STM32学习笔记(寄存器版本)

STM32学习笔记(寄存器版本)
STM32学习笔记(寄存器版本)

STM32库函数操作和寄存器操作 首先,两个都是C语言。从51过渡过来的话,就先说寄存器操作。每个MCU都有自己的寄存器,51是功能比较简单的一种,相应的寄存器也比较少,我们常用的就那么几个,像P0 P1 SMOD TMOD之类的,这些存在于标准头文件reg.h里面,因为少,所以大家就直接这么去操作了,每一位对应的意义随便翻一下手册就看得到,甚至做几个小项目就记的很清楚了。所以做51开发的时候大多数都是直接操作寄存器。 到了STM32,原理一样,也是有自己的寄存器,但是作为一款ARM 内核的芯片,功能多了非常多,寄存器自然也就多了很多,STM32的手册有一千多页,这时候想去像51那样记住每个寄存器已经不现实了,所以ST的工程师就给大家提供了库函数这么一个东西。这是个神器。库函数里面把STM32的所有寄存器用结构体一一对应并且封装起来,而且提供了基本的配置函数。我们要去操作配置某个外设的时候不需要再去翻眼花缭乱的数据手册,直接找到库函数描述拿来就可以用,这样就能把精力放在逻辑代码的开发上,而不是去费力的研究一个芯片的外设要怎么配置寄存器才能驱动起来。简单讲就是这些了,库函数是为了让开发者从大量繁琐的寄存器操作中脱离出来的一个文件包,在使用一个外设的时候让开发者直接去调用相应的驱动函数而不是自己去翻手册一个一个配置寄存器。有人说用库函数掌握不到芯片的精髓,见仁见智了。熟悉一款芯片是在不断的开发使用中逐渐了解并掌握的,调试的过程中会遇到很多问题,会要求我们去跟踪相关寄存器的状态,在整个框架都已经建立起来的基础上再去对照手册做具体到寄存器每一位的分析,代码对照现象,很快就能积累起来经验,祝成功。

STM32单片机GPIO寄存器的功能解析 1、GPIO的寄存器按照功能可以分为以下几类: A、配置寄存器 B、数据寄存器 C、位寄存器 D、锁定寄存器 2、对于GPIO端口,每个端口有16个引脚,每个引脚的模式由寄存器的四个位控制,每四位又分为两位控制引脚配置(CNFy[1:0]),两位控制引脚的模式及最高速度(MODEy [1:0]),其中y表示第y个引脚。配置GPIO引脚模式的一共有两个寄存器,CRH是高寄存器,用来配置高8位引脚,还有CRL配置低八位引脚。 3、端口位设置\清除寄存器(GPIOx_BSRR) 一个引脚y的输出数据由GPIOx_BSRR寄存器位的2个位来控制分别为BRy (Bit Reset y)和BSy (Bit Set y),BRy位用于写1清零,使引脚输出低电平,BSy位用来写1置1,使引脚输出高电平。而对这两个位进行写零都是无效的。 4、Cortex-M3有32根地址线,所以它的 寻址空间大小为2 bit=4GB。ARM公司设计时,预先把这4GB的寻址空间大致地分配好了。它把地址从0x4000 0000至0x5FFF FFFF(512MB )的地址分配给片上外设。 5、stm32f10x.h这个文件中重要的内容就是把STM32的所有寄存器进行地址映射。如同51单片机的头文件一样,stm32f10x.h像一个大表格,我们在使用的时候就是通过宏定义进行类似查表的操作。 6、STM32总线有AHB总线、APB2总线、APB1总线 7、时钟系统。 A、从时钟频率来说分为告诉时钟和低速时钟,高速时钟是提供给芯片主体时钟,而低速时钟只是提供给芯片中的RTC及独立看门狗使用。 B、从芯片角度来说,时钟源分为内部时钟与外部时钟源,内部时钟是在芯片内部RC振

MINI-STM32 开发板入门教程(一) 开发环境建立及其应用 我们常用的 STM32 开发编译环境为 Keil 公司的 MDK (Microcontroller Development Kit) 和 IAR 公司的 EWARM. 在这里我们提供了比较稳定的新版本编译软件下载: MDK3.50 点击此处下载 EWARM 5.40 点击此处下载 限于篇幅, 在我们的教程里面将先以 MDK 下的一个例子来介绍如何使用 MDK 进行嵌入式 应用开发. MDK 安装与配置: 基于 MDK 下的开发中基本的过程: (1) 创建工程; (2) 配置工程; (3) 用 C/C++ 或者汇编语言编写源文件; (4) 编译目标应用程序 (5) 修改源程序中的错误 (6) 测试链接应用程序 ---------------------------------------------------------------- (1) 创建一个工程: 在 uVision 3 主界面中选择 "Project" -> "New uVision Project" 菜单项, 打开一个标准对话框选择好你电脑中的保存目录后, 输入一个你的工程名字后点确认.我们的工程中建了一个名字叫 "NewProject" 的工程. 从设备库中选择目标芯片, 我们的 MINI-STM32 开发板使用的是 STM32F103V8T6, 因此选 中 STMicrocontroller 下对应的芯片: ARM 32-bit Cortex-M3 Microcontroller, 72MHz, 64kB Flash, 20kB SRAM, PLL, Embedded Internal RC 8MHz and 32kHz, Real-Time Clock, Nested Interrupt Controller, Power Saving Modes, JTAG and SWD,

