热泵式空调的基本工作原理

热泵式空调的基本工作原理
热泵式空调的基本工作原理

热泵式空调的基本工作原理

在我国,家用空调和中央空调本是两个独立的概念。家用空调一般是指窗式机、分体壁挂式和柜机等用于家庭单个空间的空调机组;而中央空调则是指具有集中的冷/热源和冷/热媒的空调系统,主要应用于宾馆、写字楼等,能够为较多的独立划分的空间提供冷量和热量的空调系统。

随着经济的发展,我国的人居面积有较大幅度的增长,人们对于室内空气品质的要求也越来越高:一个多居室的家庭往往需要安装多台家用空调,才能满足不同空间的温度要求。据2000年对上海市某一居民区的调查发现,平均每户拥有家用空调近2台,有的家庭甚至达到了7台。

一个家庭安装数台家用空调有许多弊端:1.整机能效比低,一般为 2.7—3.1,具体表现为家庭耗电量大,城市电网峰值剧增;2.难以保证室内良好的温度场和气流场,影响室内环境的品质和舒适性;3.由于无新风且单机过滤不完全,导致室内空气质量变差;4.大量安装的室外机不但破坏大楼的外观的美感,更成为安全隐患等等。

中央空调几乎不存在上述问题:由于冷源集中,中央空调的能效比一般在4~5;多风口的送风和回风可以保证室内有良好的气流场和温度场;由于远离制冷机房,所以噪音污染得到有效的抑止;可以加入新风并通过及时更换过滤器,保证室内空气质量;一般安装在专用的机房,不会破坏大楼的美观,更不会造成安全隐患。鉴于上述原因.家用空调中央化的方案引起了业界的关注,陆续提出了“户式中

央空调”或“小型家用中央空调”等概念。

按照家用中央空调的输送介质的不同,常见的有三种型式:风管式系统、冷/热水机组和vRv(变制冷剂流量)系统。

VRV家用中央空调是一种冷剂式空调系统,它以制冷剂(比如R22)为传送介质。vRv系统与普通的家用空调比

较相近,是对普通家用空调的一种多用户的扩展,即:一台室外机通过管路能够向若干个室内机输送液态制冷剂,通过控制压缩机的制冷剂循环量和进入室内各换热器的制冷剂流量,适时地满足室内冷、热负荷要求。

风管式系统和冷/热水机组分别是中央空调的全空气系统和风机盘管系统的小型化,其原理基本相同。本文主要以冷/热水机组为例阐述家用中央空调的基本原理

普通家用空调的基本工作原理

图1是普通热泵型家用空调器的原理图。它主要包含:室内换热器、室外换热器、压缩机、毛细管、气液分离器和四通阀等部件

当热泵型空调器运行于制冷工况时,四通阀换向使图中实线接通。这时,室内换热器成为蒸发器,而室外换热器成为冷凝器。从室内换热器来的低温低压过热气经四通阀和消声器进入气液分离器.分离出液体后,干过热气被压缩机吸入压缩成为高温高压的气体徘出,气体经四通阀进入室外换热器放热冷凝,成为过冷液。过冷液经毛细管阻力降压后成为低温低压两相流体,进入室内换热器蒸发吸热(此时室内空气被降温),再一次经四通阀和气液分离器进入下一循环:图中过

滤器主要用于制冷剂与压缩机油的分离,以保证换热器的换热效率。

当热泵型空调机运行于制热工况时,四通阀换向使图中虚线接通。这时、室内换热器成为冷凝器,室外换热器成为蒸发器。从室外换热器来的低温低压过热气经四通阀和消声器进入气液分离器,分离出液体后,干过热气被压缩机吸入压缩成为高温高压的气体徘出,气体经四通阀进入室内换热器放热冷凝(此时,室内空气被加热).成为过冷液,过冷液经毛细管阻力降压后成为低温低压两相流体.进入室外换热器蒸发吸热,随后过热气经四通阀和气液分离器进入下一循环。

为防止制热时因除霜导致室内舒适性下降,采用了热气旁通不间断制热除霜方式。除霜时,运行原理基本与制热相同,只是将融霜电磁阀打开。从压缩机出来的高温高压的过热气有一部分被分流到室外换热器的人口,迅速把室外换热器的温度提高到O℃以上,融掉室外换热器上的霜层,使换热器保持良好的换热效率

冷/热水机组形式家用中央空调的工作原理

图2为冷/热水机组形式的家用中央空调原理图。

冷/热水机组形式的家用中央空调(以下简称:冷/热水机组)的制冷剂循环与普通家用空调完全相同,即:制冷时机组的风冷换热

器为冷凝器,机组的水冷换热器为蒸发器;制冷剂经压缩机压缩成为高温高压过热气体,在风冷换热器中冷凝放热,成为过冷液,再经节流装置阻力降压后成为低压低温两相流体进入水冷换热器蒸发吸热(此时载冷剂被冷却),最后再回到压缩机进入下一循环。制热时机组的风冷换热器为蒸发器,机组的水冷换热器为冷凝器;制冷剂经压缩机压缩成为高温高压过热气体,在水冷换热器中冷凝放热(此时载冷剂被加热),成为过冷液,再经节流装置阻力降压后成为低压低温两相流体进入风冷换热器蒸发吸热,最后再回到压缩机进入下一循环。

冷/热水机组的制冷剂循环与普通家用空调和VRV形式的家用中央空调的不同在于:冷/热水机组并没有直接将制冷剂作为输送介质送到用户的换热器中,而是通过水冷换热器将制冷剂的冷/热量传给专门的输送介质——载冷剂送到用户端。这种载冷剂通常为水冷/热水机组的载冷剂循环为:从各用户换热器返回的高/低温(供冷时为高温,供热时为低温)回水在集水器中混合,经空调水泵加压送入水冷换热器中换热成为低/高温(供冷时为低温,供热时为高温)载冷剂进入分水器,再由分水器分流进入各空调空间的供水管路,供水在各房间的换热设备(譬如:风机盘管)中向空调空间释放冷/热量后成为高/低温回水由回水管路回到集水器中,进入下一循环

冷/热水机组形式家用中央空调的控制原理

冷/热水机组形式家用中央空凋的控制原理与风机盘管中央空调系统基本类似。图3为冷/热水机组形式家用中央空调控制原理图,图中E为执行器、C为控制器、T为温度测点。

冷/热水机组的控制方式如下:

每个空调房间有自己独立的温度控制器,用户可根据需要设定室温。安装在温度控制器上的温度传感器及时感知该房间的温度,温度控制器根据该温度和设定室温的差别来控制风机盘管中风机的转速,从而把室内温度稳定在设定值附近。

各个温度控制器通过通讯环路(集中总线)与主控制器取得联系,不断把目前的状态包括用户的设定等信息及时反馈给主控制器。

主控制器可单独接受用户的设定,也可根据用户对各房间温度控器设定的情况决定运行工况。在某一工况下,主控制器检测空调出水温度,并将其与设定值比较,根据差别来控制压缩机运行、从而调节系统整体制冷/热量。此外,主控制器还要检验系统关键位置的压力、温度、电流等、发现异常立即采取措施并显示故障信息。准确、迅速的保护功能是系统能够长期安全稳定运行的保证

将低温热源的热量转移到温度高于环境温度的物体﹐从而获得热量的机器和设备。在空气调节设备中热泵的工作过程与制冷机相仿﹐但它是向高于环境温度的物体供给热量﹐例如向建筑物供暖﹑供应生活或某些生产过程用的热水等。热泵的低温热源最常用的是环境介质(空气或地面水)的热量﹐也可用地热或生产过程中排出的废汽﹑废水和废油等的热量

图压缩式热泵的工作原理图为压缩式热泵的工作原理。它的组成和工作过程与压缩式制冷机相同﹐也是用一般的制冷剂(氨或氟利昂)作为工质。工业废水在泵的作用下流经蒸发器的传热管﹐加热管外的

工质并使之蒸发﹐产生的蒸气经压缩机压缩后进入冷凝器即凝汽器中冷凝成液体﹐液体再经节流阀节流降压后进入蒸发器中继续蒸发﹐从而完成热泵的工作循环。在冷凝器中工质是在较高的温度下冷凝的﹐将热量传给载热质(冷却水)﹐载热质遂将热量源源不断地供给需要供热的用户

