J.H.,2001,Nuclear star formation in the hotspot galaxy NGC2903,MNRAS322,757–769

Anders,P.&Fritze-v.Alvensleben,U.,2003,Spectral and Photometric Evolution of Young Stellar Populations:The Impact of Gaseous Emission at Various Metallicities,A&A 401,1063–1070

Anders,P.,de Grijs,R.,Fritze-v.Alvensleben,U.,Bissantz,N.,2004,Star cluster formation and evolution in the dwarf starburst galaxy NGC1569,MNRAS347,17–28 Anders,P.,Bissantz,N.,Fritze-v.Alvensleben,U.,de Grijs,R,2004,Analysing Ob-served Star Cluster SEDs with Evolutionary Synthesis Models:Systematic Uncertainties, MNRAS347,196–212

Arp,H.,&Sandage,A.,1985,Spectra of the two brightest objects in the amorphous galaxy NGC1569-Superluminous young star clusters-or stars in a nearby peculiar galaxy?,AJ 90,1163–1171

Arribas,S.,&Colina,L.,2002,INTEGRAL Field Spectroscopy of IRAS15206+3342:Gas In?ows and Starbursts in an Advanced Merger,ApJ573,576–583

Ashman,K.M.&Zepf,S.E.1992,The formation of globular clusters in merging and inter-acting galaxies,ApJ384,50–61

Ashman,K.M.&Zepf,S.E.2001,Some Constraints on the Formation of Globular Clusters, AJ122,1888–1895

Barth,A.J.,Ho,L.C.,Filippenko,A.V.,&Sargent,W.L.,1995,Hubble Space Tele-scope Observations of Circumnuclear Star-Forming Rings in NGC1097and NGC6951,AJ 110,1009–1018

Bastian,N.,Gieles,M.,Lamers,H.J.G.L.M.,et al.,2004,The Star Cluster Population of M51:II.Age Distribution and Relations Among the Derived Parameters,A&A,in press

https://www.360docs.net/doc/ce7277284.html,rsen:Star Formation in Clusters

Battistini,P.,Bonoli,F.,Federici,L.,et al.1984,Globular cluster candidates in the spiral galaxy NGC2403,A&A130,162–166

Beck,S.C.,Turner,J.L.,&Gorjian,Varoujan2001,Infrared Emission from Clusters in the Star-forming Disk of Henize2-10,AJ122,1365–1368

Benedict,G.F.,Higdon,J.L.,Jefferys,W.H.,et al.,1993,NGC4314.II-Hubble Space Telescope I-band surface photometry of the nuclear region,AJ105,1369–1377 Bik,A.,Lamers,H.J.G.L.M.,Bastian,N.,et al.2003,Clusters in the inner spiral arms of M51:The cluster IMF and the formation history,A&A397,473–486

Billett,O.H.,Hunter,D.A.,&Elmegreen,B.G.,2002,Compact Star Clusters in Nearby Dwarf Irregular Galaxies,AJ123,1454–1475

Bohlin,R.C.,Cornett,R.H.,Hill,J.K.,&Stecher,T.P.1990,Images in the rocket ultraviolet-Young clusters in H II regions of M83,ApJ363,154–158

Boily,C.M.,&Kroupa,P.,2003,The impact of mass loss on star cluster formation-II.

Numerical N-body integration and further applications,MNRAS338,673–686

B¨o ker,T.,Sarzi,M.,McLaughlin,D.E.,et al.,2004,A Hubble Space Telescope Census of Nuclear Star Clusters in Late-Type Spiral Galaxies.II.Cluster Sizes and Structural Parameter Correlations,AJ127,105–118

Boutloukos,S.G.,&Lamers,H.J.G.L.M.,2003,Star cluster formation and disruption time-scales-I.An empirical determination of the disruption time of star clusters in four galaxies,MNRAS338,717–732

Bresolin,F.,Kennicutt,R.C.,&Stetson,P.B.1996,An HST Study of OB Associations and Star Clusters in M101,AJ112,1009–1020

Brodie,J.P.,Schroder,L.L.,Huchra,J.P.,et al.1998,Keck Spectroscopy of Candidate Proto-Globular Clusters in NGC1275,AJ116,691–706

Brodie,J.P.,&Larsen,S.S.,2002,New Members of the Cluster Family in Nearby Lentic-ulars,AJ124,1410–1417

Bruzual,G.A.&Charlot,S.2003,Stellar Population Synthesis at the Resolution of2003, MNRAS344,1000–1028

Buta,R.,Treuthardt,P.M.,Byrd,G.G.,&Crocker,D.A.,2000,Circumnuclear Star Formation in the Early-Type Resonance Ring Barred Spiral Galaxy NGC1326,AJ120, 1289–1305

Buta,R.,Byrd,G.G.,&Freeman,T.,2004,A Hubble Space Telescope Study of Star Formation in the Inner Resonance Ring of NGC3081,AJ127,1982–2001

Carlson,M.N.,&Holtzman,J.A.,2001,Measuring Sizes of Marginally Resolved Young Globular Clusters with the Hubble Space Telescope,PASP113,1522–1540

Carlson,M.N.,Holtzman,J.A.,Watson,A.M.,et al.1998,Deep Hubble Space Tele-scope Observations of Star Clusters in NGC1275,AJ115,1778–1790

Carlson,M.N.,Holtzman,J.A.,Grillmair,C.J.,et al.,1999,Deep Hubble Space Telescope Observations of Blue Star Clusters in NGC3597,AJ117,1700–1707 Chandar,R.,Tsvetanov,Z.,Ford,H.C.,2001,Compact Star Clusters in M81.II.Two Populations,AJ122,1342–1349

Chandar,R.,Leitherer,C.,&Tremonti,C.A.2004,NGC3125-1:The Most Extreme Wolf-Rayet Star Cluster Known in the Local Universe,ApJ604,153–166

Christian,C.A.&Schommer,R.A.1982,The Cluster System of M33,ApJS49,405–424 Christian,C.A.&Schommer,R.A.1988,BVI Photometry of Star Clusters in M33,AJ 95,704–719

