全息光栅的制作实验报告(免费)

全息光栅的制作实验报告(免费)
全息光栅的制作实验报告(免费)

实验六全息光学元件—全息光栅的设计与制作

全息光学元件(HOE)是指采用全息方法(包括计算全息方法)制作的,可以完成准直、聚焦、分束、成像、光束偏转光束扫描等功能的元件。在完成上述功能时,它不是基于光的反射和规律折射,而是基于光的衍射和干涉原理。所以全息光学元件又称为衍射元件。常用的全息光学元件包括全息透镜、全息光栅和全息空间滤波器等。

全息光栅是一种重要的分光元件。作为光谱分光元件,与传统的刻划光栅相比,具有以下优点:光谱中无鬼线、杂散光少、分辨率高、有效孔径大、生产效率高、价格便宜等,已广泛应用于各种光栅光谱仪中,供科研、教学、产品开发之用。作为光束分束器件,在集成光学和光通信中用作光束分束器、光互连器、耦合器和偏转器等。在光信息处理中,可作为滤波器用于图像相减、边沿增强等。本实验主要进行平面全息光栅的设计和制作实验。一. 实验目的

1.学习掌握制作全息光栅的原理和方法。

2.学习掌握制作全息复合光栅的原理和方法,观察其莫尔条纹。

3.通过实验制作一个低频全息光栅和一个复合光栅,并观察和分析实验结果。

二. 主要仪器及设备

1. 光学防震平台一个,支架、支杆及底座若干,旋转平台一个,带三维调节架及φ15 ~25μm

针孔的针孔滤波器组合两套。

2. 扩束透镜(20~40倍显微物镜)两个,已知焦距的透镜一个,反射镜若干,分束器一个,

光束衰减器两套。

3. 20mW He-Ne激光器一台。

4. 天津I型全息干板,显影、定影设备和材料。

5. 电子快门和曝光定时器一套。

三. 实验原理

全息光栅的制作原理是:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。采用不同的波面形状可得到不同用途的全息光栅,采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。下面介绍制作平面全息光栅的光

路布置、设计制作原理。

1. 全息光栅的记录光路

记录全息光栅的光路有多种,图1和图2是其中常见的两种光路。

在图1所示光路中,由激光器发出的激光经分束镜BS 后被分为两束,一束经反射镜M 1反射、透镜L 1和L 2扩束准直后,直接射向全息干板H ;另一束经反射镜M 2反射、透镜L 3和L 4扩束准直后,也射向全息干板H 。图中,S 和A 分别为电子快门和光强衰减器,电子快门与曝光定时器相连,用于控制曝光时间。两平行光束在全息干板上交叠干涉,形成平行等距直线干涉条纹。全息干板经曝光、显影、定影、烘干等处理后,就得到一个全息光栅。

M M 2 34图1 全息光栅记录光路之一

在对称光路布置下,光栅周期d 或空间频率0f 由下式确定:

012sin(/2)

d f λθ==, (1) 式中,θ是两束平行光之间的夹角,λ是激光波长。由(1)式可以看出,通过改变两束光之间的夹角可以得到不同空间周期或频率的全息光栅,当θ减小时,周期增大、频率d 0f 减小;对于低频光栅,θ很小,利用小角度近似,可以用下式来计算光栅的周期和频率:

01d f λθ

=≈, (2) 从图1可知,在θ值较小时,有tan(/2)/2/D l θθ≈=,将之代入(2)式可得:

012l d f D

λ==. (3) 实验中可用此式来估算低频光栅的空间周期和空间频率。

图2所示光路是马赫—曾德干涉仪光路。由激光器发出的激光经M 1反射、透镜L 1和L 2扩束准直后,变成平行光;该平行光束经分由束镜BS 1后被分为两束,一束经反射镜M 2反射,再透过分束镜BS 2后射向全息干板H ;另一束经反射镜M 3反射、再经分束镜BS 2反射后射向全息干板H 。图中S 是电子快门,与曝光定时器相连,用于控制曝光时间。两平行光束在全息干板上交叠干涉,形成平行等距直线干涉条纹。全息干板经曝光、显影、定影、烘干等处理后,就得到一个全息光栅。所形成的全息光栅的空间周期和空间频率仍然可用(1)式和(2)式确定。实验中可用图2(b)所示的方法来测量计算光栅的空间周期和空间频率,其中L 是焦距已知的透镜,把它放置在图2(a)所示光路中的全息干板H 处,在透镜后焦面上测量得到两平行光束会聚点之间的距离2D ,则有tan(/2)/2/D f θθ≈=成立,将之代入(2)式可得