衡量热泵工作有效性的一个重要技术指针是热量变换系数Φ=Q 1 /N ﹐式中Q1为热泵向高温物体供热的速率(千焦/秒)﹔N为压缩机消耗的功率(千瓦)。因在数值上Q1总是大于N(因Q1中尚包括从低温热源吸收的热量)﹐Φ的数值也总是大于1。Φ的值是随热泵的工作温度而变的﹐蒸发温度越低﹑冷凝温度越高则Φ的值越小。例如﹐当冷凝温度为50℃﹐蒸发温度为0~10℃时﹐φ值约为3.5~4.5﹔但当冷凝温度提高到80℃﹐蒸发温度降低到-20~0℃时﹐Φ=1.4~1.9。因此﹐在供热温度较高而低温热源温度较低的情况下﹐用热泵供热便不很经济。在电力供应不足和电费价格较高的情况下﹐压缩式热泵不宜大量使用

仿照吸收式制冷机的工作过程可组成吸收式热泵﹐它只消耗热能就可达到热量转移的目的。同样﹐根据半导体制冷器的原理也可制成半导体供热器

应用压缩式制冷机和压缩式热泵的工作原理﹐可以组成热泵型空调机组(见空气调节设备)。夏季按制冷循环工作﹐可用来使房间降温﹔冬季按热泵循环工作﹐可用来向房间供热

摘要:概述了水环热泵空调系统在我国的历史和现状,简要介绍了水环热泵空调系统的工作原理和适用场合,重点分析了水环热泵空调系统的优点和缺点。

关键词:水环热泵水/空气热泵节能

热泵从本质上来说是一种热回收装置,它从低温热源处吸取热量并提高品位后,再在高温热源处放热,起到节省高位能的租用。自1989年以来,热泵技术在我国的应用与发展进入了兴旺期。据统计,1996年我国空调设备(指电动冷热水机组、吸收式冷热水机组、房间空调器以及单元空调机组,但不包括进口机组)的总制冷能力约为2000万kW,其中热泵型机组的制冷能力约占60%[1]。

20世纪80年代初,我国在一些外商投资的建筑中采用了水环热泵空调系统[2]。时至今日,水环热泵空调系统在我国的应用已经有了不小的普及。90年代水环热泵空调系统便在我国得到广泛的应用。据统计,1997年国内采用的工程共52项[2]。不仅在北京、上海、广州、深圳、天津等大城市中一些工程采用它,而且如佛山、绍兴、惠州、泉州等中小城市也开始采用水环热泵空调系统。此外,有关水环热泵空调系统的研究也卓有成效。从1993年起,原哈尔滨建筑工程学院就开始了水环热泵空调系统在我国应用的预测分析与评价。之后,不少相关论文随之发表,如文献[3]。2005年,国内水环热泵空

调系统的工程技术专著,即文献[4]——《水环热泵空调系统设计》出版

1 水环热泵空调系统的概况

水环热泵空调系统是指小型的水/空气热泵机组的一种应用方式,即用水环路将小型的水/热泵机组并联在一起,形成一个封闭环路,构成一套回收建筑物内部余热作为其低位热源的热泵供暖、供冷的空调系统。典型的水环热泵空调系统由三部分组成:(1)室内的小型水/空气热泵机组;(2)水循环环路;(3)辅助设备(如冷却塔、加热设备、蓄热装置等)。

水环热泵空调系统的基本工作原理是:在水/空气热泵机组制热时,以水循环环路中的水为加热源;机组制冷时,则以水为排热源。当水环热泵空调系统制热运行的吸热量小于制热运行的放热量时,循环环路中的水温度升高,到一定程度时利用冷却塔放出热量;反之循环环路中的水温度降低,到一定程度时通过辅助加热设备吸收热量。只有当水/空气热泵机组制热运行的吸热量和制冷运行的放热量基本相等时,循环环路中的水才能维持在一定温度范围内,此时系统高效运行

2 水环热泵空调系统的优点

上世纪80年代初期在我国应用的一些水环热泵空调系统显示出了许多的优点:如回收建筑物余热的特有功能;不像传统锅炉那样会

对环境产生污染;省掉或减少常规空调系统的冷热源设备和机房;便于分户计量与记费;便于安装、管理等。据有关文献的预测分析,水环热泵空调系统上一种很有前途的节能型空调系统[2]。下面,本文从组成系统的三个方面逐一分析水环热泵空调系统的优点

2.1 水循环环路方面

首先,按水环热泵空调系统在建筑物中的用途,它属于热回收式热泵系统。在室外空气温度较低的情况下,建筑物的周边区需要额外的热量来维持室内温度的稳定舒适;与此同时,建筑物的内区则因为存在室内热源(如照明、设备、人体等散热),而需要降低室内的温度。水环热泵空调系统通过同时连通建筑物周边区和内区的水循环环路,可以将内区产生的余热转移到周边区,在对内区供冷的同时对周边区供热,而不存在或者少量存在常规空调系统在同种情况下的冷热量抵消所造成的能量浪费。因此,该系统的建筑物热回收效果好,在充分利用余热的同时节约了能源。当建筑物内部同时由供热工况机组和供冷工况机组模式同时运行时,采用水环热泵空调系统的运行费用最多可降低至50%左右

其次,与上类似,为了达到同时供冷供暖的效果,相对于常规空调系统必须采用造价昂贵的四管制风机盘管系统而言,水环热泵空调系统的水循环环路仍然采用两管制。如此,就不会存在或者减少常规的四管制的风机盘管系统对各个条件要求不同的房间空调时所出现的冷

热量抵消,避免了由此造成的能量的无谓消耗,更节省了管道系统的初投资费用。

再次,由于水循环环路中的水温在常温范围内、与其环境温度的温差不大,所以常温水所消耗的能量比常规空调系统小得多。同时,因为减少了输配过程中的冷热耗散等损失,环路的热损失也比常规空调系统要小得多。总的来说,水环热泵空调系统与常规空调系统相比,仅管道热损失减少这一项,节能效率约为8%~15%[5]。而且,由于水循环环路管道可不设保温和防潮隔湿,还能减少保温层及其它的一些材料费用

2.2 小型水/空气热泵机组方面

一般,水环热泵空调系统采用的都是室内的,根据室内负荷的大小分别安装在各个房间内。各房间内的用户就可以根据室外温度的变化和各自不同的要求,在一年内的任何时间随意进行房间里的供暖或供冷的调节,而不会影响到其它房间的温度。由于便于调节也不会出现房间过冷、过热等情况,既避免了常规空调系统的能源浪费,又营造了良好的室内环境。同时,室内的小型水/空气热泵机组也便于分户计量和分户收费。

对于业主来说,如果采用常规空调系统,就必须一次购齐冷水机组及其它设备,往往会造成很大的资金压力,而且冷水机组一般要在安装一两年后才能发挥效益;而水环热泵空调系统中的小型水/空气热泵机组可以分期投资、分批建设,甚至可以在用户入住前逐层安装,

其投资回报效益高、见效快。这一特点也使水环热泵空调系统在旧楼翻新或系统改造中颇有市场,因为常规空调系统无法避免损坏原有的结构,且不易找到适合的冷冻机房,一般还需要全楼停业来进行改造工程,造成的经济损失较大。

对于设计方来说,由于采用了室内的小型水/空气热泵机组,也就没有了体积庞大的风管、冷水机组等,所以系统布置更加紧凑、简洁和灵活,也不用再设置空调机房(或减少机房面积),也为业主增大了使用面积及有效空间。水环热泵空调。对于施工方来说,由于小型水/空气热泵机组可以在工程里进行组装,所以减少了工地的安装工作量

2.3 辅助设备方面

如果再在水环热泵空调系统中加入蓄热装置等辅助设备,则更能提高系统的经济性。因为蓄热装置可以实现内区制冷机组向水循环环路中释放的冷凝热与周边区制热机组从水循环环路中吸取的热量在一天或者更长的时间周期内达到平衡,从而降低了冷却塔和水加热器的年耗能量。

3 水环热泵空调系统的缺点

水环热泵空调系统的发展主要面临来自两个方面的问题:其一是从系统这个方面来看,国内的一些建筑物内余热小或无预热,尚需补充加热设备,致使其不能充分发挥原有的一些优点;其二是从设备这

个方面来看,水环热泵空调系统中采用的小型水/空气热泵机组所存在的一些固有问题也限制了其更广泛的应用。目前,针对上述的两个缺点,也出现了许多的解决办法,以期推广水环热泵空调系统的应用3.1 建筑物内余热不足

通过分析水环热泵空调系统的运行特性我们可知,只有当建筑物内区有大量余热且周边区需要供热,才能通过水环热泵空调系统将建筑物内区的余热转移到需要热量的周边区,从而达到回收建筑物余热、节约能源的目的。但是,我国的各类建筑物内部负荷不大,建筑物的内区面积又小,因而建筑物的余热量也较小。在这种情况下,如果要采用水环热泵空调系统,则势必要增设锅炉。然而,将锅炉的高位热能加热水循环环路中的循环水使之成为与室温相差无几的低温