前言 一天入门STM32,仅一天的时间,是否有真的这么快。不同的人对入门的理解不一样,这篇一天入门STM32的教程,我们先对入门达成一个共识,如果你有异议,一天入门不了,请不要较真,不要骂街,保持一个工程师该有的修养,默默潜心学习,因为你还有很大的上升空间。 我眼中的入门:(前提是你学过51单片机和C语言) 1、知道参考官方的什么资料来学习,而不是陷入一大堆资料中无从下手。 2、知道如何参考官方的手册和官方的代码来独立写自己的程序,而不是一味的看到人家写的代码就觉得人家很牛逼。 3、消除对STM32的恐惧,消除对库开发的恐惧,学习是一个快乐而富有成就感的过程。

第1章一天入门STM32 本章参考资料:《STM32中文参考手册》《CM3权威指南CnR2》 学习本章时,配合《STM32中文参考手册》GPIO章节一起阅读,效果会更佳,特别是涉及到寄存器说明的部分。 1.151与STM32简介 51是嵌入式学习中一款入门级的精典MCU,因其结构简单,易于教学,且可以通过串口编程而不需要额外的仿真器,所以在教学时被大量采用,至今很多大学在嵌入式教学中用的还是51。51诞生于70年代,属于传统的8位单片机,如今,久经岁月的洗礼,既有其辉煌又有其不足。现在的市场产品竞争激烈,对成本极其敏感,相应地对MCU的要求也更苛刻:功能更多,功耗更低,易用界面和多任务。面对这些要求,51现有的资源就显得得抓襟见肘了。所以无论是高校教学还是市场需求,都急需一款新的MCU来为这个领域注入新的活力。 基于这市场的需求,ARM公司推出了其全新的基于ARMv7架构的32位Cortex-M3微控制器内核。紧随其后,ST(意法半导体)公司就推出了基于Cortex-M3内核的MCU—STM32。STM32凭借其产品线的多样化、极高的性价比、简单易用的库开发方式,迅速在众多Cortex-M3MCU中脱颖而出,成为最闪亮的一颗新星。STM32一上市就迅速占领了中低端MCU市场,受到了市场和工程师的无比青睐,颇有星火燎原之势。 作为一名合格的嵌入式工程师,面对新出现的技术,我们不是充耳不闻,而是要尽快吻合市场的需要,跟上技术的潮流。如今STM32的出现就是一种趋势,一种潮流,我们要做的就是搭上这趟快车,让自己的技术更有竞争力。 1.1.151与STM32架构的区别 我们先普及一个概念,单片机(即MCU)里面有什么。一个人最重要的是大脑,身体的各个部分都在大脑的指挥下工作。MCU跟人体很像,简单来说是由一个最重要的内核加其他外设组成,内核就相当于人的大脑,外设就如人体的各个功能器官。 下面我们来简单介绍下51和STM32的结构。 1.51系统结构 51系统结构框图

CRC寄存器 (一种算法,用以确认发送过程中是否出错)数据寄存器:CRC_DR 可读写,复位值:0xFFFF FFFF; 独立数据寄存器:CRC_IDR 临时存放任何8位数据; 控制寄存器:CRC_CR 只零位可用,用于复位CRC,对其写1复位,由硬件清零; PWR电源控制(控制和管理电源) 电源控制寄存器:PWR_CR 控制选择系统的电源 电源控制/状态寄存器:PWR_CSR 睡眠或待机模式电源控制 BKP备份寄存器(用以控制和管理备份数据) 备份数据寄存器x:BKP_DRx (x = 1 … 10) 10个16位数据寄存器用以存储用户数据 RTC时钟校准寄存器:BKP_RTCCR 控制实时时钟的运行 备份控制寄存器:BKP_CR 控制选择清除备份数据的类型

备份控制/状态寄存器:BKP_CSR 对侵入事件的控制 RCC寄存器(时钟的选择、复位、分频) 时钟控制寄存器(RCC_CR) 各时钟状态显示 时钟配置寄存器(RCC_CFGR) 时钟分频 时钟中断寄存器(RCC_CIR) 控制就绪中断使能与否 APB2外设复位寄存器(RCC_APB2RSTR) APB1外设复位寄存器(RCC_APB1RSTR) 复位APB各功能寄存器 AHB外设时钟使能寄存器(RCC_AHBENR) AHB时钟使能控制 APB2外设时钟使能寄存器(RCC_APB2ENR) APB1外设时钟使能寄存器(RCC_APB1ENR) APB1时钟使能控制 备份域控制寄存器(RCC_BDCR) 备份域时钟控制 控制/状态寄存器(RCC_CSR) 复位标志寄存器 AHB外设时钟复位寄存器(RCC_AHBRSTR) 复位以太网MAC模块 时钟配置寄存器2(RCC_CFGR2) 时钟选择与分频