012f d f D

λ==. (4) 采用图2所示光路制作全息光栅时,实验中可用此式来估算低频光栅的空间周期和空间频率。

1

2. 复合光栅

所谓复合光栅是指在同一张全息干板上记录两个栅线彼此平行但空间频率不同的光栅。复合(a) 记录光路

2

1

(b) 光栅空间频率测量计算方法 图2 全息光栅记录光路之二,(a )记录光路,(b )空间频率测量计算方法

光栅采用两次曝光方法来制作。设第一次曝光记录了空间频率为0f 的光栅,然后保持光栅栅线方向不变,仅改变光栅的空间频率,在同一张全息干板上进行第二次曝光,设第二次曝光记录的光栅的空间频率为'

0f 。合理选择两次曝光的曝光时间和显定影处理条件,经处理后就可得到一个复合全息光栅。复合光栅上将出现莫尔条纹,莫尔条纹的空间频率m f 是0f 和'0f 的差频,即 '00m 0f f f f =Δ=?, (5) 例如,若0f =100线/mm ,'

0f =102线/mm 或98线/mm ,则莫尔条纹的空间频率m f 为2线/mm 。这种复合光栅可用于光学图像微分运算。

拍摄复合光栅的光路仍可采用图1或图2所示的光路,为了改变第二次曝光时的光栅空间频率,只需改变两束平行光的夹角θ即可。改变夹角θ的方法有两种,一种是在图1所示光路中适当平移、并在水平方向旋转反射镜M 1和M 2,在图2所示光路中适当平移、并在水

平方向旋转反射镜M 2和M 3(也可旋转分束镜BS 2)

;另一种方法是在水平方向(以竖直方向为轴)旋转全息干板H ,如图3所示,以便改变夹角θ。其中,第二中方法操作简便,并且对于一定大小的0f Δ或m f ,其所需要的调节量较大,便于提高精度。

图3 旋转干板以改变光栅空间频率

由图3可知,当干板转动一个小角度?时,对应干涉条纹的空间周期变为:

''0011cos cos d d f f ??

===, (6) 莫尔条纹的空间频率为

'0000(1cos )m f f f f f ?=Δ=?=?. (7)

根据设定的0f 和0f Δ,由此式可计算出干板应转动的角度?。例如,若0f =100线/mm ,0f Δ=2线/mm ,则有

'000arccos 1130f f f ????Δ==???

?D . 实验中,?角的改变可以通过调节干板夹持架下面的带有刻度的旋转台来实现。

四. 实验内容与步骤

(一)实验内容

采用图2所示光路。(1)拍摄一个空间频率0f =100线/mm 的低频光栅,并采用衍射方法初步测量其空间频率;(2)拍摄一个复合光栅,第一次曝光记录光栅的空间频率为100线/mm ,第二次曝光记录光栅的空间频率为98线/mm ,即莫尔条纹的空间频率为2线/mm 。

(二)实验步骤

1.低频全息光栅的制作

(1)参数光路估算 根据要求制作的全息光栅的空间频率0f ,参照图2(b)、由(4)式计算出D 。实验中,632.8nm λ=,400mm f =。

(2)调光路布置和整 (a )首先保证从激光器出射的细激光束平行于台面;

(b )用细激光束调整光路中各元器件的高度和中心位置,并使各元器件的光轴平行于台面;(c )按图2所示光路先放置好反射镜M 1和电子快门S ,再用L 1、L 2及针空滤波器将细激光束扩束准直成平行光;(d )放置好分束镜BS 1,使平行光尽量以45度角入射,入射平行光被BS 1分成两

束;(e )放置反射镜M 2和M 3及分束镜BS 2,使BS 1、M 2、M 3和BS 2的位置近似成矩形;

(f )调节M 2和M 3或BS 2,使经BS 2反射和透射的平行光以一定角度在全息干板H (此时以毛玻璃屏代替)上交叠;(g )在全息干板处放置透镜L ,在透镜后焦面上放置毛玻璃屏,调节

M 2和M 3或BS 2,使两会聚点之间的距离达到要求的值;

(h )熟悉了解电子快门和曝光定时器的使用。光路调整完毕后,将各调整底座固定好,不要再碰各元器件。

(3)备显准影、定影材料 把三个适当大小的水槽依次放置好,按自左至右(或反之)依次在其中加入适量的显影液、清水和定影液。

(4)曝光 (a )按照激光器输出功率大小和所使用的全息干板来决定的曝光时间(一般

由由指导教师根据事先的实验给定),调整好曝光定时器;(b )记下光束在毛玻璃屏上交叠的位置,关闭电子快门和室内灯光,取下干板架上的毛玻璃屏、换上全息干板,使全息干板的感光药膜面对着入射光束,此后不要再碰光学平台及其上面的各元器件,稳定一分钟左右;(c )控制曝光定时器进行曝光。

