化工设备中奥氏体不锈钢的应力腐蚀和防护

化工设备中奥氏体不锈钢的应力腐蚀和防护
化工设备中奥氏体不锈钢的应力腐蚀和防护

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀 问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。 不锈钢的腐蚀失效分析: 1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。应力腐蚀失效所占的比例高达45 %左右。常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6 以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 2、孔蚀失效及预防措施 小孔腐蚀一般在静止的介质中容易发生。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm小蚀坑这些小蚀坑便是孔蚀核。只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。降低氯离子在介质中的含量。加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。采用外加阴极电流保护,抑制孔蚀。 3、点腐蚀:由于任何金属材料都不同程度的存在非金属夹杂物,这些非金属化合物,在Cl 离子的腐蚀作用下将很快形成坑点腐蚀,在闭塞电池的作用,坑外的Cl离子将向坑内迁移,而带正电荷的坑内金属离子将向坑外迁移。在不锈钢材料中,加Mo的材料比不加Mo的材料在耐点腐蚀性能方面要好,Mo含量添加的越多,耐坑点腐蚀的性能越好。 4.缝隙腐蚀 缝隙腐蚀与坑点腐蚀机理一样,是由于缝隙中存在闭塞电池的作用,导致Cl离子富集而出现的腐蚀现象。这类腐蚀一般发生在法兰垫片、搭接缝、螺栓螺帽的缝隙,以及换热管与管板孔的缝隙部位,缝隙腐蚀与缝隙中静止溶液的浓缩有很大关系,一旦有了缝隙腐蚀环境,其诱导应力腐蚀的几率是很高的。 总结 1:几种不锈钢在含氯(Cl—)水溶液中的适用条件 一、板片材料的选用 (1)注:不含气体、PH值为7(即中性)、流动的含氯水溶液。 (2)奥氏体不锈钢对硫化物(SO2 、SO3)腐蚀有一定的抗力。但是,Ni含量越高,耐蚀性将降低(因生成低熔点NiS),可能引起硫化物应力腐蚀开裂。硫化物应力腐蚀开 裂同材料的硬度有关,奥氏体不锈钢的硬度应≤HB228;Ni-Mo或Ni–Mo–Cr合金的 硬度不限;碳素钢的硬度应≤HB225; 3)必须注意板片材料与垫片或胶粘剂的相容性。例如,应避免将含氯的垫片或胶粘剂(如氯丁橡胶或以其为溶质的胶粘剂)与不锈钢板片组配,或者将氟橡胶、聚四氟乙烯(PTFE)垫片与钛板板片组配;

论化工设备的腐蚀与防护通用版

解决方案编号:YTO-FS-PD342 论化工设备的腐蚀与防护通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

论化工设备的腐蚀与防护通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 化工设备是人类生活当中必不可少的工业设备,其对于人类生活水平的提高有着重要的推进作用。在日常使用过程中,因为外部环境影响、内部化学药品侵蚀、使用方法上选择以及使用年限过长等因素的促在,很容易造成化工设备的腐蚀。这种化工设备腐蚀的情况出现,不仅会降低化工设备的使用效果,还会带来极大的安全隐患,做好对化工设备的防护工作,降低化工设备的腐蚀情况对于我国化工事业的发展有着重要的作用。笔者结合实践工作经验,在本文当中对化工设备的腐蚀因素进行分析,并探讨了提高化工设备防护水平的策略。 在化工设备的实际工作当中,化工设备在工作时自身所产生的化学腐蚀、外部环境的侵蚀、使用方法及维护方法选择不当等因素都会为化工设备的腐蚀创造条件或实现对腐蚀的催化,一旦化工设备腐蚀到一定程度,那么化工设备的工作性能就必然会降低,腐蚀情况严重的还会导致化工设备的报废,想要保证化工设备的工作状态,实现化工产业的发展,做好化工设备的腐蚀防护工作势在必行。

304不锈钢的腐蚀

304不锈钢的腐蚀 应力腐蚀 应力腐蚀是指零件在拉应力和特定的化学介质联合作用下所产生的低应力脆性断裂现象。 应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 它的发生一般有以下四个特征:一、一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。二、对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。三、一般应力腐蚀都属于脆性断裂。四、应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬段区三部分 应力腐蚀机理的机理一般认为有阳极溶解和氢致开裂 晶间腐蚀 说明:局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。而且金属表面往往仍是完好的,但不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝和一些含铬的合金钢中。不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。 晶间腐蚀是沿着或紧靠金属的晶界发生腐蚀。腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化。不锈钢、镍基合金、铝合金等材料都较易发生晶间腐蚀。 不锈钢的晶间腐蚀: 不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀。 不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于12%。当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的熔解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C8等。但是由于铬的扩散速度较小,来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。 不锈钢的晶间腐蚀 含碳量超过0.03%的不稳定的奥氏体型不锈钢(不含钛或铌的牌号),如果热处理不当则在某些环境中易产生晶间腐蚀。这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。这样的热处理造成碳化物在晶界沉淀(敏化作用),并且造成最邻近的区域铬贫化使得这些区域对腐蚀敏感。敏化作用

