7函数的基本性质(一)(单调性、奇偶性、周期性)-学生版

7函数的基本性质(一)(单调性、奇偶性、周期性)-学生版
7函数的基本性质(一)(单调性、奇偶性、周期性)-学生版

教学内容概要

教学内容

【知识精讲】

1、函数的单调性 若函数()x f 满足

则称函数()x f 在区间D 上是单调递增函数。 若函数()x f 满足

则称函数()x f 在区间D 上是单调递减函数。

单调性是函数的局部性质,反映的是函数在其定义域的某个子集上所具备的变化趋势,所以在描述单调性的时候必须阐明单调区间。 2、函数奇偶性

(1)函数奇偶性的定义:

函数()x f 满足,则称()x f 为奇函数 函数()x f 满足,则称()x f 为偶函数 (2)判断奇偶性的基本步骤:

(3)奇函数的性质、

、 偶函数的性质、

3、函数的周期性

对于函数()x f y =,如果一个常数()0≠T T ,使得对于定义域内的任意一个x ,都有,那么这个函数()x f 叫做周期函数,非零常数T 叫做()x f 的周期,对于一个周期函数来说,如果在所有的周期中存在一个最小正数,那么这个最小正数叫做这个函数的最小正周期。 4、补充常用性质:

①若)()(x f a x f -=+,则[])()()()2(x f x f a x f a x f =--=+-=+,即a T 2=; ②若)

(1

)(x f a x f =

+,则)()

(11

)(1)2(x f x f a x f a x f ==

+=+,即a T 2=; ③若)(1

)(x f a x f -

=+,则)()

(11)(1)2(x f x f a x f a x f =-

-=+-=+,即a T 2=。

④若)(1)(1)2(x f x f a x f -+=

+

或)

(1)

(1)2(x f x f a x f +-=+,a T 2= ⑤如果奇函数满足)()(x f T x f -=+则可以推出其周期是T 2,且可以推出对称轴为

kT T

x 22

+=

)(z k ∈,根据)2()(T x f x f +=可以找出其对称中心为)0(kT ,)(z k ∈(以上0≠T )

如果偶函数满足)()(x f T x f -=+则亦可以推出周期是T 2,且可以推出对称中心为

)0,22

(

kT T

+)(z k ∈,根据)2()(T x f x f +=可以推出对称轴为kT T x 2+=)(z k ∈(以上0≠T )。

⑥如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 4为周期的周期性函数。如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数

)(x f y =是以T 2为周期的周期性函数。

【经典例题】

例1、根据函数的单调性填空:

(1)函数822+--=x x y 的单调递减区间是。

(2)函数()()2413f x ax a x =++-在[)2,+∞上递减,则a 的取值范围是。

(3)若函数()2f x x a =-+在[)0,+∞上为增函数,则实数a 的取值范围是。

(4)设()y f x =是R 上的减函数,则()3y f x =-的单调递减区间为。

(5)若函数???<-≥+=)

1(1)

1(1)(2x ax x x x f 在R 上是单调递增函数,则a 的取值范围是。

例2、判断下列各函数的奇偶性:

(1)()(f x x =-(2)x x

x x f +-=11lg )(

(3)11)(22-+-=x x x f (4))2

1

131(

)(+-=x

x x f (5)22(0)()(0)x x x f x x x

x ?+??(6))(1)(2

R a a x x x f ∈+-+=

例3、若()f x 为奇函数,且在(,0)-∞上是减函数,又(2)0f -=,则()0x f x ?<的解集为___________.

例4、(1)已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,()(1f x x =, 则()f x 的解析式为。

(2)已知()f x 是偶函数,x R ∈,当0x >时,()f x 为增函数,若120,0x x <>,且12||||x x <,

则()

A 12()()f x f x ->-

B 12()()f x f x -<-

C 12()()f x f x ->-

D 12()()f x f x -<-

例5、已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有1212()()()f x x f x f x ?=+,且当1x >时()0,(2)1f x f >=, (1)求证:()f x 是偶函数; (2)()f x 在(0,)+∞上是增函数;

例6、(1)已知)(,3)(2

x f x x g --=是二次函数,且)()(x g x f +为奇函数,当[]2,1-∈x 时,

得)(x f 最小值为1,求)(x f 的表达式

(2)已知函数)(x f 对一切y x ,都有)()()(y f x f y x f +=+,

求证:)(x f 是奇函数:若a f =-)3(,试用a 表示)12(f

例7、设函数)(x f 的定义域})

(1

)1(,,2,x f x f Z k k x R x x -

=+∈?