Colina,L.,&Wada,K.,2000,Nuclear Bar,Star Formation,and Gas Fueling in the Active Galaxy NGC4303,ApJ529,845–852

Colina,L.,Gonzalez-Delgado,R.,Mas-Hesse,J.M.,&Leitherer,C.2002,Detection of

a Super-Star Cluster as the Ionizing Source in the Low-Luminosity Active Galactic Nucleus

NGC4303,ApJ579,545–553

Conti,P.S.,&Vacca,W.D.1994,HST UV Imaging of the Starburst Regions in the Wolf-Rayet Galaxy He2-10:Newly Formed Globular Clusters?,ApJ423,L97–L100

C?o t′e,P.,Marzke,R.O.,&West,M.J.1998,The Formation of Giant Elliptical Galaxies and their Globular Cluster Systems,ApJ501,554–570

Davidge,T.J.,2004,Stars,Star Clusters,and Dust in NGC3077,AJ127,1460–1471

多功能6位电子钟说明书

多功能6位电子钟说明书 一、原理说明: 1、显示原理: 显示部分主要器件为2位共阳红色数码管,驱动采用PNP型三极管驱动,各端口配有限流电阻,驱动方式为扫描,占用P1.0~P1.6端口。冒号部分采用4个Φ3.0的红色发光,驱动方式为独立端口驱动,占用P1.7端口。 2、键盘原理: 按键S1~S3采用复用的方式与显示部分的P3.5、P3.4、P3.2口复用。其工作方式为,在相应端口输出高电平时读取按键的状态并由单片机支除抖动并赋予相应的键值。 3、迅响电路及输入、输出电路原理: 迅响电路由有源蜂鸣器和PNP型三极管组成。其工作原理是当PNP型三极管导通后有源蜂鸣器立即发出定频声响。驱动方式为独立端口驱动,占用P3.7端口。 输出电路是与迅响电路复合作用的,其电路结构为有源蜂鸣器,4.7K定值电阻R16,排针J3并联。当有源蜂鸣器无迅响时J3输出低电平,当有源蜂鸣器发出声响时J3输出高电平,J3可接入数字电路等各种需要。驱动方式为迅响复合输出,不占端口。 输入电路是与迅响电路复合作用的,其电路结构是在迅响电路的PNP型三极管的基极电路中接入排针J2。引脚排针可改变单片机I/O口的电平状态,从而达到输入的目的。驱动方式为复合端口驱动,占用P3.7端口。 4、单片机系统: 本产品采用AT89C2051为核心器件(AT89C2051烧写程序必须借助专用编程器,我们提供的单片机已经写入程序),并配合所有的必须的电路,只具有上电复位的功能,无手动复位功能。 二、使用说明: 1、功能按键说明: S1为功能选择按键,S2为功能扩展按键,S3为数值加一按键。 2、功能及操作说明:操作时,连续短时间(小于1秒)按动S1,即可在以上的6个功能中连

star法撰写成就故事范例

1. 由于是浙江选考生,在高中第一次选考中化学只取得了91分的成绩,只剩下一次选考机会,成绩说好不算好,说坏不算坏的情况下,提升有些困难。不知道该放弃还是继续参加考试。如果不能达到97或100的成绩,可能会被目标大学相同的同学在高考上拉开差距。晚上也睡不好觉,经过一段时间的调整心态,说服自己还是奋力一搏。于是到选考前我每天利用下课时间翻看化学书和整理笔记,努力记住容易混淆的基础知识点,每天晚自习刷一张化学模拟卷,自批订正纠错,找到了自己很多弱点和盲点,并针对的做专题练习。终于在四月选考中达到了97的目标。虽然很累,但是为了实现离考上理想大学的目标更进一步,还是值得的。 专业知识技能——基础化学知识 可迁移技能——记忆、纠错(找到自己的弱点)、反省、整理、权衡利弊 自我管理技能——自我控制、抗压、调整心态、坚持不懈 2. 上个学期选专业时想要进入生物科学专业,但是看到报名的人数有点多,招收人数与报名人数之比大约是1/2,要经过面试淘汰一部分人。而且在看到身边的同学都非常优秀的情况下,竞争压力有些大,我心中也有些底气不足。但我还是迫使自己鼓起勇气报了名。报名之后,我上网了解记住了一些生物科学的知识,回忆了我高中时期学习生物的一些知识和经历,找到一些我可能在面试中能够用到的素材。并在脑海中模拟了几个面试中可能会提到的问题,并想了想如何回答。此外也找到我们寝室作为生命科学学院教授的新生之友询问了一些情况。到了面试那天,我准备的其中一些素材和回答派上了用场,顺利地应对面试教授提出的问题,通过了面试,成功进入生物科学专业,提升了我的信心。 专业知识技能——生物科学部分知识 可迁移技能——记忆、模拟(假想)、询问求助、面试交流、做好充分准备 自我管理技能——鼓起勇气(自我调节心态)、有信心的、自我控制 3. 小时候老师说我钢笔字写的挺好的,在小学的钢笔字比赛中获了奖,我可能

STAR法成就故事复习过程

S T A R法成就故事

1、由于家里比较贫穷,因此大学以前就没有接触过电脑,第一节上计算机文化基础时,一点也不明白,年轻人难免有好胜之心,因此我认真学习课本,遇到不懂的问题及时向同学及老师请教,由于考试考word等办公软件,因此我上网浏览资料,下载了office教程,一有时间就去机房实践,不明白就请教机房老师,经过许多次的练习,我终于掌握了计算机基础知识,通过了考试。 这个故事中,琢磨、实践是可迁移技能,word等软件知识是专业知识技能,认真是自我管理技能。 2、大一的时候,我没有拿到奖学金,看到有的同学拿到奖学金后的兴奋,我心里暗暗下定决心要在大二拿到奖学金。为了实现这个目标,我付出了许多。上课时认真听讲,做好课堂笔记,课下认真做好老师布置的作业,有不懂的问题及时向老师和同学请教,考前做好复习。经过一年的努力,获得了染整专业知识,并且在大二成功获得了奖学金。 这个故事中,认真是自我管理技能,请教、获得是可迁移技能,染整知识是专业技能。 3、大学寒假春节我在超市当售货员。我主要销售零食。一方面加强了有关销售零食知识的学习,虚心向其他店员请教。一方面了解实际情况,在短时期适应下来。及时上岗工作走上正轨,负起了超市店员的职责。工作几周后对商品的规划与陈列有了了解,感受到市场的学问与超市零售的知识是如此的深广。在期间发生过意外但通过冷静的自省,认识自己的不足,整体上因参与营运时间较短,操作不够自如外,这是由于经验少。经过超市员工的共同的努力,我们