(5)显处影、定影理 完成第(4)步后,将曝光后的全息干板取下来,按给定的显影、定影时间进行处理。处理完毕后用清水进行充分的冲洗,然后凉干,得到全息光栅。

(6)观实验结察果 (a )将凉干后的光栅放置在支架上,并在其后放置透镜L ,用其中的一束平行光束垂直照射,在透镜的后焦面上用毛玻璃屏接收,构成图4所示的光路。从毛玻璃屏上即可观察到光栅的衍射图样。

在观察屏上,如果只出现中间的三个亮点(0级和±1级),则说明所制作的光栅是正余弦型的;如果出现0级、±1级、±2级、±3级、"级亮点,则说明所制作的光栅是非正余弦型的;如果出现很多级亮点,则说明所制作的光栅接近矩形光栅。要想得到正余弦型光栅,需要在充分了解全息干板的感光特性的基础上严格控制曝光、显影和定影时间,一般情

况下制得的是非正余弦光栅。如果要制得矩形光栅,则要用高反差系数γ的全息干板;

高γ值干板的宽容度很小,可近似认为当曝光量达到某一值时就饱和曝光,曝光量小于该值时就不曝光,因而可形成接近矩形的光栅。此外,由于实验中所采用全息干板的感光药膜较薄,其厚度与光栅周期相比很小,所以实验所制作的光栅属于平面光栅。

(b )在图4所示光路中,测量得到±1级亮点之间的距离p ,就可根据下式计算得到光栅实测的空间频率,用''

0f 表示。此值应与设计要求值基本一致。 ''02p f f λ

=

. (8) 图4 全息光栅衍射图样观察及空间频率检测

2.复合全息光栅的制作

仍采用图2所示光路,所不同的是要进行两次曝光,并在两次曝光之间,将全息干板旋

f=100线/mm,其步骤与上述的(1)—(4)转适当角度。第一次曝光记录光栅的空间频率为

相同。在第一次曝光完毕后,按计算要求的角度?调节干板下面的旋转台,不要碰台面上的其它任何器件。调节完毕后稳定三十秒到一分钟,再进行第二曝光,时间与第一次曝光的时间相同。两次曝光完毕后,按上述的第(5)步进行显影、定影等处理,即可得到复合全息光栅。

对着普通光源观察,可以观察到复合光栅上的莫尔条纹,也可采用图4所示的光路测量光栅的空间频率,并与设计值进行比较。

参考文献

[1] 于美文,光全息学及其应用. 北京:北京理工大学出版社,1996.

[2] 苏显渝,李继陶,信息光学. 北京:科学出版社,1999.

全息光栅的制作实验报告

全息光栅的制作 一、实验任务: 设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。 二、实验要求: 1、设计三种以上制作全息光栅的方法,并进行比较; 2、设计制作全息光栅的完整步骤,拍摄出全息光栅; 3、给出所制作的全息光栅的光栅常数值,进行不确定度计算。误差分析并作实验小结。 三、实验的基本物理原理: 1、光栅产生的原理: 光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。 图1

2、测量光栅常数的方法: 用测量显微镜测量; 用分光计,根据光栅方程d·sin =k 来测量; 用衍射法测量。激光通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x及屏到光栅的距离L,则光栅常数d= L/△x。 四、实验的具体方案及比较 1、洛埃镜改进法: 基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅(如图2)。 优点:这种方法省去了制造双缝的步骤。 缺点:光源必须十分靠近平面镜。 图2 2、杨氏双缝干涉法: λ,其中:λ为波长,L为双缝到屏(全息干版)的距离,x?为= L? xd 双缝间距,d为光栅常数。 优点:使用激光光源相干条件很容易满足。 缺点:所需的实验仪器较复杂,不易得到。

光栅衍射实验实验报告

工物系 核11 李敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,(1)式中应取加号,即d (sin φ+sin ι)=mλ。以Δ=φ+ι为偏向角,则由三角形公式得 2d (sin Δ 2cos φ?i 2 )=mλ (3) 易得,当φ?i =0时,?最小,记为δ,则(2.2.1)变

为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角δ,就可以根据(4)算出波长λ。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 2.使用注意事项 (1)水银灯在使用中必须与扼流圈串接,不能直接接220V 电源,否则要烧 毁。 (2)水银灯在使用过程中不要频繁启闭,否则会降低其寿命。 (3)水银灯的紫外线很强,不可直视。 四、 实验任务 (1)调节分光计和光栅使满足要求。 (2)测定i=0时的光栅常数和光波波长。 (3)测定i=15°时的水银灯光谱中波长较短的黄线的波长