??≠

∈且,如果)(x f 为奇函数,且当2

10<

x f 3)(=

(1)求)4

2003

(

f

(2)当)(122

1

2Z k k x k ∈+<<+

时,求)(x f 的表达式 (3)请问是否存在正整数k ,使得当)(122

1

2Z k k x k ∈+<<+时,

k kx x x f 2)(log 23-->有解?如果存在,求出所有的k ,如果不存在,说明理由

【拓展提高】

例8、已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取

得最小值5-。

(1)证明:(1)(4)0f f +=;

(2)求(),[1,4]y f x x =∈的解析式; (3)求()y f x =在[4,9]上的解析式

例9、(1)若函数)(x f y =为偶函数并且图像关于直线a a x (=)0≠对称,求证:函数

)(x f y =为周期函数.

(2)若函数)(x f y =为奇函数并且图像关于直线a a x (=)0≠对称,求证:函数)(x f y =是以a 4为周期的函数.

例10、(包含部分恒成立问题)定义在D 上的函数)(x f ,如果满足:对任意D x ∈,存在常数0M >,都有|()|f x M ≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()

f x 的上界。已知函数()11124x x

f x a ????

=+?+ ? ?????

;x

x m m x g 2121)(?+?-=。 (1)当1a =时,求函数()f x 在(),0-∞上的值域,并判断函数()f x 在(),0-∞上是否为有

界函数,请说明理由;

(2)若函数()f x 在[)0,+∞上是以3为上界的有界函数,求实数a 的取值范围; (3)若0>m ,函数()g x 在[]0,1上的上界是)(m T ,求)(m T 的取值范围.

【巩固练习】

1、已知函数,若函数为奇函数,则实数为() 2

41)(+=

x

x f 1

()4y f x m =+-m ()A 12-

()B 0()C 1

2

()D 1

2、函数()()()21021x

F x f x x ??

=+

≠ ?-??

是偶函数,且()f x 不恒等于零,则()f x ( ) A 是奇函数 B 是偶函数C 既是奇函数,又是偶函数D 非奇非偶函数

3、函数是()

A .奇函数

B .偶函数

C .非奇非偶函数

D .是奇函数又是偶函数

4.、若对正常数m 和任意实数x ,等式1()

()1()

f x f x m f x ++=-成立,则下列说法正确的是

( )

A 函数()f x 是周期函数,最小正周期为2m

B 函数()f x 是奇函数,但不是周期函数

C 函数()f x 是周期函数,最小正周期为4m

D 函数()f x 是偶函数,但不是周期函数

5、设函数的定义域为R ,满足(1)(1)f x f x +=-,且当1x ≥时,,则

有( )

A.

B.

C. D.

6、已知定义域为R 的函数在上为减函数,且函数为偶函数,则()

A.()()67f f >

B.()()69f f >

C.()()79f f >

D.()()710f f >

7、是定义在上的奇函数且单调递减,若,则

y =()f x ()31x

f x =-132323f f f ??????<< ? ? ???????231323f f f ??????<< ? ? ???????213332f f f ??????<< ? ? ???

??

??

321233f f f ??????<< ? ? ???

??

??

()f x ()8,+∞()8y f x =+()f x ()1,1-()()

2

240f a f a -+-<a

取值范围是() A. B. C.

D.

8、下列函数:①x

x f 3)(=, ②3)(x x f =, ③x

x f 1

ln

)(=,④

⑤1)(2+-=x x f 中,既是偶函数,又是在区间()∞+,0上单调递减函数为 。 (写出符合要求的所有函数的序号)。

9、设函数)(x f 是定义在R 上周期为3的奇函数,且2)1(=-f ,则(2011)(2012)f f +=_.