STM32使用BSRR和BRR寄存器快速操作 GPI0端口STM32的每个GPIO端口都有两个特别的寄存器,GPIOx_BSR和GPIOx_BRF寄存器,通过这两个寄存器可以直接对对应的GPIOx端口置“或置“ 0。“ GPIOx_BSRR勺高16位中每一位对应端口x的每个位,对高16位中的某位置“狈『端口x的对应位被清“0;“寄存器中的位置“0, “则对它对应的位不起作 用。 GPIOx_BSRR的氐16位中每一位也对应端口x的每个位,对低16位中的某位置“1则“它对应的端口位被置“1;“寄存器中的位置“0,“则对它对应的端口不起作用。 简单地说GPIOx_BSR的高16位称作清除寄存器,而GPIOx_BSR的低氐16 位称作设置寄存器。另一个寄存器GPIOx_BRfl只有低16位有用,与GPIOx_BSR 的高16位具有相同功能。 举个例子说明如何使用这两个寄存器和所体现的优势。例如GPIOE的16个IO都被设置成输出,而每次操作仅需要改变低8位的数据而保持高8位不变,假设新的8 位数据在变量Newdata 中, 这个要求可以通过操作这两个寄存器实现,STM32的固件库中有两个函数GPIO_SetBits和GPIO_ResetBits使用了这两个寄存器操作端口。 上述要求可以这样实现: GPI0_SetBits(GPI0E, Newdata & 0xff); GPI0_ResetBits(GPI0E, (~Newdata & 0xff)); 也可以直接操作这两个寄存器: GPI0E->BSRR = Newdata & 0xff; GPI0E->BRR = ~Newdata & 0xff; 当然还可以一次完成对8位的操作:

STM32之一步一步点亮led (2011-05-09 19:40) 标签: stm32led v3.4MDK 4.12入门分类:stm32 入手stm32以来,一直想快速上手,所以在各大论坛闲逛,各个达人的blog 上学习,正所谓欲速则不达,心急是吃不了热豆腐的!有木有? 最终决定使用st官网的库开发,据大侠们写道使用库可以快速上手,貌似的确如此,一个个教程写的那么好,直接拿过来用就是了。可是那么多个库,聪明的你请告诉到底选择哪一个啊?My God!实话实说,我被这些库折腾了个够!好吧,我最后还是承认最后用的是v3.4的库,是很方便! 切入正题,点亮LED。 硬件:红牛开发板,STM32F103ZET6(144封装). 软件:RealView MDK 4.12 stm32固件库:v3.4 附上自己整理后的库: V3.4_clean.rar 根据官网库自己整理了下,新建了工程模板如下图:(主要参考文章《在 Keil MDK+环境下使用STM32 V3.4库.pdf》)在KeilMDK+环境下使用STM32V3.4库.pdf 入图所示:新建一个目录01_ProLed,建议放在英文路径下,避免不必要的麻烦。将上面的库v3.4解压到此目录,再新建一个project目录,存放工程。 说明: CMSIS:最底层接口。StartUp:系统启动文件。StdPeriph_Lib:stm32外围设

备驱动文件。Project:工程文件。User:用户文件。新建工程步骤:此处略去300字。 简单说明: 1.core_cm3.c/core_cm3.h 该文件是内核访问层的源文件和头文件,查看其中的代码多半是使用汇编语言编写的。在线不甚了解。--摘自《在Keil MDK+环境下使用STM32 V3.4库》 2.stm32f10x.h 该文件是外设访问层的头文件,该文件是最重要的头文件之一。就像51里面的reg51.h一样。例如定义了 CPU是哪种容量的 CPU,中断向量等等。除了这些该头文件还定义了和外设寄存器相关的结构体,例如: 1.typedef struct

stm32 BKP 寄存器操作操作寄存器+库函数 BKP 是BACKUP 的缩写,stm32f103RCTE 的内部配备了10 个16 位宽度 的BKP 寄存器。在主电源切断或系统产生复位时间时,BKP 寄存器仍然可以 在备用电源的支持下保持其内容。BKP 在实际应用中可以存入重要数据,防止 被恶意查看,或用于断电等。本例实现对BKP 寄存器的读写操作,和入侵检 测和处理。主程序中写入寄存器后,依次打印出10 个BKP 寄存器数据,然后 触发GPIOC13 的入侵中断(输入低电平),在中断中打印出入侵事件发生后的 寄存器内容(复位为0 )。直接操作寄存器用到的寄存器描述如下:备份数据 寄存器x(BKP_DRx) (x = 1 10):低16 位[15:0]有效,用来写入或读出备份数据。备份控制寄存器(BKP_CR):低两位有效。TPAL[1]:侵入检测TAMPER 引脚有效电平(TAMPER pin active level)0:侵入检测TAMPER 引脚上的高电平会清除所有数据备份寄存器(如果TPE 位为1) 1:侵入检测TAMPER 引脚 上的低电平会清除所有数据备份寄存器(如果TPE 位为1)TPE[0]:启动侵入检 测TAMPER 引脚(TAMPER pin enable)0:侵入检测TAMPER 引脚作为通用IO 口使用1:开启侵入检测引脚作为侵入检测使用备份控制/状态寄存器 (BKP_CSR): TIF[9]:侵入中断标志(Tamper interrupt flag) 0:无侵入中断1:产生侵入中断当检测到有侵入事件且TPIE 位为1 时,此位由硬件置1。通过向CTI 位 写1 来清除此标志位(同时也清除了中断)。如果TPIE 位被清除,则此位也会被 清除。TEF[8]:侵入事件标志(Tamper event flag) 0:无侵入事件1:检测到侵入事件当检测到侵入事件时此位由硬件置1。通过向CTE 位写1 可清除此标 志位TPIE[2]:允许侵入TAMPER 引脚中断(TAMPER pin interrupt enable)0:禁止侵入检测中断1:允许侵入检测中断(BKP_CR 寄存器的TPE 位也必须被置1)注