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但 大致可分为2 种观点。 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样 导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越 稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理 其中在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断 裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。 ②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶 液中才容易发生应力腐蚀。 ③一般在合金、碳钢中易发生应力腐蚀。研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。 压力容器的应力来源: ①外载荷引起的容器外表面的拉应力。 ②压力容器在制造过程中产生的各种残余应力,如装配过程中产生的装配残余应力,制造过程中产生的焊接残余应力。在化工生产中,压力容器所接触的介质是多种多样的,很多介质中含有氯离子,在这些条件下,压力容器就发生应力腐蚀失效。铬镍不锈钢在含有氧的氯离子的水溶液中,首先在金属表面形成了一层氧化膜,它阻止了腐蚀的进行,使不锈钢钝化。由于压力容器本身的拉应力和保护膜增厚带来的附加应力,使局部地区的保护膜破裂,破裂处的基体金属直接暴露在腐蚀介质中,该处的电极电位比保护膜完整的部分低,形成了微电池的阳极,产生阳极溶解。因为阳极小、阴极大,所以阳极溶解速度很大,腐蚀到一定程度后,又形成新的保护膜,但在拉应力的作用下又可重新破坏,发生新的阳极溶解。在这种保护膜反复形成和反复破裂过程中,就会使某些局部地区的腐蚀加深,最后形成孔洞,而孔洞的存在又造成应力集中,更加速了孔洞表面的塑性变形和保护膜的破裂。这种拉应力与腐蚀介质的共同作用便形成了应力腐蚀裂纹。 2. 2 应力腐蚀失效的防护措施 控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。实际情况 千变万化,可按实际情况具体使用。 (1)选用耐应力腐蚀材料 近年来发展了多种耐应力腐蚀的不锈钢,主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素

化工设备的腐蚀与防腐措施

龙源期刊网 https://www.360docs.net/doc/eb9398201.html, 化工设备的腐蚀与防腐措施 作者:许海娥 来源:《中国化工贸易·上旬刊》2018年第01期 摘要:当前,随着我国经济与社会的蓬勃发展,化工产品逐渐成为人们生活中的关键组 成部分,化工行业发展迅速,但是化工设备在生产过程中,十分容易出现腐蚀的情况,为生产的正常进行以及设备的安全使用带来一定的隐患。因此,在制造和使用化工设备过程中,需要采取有效科学的防腐措施,避免以及延缓腐蚀情况的发生,进而保证生产安全。本文主要针对化工设备的腐蚀与防腐措施进行分析和阐述,希望给予我国化工行业以参考和借鉴。 关键词:化工设备;腐蚀;防腐措施;分析 新时期下,我国经济与社会处于快速的发展阶段,化工行业作为我国支柱型产业,其在生产技术和生产规模方面也获得相应的发展。在机械生产理念的指导下,化工设备在化工生产中扮演的角色更加重要,而各种先进的化工设备不断应用于化工企业中,对促进企业以及行业发展起到关键作用。但是由于化工行业生产环境较为特殊,设备在生产中受到诸多因素的影响,十分容易出现腐蚀情况,而化工企业以及操作人员对设备腐蚀缺乏重视,防腐措施存在一定的缺陷和不足,不仅影响设备的使用寿命以及使用效果,甚至可能对企业的生产运行带来严重的影响,对企业发展十分不利。在此背景下,针对化工设备的防腐措施进行分析具有现实意义。 1 化工设备出现腐蚀情况的化学机理 1.1 大气腐蚀 当前,随着我国产业聚集化的发展,化工企业基本都集中于重工业地区,空气污染较为严重,空气中充满工业废气,大气中的硫化氢、二氧化碳以及二氧化硫气体浓度较高,当上述气体与酸性雾气达到一定程度后,水分会与酸性气体产生无机酸,化工设备长期处于这种大气环境下,其金属部位会与酸雾产生化学反应,进而导致金属部位出现腐蚀以及损坏的情况。 1.2 电化学腐蚀 化学设备中的金属部件十分容易产生电化学腐蚀,其金属表层会与离子型介质产生化学作用,进而导致金属表面出现损坏的情况。电化学腐蚀包括阴极反应和阳极反应,金属电子流与离子流会出现交换反应,其中氧化属于阳极反应,而还原属于阴极反应。由于电化学腐蚀会消耗金属内部电子流,进而导致化工设备的腐蚀速度不断加快。 1.3 物理腐蚀