热源,再由水/空气热泵机组消耗电能将其提升到高位热量向室内供暖,这本身就是不经济、不合理的。此外,如果采用的是燃煤锅炉,还存在一个环境污染的问题。

解决建筑物内余热不足这个问题的途径,就是由建筑物的外部引进低温热源,以替代建筑物内的余热量。太阳能、水(地表水、井水、河水等)、土壤、空气均可作为水环热泵空调系统的外部能源[6]。例如大连电力大厦(高层单元式建筑)利用热电厂冷却水作为水环热泵空调系统的外部热源,收到良好的节能效果[2]。此外,哈尔滨工业大学提出一种空气/水热泵与水/空气热泵耦合双级热泵供暖系统。该系统在寒冷地区,用空气源热泵冷热水机组制备10℃~20℃低温水,

通过水环路送至室内各个水/空气热泵机组中,水/空气热泵再从水中汲取热量,直接加热室内空气,达到供暖目的[7]。总而言之,可以通过廉价的辅助热源来解决建筑物内余热不足的问题,拓宽水环热泵空调系统的应用范围

3.2 小型水/空气热泵机组

首当其冲的是小型水/空气热泵机组的的制冷性能系数COP远小于大型冷水机组,而且在相同制冷量条件下价格就其它型式的主机来讲也偏高。另外一个重要的问题,就是小型水/空气热泵机组安装在室内,热泵机组内部的压缩机和风机将会成为一个很大的噪声源,无法满足室内环境的噪声标准要求。

针对如何提高水环热泵空调系统在供冷中的经济性这个问题,我们可以通过在空调系统设计中采用混合系统的形式加以解决。混合系统是指水/空气热泵机组同其它空调设备(如冷水机组、单元柜式空调机等)共同组合而成为全新的空调系统。同样,为了提高系统运行的经济性,在建筑物内区设置单元式空调机组(水冷),向内区供冷,而周边区设置水/空气热泵机组,向周边区供冷或供热,也是一种值得注意的混合系统形式[7]。

而在控制房间内的小型水/空气热泵机组噪声问题方面,文献[8]给出了详尽的阐述。其控制噪声的措施包括控制噪声源、合理设计、正确安装、认真调试和维护等四个方面,每个方面又各有许多具体的

实施措施。实践表明,如果在工程建设中能够正确对待噪声问题,采取合理措施,完全可以满足室内环境噪声标准要求

4 结束语

由以上分析可以可以看出,只要我们合理设计、规范安装、灵活管理,水环热泵空调系统就一定能发挥出它既有的经济、节能、环保等优点。当然,我们也应当根据各个地区、各个建筑物的特点,确定是否采用水环热泵空调系统。尤其是北方地区的、内区面积大、内区的余热量也大的建筑物,最适于采用水环热泵空调系统。相反,南方一些地区的、全年绝大部分时间需要供冷的建筑物,则不宜采用水环热泵空调系统,因为它并不比风机盘管或其它常规空调系统节能。

在能源每年增长率约为3%~5%的条件下,要满足国民经济持续每年增长8%~9%,即在能源短缺的条件下,必须重视节能技术和节能产品的开发[1]。水环热泵空调系统本身回收建筑物余热、节约能源,若与太阳能、地下水、工业废水等低位热源相结合,更能拓宽其应用范围。在国家日益重视建筑节能的今天,水环热泵空调系统有着巨大的节能潜力和广阔的应用前景

空调压缩机工作原理

空调压缩机的工作原理 1、空调压缩机是在空调制冷剂回路中起压缩驱动制冷剂的 作用。工作回路中分蒸发区和冷凝区,室内机和室外机分别属于高压或低压区。压缩机一般装在室外中,压缩机把制冷剂从低压区抽取来经压缩机后送到高压区冷却凝结,通过散热片散发出热能到空气中,制冷剂也从气态变成液态,压力升高。制冷剂再从高压区流向低压区,经过毛细管喷射到蒸发器中,压力骤降,液态制冷剂立即变成气态,通过散热片吸收空气中大量的热量。这样,机器不断工作,就不断把低压区一端的热能吸收到制冷剂中再送到高压区散发到空气中,起到调节气温的作用。 2、空调在作制冷运行时,低温低压的制冷剂气体被压缩机吸 入后加压变成高温高压的制冷剂气体,高温高压的制冷剂气体在室外换热气中放热变成中温高压的液体,中温高压的液体再经过节流部件节流降压后变成低温低压的液体,低温低压的液体制冷剂在室内换热气中吸热蒸发后变成低温低压的气体,然后进入压缩机压缩,往复循环。 3、压缩机是制冷系统的心脏,无论是空调、冷库、化工制冷 工艺等等工况都要空压缩机这个重要的环节来做保障! 制冷压缩机种类和形式很多,根据原理可分为容积型和速度型两类,其中容积式是最为普遍的。 那压缩机又是如何压缩空气的呢?

简单而说就是通过改变气体的容积来完成气体的压缩和输送过程!任何动力设备都需要一个动力来做功完成,压缩机也是一样,它需要一个电动机来带动。 容积型压缩机又分为往复活塞式和回转式两种。 往复活塞式是通过活塞在气缸内做往复运动改变气体工作容积;活塞式压缩机历史悠久,生产技术成熟。 回转式压缩机包括刮片旋转式压缩机 螺杆式压缩机,目前国内生产的空调器多采用旋转式压缩机; 蜗杆式压缩机主要用于大型制冷设备,现在一些大型商场办公楼内也有很多采用蜗杆式压缩机。 空调的基本原理是这样的,压缩机将冷冻剂压缩成高压饱和气体,这种气态冷冻剂再经过冷凝器冷凝。 通过节流装置节流之后,通入到蒸发器中,将所需要冷却的媒介冷却换热。例如将蒸发器连接到楼里的各个房间,蒸发器的蛇形管将同空气进行换热,再通过鼓风将冷气吹向空气洞中。 而蒸发器蛇形管内的冷冻剂换热后变成低压蒸气回到压缩机,在被压缩机压缩,这样循环利用就完成了制冷系统。 4、分析空调图

空气源热泵工作原理

主讲人:刘海棠 职务:技术部部长 课题:空气源工作原理 ㈠空气源热水器工作原理 一、空气源热水器的定义 空气源热泵热水器又称热泵热水器,由热泵吸收空气热源制取热水。空气源热水器就就是通过热泵用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能,通过压缩机的压缩变为高温热能,传输至水箱,加热热水,这种通过热泵运动来获得加热的热水器叫做空气源热水器。 目前,空气能热泵热水生产厂家与市场集中分布在长江以南。主要生产厂家集中在珠江三角洲的佛山、东莞、深圳、珠海以及长江三角洲的杭州、宁波地区。消费市场主要分布在长江以南的广东、广西、福建、江西、上海、浙江、安徽等省区,并逐步从长江以南向长江以北扩展。 二、空气源热水器的组成部分

热泵热水装置,主要由蒸发器、压缩机、冷凝器、膨胀阀、风机五大部件组成,通过让工质(制冷剂)不断完成蒸发(吸取环境中的热量)→压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热量转移到水中。 蒸发器直接从空气中吸取热量,将节流后的制冷剂吸热气化达到预期效果的设备。 压缩机就是空气源热水器的心脏,把制冷剂从低压提升为高压,并使制冷剂不断循环流动。 冷凝器就就是将压缩机排出的高温高压气体释放出热量后冷凝成低温高压液体的换热设备。 膨胀阀就是一种节流装置,控制制冷剂的流量,可提高系统的能效比与可靠性。 风机主要就是起加强气体流通量的作用,就是依靠输入的机械能,提高气体压力并排送气体的设备。 制冷剂就是热泵系统中实现制热循环的工作介质,也称冷媒。作为一种特殊的物质,制冷剂的物质状态在热泵循环过程中不断发生变化:在蒸发器中,制冷剂在较低的压力状态下吸收热能由液态变为气态;压缩机将此低压的气态制冷剂压缩升温为高压气态制冷剂;在冷凝器中,制冷剂在较高压力状态下放出热能由气态便为液态。 三、空气源热水器的基本工作原理 热泵技术就是基于逆卡诺循环原理实现的;如同在自然界中水总就是由高处流向低处一样,热量也总就是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温热源传递到高温热源,所以热泵实质上就是一种热量提升装置。热泵的作用就就是从周围环境中吸取热量(这些被吸取的热量可以就是地热、太阳能、空气的能量),并把它传递给被加热的对象(温度较高的媒质)。 热泵热水机组工作时,蒸发器吸收环境热能,压缩机吸入常温低压介质气体,经过压缩机压缩成为高温高压气体并输送进入冷凝器,高温高压的气体在冷凝器中释放热量来制取热水,并冷凝成低温高压的液体。后经膨胀阀节流变成低温低压液体进入蒸发器内进行蒸发,低温低压液体在蒸发器中从外界环境吸收热量后蒸发,变成低温低压的气体。蒸发产生的气体再次被吸入压缩机,开始又一轮同样的工作过程。这样的循环过程连续不断,周而复始,从而达到不断制热的目的。 热泵原理示意图如下:

空气源热泵工作原理

主讲人:刘海棠 职务:技术部部长课题:空气源工作原理

㈠空气源热水器工作原理 一、空气源热水器的定义 空气源热泵热水器又称热泵热水器,由热泵吸收空气热源制取热水。空气源热水器就是 通过热泵用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能,通过压缩机的压缩变为高温热能,传输至水箱,加热热水,这种通过热泵运动来获得加热的热水器叫做空气源热水器。 目前,空气能热泵热水生产厂家和市场集中分布在长江以南。主要生产厂家集中在珠江 三角洲的佛山、东莞、深圳、珠海以及长江三角洲的杭州、宁波地区。消费市场主要分布在长江以南的广东、广西、福建、江西、上海、浙江、安徽等省区,并逐步从长江以南向长江以北扩展。 二、空气源热水器的组成部分 热泵热水装置,主要由蒸发器、压缩机、冷凝器、膨胀阀、风机五大部件组成,通过让工质(制冷剂)不断完成蒸发(吸取环境中的热量)7压缩T冷凝(放出热量)7节流T再蒸发的热力循环过程,从而将环境里的热量转移到水中。 蒸发器直接从空气中吸取热量,将节流后的制冷剂吸热气化达到预期效果的设备。 压缩机是空气源热水器的心脏,把制冷剂从低压提升为高压,并使制冷剂不断循环流动。 冷凝器就是将压缩机排出的高温高压气体释放出热量后冷凝成低温高压液体的换热设备。 膨胀阀是一种节流装置,控制制冷剂的流量,可提高系统的能效比和可靠性。 风机主要是起加强气体流通量的作用,是依靠输入的机械能,提高气体压力并排送气体 的设备。 制冷剂是热泵系统中实现制热循环的工作介质,也称冷媒。作为一种特殊的物质,制冷 剂的物质状态在热泵循环过程中不断发生变化:在蒸发器中,制冷剂在较低的压力状态下吸 收热能由液态变为气态;压缩机将此低压的气态制冷剂压缩升温为高压气态制冷剂;在冷凝器中,制冷剂在较高压力状态下放出热能由气态便为液态。 三、空气源热水器的基本工作原理 热泵技术是基于逆卡诺循环原理实现的;如同在自然界中水总是由高处流向低处一样, 热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温热源传递到高温热源,所以热泵实质上是一种热 量提升装置。热泵的作用就是从周围环境中吸取热量(这些被吸取的热量可以是地热、太阳能、空气的能量),并把它传递给被加热的对象(温度较高的媒质)。 热泵热水机组工作时,蒸发器吸收环境热能,压缩机吸入常温低压介质气体,经过压缩

风冷热泵机组工作原理

风冷热泵机组工作原理 风冷热泵机组是中央空调机组的一部分,它主要区别于风冷冷水机组,风冷热泵机组通过强制换热,来满足室内温度的需要。风冷热泵主要用于家用中央空调领域,大型中央空调则一般采用水冷热泵机组,这和风冷热泵工作原理是分不开的,下面我们一起来认识一下风冷热泵以及风冷热泵原理。 什么是风冷热泵 “热泵”是一种能从自然界的空气、水或土壤中获取低品位热能,经过电力做功,提供可被人们所用的高品位热能的装置。 风冷热泵的风为何物,即是流动的空气,流动的空气作为热媒的热泵,即是空气源热泵只是在设置上,风冷热泵可能借助风机等设备加速空气流动,空气源热泵多数为自然流通。 风冷热泵机组应当放在空气对流良好的地方也就是说,他应当就是放在室外的,放室内,空气不流通,那么空气就会越来越冷,最后效率越来越低从低温环境中吸收热量,高温环境获得热量。 风冷热泵机组工作原理图 风冷热泵工作原理 风冷热泵机组是空调系统中的主机,由于采用风冷冷凝器不需要冷却塔,而

蒸发器是水冷的,夏天制冷时提供冷水,冬季制热时提供热水,风机盘管是空调系统的末端装置,装在室内如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的、风冷热泵相对于空气源热泵来说他的能力要低一点,他的进出水温是5摄氏度左右(大部分公司的设置参数),而空气源的进出水温差能达到40摄氏度。 风冷热泵机组与风机盘管共同使用,前者提供冷水或热水,后者将冷水或热水通过热交换,吸出冷风或热风。我们可以形象的把风冷热泵机组比作是中央空调的大脑,如果大脑不工作了,那中央空调将丧失全部功能,系统也将停止运行。 本文由舒适100网编辑部整理发布

空调的构造及工作原理

宝坻一中 校本课程教案 课程题目:空调的构造及工作原理 年级: 学科: 主讲教师:

空调的构造及工作原理 在当下生活中,空调是生活的必需品。而它功能——制冷。在作制冷运行时,低温低压的制冷剂气体被压缩机吸入后加压变成高温高压的制冷剂气体,高温高压的制冷剂气体在室外换热器中放热(通过冷凝器冷凝)变成中温高压的液体(热量通过室外循环空气带走),中温高压的液体再经过节流部件节流降压后变为低温低压的液体,低温低压的液体制冷剂在室内换热器中吸热蒸发后变为低温低压的气体(室内空气经过换热器表面被冷却降温,达到使室内温度下降的目的),低温低压的制冷剂气体再被压缩机吸入,如此循环。 空调器的结构,一般由以下四部分组成。 制冷系统:是空调器制冷降温部分,由制冷压缩机、冷凝器、毛 细管、蒸发器、电磁换向阀、过 滤器和制冷剂等组成一个密封的 制冷循环。 风路系统:是空调器内促使 房间空气加快热交换部分,由离 心风机、轴流风机等设备组成。 电气系统:是空调器内促使压缩机、风机安全运行和温度控制部分,由电动机、温控器、继电器、电容器和加热器等组成。 箱体与面板:是空调器的框架、各组成部件的支承座和气流的导向部分,由箱体、面板和百叶栅等组成。 制冷系统的主要组成和工作原理

制冷系统是一个完整的密封循环系统,组成这个系统的主要部件包括压缩机、冷凝器、节流装置(膨胀阀或毛细管)和蒸发器,各个部件之间用管道连接起来,形成一个封闭的循循环系统,在系统中加入一定量的氟利昂制冷剂来实现这冷降温。 空调器制冷降温,是把一个完整的制冷系统装在空调器中,再配上风机和一些控制器来实现的。制冷的基本原理按照制冷循环系统的组成部件及其作用,分别由四个过程来实现。 压缩过程:从压缩机开始,制冷剂气体在低温低压状态下进入压缩机,在压缩机中被压缩,提高气体的压力和温度后,排入冷凝器中。 冷凝过程:从压缩机中排出来的高温高压气体,进入冷凝器中,将热量传递给外界空气或冷却水后,凝结成液体制冷剂,流向节流装置。 节流过程:又称膨胀过程,冷凝器中流出来的制冷剂液体在高压下流向节流装置,进行节流减压。 蒸发过程:从节流装置流出来的低压制冷剂液体流向蒸发器中,吸收外界(空气或水)的热量而蒸发成为气体,从而使外界(空气或水)的温度降低,蒸发后的低温低压气体又被压缩机吸回,进行再压缩、冷凝、节流、蒸发,依次不断地循环和制冷。单冷型空调器结构简单,主要由压缩机、冷凝器、干燥过滤器、毛细管以及蒸发器等组成。单冷型空调器环境温度适用范围为18℃~43℃。 冷热两用型空调器种类 (1)电热型空调器

自己空气源热泵的工作原理

电空气源热泵 一、电空气源热泵作原理图及工作原理 1、电空气源热泵作原理图 电空气源热泵作原理图 2、电空气源热泵作原理 (1) 低温低压制冷剂经膨胀阀节流降压后,进入空气交换机中蒸发吸热,从空气中吸收大量的热量Q1; (2) 蒸发吸热后的制冷剂以气态形式进入压缩机,被压缩后,变成高温高压的制冷剂(此时制冷剂中所蕴藏的热量分为两部分:一部分是从空气中吸收的热量Q1,一部分是输入压缩机中的电能在压缩制冷剂时转化成的热量Q2); 压缩机蒸发 器 空气热量的输入 冷凝 器 电能的输入 储液罐 过滤器膨胀阀 热水出冷水入热 用 户