STM32学前班教程之一:选择他的理由 经过几天的学习,基本掌握了STM32的调试环境和一些基本知识。想拿出来与大家共享,笨教程本着最大限度简化删减STM32入门的过程的思想,会把我的整个入门前的工作推荐给大家。就算是给网上的众多教程、笔记的一种补充吧,所以叫学前班教程。其中涉及产品一律隐去来源和品牌,以防广告之嫌。全部汉字内容为个人笔记。所有相关参考资料也全部列出。:lol 教程会分几篇,因为太长啦。今天先来说说为什么是它——我选择STM32的原因。 我对未来的规划是以功能性为主的,在功能和面积之间做以平衡是我的首要选择,而把运算放在第二位,这根我的专业有关系。里面的运算其实并不复杂,在入门阶段想尽量减少所接触的东西。 不过说实话,对DSP的外设并和开发环境不满意,这是为什么STM32一出就转向的原因。下面是我自己做过的两块DSP28的全功能最小系统板,在做这两块板子的过程中发现要想尽力缩小DSP的面积实在不容易(目前只能达到50mm×45mm,这还是没有其他器件的情况下),尤其是双电源的供电方式和的电源让人很头疼。 后来因为一个项目,接触了LPC2148并做了一块板子,发现小型的ARM7在外设够用的情况下其实很不错,于是开始搜集相关芯片资料,也同时对小面积的AVR和51都进行了大致的比较,这个时候发现了CortexM3的STM32,比2148拥有更丰富和灵活的外设,性能几乎是2148两倍(按照MIPS值计算)。正好2148我还没上手,就直接转了这款STM32F103。 与2811相比较(核心供电情况下),135MHz×1MIPS。现在用STM32F103,72MHz×,性能是DSP的66%,STM32F103R型(64管脚)芯片面积只有2811的51%,STM32F103C型(48管脚)面积是2811的25%,最大功耗是DSP的20%,单片价格是DSP的30%。且有更多的串口,CAP和PWM,这是有用的。高端型号有SDIO,理论上比SPI速度快。 由以上比较,准备将未来的拥有操作系统的高端应用交给DSP的新型浮点型单片机28335,而将所有紧凑型小型、微型应用交给STM32。 STM32学前班教程:怎么开发 sw笨笨的STM32学前班教程之二:怎么开发目前手头的入门阶段使用的开发器概述 该产品为简易STM32调试器和DEMO板一体化的调试学习设备,价格在一百多块。 2、硬件配置

嵌入式系统》课程报告 基于 STM32的 LCD 操作 组长:曾昭智 组员:邓 宁、张小扬、牛洪澄 光电学院 电信 2班、3 班 2014.05.29 姓名 学院 班级 完成日期

目录 1、原理方案(功能框图介绍) (1) 2、电路连线及资源分配. (2) 3、所用主要器件或模块说明. (3) 4、程序流程图. (4) 5、调试心得. (5) 6、源代码 (6)

1.TFT-LCD 原理 1.1 TFT-LCD 简介 TFT-LCD即薄膜晶体管液晶显示器。其英文全称为:Thin Film Transistor-Liquid Crystal Display 。TFT-LCD与无源TN-LCD、STN-LCD 的简单 矩阵不同,它在液晶显示屏的每一个象素上都设置有一个薄膜晶体管(TFT),可有效地克服非选通时的串扰,使显示液晶屏的静态特性与扫描线数无关,因此大大提高了图像质量。TFT-LCD也被叫做真彩液晶显示器。 上一节介绍了OLED模块,这一节,我们给大家介绍ALIENTEK TFTLC模D 块,该模块有如下特点: 1,2.4 '/2.8 '两种大小的屏幕可选。 2,320×240的分辨率。 3,16位真彩显示。 4,自带触摸屏,可以用来作为控制输入。 5,通用的接口,除了ALIENTEK MiniSTM32开发板,该液晶模块还可以使用在优异特、STMSK、Y 红牛等开发板上。 本节,我们以 2.8 寸的ALIENTEKT FTLCD模块为例介绍,该模块采用的是显尚光电的DST2001PHT FTLCD,DST2001PH的控制器为ILI9320 ,采用26 万色的TFTLCD 屏,分辨率为320×240,采用16 位的80并口。 1.2 80 并口 ALIENTEK TFTLCD 模块采用80并口口方与外部链接,采用16位数据线(低了速度太慢,用彩色就没什么效果了)。该模块的80并口有如下一些信号线:CS:TFTLCD 片选信号。 WR:向TFTLCD 写入数据。 RD:从TFTLCD 读取数据。 D[15:0] :16位双向数据线。 RST:硬复位TFTLCD 。 RS:命令/数据标志(0,读写命令;1,读写数据)。 TFTLCD 模块的RST信号线和OLED 模块一样,也是直接接到STM32 的复位脚上,并 不由软件控制,这样可以省下来一个IO 口。另外我们还需要一个背光控制线来控制TFTLCD 的背光。所以,我们总共需要的IO 口数目为21 个。 1.3 ILI9320 模块的控制器为ILI9320 ,该控制器自带显存,其显存总大小为172820 (240*320*18/8 ),即18位模式(26万色)下的显存量。模块的16位数据线与显寸的对应关系为565 方式,如下图所示: 1.4 GRAM显示方向设置