化工设备的腐蚀与防护论文

化工设备的腐蚀与防护论文 摘要:腐蚀是材料时效的重要形式之一。化工设备在生产过程中因化学或电化学反应的存在而出现腐蚀现象。设备的腐蚀若不能及时进行相关的防护措施,会成为企业正常生产的重大安全隐患之一,给企业带来严重的经济损失或是人员伤亡。化工设备的腐蚀与防护问题是化工企业必须考虑的重大问题,本文对设备的腐蚀原因进行的简要分析并提出了相关的防腐措施。 关键词:化工设备;腐蚀;防护 一、设备腐蚀的重大危害分析 由于腐蚀现象无处不在,由腐蚀造成的国民经济损失占其总值的.5%左右。在化工原料生产企业,这个比重还会增加两倍。在化工生产企业,设备的腐蚀与防护控制已成为企业生产过程中成本控制的重要因素之一。若对设备的腐蚀不能做好相应的防护措施,则很容易发生因设备腐蚀损坏而造成的停车现象,影响企业的正常生产,给企业带来相应的经济损失。有统计显示,当设备停车更换腐蚀部件或做相应的维护次数达到100此时,其产生的费用或给企业带来的直接、间接经济损失的综合与企业进行生产活动的总投资相当。由此可见,企业对化工设备的腐蚀与防护问题必须给予足够的重视。 二、设备腐蚀类型分析 1. 按腐蚀机理分类 若按腐蚀机理来说,金属设备的腐蚀有化学腐蚀和电化学腐蚀两类。化学腐蚀和电化学腐蚀的主要区别就是腐蚀过程中有无腐蚀电位产生。只有非电解质溶液与设备表面接触而发生的腐蚀称为化学腐蚀,这种情况不是很常见,金属只有在高温干燥气体或甲醇等非电解质溶液中才会发生,非金属材料也只有在符合化学动力学规律的前提下才会发生化学腐蚀。 材料的另一种腐蚀形式电化学腐蚀则是很常见,金属在各种能发生电化学反应的酸、碱、盐溶液或超市的空气、土壤甚至工业用水中都会发生电化学腐蚀现象。金属的电化学腐蚀速率较快,腐蚀危害较大,是企业重点预防的腐蚀类型。 2. 按破坏形态分类 设备受腐蚀而损坏的形态可以分为全面腐蚀和局部腐蚀两种。 全面腐蚀在是设备的金属表面由于和电解质溶液或空气的接触而发生的整体的、均匀的腐蚀。设备的全面腐蚀会使其厚度减少,但一般都是可以控制和预防的。在设备的设计过程中,一般都会综合考虑其使用环境和使用寿命老来设计设备的厚度或采取相应的防腐措施。

奥氏体不锈钢在Cl~-介质中应力腐蚀研究

奥氏体不锈钢在Cl-介质中应力腐蚀研究 郦建立Ξ(抚顺石油学院) 王宽福 (浙江大学) 摘 要 评述了奥氏体不锈钢在氯化物介质中应力腐蚀开裂。从环境、冶金和力学等方面论述了SCC的主要因素,综合论述了控制奥氏体不锈钢SCC的工程参量和安全评定的方法。提出了预防奥氏体不锈钢应力腐蚀的一些措施。 关键词 奥氏体不锈钢 应力腐蚀 工程参量 奥氏体不锈钢(304,316)以其优异的耐蚀性和较好的加工性,在化工、石油、动力工业和核工业等部门得到广泛的应用,然而其SCC(Stress Corrosion Cracking)破坏的几率也随之增大。化工设备失效中SCC的失效占1/4,其中奥氏体不锈钢设备SCC失效要占其1/2[1],而且大部分由含Cl-介质环境引起。因此对奥氏体不锈钢氯化物开裂进行了大量的研究[2~9]。 本文综述了奥氏体不锈钢SCC的主要影响因素、工程参量及安全评定的方法,并提出了一些预防措施。 1 奥氏体不锈钢Cl2环境开裂影响因素 1.1 环境因素 1.1.1 介质和浓度 引起奥氏体不锈钢SCC破裂的介质,认为一般限于Cl-、F-、Br-、H2S x O6、H2S和NaOH等几种。介质浓度越高,奥氏体不锈钢发生SCC的敏感性增加。工程实际表明开裂常发生在温度高的部位,特别是热传递速度大、易发生干湿交替的部位[10,11]。曾发现隔热层中浸出微量的Cl-引起SCC。Staehle[12]发现汽相部位产生破裂的Cl-浓度较低,而液相则需要较高的Cl-浓度。在实际工况中,设备的许多局部部位Cl-的浓度因设备结构和其所处环境条件的变化而提高,使较低Cl-浓度的介质也发生奥氏体钢的SCC,这给确定Cl-SCC的敏感性的浓度上限带来困难。 若在Cl-溶液中加入一些氧化剂(Fe3+, Cu2+,O2),将缩短破裂时间[13]。有研究表明,Cl-溶液若能完全除去氧,SCC将不会发生。卤化物中除Cl-外,F-和Br-同样具有SCC敏感性,但认为I-对Cl-溶液的SCC有缓蚀作用[14]。阳离子的种类对SCC也有影响,Thomas[15]认为MgCl2溶液促进SCC的作用比NaCl强。 1.1.2 温度 奥氏体不锈钢含Cl-溶液发生SCC破裂敏感性随温度升高而增大。SCC开裂温度也是一个重要参数。Truman[16]认为,奥氏体不锈钢在室温下一般不发生氯化物开裂。Money[17]也证实只有严重敏化的奥氏体不锈钢才发生IGSCC(Intergranular Stress Corrosion Cracking)。传统的工程观点认为,温度高于50℃时,在腐蚀环境中经长期暴露的材料有可能发生氯化物开裂。氯化物开裂与温度的下限有一定的依赖关系,但 601 化 工 机 械 1998年Ξ郦建立,男,1967年11月生,博士生。辽宁省抚顺市,113001。