的销售有了明显的增长。而我在严格要求的基础之上,发现问题,消减漏洞,作一名称职的超市店员。 这个故事中,严格、虚心是自我管理技能,适应、发现、请教是可迁移技能,销售零食知识是专业技能。 4、我学会了使用CAD软件。这学期我们学习了AUTO CAD 课程,我真切地体 会到了这种绘图系统的实用性。首先熟悉用户界面,学习新建图形、绘制简单图形的操作。掌握坐标及数据的输入方法,绘出下面所示图形,打开工具栏的方法,打开“对象捕捉”工具栏。同时学会利用栅格绘制图形。设定CAD图形界限的方法,掌握绘制CAD图形的基本绘图命令熟练运用对象捕捉定点工具,精确绘制图形熟悉圆、圆弧、椭圆、点等画法掌握CAD各种图形编辑命令,如镜像、偏移、阵列等的用法和功能了解选择图形对象的多种方法掌握设定图层的方法养成按照图层绘制不同属性对象的画图习惯。在今后的学习工作中,好好利用CAD,再接再厉,更加努力的学习,希望在以后的学习中能够熟练掌握这门技术。 这个故事中,熟悉、学会、利用是可迁移技能,CAD知识是专业知识技能,努力、熟练是自我管理技能。 5、上大学以来,一直就想找个机会锻炼一下自己,在大二暑假我去了浙江向胜体育器材厂做社会实践。在工作中,我对机械的自动化有了更深的了解,对工作中出现的问题,我也及时地向老师傅请教,很快就学会了机器的操作方法,由于车间条件恶劣,养成了吃苦耐劳的精神,看着生产线上我做的零件,我感觉特别有成就感。 这个故事中,请教是可迁移技能,吃苦耐劳是自我管理技能,机器操作方法是专业知识技能。

七彩闹钟说明书

七彩时钟使用说明书 本产品融合了万年历之时间、日期、星期、温度的显示,特别适合居家办公使用。 一、功能简介 ★正常时间功能:显示时间、日期(从2000年至2099年)、星期、温度,并可实现12/24小时制的转换。 ★闹钟和贪睡功能:每日闹铃,闹铃音乐有8首可选,同时可开启贪睡功能。 ★环境温度显示功能:温度测量00C-500C或320F-1220F并可进行摄氏/华氏温度转换。★七彩灯功能:可发出七种颜色的光,循环变色。 二、功能操作 ⑴.时间日期设置 ★上电后显示正常状态.按SET键进入时间、日期的设置,并以下列顺序分别设置小时分钟、年、月、日、星期等,通过UP/DOWN键配合来完成设置。 时→分→年→月→日→正常显示 ★设置范围:时为1-12或0-23,分为0-59,年为2000-2099.月为1-12.日为1-31;在日期设置的同时,星期由MON 3=. SUN相应的自动改变。 ★在设置状态,也可按AL键或无按键1分钟退出设置,并显示当前所设置的时间。 ★在正常状态,按UP键进行12和24小时转换。 ⑵、闹钟和贪睡设置 ★在正常状态,按AL键一次进入闹钟模式。 ★在闹钟状态,按SET键进入闹铃设定状态,以下列顺序分别设置小时、分钟、贪睡、音乐,通过UP/DOWN键配合来完成其设置。 时→分→贪睡→音乐→退出 ★在设置状态,如果无按键1分钟或按MODE键退出设置,并显示当前所设置的时间。 ★在闹钟状态,通过UP键开启闹铃的标志,按第二次UP键开启贪睡功能。 闹铃→Zz贪睡→OFF ★当闹钟到达设定时间,响闹1分钟;当贪睡时间到达响闹,按SET键取消响闹或按任意键停止响闹。 ★贪睡的间隔延续时间范围设定:1-60分钟。 ★当闹铃及贪睡的标志未开启时,即闹铃和贪睡同时关闭,只有在闹铃标志开启时,重按UP,贪睡功能才有效。 ⑶、温度转换 在正常状态,按DOWN键可以进行摄氏l华氏温度间的相互转换。 ⑷、按TAP可开启夜灯,5秒钟自动熄灭。 ⑸、把开关置ON或DEMO位置开启七彩灯。 ⑹、可使用外接直流电源:4.5V 100MA的变压器。 三、注意事项: 1、避免猛烈冲击、跌落。 2、勿置阳光直射、高温、潮湿的地方。 3、避免使用带有腐蚀性化学成份的液体和硬布来抹擦本产品表面。 4、当屏幕显示混乱时,拔出钮扣电池,重新装上恢复原始状态,使显示恢复正常。 5、切勿新旧电池混在一起使用,在屏幕显示不清楚时请及时更换新电池。 6、如长时间不使用时钟时,请将电池取出,以免电池漏液损坏本机。 7、请勿随意拆开产品调整内部元件参数。