STM32开发板使用手册 风帆 STM32开发板是风帆电子为初学者学习STM32 Cortex M3 系列ARM 而设计的学习板。以STM32F103RCT6芯片为核心,配套2.4/2.8寸彩色TFT屏模块,板载UART、USB、ADC电压调节、按键、JTAG接口、彩屏接口、流水灯、SD卡接口、IO引出口等多种硬件资源。

JTAG 口 2个LED 灯 GPIOA 引出1O USB 串口1 DS10B20预留 HS0038红外接收头 红外温度传感器连接头 GPIOB@C 引出IO OLED@LCD 共用接口 STM32F103RCT6 2.4/2.8寸LCD 接口 485芯片 RS485接口 1:A; 3:B NRF24L01 模块接口 W25Q1 6 FLASH 芯片 SD 卡接口(在背面) JF24C 模块预留接口 GPIO C@D 引出IO 蜂鸣器跳线 PS/2鼠标键盘接口 三个按 键: WAKEUP KEY0 KEY1 RESET 按键 Rs232接口 电源开关 USB 接口 电源指示灯 自恢复保险丝 MAX232 电源芯片 24c02 3.3V 、5V 电 源输出; 线序为: GND/3.3V GND/5V BOOT 设置 线序为: GND /GND BOOT1/BOOT0 3.3V/3.3V

此板子不管硬件还是软件完全无缝接兼容正点原子的MINSTM32,并对MINSTM32进行了完美的升级,让我们用最少的钱做更多的事,具体升级的部分包括: 1、C PU的升级 利用ST意法半导体的CPU兼容性强的优点,此板采用比 STM32F103RBT6性能更强、且完全兼容的的STM32F103RCT6升级 CPU,把完美的MINNI STM板子的功能发挥到极致,具体2个CPU 的主要资源对比如下: 可以看出,FLASH增加了一倍,达到256K,RAM也增加了1倍,让 我们不用再为FLASH\RAM小而烦恼,使我们的存储空间更为强大; 增加了一个16位普通IC/OC/PWM),2个16位基本(IC/OC/PWM),1个STI,2个USART,这里比STM32F103RB还多了一个DAC通 道,这个STM32F103RB是没有的

1、不使用库函数的IO口操作 Systick 部分内容属于NVIC控制部分,一共有4个寄存器 SysTick_CTRL, 0xE000E010 -- 控制寄存器默认值:0x0000 0004 SysTick_LOAD, 0xE000E014 -- 重载寄存器默认值:0x0000 0000 SysTick_VAL, 0xE000E018 -- 当前值寄存器默认值:0x0000 0000 SysTick_CALIB, 0xE000E01C -- 校准值寄存器默认值:0x0002328 SysTick_CTRL 寄存器内有4个bit具有意义 第0位:ENABLE,Systick 使能位(0:关闭Systick功能;1:开启Systick功能) 第1位:TICKINT,Systick 中断使能位(0:关闭Systick中断;1:开启Systick中断) 第2位:CLKSOURCE,Systick时钟源选择(0:使用HCLK/8 作为Systick时钟;1:使用HCLK 作为系统时钟) 第16位:COUNTFLAG,Systick计数比较标志 IO口的位操作实现 该部分代码实现对STM32各个IO口的位操作,包括读入和输出。当然在这些函数调用之前,必须先进行IO口时钟的使能和IO口功能定义。此部分仅仅对IO口进行输入输出读取和控制。代码如下: #define BITBAND(addr,bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) #define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #define BIT_ADDR(addr,bitnum) MEM_ADDR(BITBAND(addr,bitnum)) //IO口地址映射 #define GPIOA_ODR_Addr (GPIOA_BASE+12) //0x4001080C #define GPIOB_ODR_Addr (GPIOB_BASE+12) //0x40010C0C #define GPIOC_ODR_Addr (GPIOC_BASE+12) //0x4001100C #define GPIOD_ODR_Addr (GPIOD_BASE+12) //0x4001140C #define GPIOE_ODR_Addr (GPIOE_BASE+12) //0x4001180C #define GPIOF_ODR_Addr (GPIOF_BASE+12) //0x40011A0C #define GPIOG_ODR_Addr (GPIOG_BASE+12) //0x40011E0C #define GPIOA_IDR_Addr (GPIOA_BASE+8) //0x40010808 #define GPIOB_IDR_Addr (GPIOB_BASE+8) //0x40010C08 #define GPIOC_IDR_Addr (GPIOC_BASE+8) //0x40011008 #define GPIOD_IDR_Addr (GPIOD_BASE+8) //0x40011408 #define GPIOE_IDR_Addr (GPIOE_BASE+8) //0x40011808 #define GPIOF_IDR_Addr (GPIOF_BASE+8) //0x40011A08 55

第一部分开发板介绍 1.1 STM32开发板简介 开发板配置: ●CPU主芯片是STM32F103VCT6,主频72MHz,256KB FLASH ,48KB RAM; ●3个按键,可实现中断或查询方式判断是否有键按下; ●4个发光二极管LED,可进行流水灯或花样显示; ●1个无源蜂鸣器,可用PWM驱动; ●1个电位器,可配合内部AD进行AD转换; ●1个RS232串行通信接口,可使开发板与PC机进行通信; ●1个基于SPI串行总线的触摸屏转换接口芯片,可进行触屏操作; ●1个基于IIC串行总线的EEPROM,可进行数据存储; ●1个基于CPU片内SDIO的TF卡接口,可进行数据读写; ●1个FSMC控制的2.83英寸TFT液晶屏,可进行图片文字显示; ●1个蓝牙模块,可使开发板与PC机进行通信; ●1个USBmin2.0接口为开发板供电; ●所有I/O口引出,可通过跳线自行配置和自制外围模块连接;