10、设()f x 为定义在R 上的奇函数,当0x ≥时,()22x f x x b =++(b 为常数),则

(1)f -=。

11、设函数()()()

a x x x

x f sin 1-+=为奇函数,则=a .

12、设函数)(x f y =是定义在R 上以1为周期的函数,若函数x x f x g 2)()(-=在区间

]3,2[上的值域为]6,2[-,则)(x g 在区间]12,12[-上的值域为()

A .]6,2[-

B .]28,24[-

C .]32,22[-

D .]34,20[-

13、已知函数]2,0(,2)(2∈+-=

x x

a

x x x f ,其中常数a > 0. (1) 当4a =时,证明函数()f x 在]2,0(上是减函数; (2) 求函数()f x 的最小值.

)2(()2,-∞+∞ )(()3,-∞+∞ 2cos )(x x f π=

函数的奇偶性及其应用举例

函数的奇偶性及其应用举例 (湖北省红安县职教中心 金哲、曾诚) 【摘要】 函数是贯穿于初中、高中、大学数学教学的一条主线,也是高中数学的核心 内容,那么真正掌握函数,其中最主要的就是掌握函数的基本性质。函数的奇偶性是函数重要性质之一。近几年高职统考以及技能高考对于函数的奇偶性一直都是热点问题。本文将通过对函数的奇偶性及其应用进行一个系统研究。 【关键词】 函数的奇偶性,判定,应用 一、奇、偶函数的定义: 若函数)(x f ,在其定义域内,任取x 都有))()()(()(x f x f x f x f =--=-或者, 则称函数)(x f 在区间I 上是奇函数(或者偶函数) 二、函数的奇偶性分类 ???? ? ?? =--=-≠--≠-=--=-)()()()()()()()(:)()(:)()(:x f x f x f x f x f x f x f x f x f x f x f x f 且既奇且偶函数: 且非奇非偶函数偶函数奇函数 三、奇、偶函数的图象: 奇函数?图象关于原点成中心对称的函数 偶函数?图象关于y 轴对称的函数。 四、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称 ②若f(x)是奇函数,且x 在0处有定义,则f(0)=0 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反 ④任意定义在R 上的函数f(x)都可以唯一地表示成一个奇函数与一个 偶函数的和。 五、 判断函数奇偶性的方法: (1)定义法:欲判断函数)(x f 在给定区间或者定义域内的奇偶性:

第一步:先判断给定区间或者定义域是否关于原点对称,若 不对称,则函数)(x f 一定是非奇非偶函数。 第二步:若对称,再判断)(x f -与)(x f 的关系: ①若)(x f -=-)(x f ,则)(x f 是奇函数 ②若)(x f -=)(x f ,则)(x f 是偶函数 ③若)(x f -=-)(x f 且)(x f -=)(x f ,则)(x f 是既奇且偶函数 ④若)(x f -≠-)(x f 且)(x f -≠)(x f ,则)(x f 是非奇非偶函数 (2)图象法:图象关于原点成中心对称的函数是奇函数; 图象关于y 轴对称的函数是偶函数。, 六、函数奇偶性的应用: (1)函数奇偶性的判断 例1、(2011年高职统考第4题)下列函数为奇函数的为 )0(.5 1<=x x y A )0(.7 1>=x x y B 2 1.x y C = 3 1.x y D = 析:A,B ,C 这三个函数的定义域都不关于原点对称,故均为非奇非偶函数, 只有D 选项,定义域为()+∞∞-,,关于原点对称,并且()3 13 1x x -=-,故D 项所在函数为奇函数。 例2、(2014年文化综合第25题改编)下列函数中为奇函数的是 A .2 ()1f x x =- B .3 ()f x x = C .5()3x f x ?? = ??? D .2 ()log f x x = 析:A 项2()1f x x =-的定义域为()+∞∞-,关于原点对称,但 () 11)(2 2 -=--=-x x x f ,)()(x f x f =-故为偶函数; C 项5()3x f x ?? = ??? 定义域 为()+∞∞-,关于原点对称,但)()()()(,35)(x f x f x f x f x f x -≠-≠-??? ??=--且, 故为非奇非偶函数;D 项2()log f x x =,定义域为()+∞,0,不关于原点对称, 故为非奇非偶函数,只有B 项符合。 例3、判断函数12)(2+-=x x x f 的奇偶性: 析:(法1-定义法)()f x 函数的定义域是()-∞+∞, , ∵ 2()21f x x x =-+,