全息光栅实验

全息光栅的制作 引言 光栅是一种重要的分光元件,在实际中被广泛应用。许多光学元件, 例如单色仪、摄谱仪、光谱仪等都用光栅作分光元件;与刻划光栅相比, 全息光栅具有杂散光少、分辨率高、适用光谱范围宽、有效孔径大、生产效率高, 成本低廉等突出优点,并且制作简便、快速。 1、实验目的 1、了解全息光栅的原理 2、用马赫-曾德干涉仪搭光路并拍照 3、学习对全息光栅的后处理 2、基本原理 (一)全息光栅 当参考光波和物光波都是平面波且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。采用线性曝光可以得到正弦振幅型全息光栅。从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅,这是本节的内容。 (二)光栅制作原理与光栅频率的控制 用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片, 如图1所示,当波长为λ的两束平行光以夹角θ交迭时, 在其干涉场中放置一块全息干版H , 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。相邻干涉条纹之间的距离即为光栅的空间周期d (实验中常称为光栅常数) 。 有多种光路可以制作全息光栅。其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。我们常采用马赫-曾德干涉仪光路,如图2所示。

Ⅰ 图1 全息光栅制作实验光路图 它是由两块分束镜(半反半透镜)和两块全反射镜组成,四个反射面接近互相平行,中心光路构成一个平行四边形。从激光器出射的光束经过扩束镜及准直镜,形成一束宽度合适的平行光束。这束平行光射入分束板之后分为两束。一束由分束板反射后到达反射镜,经过其再次反射并透过另一个分束镜,这是第一束光;另一束透过分束镜,经反射镜及分束镜两次反射后射出,这是第二束光。在最后一块分束镜前方两束光的重叠区域放上屏P 。若Ⅰ,Ⅱ两束光严格平行,则在屏幕上不出现干涉条纹;若两束光在水平方向有一个交角,那么在屏幕的竖直方向出现干涉条纹,而且两束光交角越大,干涉条纹越密。当条纹太密时,必须用显微镜才能观察得到。在屏平面所在处放上全息感光干版,记录下干涉条纹,这就是一块全息光栅。 为了保证干涉条纹质量,光束I 和II 需要严格水平于光学平台,可在图中最后一个分束镜后面两束光的重叠区内放一透镜,将屏移到透镜的后焦面。细调两块反射镜使光束I 和II 在屏上的像点处于同一水平线上,这样I 、II 严格水平于平台。 然后,可转动两块反射镜或最后一块分束镜使两个像点重合。这时光束I 和光束II 处于重合状态,会聚角0=ω,应没有干涉条纹。撤去透镜后,微调两块反射镜或最后一块分束镜的水平调节旋钮,改变I 、II 的会聚角使其不为零,就可在光束I 和II 的重叠区看到较明显的干涉条纹。 准确的控制光栅常数(即光栅的空间频率),是光栅质量的重要指标之一。我们采用透镜成像的方法来控制制作的光栅的空间频率: Ⅱ Ⅰ

光栅衍射实验报告

字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm;绿色2=546.1nm;黄色两条3=577.0nm和4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比:

光栅衍射实验报告

光栅衍射实验报告 字体大小:大|中|小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 ------实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2. 加深对分光计原理的理解。 3. 用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其

示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

,常用的是复制光栅和 的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵 全息光栅。图1中的为刻痕的宽度,为狭缝间宽度,为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹 数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路 图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射, 所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜, 在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 岀现明纹时需满足条件 (2) (2 )式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2 )式光栅方程,若波长已知,并能测岀波长谱线对应的衍射角,则可以求岀光栅常数 d。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的 两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同 的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm; 绿色2=546.1 nm; 黄色两条3=577.0nm 和4=579.1 nm 。 衍射光栅的基本特性可用分辨本领和色散率来表征。

全息光栅的制作(实验报告)

全息光栅的制作 一.【实验目的】 1、了解全息光栅的原理; 2、复习用马赫-曾德干涉仪搭光路并拍照; 3、学习对全息光栅的后处理。 二.【主要仪器及设备】 1.光学防震平台一个,支架、支杆及底座若干,旋转平台一个,带三维调节架及φ15 ~25μm针孔的针孔滤波器组合两套。 2.扩束透镜(20~40 倍显微物镜)两个,已知焦距的透镜一个,反射镜若干,分束器一个,光束衰减器两套。 3. 20mW He-Ne 激光器一台。 4.天津I 型全息干板,显影、定影设备和材料。 5.电子快门和曝光定时器一套。 三.【实验原理】 全息光栅的制作原理是:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。采用不同的波面形状可得到不同用途的全息光栅,采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。采用线性曝光可以得到正弦振幅型全息光栅。从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅。有多种光路可以制作全息光栅。其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。我们常采用马赫-曾德干涉仪光路。 (一)马赫-曾德干涉仪法 (1)光栅制作原理与光栅频率的控制 用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片, 如图1所示,当波长为λ的两束平行光以夹角θ交迭时, 在其干涉场中放置一块全息干版H , 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。相邻干涉条纹之间的距离即为光栅的空间周期d(实验中常称为光栅常数) 。 图1相干光干涉形成光栅的示意图