不锈钢腐蚀的分析

电化学腐蚀 电化学腐蚀就是金属和电解质组成两个电极,组成腐蚀原电池。例如铁和氧,因为铁的电极电位总比氧的电极电位低,所以铁是阳极,遭到腐蚀。特征是在发生氧腐蚀的表面会形成许多直径不等的小鼓包,次层是黑色粉末 状溃疡腐蚀坑陷。 一、基本介绍: 不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。钢铁在潮湿的空气中所发生的腐蚀是电化学腐蚀最突出的例子。 我们知道,钢铁在干燥的空气里长时间不易腐蚀,但潮湿的空气中却很快就会腐蚀。原来,在潮湿的空气里,钢铁的表面吸附了一层薄薄的水膜,这层水膜里含有少量的氢离子与氢氧根离子,还溶解了氧气等气体,结果在钢铁表面形成了一层电解质溶液,它跟钢铁里的铁和少量的碳恰好形成无数微小的原电池。在这些原电池里,铁是负极,碳是正极。铁失去电子而被氧化.电化学腐蚀是造成钢铁腐蚀的主要原因。 金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。 在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显著差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主

要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。 二、相关原理: 金属的腐蚀原理有多种,其中电化学腐蚀是最为广泛的一种。当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中N5等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(F勺C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得腐蚀不断进行。 三、方程式: (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 负极(Fe): 蠱-2L fF严 F^+2H2O-^Fe(OH)2 + 2H+ + 2e J H2 正极(杂质): 电池反应: Fe+2H3O = Fe(OH}2 + H3T 由于有氢气放出,所以称之为析氢腐蚀。

不锈钢腐蚀实验报告

不锈钢腐蚀行为及影响因素的综合评价 洪宇浩 实验一、钝化曲线法评价不同种不锈钢在同一介质中的腐蚀能力 1.实验目的 ●掌握金属腐蚀原理和金属钝化原理 ●掌握不锈钢阳极钝化曲线的测量 ●掌握恒电位仪软件的操作 2.实验原理 3.实验步骤 本实验测试430不锈钢(黑)和304不锈钢(黄)在0.25mol/L H2SO4和含1.0% NaCl 的0.25mol/L H2SO4中钝化曲线. 电位:-0.60 →1.20 V,50 mV/s 4.注意事项 ●电极的处理 ●灵敏度的选择 5.实验结果 1、304钢在0.25mol/L H2SO4的钝化曲线

-800 -600-400-20002004006008001000 -8-6 -4 -2 2 电流(m A ) 电位(mV) -293,1.841 -139,0.635410,0.235 904,0.708 2、304钢在含1.0% NaCl 的0.25mol/L H 2SO 4中的钝化曲线. -800 -600-400-20002004006008001000 -7-6-5-4-3-2-1 01电流(m A ) 电位(mV) (-267, 0.59829) (-69, 0.38967) (398, 0.20901) (799, 0.38485) 3、430钢在0.25mol/L H 2SO 4中的钝化曲线.

-800 -600-400-200020040060080010001200 -4-202468 1012电流( m A ) 电位(mV) (-287, 11.133) (930, 1.7327) (174, 1.1011) (-21, 1.5724) 4、430钢在含1.0% NaCl 的0.25mol/L H 2SO 4中的钝化曲线. -600 -400 -200 200 400 -10 -5 5 10 15 20 电流(m A ) 电位(mV) (-221, 15.914) (180, 1.1999) (328, 1.9463) (-84, 4.9479)

论化工设备的腐蚀与防护示范文本

论化工设备的腐蚀与防护 示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

论化工设备的腐蚀与防护示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 化工设备是人类生活当中必不可少的工业设备,其对 于人类生活水平的提高有着重要的推进作用。在日常使用 过程中,因为外部环境影响、内部化学药品侵蚀、使用方 法上选择以及使用年限过长等因素的促在,很容易造成化 工设备的腐蚀。这种化工设备腐蚀的情况出现,不仅会降 低化工设备的使用效果,还会带来极大的安全隐患,做好 对化工设备的防护工作,降低化工设备的腐蚀情况对于我 国化工事业的发展有着重要的作用。笔者结合实践工作经 验,在本文当中对化工设备的腐蚀因素进行分析,并探讨 了提高化工设备防护水平的策略。 在化工设备的实际工作当中,化工设备在工作时自身 所产生的化学腐蚀、外部环境的侵蚀、使用方法及维护方