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

函数奇偶性在解题中的应用

函数奇偶性在解题中的应用 徐辉 函数的奇偶性是函数的重要性质之一,也是日常考试和高考中数学的重点和热点内容之一。它应用广泛,在高中数学的各个分支中都有着极为重要的应用,在解题过程中如果应用的好,常能使难题变易,繁题变简,起到事半功倍的效果。 1.用于求值 例1:已知奇函数,则 解:因为奇函数, 所以对任意,都有成立. 令,则有,从而可得; 令,则有, 从而 . 故. 注:此解利用了若函数是奇函数,则对定义域内的任意, 都有这一性质,特别地,当0在定义域内时,必有. 2.用于比较大小 例2.已知偶函数在区间上单调递减,试比较 的大小.

解:因为是偶函数,所以,故此题只需比较的大小即可. 又因在区间上单调递减,而且 所以,故. 注:此解利用了若函数是偶函数,则对定义域内的任意x,都有这一性质.当然此题也可利用偶函数图象关于y 轴对称这一性质,首先得到在区间是单调递增的,然后再用单调性进行求解. 3.用于求最值 例3.如果奇函数在区间[3,7]上是增函数且最小值为5,那么在区间[-7,-3]上是() A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 解:由在区间[3,7]上是增函数且最小值为5,有, 又是奇函数,而奇函数的图象关于原点对称, 故有在[-7,-3]上也是增函数,且当x=-3时,函数取得最大值, 故选B. 注:此解利用了奇函数图象关于原点对称这一性质. 4.用于求参数的值 例4.已知函数(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.

解:由是奇函数,知f(-x)=-f(x), 从而,即-bx+c=-(bx+c),c=-c,∴c=0. 又由f(1)=2,知,得a+1=2b①, 而由f(2)<3,知,得② 由①②可解得-1<a<2. 又a∈Z,∴a=0或a=1. 若a=0,则b=,应舍去; 若a=1,则b=1∈Z. ∴a=1,b=1,c=0. 注:本题从函数的奇偶性入手,利用函数的思想建立方程或不等式,组成混合组,最终使问题得以解决. 当然此题也可采用取特殊值的方法得到c的值,如由f(-1)=-f(1),可得c=0. 5.用于求函数的解析式 例5.已知定义在(-∞,+∞)上的函数f(x)的图像关于原点对称,且当x>0时,f(x)=x2-2x+2,求函数f(x)的解析式。解:当x<0时,-x>0,故f(-x)=(-x)2-2(-x)+2=x2+2x+2 因函数f(x)的图像关于原点对称,故函数f(x)为奇函数, 于是f(-x)=-f(x),从而当x<0时,f(x)=-f(-x)=-(x2+2x+2)=-x2-2x-2,

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

函数的奇偶性与周期性考点和题型归纳

函数的奇偶性与周期性考点和题型归纳 一、基础知 1.函数的奇偶性 函数的定义域关于原点对称是函数具有奇偶性的前提条件. 若f (x )≠0,则奇(偶)函数定义的等价形式如下: (1)f (-x )=f (x )?f (-x )-f (x )=0?f (-x ) f (x )=1?f (x )为偶函数; (2)f (-x )=-f (x )?f (-x )+f (x )=0?f (-x ) f (x )=-1?f (x )为奇函数. 2.函数的周期性 (1)周期函数 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期. 周期函数定义的实质 存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 二、常用结论 1.函数奇偶性常用结论

(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |). (2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. (3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )= 1 f (x ) ,则T =2a (a >0). (3)若f (x +a )=-1 f (x ),则T =2a (a >0). 3.函数图象的对称性 (1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称. (2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称. (3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称. 考点一 函数奇偶性的判断 [典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2 |x +3|-3; (2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2) |x -2|-2 ; (4)f (x )=? ??? ? x 2+x ,x <0,x 2-x ,x >0. [解] (1)由f (x )=36-x 2 |x +3|-3,可知????? 36-x 2≥0,|x +3|-3≠0?????? -6≤x ≤6, x ≠0且x ≠-6, 故函数f (x )的定 义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.