下面介绍一下STN32开发板的各个部分。 1、LED灯 STM32开发板有4个LED灯,它们在开发板上的标号分别为LED1、LED2、LED3、LED4。在调试代码的时候,使用LED来指示程序状态,是非常不错的辅助调试方法。 2、按键 STM32开发板有三个普通按键,它们在开发板上的标号分别为KEY1、KEY2、KEY3。可以用于人机交互的输入,三个按键通过跳线帽连接到STM32的开发板的IO口上。 3、电源指示灯 开发板上有一个蓝色电源指示灯,它在开发板上的标号为LED5(POWER)。用于指示电源状态。该开发板通过USB供电,在该电源开启的情况下,指示灯亮,否则不亮。通过这个LED灯判断开发板的上电情况。 4、蓝牙 开发板上有一个蓝牙模块,它在开发板上的标号为Bluetooth。用于开发板与电脑进行无线通讯。 5、SD卡接口 SD卡接口在开发板上的标号为TF_Card。SD卡是最常见的存储设备,是很多数码设备的存储媒介,比如数码相框、数码相机、MP5等。STM32开发板自带了SD卡接口,可用于SD卡试验,方便大家学习SD卡。 6、AT24C01 EEPROM EEPROM型号为A T24C01,用于掉电数据保存。因为STM32内部没有EEPROM,所以开发板外扩了24C01,用于存储重要的数据,也可以用来做IIC实验,及其他应用。 7、RS232接口 RS232在开发板上的标号为J2。用于与电脑进行通信,也可以用来做USART实验。 8、滑动变阻器 滑动变阻器在开发板上的标号为ADJ_RES。通过调节滑动变阻器来改变电压值,可以用来做AD转换的实验。 9、蜂鸣器 蜂鸣器在开发板上的标号为Buzzer。通过调节定时器产生的PWM波的占空比来改变蜂鸣器的声音,可以用来做PWM实验,及其他应用。 10、液晶屏 触摸屏在开发板上的标号为TFT。用来显示一些图片和汉字。可以用来学习触摸屏的一些实验。触摸屏都需要一个AD转换器,STM32开发板触摸屏控制芯片为TSC2046。 11、引出IO口 开发板有很多引出IO口,可以通过跳线帽选择是连接各部分的功能模块还是用作引出IO 口,引出的IO口方便大家使用,可以连接外部器件。 1.2 STM32开发板硬件详解 本节介绍STM32开发板的各部分硬件,让大家对开发板的各部分硬件原理有个了解。

STM32 GPIO使用 操作步骤: 使能GPIO对应的外设时钟 例如://使能GPIOA、GPIOB、GPIOC对应的外设时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB| RCC_APB2Periph_GPIOC , ENABLE); 声明一个GPIO_InitStructure结构体 例如: GPIO_InitTypeDef GPIO_InitStructure; 选择待设置的GPIO管脚 例如:/* 选择待设置的GPIO 7、8、9管脚位,中间加“|”符号*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9; 4. 设置选中GPIO管脚的速率 例如:/* 设置选中GPIO管脚的速率为最高速率2MHz */ GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; //最高速率2MHz GPIO5. 设置选中管脚的模式*/ 设置选中GPIO管脚的模式为开漏输出模式/* 例如://开漏输出模式GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIOX

中指定的参数初始化外设6. 根据GPIO_InitStructureGPIOC */ GPIO_InitStructure中指定的参数初始化外设根据例如:/* 1 / 16 GPIO_Init(GPIOC, &GPIO_InitStructure); 7.其他应用 例:将端口GPIOA的 10、15脚置1(高电平) GPIO_SetBits(GPIOA, GPIO_Pin_10 | GPIO_Pin_15); 例:将端口GPIOA的 10、15脚置0(低电平) GPIO_ResetBits(GPIOA, GPIO_Pin_10 | GPIO_Pin_15); GPIO寄存器: 寄存器描述 端口配置低寄存器CRL 端口配置高寄存器CRH 端口输入数据寄存器IDR 端口输出数据寄存器ODR 端口位设置BSRR /复位寄存器 端口位复位寄存器BRR 端口配置锁定寄存器LCKR 事件控制寄存器EVCR

STM32入门系列教程如何使用J-Flash调试 Revision0.01 (2010-04-12)