STAR简历法则

STAR法则,即为Situation Task Action Result的缩写,具体含义是: Situation: 事情是在什么情况下发生 Task: 你是如何明确你的任务的 Action: 针对这样的情况分析,你采用了什么行动方式 Result: 结果怎样,在这样的情况下你学习到了什么 简而言之,STAR法则,就是一种讲述自己故事的方式,或者说,是一个清晰、条理的作文模板。不管是什么,合理熟练运用此法则,可以轻松的对面试官描述事物的逻辑方式,表现出自己分析阐述问题的清晰性、条理性和逻辑性。 详细释义 STAR法则,500强面试题回答时的技巧法则,备受面试者成功者和500强HR的推崇(宝洁HR培训资料有专门的讲座讨论如何用此法则检验面试者过往事迹从而判断其能力)。 如果对面试技巧和人力资源招聘理论有所了解的同学应该听说过,没听说也无所谓,现在知道也不迟。由于这个法则被广泛应用于面试问题的回答,尽管我们还在写简历阶段,但是,写简历时能把面试的问题就想好,会使自己更加主动和自信,做到简历,面试关联性,逻辑性强,不至于在一个月后去面试,却把简历里的东西都忘掉了(更何况有些朋友会稍微夸大简历内容) 在我们写简历时,每个人都要写上自己的工作经历,活动经历,想必每一个同学,都会起码花上半天甚至更长的时间去搜寻脑海里所有有关的经历,争取找出最好的东西写在简历上。 但是此时,我们要注意了,简历上的任何一个信息点都有可能成为日后面试时的重点提问对象,所以说,不能只管写上让自己感觉最牛的经历就完事了,要想到今后,在面试中,你所写的经历万一被面试官问到,你真的能回答得流利,顺畅,且能通过这段经历,证明自己正是适合这个职位的人吗? 编辑本段 示例 写简历时就要准备好面试时的个人故事,以便应付各种千奇百怪的开放性问题。 为了使大家轻松应对这一切,我向大家推荐“个人事件模块”的方法,以使自己迅速完成这看似庞大的工程。 一,头脑风暴+STAR法则——〉个人事件模块 1.1,头脑风暴。 在脑海里仔细想出从大一到大四自己参与过所有活动(尤其是能突出你某些能力的活动),包括: 1,社团活动职务时间所做事情 2,在公司实习的经历职务时间所做过的事情 3,与他人一起合作的经历(课题调研,帮助朋友办事) (回忆要尽量的详细,按时间倒序写在纸上,如大一上学期发生。。。。。。大一下学期发生。。。。。。。如此类推) 我相信这一步,很多朋友都已经做了,但是仅仅这样就满足了,就直接写在简历上当完事了,那是不行的,想提高竞争力,还得继续。。 1.2,STAR法则应用 将每件事用S T A R 四点写出,将重要的事情做成表格 例大一辩论比赛获得冠军 S 系里共有5支队伍参赛,实力。。。,我们小组。。。。。

电子闹钟说明书

本电子闹钟的设计是以单片机技术为核心,采用了小规模集成度的单片机制作的功能相对完善的电子闹钟。硬件设计应用了成熟的数字钟电路的基本设计方法,并详细介绍了系统的工作原理。硬件电路中除了使用AT89C51外,另外还有晶振、电阻、电容、发光二极管、开关、喇叭等元件。在硬件电路的基础上,软件设计按照系统设计功能的要求,运用所学的汇编语言,实现的功能包括‘时时-分分-秒秒’显示,设定和修改定时时间的小时和分钟、校正时钟时间的小时、分钟和秒、定时时间到能发出一分钟的报警声。 一芯片介绍 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C51是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案,外形及引脚排列如图1-1所示。 图1-1 AT89C51引脚图 74LS573 的八个锁存器都是透明的D 型锁存器,当使能(G)为高时,

Q 输出将随数据(D)输入而变。当使能为低时,输出将锁存在已建立的数据电平上。输出控制不影响锁存器的内部工作,即老数据可以保持,甚至当输出被关闭时,新的数据也可以置入。这种电路可以驱动大电容或低阻抗负载,可以直接与系统总线接口并驱动总线,而不需要外接口。特别适用于缓冲寄存器,I/O 通道,双向总线驱动器和工作寄存器。外形及引脚排列如图1-2所示。 图1-2 74LS573引脚图

智慧树大学生就业与创业指导章节标准答案

第一章单元测试 ?名称大学生就业与创业指导 ?对应章节第一章 ?成绩类型分数制 ?截止时间 2017-12-01 23:59 ?题目数5 ?总分数 100 ?说明: ?评语: ?提示:选择题选项顺序为随机排列,若要核对答案,请以选项内容为准100 ?第1部分 ?总题数:5 ? 1 【多选题】(20分) 关于职业发展模型,以下描述正确的是:() A. 职业选择或定位时,自我方面主要考虑能力与需求,职业方面要了解要求与回馈。 B. 当个人的能力符合职业的要求时,组织对个人较满意。 C. 当职业的回馈满足个人的需求时,个人对组织较满意。 D. 任何职业选择要同时考虑组织满意度与职业满意度两个维度。 正确 查看答案解析 ? ?本题总得分:20分 2 【多选题】(20分)

职业对技能的要求通常可分为三种类别,分别是:( ) A. 知识技能 B. 可迁移技能 C. 管理技能 D. 自我管理技能 正确 查看答案解析 ? ?本题总得分:20分 3 【多选题】(20分) STAR成就故事深度分析法,是有效分析个人能力的方式。对“STAR”原则描述正确的是:() A. Situation情境——当时面对什么困难? B. Target目标——你的目标是什么? C. Action行动——你做了什么? D. Result结果——效果如何?你有什么收获? 正确 查看答案解析 ? ?本题总得分:20分 4 【多选题】(20分)

参加大型招聘会时,应注意:() A. 最好提前通过招聘会网络发布的信息了解企业和岗位 B. 带一个版本的简历即可,看到中意的企业就投递 C. 要有针对性地投递简历,主动提问交流 D. 及时记录投递简历情况、公司名称、应聘岗位、联系人等。 正确 查看答案解析 ? ?本题总得分:20分 5 【多选题】(20分) 获取就业信息的渠道有:() A. 网络 B. 招聘会 C. 实习实践 D. 人际资源 E. 直接与用人单位联系 正确 第二章单元测试 ?名称大学生就业与创业指导

小型数字系统-定时闹钟说明书

XX 学院 课程设计说明书(20XX / 20XX学年第一学期) 课程名称:嵌入式系统设计 题目:定时时钟 专业班级:XXXXXXXXXXXX 学生姓名:XXX 学号:XXXXXXXX 指导教师:XXXXXX 设计周数:2周 设计成绩: 二OXX年X 月XX 日