(3)被压缩后的高温高压制冷剂进入热交换器,将其所含热量(Q1+Q2)释放给进入热换热器中的冷水,冷水被加热到55℃(最高达65℃),直接给用户供暖; (4)放热后的制冷剂以液态形式进入节膨胀阀,节流降压......如此不间断进行循环。 二、电空气源热泵有如下特点 1、用途广泛、四季无忧 空气能(源)热泵既能在冬季制热,又能在夏季制冷,能满足冬夏两种季节需求,而其他采暖设备往往只能冬季制热,夏季制冷时还需要加装空调设备。 2、安全运行、保护环保 空气能(源)热泵采用热泵加热的形式,水、电完全分离,无需燃煤或天然气,因此可以实现一年四季全天24小时安全运行,不会对环境造成污染。 3、使用灵活、没有限制 相比太阳能、燃气。水地能(源)热泵等形式,空气能(源)热泵不受夜晚、阴天、下雨及下雪等恶劣天气的影响,也不受地质。燃气供应的限制。 4、节能科技、省电省心 空气能(源)热泵使用1份电能,同时从室外空气中获取2份以上免费的空气能(源),能生产3份以上的热能,高效环保,相比电采暖每月节省75%的电费,为用户省下如此可观的电费,很快就能收

空调器结构和工作原理

空调器结构和工作原理 空调器的结构,一般由以下四部分组成。 制冷系统:是空调器制冷降温部分,由制冷压缩机、冷凝器、毛细管、蒸发器、电磁换向阀、过滤器和制冷剂等组成一个密封的制冷循环。 风路系统:是空调器内促使房间空气加快热交换部分,由离心风机、轴流风机等设备组成。 电气系统:是空调器内促使压缩机、风机安全运行和温度控制部分,由电动机、温控器、继电器、电容器和加热器等组成。 箱体与面板:是空调器的框架、各组成部件的支承座和气流的导向部分,由箱体、面板和百叶栅等组成。 制冷系统的主要组成和工作原理 制冷系统是一个完整的密封循环系统,组成这个系统的主要部件包括压缩机、冷凝器、节流装置(膨胀阀或毛细管)和蒸发器,各个部件之间用管道连接起来,形成一个封闭的循循环系统,在系统中加入一定量的氟利昂制冷剂来实现这冷降温。 空调器制冷降温,是把一个完整的制冷系统装在空调器中,再配上风机和一些控制器来实现的。制冷的基本原理按照制冷循环系统的组成部件及其作用,分别由四个过程来实现。 压缩过程:从压缩机开始,制冷剂气体在低温低压状态下进入压缩机,在压缩机中被压缩,提高气体的压力和温度后,排入冷凝器中。

冷凝过程:从压缩机中排出来的高温高压气体,进入冷凝器中,将热量传递给外界空气或冷却水后,凝结成液体制冷剂,流向节流装置。 节流过程:又称膨胀过程,冷凝器中流出来的制冷剂液体在高压下流向节流装置,进行节流减压。 蒸发过程:从节流装置流出来的低压制冷剂液体流向蒸发器中,吸收外界(空气或水)的热量而蒸发成为气体,从而使外界(空气或水)的温度降低,蒸发后的低温低压气体又被压缩机吸回,进行再压缩、冷凝、节流、蒸发,依次不断地循环和制冷。单冷型空调器结构简单,主要由压缩机、冷凝器、干燥过滤器、毛细管以及蒸发器等组成。单冷型空调器环境温度适用范围为18℃~43℃。 冷热两用型空调器又可以分为电热型、热泵型和热泵辅助电热型三种。 (1)电热型空调器 电热型空调器在室内蒸发器与离心风扇之间安装有电热器,夏季使用时,可将冷热转换开关拨向冷风位置,其工作状态与单冷型空调器相同。冬季使用时,可将冷热转换开关置于热风位置,此时,只有电风扇和电热器工作,压缩机不工作。 (2)热泵型空调器 热泵型空调器的室内制冷或制热,是通过电磁四通换向阀改变制冷剂的流向来实现的,如图1所示。在压缩机吸、排气管和冷凝器、蒸发器之间增设了电磁四通换向阀,夏季提供冷风时室内热交换器为蒸发器,室外热交换器为冷凝器。冬季制热时,通过电磁四通换向阀换向,室内热交换器为冷凝器,而室外热交换器转为蒸发器,使室内得到热风。热泵型空调器的不足之处是,当环境温度低于5℃时不能使用。

空气源热泵工作原理分析

空气源热泵工作原理分析 一、热泵简要介绍 日常生活中泵的应用很多,泵是一种提高位能的装置,根据用途不同有水泵、气泵、油泵等。 热泵,顾名思义就是泵热的装置。热泵技术是近年来在全世界备受关注的新能源技术,目前较多地应用于冷暖空调机。 热泵按结构、用途等可以有多种分类,如果按所取热源方式,常见的可分为空气源热泵、水源热泵、地热热泵等。 三、空气源热泵原理介绍 空气源热泵热水器是空气源热泵的其中一种用途方式。空气源热泵系统的主要工作原理就是利用少量高品位的电能作为驱动能源,从低温热源(空气当中蕴涵的热能)高效吸收低品位热能并传输给高温热源(水箱里的水),达到了“泵热”的目的。 热泵技术是一种提高能量品位的技术,它不是能量转换的过程,不受能量转换效率极限100%的制约。利用热泵热水机释放到水中的热量不是直接用电加热产生出来的,而是通过热泵热水机把热源搬运到水中去的,所以平均能效比能达到400%以上。也就是1度电通过热泵能产生4度电的效果。

三、各种热水器的比较能源利用率 家用型空气源热泵系统结构示意图: 四、系统结构流程说明 压缩机→高压保护器→换向阀→热交换器(家用型水箱)→节流装置→蒸发器→低压保护器→气液分离器→压缩机。 商用型空气源热泵系统结构示意图:

商用型空气源热泵系统安装示意图: 五、斯米茨水源热泵介绍

多乐?斯米茨水源热泵是一种空气能产品,适用于宾馆、商场、办公楼、学校、别墅、住宅小区的制热及制冷。 多乐?斯米茨水源热泵优势特点: 1、高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。运行费用仅为普通中央空调的40~60%。 2、节水省地

太阳能热泵原理及技术分析

太阳能热泵原理及技术分析 热泵技术是一种新型的节能制冷供热技术,长期以来主要应用于建筑物的采暖空调领域。因热泵制热在节能降耗及环保方面的良好表现,卫生热水供应系统也越来越多的采用热泵设备作为热源[2]。其中以室外空气为热源的空气源热泵,结构简单,不需要专用机房,安装使用方便,在卫生热水供应方面具有不可替代的优势,除了比较大型的空气源热泵热水系统外,现在已有多个品牌的小型的家用空气源热泵热水器也投放市场。但空气源热泵的一个主要缺点是供热能力和供热性能系数随着室外气温的降低而降低,所以它的使用受到环境温度的限制,一般适用于最低温度-10℃以上的地区[3]。 将热泵技术与太阳能结合供应生活热水,国内外进行了许多这方面的研究,主要有两种方式,一种是直接以空气源热泵作为太阳能系统的辅助加热设备,另一种是利用太阳能热水为低温热源或将太阳能集热器作为热泵的蒸发器的太阳能热泵系统。前者以太阳能直接加热为主以空气源热泵为辅,解决太阳能供热的连续性问题,但仍旧无法摆脱环境温度对热泵制热性能的影响;后者完全以太阳能作为热泵热源,大大提高了太阳能的利用效率,但太阳能资源不足时仍需要增加其它辅助热源,并且热泵供热能力受太阳能集热量的限制,规模一般比较小。 在大型的太阳能中央热水系统中,空气源热泵无疑是一种比较理想的辅助加热设备,为了改善空气源热泵在低温环境下制热运行的性能,扩大它的使用区域,结合国内外太阳能热泵研究中的先进经验,我们研制了一种适合于低温环境中工作的太阳能—热泵中央热水系统。该系统采用一种新型的采用低温太阳能辅助的空气源热泵机组和太阳能集热系统结合,太阳能和热泵互为辅助热源,最大限度的利用太阳能,解决阴雨天气及冬季环境温度较低太阳能资源不足时热水供应保证率,做到全年、全天候供应热水。 1太阳能—热泵中央热水系统组成 1.1太阳能—热泵中央热水系统基本组成 太阳能—热泵中央热水系统的主要组成部分为太阳能集热器和太阳能辅助加热空气源热泵机组,其他辅助设备与常规的中央热水系统相同,包括太阳能循环泵、热水加热环泵、换热器、热水箱及控制器等。 1.2太阳能辅助加热空气源热泵机组 1.2.1太阳能辅助加热空气源热泵机组工作原理 为使空气源热泵在低温环境中高效、稳定、可靠的运行,国内外众多科研单位和生产企业进行了研发和改进,归纳起来主要有三种方式。一是依靠外界辅助热源来提高热泵低温制热性能,比如通过电加热提高热泵制热出水温度、采用燃烧器辅助加热室外换热器、在压缩机周围敷设相变蓄热材料以增加低温条件下制热运行出力等等;二是通过改善制冷剂循环系统来提高热泵的低温制热性能,比如采用双级压缩的空气源热泵,设中间补气回路的空气源热泵等;三是采用变频系统,低温工况下让压缩机高速工作增加工质循环量,同时向压缩机工作腔喷液以防止其过热,从而使热泵机组能够正常运行。 太阳能辅助加热空气源热泵机组是基于上述第一种方式而产生的,如图2所示。在机组的蒸发器上增加了一辅助换热器。热泵在低温环境下制热运行时,高于环境温度的太阳能热水流经该辅助换热器,与将进入蒸发器的室外空气进行热量交换提高其温度,从而使制冷剂在