对初学者来说,要进行STM32的程序下载调试,一般有三种方法: (1)使用SEGGER J-Flash(J-Link)下载程序到闪存中运行; (2)使用串口ISP来下载HEX文件到CPU中运行; (3)J-Link+MDK组合,来在线调试程序(可下载、调试)。 本文档讲述如何在芯达STM32开发板上使用SEGGER J-Flash下载HEX文件。而其他两种方法,我们将在文档《如何使用MDK+J-Link调试》、以及《如何使用STM32-ISP下载调试》中详细说明。 先来解释SEGGER。实际上,大家更为熟悉的ARM仿真器J-Link,就是由SEGGER公司开发的。J-Link是SEGGER为支持仿真ARM内核芯片推出的JTAG 仿真器。 不管什么CPU的仿真器,都需要安装其相应的驱动后才能使用。J-Link也不例外,它的驱动软件可以去官方网站:https://www.360docs.net/doc/e618033099.html,下载最新版本。这里使用的驱动软件版本是V4.08l,该驱动的安装非常简单,请参考文档《如何安装J-Link驱动软件》。 安装完毕,会出现如下两个图标: 现在开始我们的工作吧! 步骤一先进行设备连接操作。芯达STM开发板的JTAG口(开发板面朝上,最顶端有一个JTAG20pin的插口),与J-Link V8仿真器的输出排线连接,J-Link另一头的USB插口则插在电脑的USB口上。这时,J-Link的指示灯开始闪烁,并保持“点亮”的状态。 注意:大家购买J-Link仿真器的时候,JTAG接口要求是标准的20pin的2.54间距的针座。否则需要转接卡进行JTAG接口的转换。 步骤二进入PC的桌面,点击上图左边的图标:J-Flash ARM V4.081,出现如下界面:

STM32F103_使用心得 IO端口输入输出模式设置:...........; Delay延时函数:..............; IO端口使用总结:...............; IO口时钟配置:................; 初始化IO口参数:...............; 注意:时钟使能之后操作IO口才有效!......; IO端口输出高低电平函数:...........; IO的输入 IO端口输入输出模式设置: (1) Delay延时函数: (2) IO端口使用总结: (2) IO口时钟配置: (2) 初始化IO口参数: (2) 注意:时钟使能之后操作IO口才有效! (2) IO端口输出高低电平函数: (2) IO的输入和输出宏定义方式: (3) 读取某个IO的电平函数: (3) IO口方向切换成双向 (3) IO 口外部中断的一般步骤: (3) 内部ADC使用总结: (4) LCDTFT函数使用大全 (5) TFTLCD使用注意点: (5)

IO端口宏定义和使用方法: (6) Keil使用心得: (6) ucGUI移植 (6) DDS AD9850测试程序: (6) ADC 使用小结: (7) ADC测试程序: (9) DAC—tlv5638测试程序 (9) 红外测试程序: (9) DMA使用心得: (9) 通用定时器使用: (9) BUG发现: (10) 编程总结: (10) 时钟总结: (10) 汉字显示(外部SD卡字库): (11) 字符、汉字显示(内部FLASH) (12) 图片显示: (16) 触摸屏: (17) 引脚连接: (19) IO端口输入输出模式设置: Delay延时函数: delay_ms(u16 nms); delay_us(u32 nus); IO端口使用总结: 1)使能IO 口时钟。调用函数为RCC_APB2PeriphClockCmd()。 2)初始化IO 参数。调用函数GPIO_Init();

STM32的寄存器操作和C51的操作有很大的不同。 要操作STM32可以通过库函数操作,也可直接操作寄存器。 下面分析一下寄存器的操作,以控制PE4脚输出高低电平为例: 首先找到GPIOE的寄存器基地址,如下图:(STM32F4xx中文参考手册.pdf) 找到GPIOE的基地址为:0x4002 1000 我们要操作PE4脚,首先找到BSRR位操作寄存器,如下图 BSRR寄存器偏移地址为:0x18 由于我我们要操作PE4,即操作BSRR寄存器的第4位。 下面编写代码: 首先定义一个指向uint32_t型的指针,之后将该指针指向BSRR寄存器地址:

0x4002 1018 = 0x4002 1000 + 0x0000 00018 此时要操作BSRR寄存器,直接向*p赋值就可以了,如下图: 该代码即可实现PE4脚的高低电平输出。 假如不加延时,如下图: 系统也可正常运行,但在这两行处打断点调试,会发现无法进入,分析原因是两行代码中间无延时,实际运行时几乎可以忽略该代码的操作,所以编译器在编译时自动优化了,此时我们只需要在声明变量的时候为其指明__IO类型变量(volatile)即可,如下图: 上面的例子从最基本的寄存器分析操作STM32的,下面来分析下官方库函数是如何操作寄存器的。 首先定义GPIO寄存器组,通过结构体将寄存器组封包,如下图:

由于以上寄存器地址是连续的,所以可以分在一个结构体中 然后定义GPIOE寄存器组 这里的GPIOE_BASE为GPIOE寄存器的基地址:0x4002 1000 定义了GPIO_TypeDef类型指针GPIOE,并指向了GPIOE寄存器的基地址。此时我们要操作PE4脚状态只需要操作GPIOE->BSRR就可以了, 其它寄存器的操作参考上面的分析即可实现。