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

云纹干涉法实验报告

云纹干涉法实验 时间:2008.12.18 朱建国 同组:张军徽 一、实验原理 两束准直的激光束A 和B 以一定的角度2α在空间相交时(图1a ),在其相交的重叠区域将产生一个稳定的具有一定空间频率f,栅距为p 的空间虚栅,虚栅的频率f 与激光波长λ和两束激光的夹角2α有关,并由下式决定 αλSin f 2= (1) 将涂有感光乳胶的全息干板置于图1a 所示的空间虚栅光场中,经曝光后,干板上将记 录下频率为f 的平行等距干涉条纹。经过显影以后的底板,将形成图1b 所示的波浪形表面,这个波浪形表面便构成了频率为f 的 位相型全息光栅,将这块光栅作为模板,便可用它在试件上复制相同频率的位相型试件栅。云纹干涉法采用的光栅频率f 通常为1200线/mm ,也 有采用600和2400线/mm 的.通过使全息干板转动90O 进行两次曝光可获得正交型光栅,则可用于二维面内位移场和应变场测量 . 图2 云纹干涉法原理图

二、云纹干涉仪 将已转移好试件栅的试件置于云纹干涉仪的光路系统中,调整好光路,便可对试件的位移场和变形进行测量。云纹干涉仪的光路如图7所示,所用激光器通常为氦氖激光器,其波长λ=0.633μm 。为了能方便地测得U 和V 两组位移场,仪器中包含用以测量X 方向水平位移场(U 场)的水平光路系统,和用以测量Y 方向垂直位移场(V 场)的垂直光路系统。两组光路可分别独立使用. 由激光器产生的激光束经分光器和光纤耦合器并经准直镜分成四束准直光,分别投射到四个反射镜M 1、M 2、M 3、M 4上。调节反射镜M 1和M 2可使两束准直光O 1和O 2按方程(4)的要求投射到试件栅上,并调节安装试件的多维调节架,使试件栅的法线方向正好平分两束准直光O 1和O 2的夹角。此时O 1和O 2的一级衍射波将沿试件栅的法线方向传播,并经成像透镜L 将试件栅和两束衍射波的干涉条纹成像在CCD 摄像机的靶面上,实时地在显示器上显示,并由计算机存储和处理。当然,当试件未受力,试件栅比较规整,屏幕上应不出现条纹。如果干涉条纹较多,说明光路没有调节好。经过反复调节反射镜和试件调节座,可以使干涉条纹达到最少。此时的干涉条纹图称作零场条纹图。零场条纹图的条纹越少表明光路调节得越好,实验结果也将越准确。在调节光路系统时还必须注意试件栅的主方向(如X)是否和O 1和O 2所在平面,即水平面重合。否则,该试件栅主方向与水平面的夹角的存在表明试件栅具有相对于光路系统的面内转动位移,因而会出现反映这一转动位移场的转角云纹条纹,这将不能获得准确的零场条纹图。通过调节固定试件的调节座,转动试件栅,可以方便地消除转角云纹条纹。同理,通过调节垂直方向的两个反射镜M 3和M 4可以使入射光O 3和O 4调节到正确方向,使垂直方向的零场干涉条纹图的干涉条纹也最少。 光路系统调节好以后,对试件施加载荷并产生变形。屏幕上将实时地出现与试件相对应的位移条纹图。由于加载时试件有时会产生刚体位移,包括刚体平移和刚体转动。由此而产生的附加干涉条纹是不需要的。通过调节夹持试件的多维调节座,可以将与刚体位移有关的干涉 图8 云纹干涉仪光路系统 P M 3 M 1 M 4 O 3 O 2 α αO 1 O 4 Y X Z CCD M 2 L

全息光栅的制作(B5纸张_非常完整版_BJTU物理设计性实验报告)