定时时钟设计说明书 1.选题意义及背景介绍 电子钟在生活中应用非常广泛,而一种简单方便的数字电子钟则更能受到人们的欢迎。所以设计一个简易数字电子钟很有必要。本电子钟采用AT89C52单片机为核心,使用12MHz 晶振与单片机AT89C52 相连接,通过软件编程的方法实现以24小时为一个周期,同时8位7段LED数码管显示时间的小时、分钟和秒,并在计时过程中具有整点报时、定时闹钟功能。时钟设有起始状态,时钟显示,设置时钟时,设置时钟分,设置闹钟时和设置闹钟分共六个状态。电子钟设有四个操作按钮:KEY1(MODE)、KEY2(PLUS)、KEY3(MINUS)、KEY4(RESET),对电子钟进行模式切换和设置等操作。 2.1.1方案设计 2.1.2系统流程框图 AT89C52 按钮 数码管显示 开启电源 初始显示d.1004-22 循环检测按键状态 闹铃 KEY1是否按下模式切换KEY2是否按下 数字加 KEY3是否按下 数字减

2.1.3电路设计 (整体电路图)

(已封装的SUB1 内部图) 2.1.4主要代码 1)通过循环实现程序的延时 void delay(uint z) { uint x, y; for (x = 0; x=second1 && second

C++电子闹钟设计说明书

电子闹钟设计说明书 一、实现的功能 一个简单的电子闹钟设计程序,和一般的闹钟的功能差不多。首先此程序能够同步电脑上的显示时间,保证时间的准确性;24小时制,可以根据自己喜欢的铃声设置闹钟提示音,还能自己设置提示语句,如“时间到了该起床了”,“大懒虫,天亮了,该起床了”等等,所以这是一个集实用和趣味于一体的小程序。 二、设计步骤 1、打开Microsoft Visual C++ 6.0,在文件中点击新建,在弹出框内选择MFC AppWizard[exe]工程,输入工程名张卢锐的闹钟及其所在位置,点击确定,如图所示。 2、将弹出MFC AppWizard-step 1对话框,选择基本对话框,点击完成,如图所示。

然后一直点下一步,最后点完成,就建立了一个基于对话窗口的程序框架,如图所示。 3、下面是计算器的界面设计 在控件的“编辑框”按钮上单击鼠标左键,在对话框编辑窗口上合适的位置按下鼠标左键并拖动鼠标画出一个大小合适的编辑框。在编辑框上单击鼠标右键,在弹出的快捷莱单中选择属性选项,此时弹出Edit属性对话框,以显示小时的窗口为例,如图所示,在该对话框中输入ID属性。

在控件的“Button”按钮上单击鼠标左键,在对话框上的合适的位置上按下鼠标左键并拖动鼠标画出一个大小合适的下压式按钮。在按钮上单击鼠标右键,在弹出的快捷菜单中选择属性选项,此时也弹出Push Button属性对话框,以数字按钮打开为例,如图所示,在该对话框中输入控件的ID值和标题属性。 按照上面的操作过程编辑其他按钮对象的属性。 表1 各按钮和编辑框等对象的属性 对象ID 标题或说明 编辑框IDC_HOUR 输入定时的整点时间 编辑框IDC_MINUTE 输入定时的分钟数 编辑框IDC_FILE 链接提示应所在地址 编辑框IDC_WARING 自己编辑显示文本 按钮IDC_OPEN 打开 按钮IDC_IDOK 闹钟开始 按钮IDC_CHANGE 重新输入 静态文本IDC_STATIC 界面上的静态文本,如时,分,备注完成后界面如图所示。

star法则成就故事例文

star法则成就故事例文 【--党风廉政建设】 在求职的时候我们会遇到各种各样的面试官,如何在面对不同面试官时都能从容的应对是很多人思考的问题,除了做好充分的准备之外,还需要了解star法则,因为它同基本企业管理中的十大定律一样是面试官常用的,而今天我们就来介绍几个star法则成就故事例文。本站为大家整理的相关的star法则成就故事例文,供大家参考选择。 star法则成就故事例文 什么叫star法则 首先我们需要先了解star法则的意思。所谓star法则是指情境、任务、行动、结果四个词的缩写,其中情境是指事情是在什么情况下发生的;任务是指你是如何明确任务的;行动是指针对这样的情况分析后采取了什么样的行动方式;结果是指最后取得什么样的结果并且学习到了什么。 如果将四项连接起来,star法则可以理解为:案例在什么情况下发生发生之后当事人如何明确案例中给到自己的任务对任务进行分析然后采取对应的行动最后取得什么样的结果并且从中学习到什么,简单的来说它就是一种让面试者讲述自己故事的方式,可以看出面试者阐述问题时的条理性和逻辑性等等。 star法则成就故事例文 用STAR法来撰写成就故事 请写下生活中令你有成就感的具体事件然后对其进行分析,看看你在其中使用了那些技能(尤其是可迁移技能)。 这些成就故事不一定是在工作或学习上的,也可以是课外活动或家庭生活中发生的,比如同学聚会,一次美好而难忘的旅游等等,他们不必是惊天动地的大事,只要符合两条标准就可以被视为成就 (1)你喜欢做这件事时体验到的感受 (2)你为完成他所带来的结果感到自豪。 如果你同时还获得了他人的认可和表扬那就更好了,不过这并不重要。 在撰写成就故事时,每一个故事都应当包含一下要素: 当时的情况(Situation)

STAR法则详解

STAR法则详解 一.什么是STAR法则? The STAR (Situation, Task, Action, Result) format is a job interview technique used by interviewers to gather all the relevant information about a specific capability that the job requires. This interview format is said to have a higher degree of predictability of future on-the-job performance than the traditional interview. STAR法则是情境(situation)、任务(task)、行动(action)、结果(result)四项的缩写。STAR法则是一种常常被官使用的工具,用来收集面试者与工作相关的具体信息和能力。STAR法则比起传统的面试手法来说,可以更精确地预测面试者未来的工作表现。

Situation: The interviewer wants you to present a recent challenge and situation in which you found yourself. 情境:面试官希望你能描述一个最近遇到的挑战或情况。 T ask: What did you have to achieve? The interviewer will be looking to see what you were trying to achieve from the situation. 任务:你必须要完成什么任务?面试者想要知道的是你在上述情境下如何去明确自己的任务。 Action: What did you do? The interviewer will be looking for information on what you did, why you did it and what were the alternatives.