法选择不当等因素都会为化工设备的腐蚀创造条件或实现对腐蚀的催化,一旦化工设备腐蚀到一定程度,那么化工设备的工作性能就必然会降低,腐蚀情况严重的还会导致化工设备的报废,想要保证化工设备的工作状态,实现化工产业的发展,做好化工设备的腐蚀防护工作势在必行。 1.化工设备腐蚀的因素分析 在化工产业当中,化工设备的腐蚀情况较为常见,其属于化工设备的合理损耗,根据对化工设备实际使用情况来看,导致化工设备腐蚀因素可以分为内部因素和外部因素两个层面。从内部原因来看,化工设备以金属材质为主,而金属自身的化学属性较为活跃,其在企业使用过程中,工作环境必须与化工生产介质发生接触,如酸、碱、高温、高压、不均匀应力等都极易发生金属腐蚀情况。从外部原因来看,化工设备的使用环境、使用方法及日常维护都会在不同程度上为化工设备的腐蚀创造条件。尽管化

焊接工艺对奥氏体不锈钢应力腐蚀行为的影响

焊接工艺对奥氏体不锈钢应力腐蚀行为的影响 赵尔冰1 ,张亦良2 ,陈鴒志1 ( 1. 北京市朝阳区特种设备检测所,北京 100122; 2. 北京工业大学 机械工程与应用电子技术学院,北京 100124) 摘 要: 针对氯离子环境中奥氏体不锈钢焊缝较高的焊接残余应力极易引发应力腐蚀开裂的普遍性工程难题, 对国产 304、316 L 、德国 304 钢 3 种材料的不同焊接工艺进行了系列应力腐蚀实验研究. 焊接工艺包括手工焊条 电弧焊及 CO 2 保护药芯电弧焊、焊后空冷及浇水速冷,取样位置包括母材、焊缝起弧及收弧. 通过 100 多个试样 的应力腐蚀对比实验,研究了各种工艺之间的优劣,拟合了 2 种材料在沸腾氯化镁环境中应力 - 寿命的数学关 系. 结果表明,对应力腐蚀寿命而言,316 L 是 304 钢的 15 倍以上、焊接起弧点高于收弧点、对接焊缝高于角焊 缝; 焊后速冷工艺可提高焊接接头抗应力腐蚀能力. 关键词: 奥氏体不锈钢; 起弧; 收弧; 水冷处理; 氯离子应力腐蚀 中图分类号: O 346. 2 + 2; T G174. 3 + 6; R187 + 5 文献标志码: A 文章编号: 0254 - 0037( 2011) 11 - 1601 - 06 为了满足卫生要求,医疗、卫生和食品行业使用的灭菌器一般采用奥氏体不锈钢制造. 进口灭菌器寿 命一般为 10 a 以上[1-2] ,而国产灭菌器短时间内开裂报废的现象十分普遍,已经成为行业一大难题,在造 成医疗成本居高不下的同时,对医疗卫生安全产生极大隐患. 作者曾对开裂的灭菌器进行失效分析,结果 表明开裂原因为典型的氯离子应力腐蚀 [3-4] ,开裂灭菌器及金相、断口形貌见图 1、 2. 图 1 灭菌器内腔开裂 F i g . 1 I nn e r surface of the s t e r i l i z e r 图 2 典型的应力腐蚀特征 F i g . 2 T y p i c a l feature of s t r e ss c o rr os i o n 虽然采用铁素体、马氏体或双相不锈钢可以解决应力腐蚀问题,但考虑到制造工艺和制造成本,国内 外设备制造单位仍然选用奥氏体不锈钢. 该材料的最大问题是氯离子应力腐蚀,主要影响因素为拉应力 水平和氯离子浓度[5-6] ,其中残余应力是最主要的影响因素,目前对有效降低焊接残余应力虽然已经做了 一些工作 [7-11 ] ,但研究成果的实用性仍较为欠缺. 针对灭菌器裂纹主要出现在焊缝及热影响区的特征[3] ,鉴于目前氯离子应力腐蚀数据较少、尤其缺 乏不同焊接工艺的影响、不同材料与实际工况对比实验的现状,本文立足于通过对 3 种不同材料、不同焊 接工艺、不同焊后处理工艺等系列应力腐蚀实验,得到相应的应力腐蚀断裂寿命,比较不同材料及不同工 艺的应力腐蚀特征,找出焊后的薄弱环节,提出防止应力腐蚀的有效措施,为工艺改造提供基础实验依据. 收稿日期: 2009-07-13. 基金项目: 北京市朝阳区社会发展项目( SF0702) . 作者简介: 赵尔冰( 1963—) ,男,河北平山人,高级工程师.