全息光栅的制作 一实验任务 设计制作全息光栅并测出其光栅常数(要求所制作的光栅不少于100条/毫米) 二实验要求 1.设计三种以上制作全息光栅的方法并进行比较(应包括马赫- 曾德干涉法); 2.设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注 意事项),拍摄出全息光栅; 3.给出所制作的全息光栅的光栅常数值,计算不确定度、进行误 差分析并做实验小结。 三实验基本原理 1.全息光栅 全息光学元件是指基于光的衍射和干涉原理,采用全息方法制作的,可以完成准直、聚焦、分束、成像、光束偏转、光束扫描等功能 的元件。光全息技术主要利用光相干迭加原理,简单讲就是通过对复 数项(时间项)的调整,使两束光波列的峰值迭加,峰谷迭加,达到 相干场具有较高的对比度的技术。常用的全息光学元件包括全息透镜、全息光栅和全息空间滤波器等。其中全息光栅就是利用全息照相技术 制作的光栅,在科研、教学以及产品开发等领域有着十分广泛用途。 一般在光学稳定的平玻璃坯件上涂上一层给定型厚度的光致抗蚀 剂或其他光敏材料的涂层,由激光器发生两束相干光束,使其在涂层 上产生一系列均匀的干涉条纹,光敏物质被感光,然后用特种溶剂溶 蚀掉被感光部分,即在蚀层上获得干涉条纹的全息像,所制得为透射 式衍射光栅。如在玻璃坯背面镀一层铝反射膜,可制成反射式衍射光栅。 作为光谱分光元件,全息光栅与传统的刻划光栅相比,具有以下 优点:光谱中无鬼线、杂散光少、分辨率高、有效孔径大、价格便宜

等;全息光栅已广泛应用于各种光栅光谱仪中。作为光束分束器件,全息光栅在集成光学和光学通信中用作光束分束器、光互连器、耦合器和偏转器等;在光信息处理中,可作为滤波器用于图像相减、边沿增强等。 2. 光栅条纹 光栅,也称衍射光栅,是基 于多缝衍射原理的重要光学元件。 光栅是一块刻有大量平行等宽、 等距狭缝(刻线)的平面玻璃或 金属片,其狭缝数量很大,一般 每毫米几十至几千条。单色平行 光通过光栅会形成暗条纹很宽、明条纹很细的图样,而这些锐细而明亮的条纹称作谱线。谱线的位置 随波长而异,因此当复色光通过光栅时,不同波长光所产生的谱线在不同位置出现而形成光谱。也就是说,光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。 3. 光栅方程 光栅方程描述了光栅结构与光的入射角和衍射角之间的关系,它表示当衍射角满足的时候发生干涉加强现象,其中d 即为光栅常数。而当光以入射角入射时,光栅方程写为 。 4. 光栅常数 光栅常数是光栅两刻线之 间的距离。一个理想的光栅可 以认为由一组等间距的无限长 无限窄的狭缝组成,而狭缝之 间的间距称为光栅常数,在图 2中用d 表示。 sin d k θλ=θsin d k θλ=i θ(sin sin )i d k θ θλ+=图1 光通过光栅形成光谱 图2 光栅光路

全息光栅

全息光栅的制作 全息光学元件是指采用全息方法(包括计算全息方法)制作的,可以完成准直、聚焦、分束、成像、光束偏转光束扫描等功能的元件。在完成上述功能时,它不是基于光的反射和规律折射,而是基于光的衍射和干涉原理。所以全息光学元件又称为衍射元件。常用的全息光学元件包括全息透镜、全息光栅和全息空间滤波器等。 全息光栅是一种重要的分光元件。作为光谱分光元件,与传统的刻划光栅相比,具有以下优点:光谱中无鬼线、杂散光少、分辨率高、有效孔径大、生产效率高、价格便宜等,已广泛应用于各种光栅光谱仪中,供科研、教学、产品开发之用。作为光束分束器件,在集成光学和光通信中用作光束分束器、光互连器、耦合器和偏转器等。在光信息处理中,可作为滤波器用于图像相减、边沿增强等。本实验主要进行平面全息光栅的设计和制作实验。 一.实验目的: 1.学习掌握制作全息光栅的原理和方法。 2.学习掌握制作全息复合光栅的原理和方法,观察其莫尔条纹。 3.通过实验制作一个低频全息光栅和一个复合光栅,并观察和分析实验结果。 二.主要仪器及设备: 1. 光学防震平台一个,支架、支杆及底座若干,旋转平台一个,带三维调节架及φ15 ~25μm 针孔的针孔滤波器组合两套。 2. 扩束透镜(20~40 倍显微物镜)两个,已知焦距的透镜一个,反射镜若干,分束器一个,光束衰减器两套。 3. 20mW He-Ne 激光器一台。 4. 天津I 型全息干板,显影、定影设备和材料。 5. 电子快门和曝光定时器一套。 三.实验原理: 全息光栅的制作原理是:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。采用不同的波面形状可得到不同用途的全息光栅,采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。下面介绍制作平面全息光栅路布置、设计制作原理。 1.全息光栅的记录光路。 记录全息光栅的光路有多种,图 1 和图 2 是其中常见的两种光路。在图 1 所示光路中,由激光器发出的激光经分束镜BS 后被分为两束,一束经反射镜M1反射、透镜L1和L2扩束准直后,直接射向全息干板H;另一束经反射镜M2反射、透镜L3和L4扩束准直后,也射向全息干板H。图中,S 和A 分别为电子快门和光强衰减器,电子快门与曝光定时器相连,用于控制曝光时间。两平行光束在全息干板上交叠干涉,形成平行等.距直线干涉条纹。全息干板经曝光、显影、定影、烘干等处理后,就得到一个全息光栅。