中央空调工作原理

中央空调工作原理 一户式中央空调的分类 1、风管机 一台定频室外机,一台定频室内机,通过风管把冷热风送至每个房间,可方便将室外新风引入;对空气进行加湿等集中处理也较容易,是廉价的机器,设计合理每个房间的噪声仅增加1~3分贝,卧室不必吊顶,每个房间在可高于主温控器设定的温度以上,对温度进行控制;可以有一定比例的能量转移,达到节能及加快空调冷热速度的效果。 室内机局部噪声较大,根据现场不同的安装条件,实测在42~52分贝之间,对设计及安装要求很专业。 2、一拖多机组 (1)定频多联机 把分体空调集中到一个室外机中,最多一拖三里面有三台压缩机,冷媒系统各自独立;把明装壁挂室内机改变成暗藏式;引进新风困难,是分体空调的一种变形,卧室内风机噪音由低到高要增加7~14分贝,最高达50分贝。每个卧室需增加长1.2m以上,宽0.6m,高0.3m 的吊顶,另需设检修孔;每个内机都需有冷凝水排放的管路。 冷媒系统独立,但电路部分的有共用点;如发生外风机,外机温度探头、压力保护或电器局部短路等故障时,整套机器将无法运行。 (2)定、变频一拖多 其中有1~2台变频压缩机或另加1台定频压缩机,电路上有射频干扰,对电脑有影响。检修孔新风引入吊顶与冷凝水与多联机相同;对氟管的分支器要求设计合理;对上,下层共用1台机器,管路要求更高;较易在全开启时出现末端内机效果太差的情况。 3、冷热水机 定频冷热水机或变频冷热水机 大型中央空调的缩小,冷凝器由水冷变成风冷;用水泵将冷热水送至风机盘管。引入新风、检修孔、吊顶冷凝水排放、噪声指标与多联机相同。但又增加了冷热水管;由于温度差很大,密封问题突出,出现漏水对装潢的破坏较大。另外大型中央空调蒸发器都定时清理和酸洗;家用冷热水机对此还无良策,长期使用冷热交换器的效率将大打折扣。如能与中央水处理系统相结合,可克服上述难点。 单独房间使用空调,其它房间风机盘管有冷热水管流过,也会产生能耗;现较流行采用电磁水阀来关闭水路;除去造价上的因素外;还会使局部水流速过高,产生噪声的问题。 二. 户式中央空调的工作原理 1.冷(热)水机组的基本工作过程是:室外的制冷机组对冷(热)媒水进行制冷降温(或加热升温),然后由水泵将降温后的冷媒(热)水输送到安装在室内的风机盘管机组中,由风机盘管机组采取就地回风的方式与室内空气进行热交换实现对室内空气处理的目的。

空调水系统工作原理

空调水系统工作原理 与一般空调一样,有四大部件,压缩机,冷凝器,节流装置,蒸发器,制冷剂依次在上述四大部件循环,压缩机出来的冷媒(制冷剂)高温高压的气体,流经冷凝器,降温降压,冷凝器通过冷却水系统将热量带到冷却塔排出,冷媒继续流动经过节流装置,成低温低压液体,流经蒸发器,吸热,再经压缩。在蒸发器的两端接有冷冻水循环系统,制冷剂在此次吸的热量将冷冻水温度降低,使低温的水流到用户端,再经过见机盘管进行热交换,将冷风吹出。 这里有三个系统,你弄明白,基本就明白的了。一个是制冷剂的循环系统,一个是冷却水系统的,一个是冷冻水系统的。冷却水系统就是接冷却塔的,将热量带到外界的,冷冻水系统就是连接用户与蒸发器的,将末端的热量带到蒸发器。冷水机,的水在这里相当于一种载冷剂,担当中间角色运送热量,本身的制冷在于制冷剂循环系统。中央空调水系统的工作原理及组成中央空调水系统的 输送介质通常使用水为载冷剂,氟利昂为制冷剂。主要是由室外主机、管道系统、室内末端(风盘)、控制开关等组成。家庭用的管道系统通常采用P P-R管和铜管,商用中央空调管道系统通常采用镀锌钢管,保温采用3-5公分橡塑保温,确保管道表面无冷凝现象。 它主要通过室外主机的热交换产生冷热源,管道 中的冷、热水通过水泵压力输送到室内空间的各个末端装置,冷热水通过风盘中的翅片与室内空气进行热

量交换,产生冷、热风,从而对整个室内空间进行温度调节。室内的风机盘管可以对房间的温度和风速 进行调节,可以达到每个房间自由开关,从而达到省电的功能,在大的制药厂、电子工厂、医院等特定场所对室内的空气调节的要求将更高,往往将使用大的末端设备,如空调箱、新风处理机等、通过这些大型多功能的末端设备对室内进行制冷、制热、新风处理、恒温恒湿处理等,从而使室内的空气达到更高的要求。 对于大型的中央空调的系统组成更加复杂,往往 需要专用的空调库房、专门的维护人员、而家用和小型的商用相比就简单方便、业主往往通过厂家技术人员指导一到两次就可以自行熟练的使用、充分的体现中央空调人性化控制系统给人类所带来的方便、快捷、舒适的享受。

空调器结构和工作原理

空调器结构和工作原理

空调器结构和工作原理 空调器的结构,一般由以下四部分组成。 制冷系统:是空调器制冷降温部分,由制冷压缩机、冷凝器、毛细管、蒸发器、电磁换向阀、过滤器和制冷剂等组成一个密封的制冷循环。 风路系统:是空调器内促使房间空气加快热交换部分,由离心风机、轴流风机等设备组成。 电气系统:是空调器内促使压缩机、风机安全运行和温度控制部分,由电动机、温控器、继电器、电容器和加热器等组成。 箱体与面板:是空调器的框架、各组成部件的支承座和气流的导向部分,由箱体、面板和百叶栅等组成。 制冷系统的主要组成和工作原理 制冷系统是一个完整的密封循环系统,组成这个系统的主要部件包括压缩机、冷凝器、节流装置(膨胀阀或毛细管)和蒸发器,各个部件之间用管道连接起来,形成一个封闭的循循环系统,在系统中加入一定量的氟利昂制冷剂来实现这冷降温。 空调器制冷降温,是把一个完整的制冷系统装在空调器中,再配上风机和一些控制器来实现的。制冷

的基本原理按照制冷循环系统的组成部件及其作用,分别由四个过程来实现。 压缩过程:从压缩机开始,制冷剂气体在低温低压状态下进入压缩机,在压缩机中被压缩,提高气体的压力和温度后,排入冷凝器中。 冷凝过程:从压缩机中排出来的高温高压气体,进入冷凝器中,将热量传递给外界空气或冷却水后,凝结成液体制冷剂,流向节流装置。 节流过程:又称膨胀过程,冷凝器中流出来的制冷剂液体在高压下流向节流装置,进行节流减压。蒸发过程:从节流装置流出来的低压制冷剂液体流向蒸发器中,吸收外界(空气或水)的热量而蒸发成为气体,从而使外界(空气或水)的温度降低,蒸发后的低温低压气体又被压缩机吸回,进行再压缩、冷凝、节流、蒸发,依次不断地循环和制冷。单冷型空调器结构简单,主要由压缩机、冷凝器、干燥过滤器、毛细管以及蒸发器等组成。单冷型空调器环境温度适用范围为18℃~43℃。 冷热两用型空调器又可以分为电热型、热泵型和热泵辅助电热型三种。 (1)电热型空调器 电热型空调器在室内蒸发器与离心风扇之间安装