函数奇偶性的定义与应用

函数2:函数的奇偶性 【教学目的】 使学生了解奇偶性的概念,掌握判断函数奇偶性的方法; 【重点难点】 重点:函数的奇偶性的有关概念; 难点:奇偶性的应用 一、函数的奇偶性 1.偶函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做 偶函数. 2.奇函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)就叫 做奇函数. 3.判断函数奇偶性的方法: (1)图像法:偶函数的图像关于y 轴对称;奇函数的图像关于原点对称. (2)定义法:○1首先确定函数的定义域,并判断其是否关于原点对称; ②确定f(-x)与f(x)的关系; ○ 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 4.奇偶函数的简单性质: (1)奇函数:奇函数的图像关于原点对称,其单调性在对称区间内相同,如在[a,b ]上为 增函数,则在[-b ,-a ]上也为增函数. (2)偶函数:奇函数的图像关于y 轴对称,其单调性在对称区间内相反,如在[a,b ]上为 增函数,则在[-b ,-a ]上为减函数. 二、函数奇偶性的应用 1、利用定义判断函数奇偶性 例1(1)x x x f 2)(3+= ; (2)2 432)(x x x f +=; (3)1)(2 3--=x x x x f ; (4)2)(x x f = []2,1-∈x ; (5)x x x f -+-=22)( ; (6)2211)(x x x f -+-=; (7)2211(0)2()11(0)2 x x g x x x ?+>??=??--x 时,()()x x x f -=1,求()x f 在R 上解析式;

2017高考一轮复习教案-函数的奇偶性与周期性

第三节函数的奇偶性与周期性 函数的奇偶性与周期性 结合具体函数,了解函数奇偶性与周期性的含义. 知识点一函数的奇偶性 奇偶性定义图象特点 偶函数如果对于函数f(x)的定义域内任意一个x,都有 f(-x)=f(x),那么函数f(x)是偶函数 关于y轴对称 奇函数如果对于函数f(x)的定义域内任意一个x,都有 f(-x)=-f(x),那么函数f(x)是奇函数 关于原点对称 1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x),而不能说存在x0使f(-x0)=-f(x0)、f(-x0)=f(x0). 3.分段函数奇偶性判定时,利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的. 必记结论 1.函数奇偶性的几个重要结论: (1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0. (2)如果函数f(x)是偶函数,那么f(x)=f(|x|). (3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集. (4)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. 2.有关对称性的结论: (1)若函数y=f(x+a)为偶函数,则函数y=f(x)关于x=a对称. 若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)对称. (2)若f(x)=f(2a-x),则函数f(x)关于x=a对称. 若f(x)+f(2a-x)=2b,则函数f(x)关于点(a,b)对称. [自测练习] 1.函数f(x)=lg(x+1)+lg(x-1)的奇偶性是( )

函数奇偶性与单调性的综合应用 专题

函数奇偶性与单调性的综合应用 专题 【寄语:亲爱的孩子,将来的你一定会感现在拼命努力的自己!】 教学目标:1.掌握函数的单调性与奇偶性的概念以及基本性质;. 2.能综合运用函数的单调性与奇偶性来分析函数的图像或性质; 3.能够根据函数的一些特点来判断其单调性或奇偶性. 教学重难点:函数单调性的证明;根据单调性或奇偶性分析函数的性质. 【复习旧识】 1.函数单调性的概念是什么?如何证明一个函数的单调性? 2.函数奇偶性的概念是什么?如何证明一个函数的奇偶性? 3.奇函数在关于原点对称的区间上,其单调性有何特点?偶函数呢? 【新课讲解】 一、常考题型 1.根据奇偶性与单调性,比较两个或多个函数值的大小; 2.当题目中出现“2 121) ()(x x x f x f -->0(或<0)”或“)(x xf >0(或<0)”时,往往还是 考察单调性; 3.证明或判断某一函数的单调性; 4.证明或判断某一函数的奇偶性; 5.根据奇偶性与单调性,解某一函数不等式(有时是“)(x f >0(或<0)”时x 的取值围); 6.确定函数解析式或定义域中某一未知数(参数)的取值围.