C电子闹钟设计说明书

C电子闹钟设计说 明书

电子闹钟设计说明书 一、实现的功能 一个简单的电子闹钟设计程序,和一般的闹钟的功能差不多。首先此程序能够同步电脑上的显示时间,保证时间的准确性;24小时制,能够根据自己喜欢的铃声设置闹钟提示音,还能自己设置提示语句,如“时间到了该起床了”,“大懒虫,天亮了,该起床了”等等,因此这是一个集实用和趣味于一体的小程序。 二、设计步骤 1、打开Microsoft Visual C++ 6.0,在文件中点击新建,在弹出框内选择MFC AppWizard[exe]工程,输入工程名张卢锐的闹钟及其所在位置,点击确定,如图所示。 2、将弹出MFC AppWizard-step 1对话框,选择基本对话框,点

击完成,如图所示。 然后一直点下一步,最后点完成,就建立了一个基于对话窗口的程序框架,如图所示。 3、下面是计算器的界面设计 在控件的“编辑框”按钮上单击鼠标左键,在对话框编辑窗口上合适的位置按下鼠标左键并拖动鼠标画出一个大小合适的编辑框。在编辑框上单击鼠标右键,在弹出的快捷莱单中选择属性选

项,此时弹出Edit属性对话框,以显示小时的窗口为例,如图所示,在该对话框中输入ID属性。 在控件的“Button”按钮上单击鼠标左键,在对话框上的合适的位置上按下鼠标左键并拖动鼠标画出一个大小合适的下压式按钮。在按钮上单击鼠标右键,在弹出的快捷菜单中选择属性选项,此时也弹出Push Button属性对话框,以数字按钮打开为例,如图所示,在该对话框中输入控件的ID值和标题属性。 按照上面的操作过程编辑其它按钮对象的属性。 表1 各按钮和编辑框等对象的属性

三个成就故事

指导 预习课本第三章,根据课本P61页的小练习为例, 用STARL法来编写三个成就故事: 1)S:Situation(情境,背景)“在什么情景下发生的?” 2)T:Task(任务)“当时你的任务和目标是什么?” 3)A:Action(行动)“你采取了哪些行动?” 4)R:Result(结果)“最后结果怎么样?” 5)L:Learning(学习):“我从中学到了…” 内容包括:专业技能;可迁移技能;自我管理技能三种。 (请直接打字或粘贴,不要用附件形式) 成就故事一: 这个是我第一次从商的故事,发生在我上高一时的寒假。当时马上就要过新年了,也正是那时苹果最好卖,每年都是那时家里的苹果拉到省城批发,可是那一年父亲在忙着准备过年的物资,没法出去卖苹果。于是,我爸就叫我去,当时我是不愿意去的,心里也害怕,但是我爸说他像我这个年纪的时候就快成家了,把我训了一顿。因此,有了我第一次外出卖苹果的经历。由于我是第一次出去,就只拉了2000斤苹果,让我自己看着卖,就这样自己跟随货车到了省城。在水果批发市场我第一次感受到了挣钱不容易,好多商贩看我年纪小过来坑我,好在我出来时,对价格有了大概的了解,没被唬住。在闲时,我就向别人请教,问问他们怎么卖的怎

么对付商贩的胡搅蛮缠。渐渐地,我也有了自己的方法,那就是说话要硬气,有底气,去唬他们,让商贩跟着自己的节奏走。在那呆了三天,我就把家里的苹果批发完了,当时心里可激动了。在以后,放假回家,就由我代替父亲去省城卖水果。当时我就体会到了父亲的用意,男孩子就需要磨练,只有迈出第一步,才会有第二步......自己才有勇气独立面对以后的生活。 我认识到,在生活中,要大胆尝试,自己不去做,永远不知道自己有多优秀。从这,我就开始慢慢脱离学生时代的幼稚天真,慢慢接触社会。从我开口与商贩周旋的时候我就体会到做人要有自信,有底气,只有这样,别人才不会小瞧你,有时,会有不错的效果,当你的自信占了上风,你离成功就不远了。 成就故事二: 我的第二个成就故事是大一暑假自己出去打工。当时,学校放假早,我不打算早早回家,于是瞒着父母自己找工作,开始的时候打算跟着同学一起去山东青岛,后来人家招满了人,就没去成。我在学校留了两天,听说富士康招人就打算去看看,在体检的时候我改变了主意,决定离开。我经过多方打听知道,那年电子市场不景气厂里没有多少活做,老工人都没多少活做,更何况我们这些学生工。因此我再次回到

闹钟功能说明文档

一、功能描述 本工程包括矩阵键盘和数码管显示模块,共同实现一个带有闹钟功能、可以设置时间的数字时钟。具体功能如下: 1.数码管可以显示时十位、时个位、分十位、分个位、秒十位、秒个位。 2.上电后,数码管显示000000,并开始每秒计时。 3.按下按键0进入时间设置状态。再按下按键0退出时间设置状态,继续 计时。 4.在时间设置状态,通过按键1来选择设置的时间位,在0~5之间循环选 择。 5.在时间设置状态,通过按键2来对当前选择的时间位进行加1。 6.在计时状态下,按下按键14,进入闹钟时间点设置状态。再按下按健 15,退出闹钟设置状态。 7.在闹钟设置状态,按下按键13选择设置的时间位,此时可以按下所需要 的按键序号设置对应闹钟时间。 8.当前时间与所设置的时间点匹配上了,蜂鸣器响应5秒。 二、平台效果图