不锈钢管道点腐蚀的理论分析

不锈钢管道点腐蚀的理论分析 1 循环水旋转滤网反冲洗系统简介 循环水过滤系统(CFI)的主要设备是旋转海水滤网,在其运行中要不断清除滤出的污物,通过反冲洗系统来实现。反冲洗的水源与主循环水一样引自旋转滤网后的海水水室,后经两级泵加压和中间过滤输至旋转滤网的特定部位冲洗污物,设计流速2.3m/s。反冲洗海水管道设计采用公称直径150mm(壁厚7.11mm)的316L不锈钢管。输送的海水含氯量为17g/L,摩尔浓度为0.48mol/L,为防止回路中海生物滋生,注入次氯酸钠溶液,使循环水入口次氯酸钠的质量分数控制在1×10-6。 2 316L不锈钢管道的使用情况 CFI系统于2000-05-17完成安装交付调试,进行单体调试及系统试运。2001年4月,1号机组管道首次出现泄漏,泄漏部位位于管道竖直段与水平段弯头焊口处,泄漏点表现为穿透性孔,孔的直径很小,但肉眼可见,管道内壁腐蚀处呈扩展状褐色锈迹,判断为典型的不锈钢点腐蚀。当时的处理措施是切除泄漏的管段,更换同材质的新管段,并在新管段底部增加了一个疏水阀,目的是在管道停运期间排空管内积水以防止腐蚀的再次发生。但在2001年9月,1号机管道又发现漏点。2001年10月电厂决定将所有反冲洗管道更换为碳钢衬胶管道。改造后运行至今未发生泄漏。 3 316L不锈钢的抗腐蚀性分析 316L不锈钢属300系列Fe-Cr-Ni合金奥氏体不锈钢,由于铬、镍含量高,是最耐腐蚀的不锈钢之一,并具有很好的机械性能。字母“L”表示低碳(碳含量被控制在0.03%以下),以避免在临界温度范围(430~900℃)内碳化铬的晶界沉淀,在焊后提供特别好的耐蚀性。但316L不锈钢抗氯离子点腐蚀的能力较差。

h炼油设备腐蚀与防护专题

h 炼油设备腐蚀与防护专题 前面我们要紧讲述了“金属腐蚀”的差不多理论以及腐蚀防护的原则和方法。本部分要紧结合我们的专业特点,利用前面所讲的差不多理论,来分析探讨有关炼油厂中的腐蚀情形以及采纳的相关防腐措施。 炼油系统中的要紧腐蚀介质 炼油系统中的腐蚀介质要紧来自于原油中的无机盐、硫化物、环烷酸、氮化物、微量金属元素以及石油开采和炼制过程中的各种添加剂等,在原油加工过程中,这些物质会变成或分解成为活性腐蚀介质腐蚀设备。 1. 无机盐类 原油中的无机盐类要紧有NaCl 、MgCl 2、CaCl 2等,盐类的含量一样为(5~130)×10-6,其中NaCl 约占75%、MgCl 2约占15%、CaCl 2约占10%左右,随原油产地的不同,Na 、Mg 、Ca 盐的含量会有专门大的差异。原油加工过程中,这些无机盐会水解成HCl 腐蚀设备,发生水解的反应式如下: HCl OH Mg O H MgCl 2)(2222+→+ HCl OH Ca O H CaCl 2)(2222+→+ 钠盐通常在蒸馏的情形下可不能水解,但当原油中有环烷酸和某些金属元素存在时,在300℃往常就有可能水解成HCl 。 2. 硫化物 原油中存在的硫化物要紧有硫化氢、硫醇、硫醚、二硫化物以及环状硫化物等。胜利油以及中东油的含硫量都专门高,原油加工的过程中,硫化物会受热分解成硫化氢而产生腐蚀,硫化氢的生成量要紧是由总硫含量、硫的种类及温度等众多因素决定的,但硫化氢的生成量与总的硫含量不成正比。 3. 环烷酸 环烷酸是一种存在于石油中的含饱和环状结构的有机酸,其通式为RCH 2COOH ,石油中的酸性化合物包括环烷酸、脂肪酸、以及酚类,而以环烷酸的含量最多,故一样称石油中的酸为环烷酸,因此石油中的酸是一种专门复杂的混合物,其分子量的差别专门大,在180~700之间,又以300~400之间的居多,其沸点范畴大约在177~343℃之间。 4. 氮化物 原油中的氮化物要紧有吡啶、吡咯及其衍生物。这些氮化物在常减压装置中专门少分解,但在深度加工如焦化和催化裂化等装置中由于催化剂和温度的作用,则会分解为可挥发性的氨及氰化物,对设备产生腐蚀。 5. 其他腐蚀介质 ⑴ 氢 在高温临氢设备以及与含水H 2S 溶液接触的设备中,会有加入氢和析出氢的过程。氢的存在能引起设备的氢损害、氢脆、氢鼓泡、表面脱碳及氢腐蚀等。 ⑵ 有机溶剂 炼油厂的气体脱硫和润滑油精制等过程中,均要用到某些有机溶剂,如糠醛、乙酰胺等。一样说来,这些有机溶剂对炼油厂的设备无腐蚀作用,但在生产过程中,有些有机溶剂能发生降解、聚合或氧化,产生某些腐蚀介质。 常减压装置的腐蚀与防护

石油化工设备腐蚀与防护

一、化工大气的腐蚀与防护 二、炼油厂冷却器的腐蚀与对策 三、储罐的腐蚀与防护 四、轻烃储罐的腐蚀与防护 五、钛纳米聚合物涂料在酸性水罐的应用 六、管道的腐蚀与防护方法 七、催化重整装置引风机壳体内壁腐蚀与防护 八、阴极保护在储罐罐底板下面的应用 九、石油化工循环水塔钢结构的腐蚀与防护方法