室内空调工作原理

室内空调工作原理 随着祖国经济实力的发展,空调已经开始走入千家万户。了解空调的制冷原理,有利于我们更好地使用空调;有利于人们更好做到节能以响应低碳生活。使空调能够更好地为我们所用。 A 那么空调有哪几种呢? 单冷式:将室内热湿空气吸入,经蒸发器将其中的水蒸气冷凝,然后将干燥、凉爽的空气送入室内,起到降温、降湿的作用。冷热式:既能降温、降湿,又可制热、取暖。制热方式可分为热泵式和电热式。热泵式空调取暖时,室外空气温度在5℃以上才能正常工作。窗式:是空调制冷、通风、控制系统的组合体。移动式:它与窗式空调器的区别是采用水冷方式,冷凝水通过软管排出,可以在室内随意移动,不用安装。分体式:它由室内机箱和室外机箱组成,室外机箱组合了制冷系统中的压缩机、冷凝器和轴流风机等。目前,分体式空调器又开发了“一拖二”、“一拖三”等机型,即一个室外机带动两个室内机或三个室内机,方便了多居室的家庭使用。家庭中央空调:(也叫户式中央空调)是由一台主机通过风管或冷热水管连接多个末端出风口将冷暖气送到不同区域,实现对多个区域调节温度的目的。它是一个小型化的独立空调系统,适用于100平方米以上的大面积多居室户型,该系统由主机和配套末端组成,主机和多个末端分离安装。变频空调:是由电脑控制的变频器和变频压缩机组成的,它运用变频控制技术,使空调根据环境温度自动选择制冷、制热和除湿运转方式,使居室在短时间内迅速达到所需要的温度,并在低转速低能耗状态下以较小的温差波动,实现快速、节能和舒适的控温效果。国产家用空调器型号:是由横杠分开的两部分组成。第一位为K,即为家用空调;第二位是结构形式代号:C为整体式(窗式或穿墙式)、F为分体式;第三位是功能代号:L为冷分式(常被省略)、R为热泵式、D为电热型、Rd为热泵辅助电热型。但是这些空调的基本原理很多部分都是相同的。 B空调的工作原理是怎样?

热泵的分类、原理、及其比较

热泵的分类、原理、及其比较

作者:日期:

2 第2章热泵的分类及工作原理 2.1热泵的概念 “热泵”(hea t p u mps 这一术语是借鉴“水泵”一词得来的。在自然界 中,水从高处自发流向低处,水泵可将水从低处送到高处利用。同样,热量可自 发从高温热源传向低温热源,而热泵可将低温热源的热量“泵送”(交换传递)到 高温热源加以利用,所以热泵实质上是一种热量提升装置。我国《暖通空调术语 标准》(GB 5 015 5 -92 )对热泵的解释是“能实现蒸发器和冷凝器功能转换的制 n t e rnat i o na l Dicti o n a ry of Re f 2. 2热泵的分类【3】 也多种多样,常见的分类方法有按驱动能源种类分类、按工作原理分类、按热源 的种类分类、按主要用途分类、按供热温度分类、按热源和供冷供热介质的组合 方式分类、按热泵机组安装方式分类、安热泵的功能方式分类、按能俩热泵的功 能方式分类、按能量提升级数分类等。主要内容如下。 2.2 . 1按驱动能源种类分类 (1)电动机驱动 (2) 热驱动热驱动又可分为热能驱动(如吸收式热泵、蒸汽喷射式热泵) 及发动机驱动(如内燃机驱动、汽轮机驱动等)。 2. 2.2按工作原理分类 (1) 蒸汽压缩式 这是热泵中最为普遍而广泛应用的一种形式。这类热泵 中, 热泵工质通常在由压缩机、冷凝器、节流装置及蒸发器等部件组成的系统中 进行循环,并通过工质的状态变化及相变来实现将低品味热能泵送至高品位温度 区的目的。 (2) 气体压缩式 与蒸汽压缩式热泵的区别在于这类热泵中工质始终以气 态 进行循环而不发生相变、如飞行器中空调系统多采用空气压缩式。 (3) 吸收式 消耗较高品位的热能来实现将低品位的热能向高品位温度区 传送的目的。吸收式热泵通常由蒸发器、冷凝器、吸收器、发生器及节流阀等组 冷机”,《新国际制冷词典》(Ne w I r i ger a ti o n )对热泵的解释是 “以冷凝器放出的热量来供热的制冷系统”。 由于热泵系统构成、设备特性、 热源的种类以及用途的多样性,热泵的分类

一目了然的空气源热泵原理

一目了然的空气源热泵 一、什么是热泵? 热泵不是水泵,甚至不是泵,而是成套装置。热泵的英文名称heat pump,它有2个定义:定义1:从低温热源吸热送往高温热源的循环设备。 定义2:以消耗一部分高品位能源(机械能、电能或高温热能)为补偿,使热能从低温热源向高温热源传递的装置。 让我们来回忆一下物理知识: 热力学第一定律:能量守恒定律。 热力学第二定律:热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体。 那热泵是不是违反热力学定律的怪物?热泵是不是永动机? 我们来看一下热泵的工作原理: 高压锅:大于1个大气压,水的沸点会超过100℃, 换言之,在高压下,水蒸气会在超过100 ℃的情况下冷凝成液体! 在2个大气压下,水的沸点是121 ℃!

低压锅:小于1个大气压下,水的沸点会低于100℃, 换言之,在低压下,水会在低于100 ℃情况下蒸发成气体! 在0.12个大气压下,水的沸点是50 ℃! 通过压缩机做功,使工质产生物理变相(气态--液态--气态),利用这一往复循环相变过程不断通过低压锅(蒸发器)吸热和高压锅(冷凝器)放热,由吸热装置吸取免费的热量,经过热交换器使冷水升温,制取的热水通过水循环系统送至用户。 蒸汽机开启了第一次工业革命,世界进入到利用能源的新时代,其原理是卡诺循环,是利用热能转化为机械能的方式,能效永远低于1。

热泵则开启了节约能源的新时代。其原理是逆卡诺循环,利用机械能将低温热能转换为高温热能的方式,能效永远大于1,热泵是节约能源的最佳方式。 各种能源形式的密度最高的是电力 中国能源的最佳利用方式:

空调系统分类及原理

空调系统分类及原理 一幢建筑的空调系统通常包括以下设备及其附件: 冷、热源设备——提供空调用冷、热源;冷、热介质输送设备及管道——把冷、热介质输送到使用场所;空气处理设备及输送设备及管道——对空气进行处理并运送至需空气调节的房间;温、湿度等参数的控制设备及元器件。根据以上设备的情况,可对空调系统进行一系列的分类。 一、按照处理空气所采用的冷、热介质来分类 ㈠央空调系统 通过冷、热源设备提供满足要求的冷、热水并由水泵输送至各个空气处理设备中与空气进行交换后,把处理后的空气送至空气调节房间。简单的说,中央空调系统就是冷热源集中处理空调调节系统。 ㈡散式系统 实际上已经不是空调设计中“系统”的概念,它是把冷热源设备、空气处理及起输送设备组合一体,直接设于空气调节房间。其典型的例子就是直接蒸发式空调机组,如分体式空调机。 ㈢他空调系统 既有中央空调的某些特点,又有分散式空调的某些特点,变冷媒流量空调系统和水源热泵系统等。 二、按冷、热介质的到达位置来分类 这里所提到的冷、热源介质,是指为空气处理所提供的冷、热源的种类而不包括被处理的空气本身。 ㈠全空气系统

冷、热介质不进入被空调房间而只进入空调机房,被空气调节房间的冷、热量全部由经过处理的冷、热空气负担,被空气调节房间只有风道存在。典型的例子是目前所常见的确一、二次回风空调系统。 ㈡气-水系统 空气与作为冷、热介质的水同时送进被空气调节房间,空气解决房间的通风换气或提供满足房间最小卫生要求的新风量,水则通过房间的小型空气处理设备而承担房间的冷、热量及湿负荷。 (三)接蒸发式系统 利用冷媒直接与空气进行一次热交换,将使得在输送同样冷(热)量至同一地点时所用的能耗更少一些。其作用围比中央空调系统小的多。 空调系统分类 一.中央空调概念 空气调节,简称空调,就是把经过一定处理后的空气,以一定的方式送入室,使室空气的温度、湿度、清洁度和流动速度等控制在适当的围以满足生活舒适和生产工艺需要的一种专门技术。中央空调系统是由一台主机(或一套制冷系统或供风系统)通过风道送风或冷热水源带动多个未端的方式来达到室空气调节的目的的空调系统。 二.空调系统分类 空调根据不同的分类标准,可以分为如下几类: (一)按输送工作介质分类 1.全空气式空调系统