2020年光栅衍射实验报告范文

实验时间2019 年 月 日签到序号 【进入实验室后填写】 福州大学 【实验七】 光栅的衍射 (206 实验室) 学学院 班班级 学学号 姓姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前 10 分钟进实验室 实验预习部分【实验目的】 】 【实验仪器】( 名称、规格或型号) 【实验原理】(文字叙述、主要公式、衍射的原理图)实验预习部分【实验步骤和注意事项】 】 实验预习部分

一、 巩固分光计的结构(P 197 ,图25-10 ) 载物台 6 7 25 望远镜11 12 15 16 17 平行光管2 27 调节分光计,要求达到(验调节步骤参阅实验25 ) ⑴⑴望远镜聚焦于无穷远,且其光轴与仪器转轴垂直。 ⑵⑵平行光管产生平行光,且其光轴与望远镜光轴同轴等高,狭缝为宽度在望远镜视场中约为1 mm (狭缝宽度不当应由教师调节) 二、光栅位置的调节 1 、光栅平面与平行光管轴线垂直 ①①转动望远镜使竖直叉丝对准 。 ,然后固定望远镜位置。 ②放置光栅时光栅面要垂直

。 ③③调节 螺丝直到望远镜中看到光栅面反射回来的绿色十字叉丝像与 重合。 2 、光栅上狭缝与仪器转轴平行。 松开望远镜止动螺钉,向左(或向右)转动望远镜,观察各谱线,调节被螺丝使各谱线都被分划板视场中央的水平叉丝平分。 3 、反复调节直到1 和2 两个要求同时满足! 数据记录与处理【一】测定光栅常数 测出第一级绿光谱线的衍射角 绿=541 nm k=1 置望远镜位置 T 1 置望远镜位置 T 2 1 1 2 2 2 1 2 1 1- -41 1′= rad) (弧度) 10sin 绿 kd

光栅制作实验

全息光栅的制作及其参数测量 浏览次数:652次悬赏分:20 |解决时间:2010-12-16 23:14 |提问者:Dreamer成仙 请高人告诉我实验原理和方法。最好有图!!还有下列问题求助: 1.要拍摄一张优质的全息光栅要注意哪些主要环节? 2.为什么制作全息光栅的显影密度要比制作全息图像时要大,即显影后的颜色要深?显影密度的具体数值与光栅常熟的大小有什么关系? 3.拍摄全息光栅时,两束平行光的光程差大好还是小好?夹角大好还是小好? 4.评价一张全息光栅主要特性参数有哪些? 最佳答案 全息光栅的制作(实验报告)完美版 标签:光栅干片发散镜双缝白屏教育 设计性试验看似可怕,但实际操作还是比较简单的~ 我的实验报告,仅供参考~ 实验报告封面 全息光栅的制作 一、实验任务 设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。 二、实验要求 1、设计三种以上制作全息光栅的方法,并进行比较。 2、设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注意事项),拍摄出全息光栅。 3、给出所制作的全息光栅的光栅常数值,进行不确定度计算、误差分析并做实验小结。 三、实验的基本物理原理 1、光栅产生的原理

光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。 图1 2、测量光栅常数的方法: 用测量显微镜测量; 用分光计,根据光栅方程d·sin =k 来测量; 用衍射法测量。激光通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x及屏到光栅的距离L,则光栅常数d= L/△x。 四、实验的具体方案及比较 1、洛埃镜改进法: 基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅。 优点:这种方法省去了制造双缝的步骤。 缺点:光源必须十分靠近平面镜。 实验原理图: 图2 2、杨氏双缝干涉法: 基本物理原理:S1,S2为完全相同的线光源,P是屏幕上任意一点,它与S1,S2连线的中垂线交点S'相距x,与S1,S2相距为rl、r2,双缝间距离为d,双缝到屏幕的距离为L。 因双缝间距d远小于缝到屏的距离L,P点处的光程差: 图3 δ=r2-r1=dsinθ=dtgθ=dx/L sinθ=tgθ 这是因为θ角度很小的时候,可以近似认为相等。 干涉明条纹的位置可由干涉极大条件δ=kλ得: x=(L/d)kλ,