第一章. 化工大气的腐蚀与防护 第一节. 化工大气对金属设备的腐蚀情况金属在大气自然环境条件下的腐蚀称为大气腐蚀。暴露在大气中的金属表面数量很大,所引起的金属损失也很大的。如石油化工厂约有70% 的金属构件是在大气条件下工作的。大气腐蚀使许多金属结构遭到严重破坏。常见的钢制平台及电器、仪表等材料均遭到严重的腐蚀。由此可见,石油、石油化工生产中大气腐蚀既普遍又严重。 大气中含有水蒸汽,当水蒸汽含量较大或温度降低时,就会在金属表面冷凝而形成一层水膜,特别是在金属表面的低凹处或有固体颗粒积存处更容易形成水膜。这种水膜由于溶解了空气中的气体及其它杂质,故可起到电解液的作用,使金属容易发生化学腐蚀。 因工业大气成分比较复杂,环境温度、湿度有差异,设备及金属结构腐蚀不一样的。如生产装置中的湿式空气冷却器周围空气湿度大,在有害杂质的复合作用,使设备表面腐蚀很厉害。涂刷在设备、金属框架等表面的涂料,如:酚醛漆、醇酸漆等由于风吹日晒,使用一年左右,涂层表面发生粉化、龟裂、脱落,失去作用。 第二节.金属(钢与铁)在化工大气中的腐蚀由于铁有自然形成铁的氧化物的倾向,它在很多环境中是高度活性的,正因为如此它也具有一定的耐蚀性。有时候会与空气中氧化反应,在表面形成保护性的氧化物薄膜,这层膜在99% 相对湿度的空气中能够防止锈蚀。但是要存在0. 01%SO2 就会破坏膜的效应,使腐蚀得以继续进行。一般在化工大气层情况下,黑色金属的腐蚀率随时间增加而增加。这是因为污染的腐蚀剂的累聚而使腐蚀环境变为更加严重的缘故。 第三节.腐蚀原因分析 1. 涂层表面的损坏 工业大气中的SO2、SO3和C02溶于雨水或潮湿的空气中生成硫酸和碳酸,附着在设备、金属框架表面。由于酸液的作用,使涂层腐蚀遭到破坏。 低分子量聚合物气孔率较大,水分子比较容易通过涂层表面到达涂层与基体之间的界面,使涂层的结合强度下降,进而使涂层剥离或鼓包。 2. 涂层下金属的腐蚀涂层下的金属腐蚀是由电化学作用引起的。在阴极氧有去极化的作用,反应如下: 02 + H 2 + 2e = 20H - 因此,涂层下泡内溶液呈碱性,也叫碱性泡,这时阴极部位的PH 值可高达13 以上。界 面一旦形成高碱性状态,就进一步发生基体氧化膜的碱性溶解和涂层的碱性分解。在阳极发生如下反应: 2+ Fe = Fe + 2e Fe2+与氧、水及0H「反应生成Fe (0H 2、Fe (OH 3、Fe z O s ? XH20等腐蚀产物,其体积要增大好几倍,漆膜鼓起,最后破裂而成“透镜” 。这时泡内溶液呈酸性,故称酸性泡,泡内 PH值仅为2-4。 所以说,从漆膜脱落部位产生的阴极、阳极反应来看,由于阴极反应产生的0H「离子使 得界面PH值上升,造成Fe2+离子水解: 2+ + Fe2+ + 2H20 = Fe(0H)2 + 2H+ 这时又使界面PH 值降低,从而加速了阳极反应(金属的腐蚀),使腐蚀面积扩大,漆膜剥落的范围也扩