地源热泵的工作原理及技术经济性分析

地源热泵的工作原理及技术经济性分析 一、什么是地源热泵 地源热泵是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调系统。地源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。热泵机组的能量流动是利用其所消耗的能量(如电能)将吸取的全部热能(即电能+吸收的热能)一起排输至高温热源。而其所耗能量的作用是使制冷剂氟里昂压缩至高温高压状态,从而达到吸收低温热源中热能的作用。请参见能流图所示。 通常地源热泵消耗1kW的能量,用户可以得到5kW以上的热量或4kW以上冷量,所以我们将其称为节能型空调系统。 与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70~9 0%的燃料内能为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量;由于地源热泵的热源温度全

年较为稳定,一般为10~25℃,其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50~60% 。因此,近十几年来,尤其是近五年来,地源热泵空调系统在北美如美国、加拿大及法国、瑞士、瑞典等国家取得了较快的发展,中国的地源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。 二、地源热泵国内外发展近况 地源热泵的历史可以追朔到1912年瑞士的一个专利,欧洲第一台热泵机组是在1938年间制造的。它以河水低温热源,向市政厅供热,输出的热水温度可达6 0o C。在冬季采用热泵作为采暖需要,在夏季也能用来制冷。1973年能源危机的推动,使热泵的发展形成了一个高潮。目前,欧洲的热泵理论与技术均已高度发达,这种“一举两得”并且环保的设备在法、德、日、美等发达国家业已广泛使用。如美国,截止1985年全国共有14,000台地源热泵,而1997年就安装了45,000台,到目前为止已安装了400,000台,而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中有新建筑中占30%。美国地源热泵工业已经成立了由美国能源部、环保署、爱迪逊电力研究所及众多地源热泵厂家组成的美国地源热泵协会,该协会在近年中将投入一亿美元从事开发、研究和推广工作。美国计划到2001年达到每年安装40万台地源热泵的目标,届时将降低温室气体排放1百万吨,相当于减少50万辆汽车的污染物排放或种植树1百万英亩,年节约能源费用达4.2亿美元,此后,每年节约能源费用再增加1. 7亿美元。 与美国的地源热泵发展有所不同,中、北欧如瑞典、瑞士、奥地利、德国等国家主要利用浅层地热资源,地下土壤埋盘管(埋深<400米深)的地源热泵,用于室内地板辐射供暖及提供生活热水。据1999年的统计,为家用的供热装置中,地源热泵所占比例,瑞士为96%,奥地利为38%,丹麦为27%。 我国的地源热泵事业近几年已开始起步,而且发展势头看好。天津大学、清华大学分别与有关企业结成产学研联合体开发出中国品牌的地源热泵系统,已建成数个示范工程,越来越多的中国用户开始熟悉地源热泵,并对其应用产生了浓厚的兴趣,可以预计中国的地源热泵市场前景广阔。之所以对中国的地源热泵市场发展前景持乐观态度,一方面是要节约常规能源、充分利用可再生能源的国内

空气源热泵热水机组工作原理及节能分析

空气源热泵热水机组工作原理及节能分析 一、空气能热水中心机组工作原理 空气源热泵热水机组是一种新型、可替代热水锅炉的热水装置。与传统太阳能相比,空气能源热泵热水机组不仅可吸收空气中的热量,还可吸收太阳能,它是将电热水器和太阳能热水器的优点完美的结合于一体的新型热水器。该产品以制冷剂为媒介,通过制冷剂状态、温度的变化和压缩机压缩制取热量,通过换热装置将热量传递给水,使水的温度升高来,升高温度的水通过水循环系统送入用户散热器进行采暖或直接用于卫生热水的供应。 空气源热热泵热水机组技术是基于逆卡诺循环原理建立起来的一种节能、环保制热技术。空气源热泵热水中机组系统通过自然能(空气蓄热)获取低温热源,经热泵系统高效集热整合后成为高温热源,用来制取供暖或卫生热水。整个系统集热效率较电热水机组(锅炉)、燃油、燃气热水机组有了很大提高。 空气源热热泵热水中心机组遵循能量守恒定律和热力学第二定律,运用热泵的原理,只需要消耗一小部分的机械功(电能),将处于低温环境(大气)中的热量转移到水中,去加热制取高温的热水。热泵可以与水泵相比拟,水是不能自发地从低处流向高处,要将低处的水输送到高处,必须用一台水泵,消耗一部分电力,才能将水送到高处的水箱中。同样,根据热力学第二定律,热量也是不能自发地从低温环境向高温环境中转移(传送),而要实现这个目的,必须要有一台机器,消耗一部分机械功(例如电能),才能将低温环境中的热量传送到高温环境中去。这样的机器就称之为“热泵”。热泵的作用是将空气中的热量取出,连同本身所用的电能转变成的热能,一起送到水中。 空气源热泵热水机组由压缩机、冷凝器、蒸发器和膨胀阀等部件组成。它运用逆卡诺循环原理,通过压缩机做功使工质产生相变(气态—液态—气态),在这种往复循环相变的过程中,通过蒸发器不间断的从环境吸取热量,通过冷凝器(换热器)不间断的放出热量,使冷水逐步升温,制取的热水通过热水管网循环装置输出到用户使用终端。

中央空调系统工作原理

中央空调系统工作原理 中央空调系统 中央空调系统由冷热源系统和空气调节系统组成。有主机和末段系统。按负担室内热湿负荷所用的介质可分为全空气系统、全水系统、空气-水系统、冷剂系统。按空气处理设备的集中程度可分为集中式和半集中式。按被处理空气的来源可分为封闭式、直流式、混合式(一次回风二次回风)。主要组成设备有空调主机(冷热源) 风柜风机盘管等等.制冷系统为空气调节系统提供所需冷量,用以抵消室内环境的冷负荷;制热系统为空气调节系统提供用以抵消室内环境热负荷的热量。制冷系统是中央空调系统至关重要的部分,其采用种类、运行方式、结构形式等直接影响了中央空调系统在运行中的经济性、高效性、合理性。 中央空调系统优点 经济节能:主机由微电脑控制,每个区间末端风机盘管可自行调节温度,区间无人时可关闭,系统根据实际负荷做自动化运行,开机计费,不开机不计费,有效节约能源和运行费用。 环保:主机采用水源热泵型机组,电制冷,没有燃烧过程,避免了排污;整个系统为密闭式管路系统,可避免霉菌灰尘等杂质对系统的污染,使环境清新优美,特别适于高档别墅、高级公寓与写字楼的使用。 节约空间:主机体积小巧,不设机房,无需占用设备层,减少公用设施和土建投资,室内末端暗藏在吊顶内,极易配合屋内装修。 个性化:中央空调系统以区间为单元,满足用户不同区间需求,室内末端安装采用暗藏方式,不影响室内的审美观,不占据室内空间,适应用户的个性化需求。 简化管理:于采用不同区间单独控制系统为用户所有,产权关系明确,可简化空调设施管理。 提升档次:中央空调主机可以避免破坏楼体的整体外观,使用户充分享受高档综合环境的同时,提升产品质量及量贩档次。 投资方便:可根据量贩发展情况,分期分批投资添置空调系统,同时量贩档次提升,因此资金周转快,有效地利用资金更进一步开发。 中央空调系统工作原理 中央空调系统一般主要由制冷压缩机系统、冷媒(冷冻和冷热)循环水系统、冷却循环水系统、盘管风机系统、冷却塔风机系统等组成。制冷压缩机组通过压缩机将空调制冷剂(冷媒介质如R134a、R22等)压缩成液态后送蒸发器中,冷冻循环水系统通过冷冻水泵将常温水泵入蒸发器盘管中与冷媒进行间接热交换,这样原来的常温水就变成了低温冷冻水,冷冻水被送到各风机风口的冷却盘管中吸收盘管周围的空气热量,产生的低温空气由盘管风机吹送到各个房间,从而达到降温的目的。冷媒在蒸发器中被充分压缩并伴随热量吸收过程完成后,再被送到冷凝器中去恢复常压状态,以便冷媒在冷凝器中释放热量,其释放的热量正是通过循环冷却水系统的冷却水带走。冷却循环水系统将常温水通过冷却水泵泵入冷凝器热交换盘管后,再将这已变热的冷却水送到冷却塔上,由冷却塔对其进行自然冷却或通过冷却塔风机对其进行喷淋式强迫风冷,与大气之间进行充分热交换,使冷却水变回常温,以便再循环使用。在冬季需要制热时,中央空调系统仅需要通过冷热水泵(在夏季称为冷冻水泵)将常温水泵入蒸汽热交换器的盘管,通过与蒸汽的充分热交换后再将热水送到各楼层的风机盘管中,即可实现向用户提供供暖热风。 一、制冷基本原理 液体汽化制冷是利用液体汽化时的吸热、冷凝时的放热效应来实现制冷的。液体汽化形成蒸汽。当液体(制冷工质)处在密闭的容器中时,此容器中除了液体及液体本身所产生的蒸汽外,不存在其他任何气体,液

相关文档
最新文档