STM32F103单片机编程入门 一款单片机入门,至少四样:时钟、端口、定时、串口、中断。 系统时钟 RCC 系统内部有8M_RC晶振和32678Hz_RC晶振有大约2%的温飘。当外部有8M 晶振时,自动选择外部晶振,失效时自动切换成内部。程序自动倍频成72M。 如果用于通信最好加个外部晶振。判断是否使用外部晶振的方法:短接外部晶 振引脚观察工作情况。 分为两个桥,对应不同的外设,每个外设又可以单独设定时钟。 初步学习,先不用单独设定,均选用系统时钟72M。可根据情况做一步分频。 用到某外设时,配置RCC(打开外设时钟),一般只有一句指令。一般临时查找。呵呵,我也没找到好办法。 GPIO:RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOC , ENABLE); USART:RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); Timer2:RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 , ENABLE); 端口GPIO 端口配置思路: 1,先定义一个结构体配置成员参数值, 类型是GPIO_InitTypeDef,下划线是结构体名;结构体名是GPIO_InitStructure:名称可以自定义。在后面利用参数初始化函数时要一致。 2,打开相对应的端口时钟RCC。 3,声明要配置的管脚,可以用“|”复选 4,配置模式,4种输入,4种输出 5,配置管脚频率,一般都是50Mhz 6,最后调用函数GPIO_Init(GPIOA, &GPIO_InitStructure);第2个参数是,结构体地址指针。 Eg: GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOC , ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode =GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &GPIO_InitStructure); 一、串口 USART 串口配置思路: 1,定义结构体,类型是USART_InitTypeDef; 2,打开串口时钟,可以选择和端口GPIO一起 3,设置波特率,—————省去了复杂的烦人的计算 4,设置字长。8位?9位? 5,设置停止位。1位?2位? 6,设置校验位,奇偶?无? 7,设置硬件流(调制解调器用)————用不到设None就行 8,串口工作模式:收?发?都有? 9,调用函数USART_Init(USART1, &USART_InitStructure); 配置串口 10,开启串口中断USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);或USART_IT_TXE, ENABLE);收发中断的使能。 11,中断响应函数void USART1_IRQHandler(void) 12,取出缓存数据data=USART_ReceiveData(USART1);读操作自动清零串口接 受标志位。 13,发送数据USART_SendData(USART2,FromScreen[Ua1])和 while(USART_GetFlagStatus(USART2, USART_FLAG_TXE) == RESET);等待发送 完成(寄存器非空)。 Eg: USART_InitTypeDef USART_InitStructure;

学习STM32,官方提供一个库,但如果刚入手的话,肯定连功能都不太清楚,所以用不太习觉得还是操作寄存器来的直接,所以就整理了STM32的大部分寄存器共大家参考。版权归 基本上都是103的,其中107的RCC,USB,和以太网等一些不太重要的没有,但大部分都有我只是把数据手册中的寄存器整理了一下方便大家看。如果有什么不对的,请通知我,也好联系方式:qq 526083029 小树 PWR电源相关寄存器 PWR_CR(电源控制寄存器) 31302928272625242322212019181716 保留 1514131211109876543210保留DBP PLS[2:0]PVDE CSBF CWUF PDDS LPDS 8位:DBP取消后备区域写保护。复位值为0。定义:0为禁止写入,1为允许写入。注:如果rtc时钟是HSE/128,必须保持为1 7-5位:PVD电源电压检测器的电压阀值。定义:000(2.2v),001(2.3v),010(2.4v),011(2.5v),100(2.6v),101(2.7v),110(2.8v),4位:PVDE电源电压检测器(PVD)使能。定义:0(禁止PVD),1(开启PVD) 3位:CSBF清除待机位(始终输出为0)定义:0(无功效),1(清除SBF待机位(写) 2位:CWUF清除唤醒位(始终输出为0)定义:0(无功效),1(2个系统时钟周期后清除WUF唤醒位(写) 1位:PDDS掉电深睡眠(与LPDS位协同操作)定义:0(当CPU进入深睡眠时进入停机模式,调压器状态由LPDS位控制),1(CPU进入深睡眠时进入待机模0位:LPDS深睡眠下的低功耗(PDDS=0时,与PDDS位协同操作)定义:0(在待机模式下电压调压器开启),1(在待机模式下电压调压器处于低功耗模式 PWR_CSR(电源控制/状态寄存器) 31302928272625242322212019181716 保留 1514131211109876543210保留EWUP保留PVDO SBF WUF 8位:EWUP使能WKUP引脚。定义:0(WKUP为通用IO),1(用于待机唤醒模式,WKUP引脚被强置为输入下拉的配置(WKUP引脚上的上升沿将系统从待机模 注:复位时清除这一位 2位:PVDO-PVD输出(当PVD被PVDE位使能后该位才有效)定义:0(VDD/VDDA高于PLS[2-0]选定的PVD阀值),1(VDD/VDDA低于PLS[2-0]选定的PVD阀值 注:在待机模式下PVD被停止,因此,待机模式后或复位后,直到设置PVDE位之前,该位为0 1位:SBF待机标志位(该位由硬件设置,并只能由POR/PDR(上电/掉电复位)或设置电源控制寄存器(PWR_CR)的CSBUF位清除)定义:0(不在待机 0位:WUF唤醒标志(该位由硬件设置,并只能由POR/PDR(上电/掉电复位)或设置电源控制寄存器(PWR_CR)的CWUF位清除) 定义:0(没有唤醒事件),1(在WKUP引脚上发生唤醒事件或出现RTC脑中事件) 注:当WKUP引脚已经是高电平时,在(通过设置EWUP位)使能WKUP引脚时,会检测到一个额外事件 BKP——DRx(x=1...10)(备份数据寄存器) 1514131211109876543210 15-0位:备份数据由用户来写数据。注:BKP——DRx寄存器不会被系统复位,电源复位,待机唤醒所复位 它可以由备份域复位来复位或(如果入侵检测引脚TAMPER功能被开启时)由浸入引脚事件复位 BKP_RTCCR(RTC时钟校准寄存器) 1514131211109876543210

相关文档
最新文档