奥氏体不锈钢的常见腐蚀及避免措施

奥氏体不锈钢的常见腐蚀及避免措施 古晓辉 (江西东风药业股份有限公司工程维修部) 摘要:奥氏体不锈钢的常见腐蚀、腐蚀机理及采取避免措施 关键词:奥氏体不锈钢腐蚀机理措施 在不锈钢中,铬镍奥氏体不锈钢(以Cr18Ni9为基本型)得到广泛应用,其产量占不锈钢产量的70%左右,常见的品种有316(O Cr17Ni12Mo2)、316L (OO Cr17Ni14Mo2)、304(OCr18Ni9)、304L(00Cr18Ni10)及321(OCr18Ni10Ti),不同型号不锈钢合金元素的组成(见下表): 组成 316 OCr17Ni12Mo2 316L OO Cr17Ni14Mo2 304 O Cr18Ni9 304L O Cr18Ni10 321 OCr18Ni10Ti C碳[0.06%[0.03%[0.06%[0.03%[0.06% Si硅[1%[1%[1%[1%[1% Mn锰[2%[2%[2%[2%[2% P磷[0.035%[0.035%[0.035%[0.035%[0.035% S硫[0.03%[0.03%[0.03%[0.03%[0.03% Ni镍16%-18%16%-18%8%-11%8%-12%8%-12%6 Cr铬12%-14%14%-16%17%-19%17%-19%17%-19% Mo钼 1.8%- 2.5% 1.8%- 2.5% 其它Ti:@C%-0.6 它们的共同特点是具有耐腐蚀性和较好的耐热性。然而,/耐腐蚀0性是相对的,其/耐腐蚀0性是指在一定的外界条件和一定的腐蚀介质中,具有高的化学稳定性的特性。但此类不锈钢在某些介质情况下使用,会产生晶间腐蚀、点蚀和应力腐蚀等类型的腐蚀,特别是在含氯离子的介质中尤会产生腐蚀,众所周知,在二次大战中,有人曾用普通奥氏体不锈钢建造扫雷艇在海水中使用,其根据是奥氏体不锈钢也是非磁性的,而且比木材(高级),但这艘船并未投入使用,在试航期间就是由于发生应力腐蚀破裂而损坏。 通常采用超低碳或低碳不锈钢的方法来解决,但超低碳或低碳不锈钢不是解决此类腐蚀的根本方法,因此类腐蚀还与其它因素有关。笔者曾作过这样的试验,在无菌液贮罐(外带夹套,夹套内走氯化钙)的制作中,筒体材料一台选316L,而一台选321,对其在制造中考虑到其它因素(从结构、焊接工艺、制后处理等方面加以保证)。结果3161L贮罐只使用了3-4月就出现腐蚀,而另一台321贮罐使用近两年还没出现腐蚀。因此,我们在实际应用中要想合理选用奥氏体不锈钢,就得了解其腐蚀机理,从而采用相应的避免腐蚀措施。1、奥氏体不锈钢的腐蚀机理: 奥氏体不锈钢的常见腐蚀:有晶间腐蚀、点蚀和应力腐蚀等。 1.1当奥氏体不锈钢在制造和焊接时,加热温度和加热速度处在敏化温度区域时,材料中过饱和碳就会在晶粒边界首先析出,并与铬结合形成碳化铬,此时碳在奥氏体内的扩散速度比铬扩散速度大,铬来不及补充晶界由于形成碳化铬而损失的铬,结果晶界的铬的含量不断降低,形成贫铬区,使电极电位下降,当与含氯离子等腐蚀介质接触时,就会引起微电池腐蚀。虽然腐蚀仅在晶粒表面,但却迅速深入内部形成晶间腐蚀。由此,我们知道产生晶间腐蚀的原因有:只有在 220江西化工2006年第4期

石油化工设备防腐蚀管理制度

中国石油化工集团公司设备防腐蚀管理制度 (试行) (征求意见稿) 二00四年十二月二十日

目录 第一章总则 (1) 第二章管理职责 (2) 第三章防腐蚀设计 (4) 第四章工程施工 (5) 第五章使用与维护 (6) 第六章腐蚀检查与监测 (7) 第七章工艺防腐蚀管理 (9) 第八章检查与考核 (10) 第九章附则 (11)

设备防腐蚀管理制度 第一章总则 第一条为加强石油化工设备防腐蚀管理工作,确保生产装置安全、稳定、长周期运行,特制定本制度。 第二条本制适用于集团公司、股份公司所属炼化生产和销售企业,其它企业可参照执行。 第三条凡受到生产工艺中腐蚀介质或工业大气、冷却水、土壤等腐蚀的各类设备、管道、建构筑物等(以下统称“设备”)。都必须采取相应的防腐蚀措施。 第四条设备防腐蚀管理工作是设备管理的重要环节,是延长设备使用寿命的重要手段。生产、技术、设计、工程、检修、研究和供应等部门及使用单位应积极参与和配合设备管理部门做好设备的防腐蚀管理工作。 第五条各企业要制定设备防腐蚀管理制度,建立健全管理机构和落实责任制,必须有分管领导负责防腐蚀管理工作。设备管理部门是设备防腐蚀工作的归口单位,应有专职技术人员负责管理工作,与使用单位以及生产、技术、设计、工程、检修、研究、供应等部门形成完整的设备防腐蚀管理网络。

第二章管理职责 第六条分管领导管理职责 全面负责防腐蚀管理工作,组织制定企业设备防腐蚀管理规划,及时听取防腐蚀管理工作情况的汇报,检查防腐蚀工作的进展情况,对重大的设备防腐蚀问题做出决定。 第七条设备管理部门职责 (一)负责本企业设备防腐蚀归口管理工作,组织或参与防腐蚀设备、设施、措施的设计审查、施工、质量验收,负责使用维护和检查维修等工作的全过程管理。 (二)负责贯彻执行国家有关规定和集团(股份)公司有关防腐蚀管理制度,并结合本企业情况制定设备防腐蚀管理制度。 (三)应设专职的技术人员,做好设备防腐蚀工作计划、方案的制定和技术管理工作。 (四)针对设备防腐蚀工作中出现的问题,积极组织有关部门、使用单位和科研单位进行研究、攻关,不断提高设备防腐蚀管理工作的水平。 (五)负责本企业设备防腐蚀管理工作情况的检查、考核,并及时向主管领导和上级主管部门汇报工作情况。 (六)负责对工艺防腐蚀措施的实施效果进行跟踪、检查和监督,及时将结果反馈给工艺技术管理部门,并上报主管领导。 第七条生产技术管理部门职责

相关文档
最新文档