二、常用解题方法 1.画简图(草图),利用数形结合; 2.运用奇偶性进行自变量正负之间的转化; 3.证明或判断函数的单调性时,有时需要分类讨论. 三、误区 1.函数的奇偶性是函数的整体性质,与区间无关; 2.判断函数奇偶性,应首先判断其定义域是否关于原点对称; 3.奇函数若在“0=x ”处有定义,必有“0)0(=f ”; 4.函数单调性可以是整体性质也可以是局部性质,因题而异; 5.运用单调性解不等式时,应注意自变量取值围受函数自身定义域的限制. 四、函数单调性证明的步骤: (1) 根据题意在区间上设 ; (2) 比较大小 ; (3) 下结论 . 函数奇偶性证明的步骤: (1)考察函数的定义域 ; 例1 设)(x f 是定义在(-∞,+∞)上的偶函数,且它在[0,+∞)上单调递增,若a =)3 1(log 2 f ,b =)2 1 (log 3 f ,c =)2(-f ,则a ,b ,c 的大小关系是( ) A .c b a >> B .a c b >> C .b a c >> D .a b c >> 【考点】函数单调性;函数奇偶性,对数函数的性质. 【解析】 因为log 2 3

函数的奇偶性与周期性试题(答案)

函数的奇偶性与周期性 一、选择题 1.(2015·四川绵阳诊断性考试)下列函数中定义域为R ,且是奇函数的是( ) A .f(x)=x2+x B .f(x)=tan x C .f(x)=x +sin x D .f(x)=lg 1-x 1+x 2.(2014·新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( ) A .f(x)g(x)是偶函数 B .|f(x)|g(x)是奇函数 C .f(x)|g(x)|是奇函数 D .|f(x)g(x)|是奇函数 3.(2015·长春调研)已知函数f(x)=x2+x +1x2+1,若f(a)=23 ,则f(-a)=( ) A.23 B .-23 C.43 D .-43 4.已知f(x)在R 上是奇函数,且满足f(x +4)=f(x),当x ∈(0,2)时,f(x)=2x2,则f(7)等于( ) A .-2 B .2 C .-98 D .98 5.函数f(x)是周期为4的偶函数,当x ∈[0,2]时,f(x)=x -1,则不等式xf(x)>0在[-1,3]上的解集为( ) A .(1,3) B .(-1,1) C .(-1,0)∪(1,3) D .(-1,0)∪(0,1) 6.设奇函数f(x)的定义域为R ,最小正周期T =3,若f(1)≥1,f(2)=2a -3a +1 ,则a 的取值范围是( ) A .a<-1或a≥23 B .a<-1 C .-1

人教新课标版数学高一-数学必修1练习 1.3.2函数奇偶性的应用

课时作业 15 一、选择题 1.[2014·荆州中学高一检测]下列各函数在其定义域中,既是奇函数,又是增函数的是 ( ) A .y =x +1 B .y =-x 3 C .y =-1x D .y =x |x | 解析:A 中函数不具有奇偶性;B 中函数在定义域内为减函数;C 中函数在定义域内不具有单调性. 答案:D 2.[2014·哈师大附中高一联考]已知x >0时,f (x )=x -2012,且知f (x )在定义域上是奇函数,则当x <0时,f (x )的解析式是( ) A .f (x )=x +2012 B .f (x )=-x +2012 C .f (x )=-x -2012 D .f (x )=x -2012 解析:由f (-x )=-f (x ),可知f (x )=-f (-x )=-[(-x )-2012]=x +2012.选A. 答案:A 3.设f (x )是定义在R 上的一个函数,则函数F (x )=f (x )-f (-x )在R 上一定是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .既不是奇函数也不是偶函数 解析:因为F (-x )=f (-x )-f [-(-x )]= f (-x )-f (x )=-[f (x )-f (-x )]=-F (x ), 所以F (x )是奇函数. 答案:A 4.[2014·福建六校高一联考]偶函数y =f (x )在区间[0,4]上单调递减,则有( ) A .f (-1)>f (π3 )>f (-π) B .f (π3 )>f (-1)>f (-π)