三、实现过程 首先根据所需要的功能,列出工程顶层的输入输出信号列表。

我们把工程分成四个模块,分别是数码管显示模块,矩阵键盘扫描模块,时钟计数模块,闹钟设定模块。 1.数码管显示模块 本模块实现了将时钟数据或者闹钟数据显示到七段译码器上的功能。 七段译码器引脚图: 根据七段译码器的型号共阴极或者共阳极,给予信号0或1点亮对应的led灯,一个八段数码管称为一位,多个数码管并列在一起可构成多位数码管,它们的段选(a,b,c,d,e,f,g,dp)连在一起,而各自的公共端称为位选线。显示时,都从段选线送入字符编码,而选中哪个位选线,那个数码管便会被点亮。数码管的8段,对应一个字节的8位,a对应最低位,dp 对应最高位。所以如果想让数码管显示数字0,那么共阴数码管的字符编码为00111111,即;共阳数码管的字符编码为11000000。 在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。 本模块采用6个七段译码器显示闹钟小时分钟秒位,使用一个计数器不停计数0-5,每个数字代表一个七段译码器,在对应的七段译码器给予对应的字符编码,以此达到扫描数码管显示数据的功能。 信号列表如下:

木头闹钟说明书

木头闹钟说明书 产品功能 ●同屏显示年、月、日、时、分、星期功能: ●闹钟及贪睡功能:贪睡功能开启后,闹钟可以6次闹响,每次闹响间隔5分钟。没有开启贪睡功能,闹响 1分钟后,闹钟功能自动关闭; ●时间记忆功能:不使用AC / DC适配器时,LED屏不显示,但时钟内部会继续正常计时,当连接上适配器时,时钟会自动显示当前正常的时间,无需重新设置; ● 1/4小时制转换功能; ●省电模式:每天下午6点至第二天早上7点,LED显示亮度会自动降低,使人的视觉感到舒适。 使用方法 走时及闹铃设置 ●将AC / DC适配器插上电源,把6V直流电压插头接入时钟6V接口,LED数字屏即发亮显示; ●按住SET键3秒进入设定模式,再按动SET键,每按动一次,年、月、日、时、分将依次闪烁。要设置年、月、日、时、分,只要改变在闪烁的数字即可,按动UP和DOWN 键均可调节,设置结束按SET键,时 钟回到正常的走时状态。星期的设定是全自动的, 它会随着时间的设置而自动改变。●设置闹铃时间,

按动DOWN键显示屏出现AL:- -或AL:on ,每按动DOWN键一次即会转换一次。按住DOWN键3秒,时的数字在闪烁时,即可通过UP 和DOWN键进行调节,要调节分的数字,先按动SET键切换到分的闪烁,同样用UP和DOWN键进行调 节,设置结束按SET键,时钟回到正常的走时状态。闹铃闹响时,按下SET或UP键,闹铃闹响停止,并 且关闭闹钟功能,如果闹铃闹响时,按下DOWN 键闹响停止,则贪睡功能自动开启,闹铃会每隔5分钟 闹响一次,可连续6次。若贪睡闹响未达到第6次,在任何一次闹响时,按下SET或UP键,不但闹响停止,同时自动关闭贪睡功能,如果是按下DOWN键,每隔分钟会再闹响一次,直至达到6次闹响为止; ●在设定模式下,15秒内不按任何键,时钟将恢复时间显示。 12/24小时制设置 正常时间显示下,每按一次UP键,可以实现1/4小时制的转换。在12小时制式下,数字走到12,这 时在时钟的左上角将会出现亮点,表示这时已是下午时间。 电源供电 AC / DC适配器输入电压:220-230V 0HZ ,输出电压:6V /00mA。功率是:6V*0.2=1.2W将适配器6V直

写好经历简历的STAR法则

STAR法则,500强面试题回答时的技巧法则,备受面试者成功者和500强HR的推崇(宝洁HR培训资料有专门的讲座讨论如何用此法则检验面试者过往事迹从而判断其能力)。 如果对面试技巧和人力资源招聘理论有所了解的同学应该听说过,没听说也无所谓,现在知道也不迟。由于这个法则被广泛应用于面试问题的回答,尽管我们还在写简历阶段,但是,写简历时能把面试的问题就想好,会使自己更加主动和自信,做到简历,面试关联性,逻辑性强,不至于在一个月后去面试,却把简历里的东西都忘掉了(更何况有些朋友会稍微夸大简历内容) 废话少说,开讲。 在我们写简历时,每个人都要写上自己的工作经历,活动经历,想必每一个同学,都会起码花上半天甚至更长的时间去搜寻脑海里所有有关的经历,争取找出最好的东西写在简历上。 但是此时,我们要注意了,简历上的任何一个信息点都有可能成为日后面试时的重点提问对象,所以说,不能只管写上让自己感觉最牛的经历就完事了,要想到今后,在面试中,你所写的经历万一被面试官问到,你真的能回答得流利,顺畅,且能通过这段经历,证明自己正是适合这个职位的人吗? 所以,写简历时就要准备好面试时的个人故事,以便应付各种千奇百怪的开放性问题。 为了使大家轻松应对这一切,我向大家推荐“个人事件模块”的方法,以使自己迅速完成这看似庞大的工程。 一,头脑风暴+STAR法则——〉个人事件模块 1.1,头脑风暴。 在脑海里仔细想出从大一到大四自己参与过所有活动(尤其是能突出你某些能力的活动),包括: 社团活动职务时间所做事情 在公司实习的经历职务时间所做过的事情 与他人一起合作的经历(课题调研,帮助朋友办事) (回忆要尽量的详细,按时间倒序写在纸上,如大一上学期发生。。。。。。大一下学期发生。。。。。。。如此类推) 我相信这一步,很多朋友都已经做了,但是仅仅这样就满足了,就直接写在简历上当完事了,那是不行的,想提高竞争力,还得继续。。 1.2,STAR法则应用

木头闹钟说明书

精品文档 木头闹钟说明书 产品功能 ●同屏显示年、月、日、时、分、星期功能: ●闹钟及贪睡功能:贪睡功能开启后,闹钟可以6次闹响,每次闹响间隔5分钟。没有开启贪睡功能,闹响 1分钟后,闹钟功能自动关闭; ●时间记忆功能:不使用AC / DC适配器时,LED屏不显示,但时钟内部会继续正常计时,当连接上适配器时,时钟会自动显示当前正常的时间,无需重新设置; ● 1/4小时制转换功能; ●省电模式:每天下午6点至第二天早上7点,LED显示亮度会自动降低,使人的视觉感到舒适。 使用方法 走时及闹铃设置 ●将AC / DC适配器插上电源,把6V直流电压插头接入时钟6V接口,LED数字屏即发亮显示; ●按住SET键3秒进入设定模式,再按动SET键,每按动一次,年、月、日、时、分将依次闪烁。要设置年、月、日、时、分,只要改变在闪烁的数字即可,按动UP和DOWN 键均可调节,设置结束按SET键,时