C .f (-π)>f (-1)>f (π3 ) D .f (-1)>f (π)>f (π3 ) 解析:由f (x )为偶函数可知 f (-1)=f (1),f (-π)=f (π). 又因f (x )在[0,4]上递减, ∴f (1)>f (π3 )>f (π), 即f (-1)>f (π3 )>f (-π).选A. 答案:A 二、填空题 5.已知函数f (x )是定义在(-∞,+∞)上的偶函数,当x ∈(-∞,0)时,f (x )=x -x 4,则当x ∈(0,+∞)时,f (x )=________. 解析:当x ∈(0,+∞)时,有-x ∈(-∞,0),注意到函数f (x )是定义在(-∞,+∞)上的偶函数.于是,有f (-x )=-x -(-x )4=-x -x 4=f (x ). 答案:-x -x 4 6.f (x ),g (x )都是定义在R 上的奇函数,且F (x )=3f (x )+5g (x )+2,若F (a )=-2009,则F (-a )=________. 解析:由f (x ),g (x )都是定义在R 上的奇函数,知f (a )+f (-a )=0,g (a )+g (-a )=0. 所以F (a )+F (-a )=3f (a )+5g (a )+2+3f (-a )+5g (-a )+2=4,所以F (-a )=4-F (a )=4+2009=2013. 答案:2013 7.已知函数f (x )为偶函数,其图象与x 轴有四个不同的交点,则这四个不同交点的横坐标之和为________. 解析:由题意可知函数f (x )的图象关于y 轴对称.所以函数f (x )的图象与x 轴的四个不同交点关于y 轴对称,因此四个不同交点的横坐标之和为0. 答案:0 三、解答题 8.定义在[-3,-1]∪[1,3]上的函数y =f (x )是奇函数,其部分图象如图所示. (1)请在坐标系中补全函数f (x )的图象.

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 2.(1)周期函数 对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√) (6)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√) (7)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (9)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (10)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一 判断函数的奇偶性

函数奇偶性应用-含答案

第2课时 奇偶性的应用 课时目标 1.巩固函数奇偶性概念.2.能利用函数的单调性、奇偶性解决有关问题. 1.定义在R 上的奇函数,必有f (0)=____. 2.若奇函数f (x )在[a ,b ]上是增函数,且有最大值M ,则f (x )在[-b ,-a ]上是____函数,且有________. , 3.若偶函数f (x )在(-∞,0)上是减函数,则有f (x )在(0,+∞)上是________. 1.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ) A .f (π)>f (-3)>f (-2) B .f (π)>f (-2)>f (-3) C .f (π)f (1) 3.设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( ) A .f (-x 1)>f (-x 2) B .f (-x 1)=f (-x 2) C .f (-x 1) A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f 等于( ) A ..- C ..- 6.若奇函数f (x )在(0,+∞)上是增函数,又f (-3)=0,则{x |x ·f (x )<0}等于( ) A .{x |x >3,或-33,或x <-3} D .{x |00时,f (x )=x 2+|x |-1,那么x <0时,f (x ) =___________________.

函数的奇偶性、对称性与周期性总结-史上最全

函数的奇偶性、对称性与周期性常用结论,史上最全 函数是高中数学的重点与难点,在高考数学中占分比重巨大。高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。需要WORD 电子文档的同学,可以入群领取。 1.奇偶函数: 设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。 ①若为奇函数;则称)(),()(x f y x f x f =-=-() ()()0, 1() f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。() ()-()0, 1() f x f x f x f x -==- 2.周期函数的定义: 对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。 《 分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:), (x f y = []a b T b a x -=∈,,。把)()(a b K KT x x f y -==轴平移沿个单位即按向量 )()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。 [][]?? ?++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f

相关文档
最新文档