钟回到正常的走时状态。星期的设定是全自动的, 它会随着时间的设置而自动改变。●设置闹铃时间,2016全新精品资料-全新公文范文-全程指导写作–独家原创 11/ 1. 精品文档 按动DOWN键显示屏出现AL:- -或AL:on ,每按动DOWN键一次即会转换一次。按住DOWN键3秒,时的数字在闪烁时,即可通过UP 和DOWN键进行调节,要调节分的数字,先按动SET键切换到分的闪烁,同样用UP和DOWN键进行调 节,设置结束按SET键,时钟回到正常的走时状态。闹铃闹响时,按下SET或UP键,闹铃闹响停止,并且关闭闹钟功能,如果闹铃闹响时,按下DOWN 键闹响停止,则贪睡功能自动开启,闹铃会每隔5分钟 闹响一次,可连续6次。若贪睡闹响未达到第6次,在任何一次闹响时,按下SET或UP键,不但闹响停止,同时自动关闭贪睡功能,如果是按下DOWN键,每隔分钟会再闹响一次,直至达到6次闹响为止; ●在设定模式下,15秒内不按任何键,时钟将恢复时间显示。 12/24小时制设置 正常时间显示下,每按一次UP键,可以实现1/4小时制的转换。在12小时制式下,数字走到12,这

STAR法则

STAR法则 沪江小编:网传500强HR面试的逻辑框架就是STAR法则,通过该法则,面试官可以基本了解一个人的做事风格以及这个人的潜质。因此,STAR法则被越来越多地运用在了简历写作和面试回答中。沪江小编就为还不熟悉STAR法则的你,详解这个面试助推剂。 一.什么是STAR法则? The STAR (Situation, Task, Action, Result) format is a job interview technique used by interviewers to gather all the relevant information about a specific capability that the job requires. This interview format is said to have a higher degree of predictability of future on-the-job performance than the traditional interview. STAR法则是情境(situation)、任务(task)、行动(action)、结果(result)四项的缩写。STAR法则是一种常常被面试官使用的工具,用来收集面试者与工作相关的具体信息和能力。STAR法则比起传统的面试手法来说,可以更精确地预测面试者未来的工作表现。Situation: The interviewer wants you to present a recent challenge and situation in which you found yourself. 情境:面试官希望你能描述一个最近遇到的挑战或情况。 Task: What did you have to achieve? The interviewer will be looking to see what you were trying to achieve from the situation. 任务:你必须要完成什么任务?面试者想要知道的是你在上述情境下如何去明确自己的任务。 Action: What did you do? The interviewer will be looking for information on what you did, why you did it and what were the alternatives. 行动:你做了什么?面试官想要了解的是你做了什么?为什么做?有没有替代方案? Results: What was the outcome of your actions? What did you achieve through your actions and did you meet your objectives. What did you learn from this experience and have you used this learning since?

桌面闹钟概要设计说明书

在线招聘系统 概 要 设 计 说 明 书 《桌面闹钟应用程序》项目组日期:2011 年 09 月 18日

1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3定义 (3) 1.4参考资料 (3) 2总体设计 (4) 2.1需求规定 (4) 2.2运行环境 (4) 2.3基本设计概念和处理流程 (4) 2.4结构 (5) 2.5功能器求与程序的关系 (6) 2.6人工处理过程 (6) 2.7尚未问决的问题 (6) 3接口设计 (6) 3.1用户接口 (6) 3.2外部接口 (6) 3.3内部接口 (6) 4运行设计 (7) 4.1运行模块组合 (7) 4.2运行控制 (7) 4.3运行时间 (7) 5系统数据结构设计 (7) 5.1逻辑结构设计要点 (7) 5.2物理结构设计要点 (8) 5.3数据结构与程序的关系 (8) 6系统出错处理设计 (8) 6.1出错信息 (8) 6.2补救措施 (8) 6.3系统维护设计 (9)

概要设计说明书 1引言 1.1编写目的 本文档为“桌面闹钟应用程序概要设计说明书”,主要用于为实现桌面闹钟的概要说明,描述桌面应用程序的结构框架、数据流图及数据流说明字典,以对以后程序的建设起到指导和约束作用。 1.2背景 a.软件系统的名称:桌面闹钟应用程序 b.任务提出者:乐山师范学院计算机科学与信息技术学院 开发者:陈巧林 1.3定义 与已有的桌面闹钟应用程序的繁杂、操作麻烦等特点相比,该桌面闹钟应用程序的简单易操作等特点使得其用起来更方便。 1.4参考资料 [1] 谢炎桦.《数据库管理系统构建实例》.清华大学出版社 [2] 萨师煊,王珊.<<数据库系统概论>>.北京高等教育出版社:2003.6 [3] Jeffrey P.Monanus、赵年锁译.《数据访问技术》.机械工业出版社:1999.7 [4]朱元三.《软件工程技术概论[M] 》.北京科学出版社:2002.7.1~320 [5]陈汶滨,朱小梅,任冬梅.<<软件测试技术基础>>(21世纪高等学校计算机教育实用 规划教材).清华大学出版社出版时间:2008.07.1~96 [6] 朱成立.《数据结构》.清华大学出版社:2005.12 [7]王克宏著.Java技术教程(基础篇).北京:高等教育出版社,2002.04 [8]Bruce Eckel 著.Java编程思想.北京:机械工业出版社,2004.01 [9]孙燕主编.Java2入门与实例教程.北京:中国铁道出版社,2003.01 [10]叶核亚,陈立著.Java2程序设计实用教程.北京:电子工业出版社,2003.5 [11]柯温钊著.JA V A例解教程.北京:中国铁道出版社,2001.03

相关文档
最新文档