光栅衍射实验实验报告

工物系 核11 敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,

(1)式中应取加号,即。以为偏向角,则由三 角形公式得 (3) 易得,当时,?最小,记为 ,则(2.2.1)变为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角,就可以根据(4) 算出波长。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 颜色 紫 绿 黄 红 波长/nm 404.7 491.6 577.0 607.3 407.8 546.1 579.1 612.3 410.8 623.4 433.9 690.7

光栅光谱仪的使用实验报告-董芊宇

实验报告 题目: 光栅光谱仪的使用 姓名董芊宇 学院理学院 专业应用物理学 班级2013214103 学号2013212835 班内序号22 2015年9 月

一. 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 二. 实验原理 1.闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(φ=90?)光栅衍射的一般特性。当入射角φ=90?时,衍射强度公式为 22 2 sin sin sin I u Nv A u v = ???? ? ????? (9.1) 光栅衍射强度仍然由单缝衍射因子和多缝干涉因子共同决定。只不过此时 ()sin sin a u π φθλ= + (9.2) ()sin sin d v πφθλ =+ (9.3) 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号,单缝衍射中央主 极大的条件是0u =,即sin sin φθ=-或?θ=-。将此条件代入到多缝干涉因子中,恰好满足0v =,即0级干涉最大条件。这表明单缝衍射中央极大与多缝衍射0级最大位置是重合的,光栅衍射强度最大的峰是个波长均不发生散射的0级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿形的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”,与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状无关。所以当光栅常数及入射角与平面光栅一样时,两者0级极大的角度也一样。闪耀光栅的沟槽斜面相当于单缝,衍射条件与锯齿面法线有关。中央极大的衍射方向与入射线对称于齿面法线N ,于是造成衍射极大与0级干涉极大方向不一致。适当调整光栅参数,可以使光栅衍射的某一波长最强峰发生在1级或其他高级干涉极大的位置。 2.非平衡光辐射(发光) 处于激发态上的电子处于非平衡态。它向低能级跃迁时就会发光。设电子跃迁1 E 和0E ,发 射光子的能量为 10hc hv E E E λ ==-=? (9.4) 电子受光辐射激发到高能态上导致的发光成为光致发光。光致发光时,电子在不同能级间跃迁常见如下情况。 (1) 电子受光辐射激发,然后以无辐射情况跃迁到低能级。(无发射跃迁释放的能量转化成热能

光栅的制作方法

光栅的制作方法 一般说来,任何一种具有空间周期性的衍屏的光学元件都可以称为光栅,如果在一块镀铝的光学玻璃毛胚上刻划一系列等宽,等距而平行的狭缝就是透射光栅。如在一块镀铝的光学玻璃毛胚上刻出一系列剖面结构象锯齿形状,等距而平行的刻线这就是一块反射光栅。 现代光栅是一系列刻划在铝膜上的平行性很好的划痕的总和,为了加强铝膜与玻璃板的结构的结合力,在它们之间镀一层铬膜或钛膜。在光学光谱区采用光栅刻划密度为0. 5—2400条/毫米。目前大量采用的600条/毫米,1200条/毫米,2400条/毫米。 为了保持划痕间距d无变化,因此对衍射光栅的刻划条件要求很严。经验证明,对光栅刻划室的温度要求保持0.01—0.0313变化范围,光栅刻划机工作台的水平振动不超过1—3微米,光栅刻划室应该清洁,要避免通风带来的灰尘,光栅刻划室的相对湿度不应超过60—70%。光栅毛胚大多应有学玻璃和熔融石英研磨制成,毛胚应该加工得很好,其表面形状和局部误差要求甚严。任何表面误差将使衍射光束的波前发生变形,从而影响成象质量和强度分布。为了提高真空紫外区反射率,铝膜上还镀上一层氟化镁。 制造光栅的方法有机械刻划,光电刻划,复制方法和全息照相刻划四种。机械刻划是古老方法,但可靠,间隙刻划技术比较成熟。但要刻划一块100X100mm 的光栅(刻划机的刻划速度为15—25条/分)计算须要4个昼夜。因此要求机器、环境在长时间内保持精确恒定不变。 光电刻划就是利用光电控制的方法可以在某种程度上排除光栅刻划过程中机械变动和环境条件改变所产生的各种刻划误差。它一方面提高了光栅刻划质量,另方面也能在一定程度上简化机械结构、降低个别零件的精度和对周围环境的要求。光栅复制光栅刻划时间长和效率低,因此成本很高,不能满足光谱仪器的需求。目前复制法有二种:一次复制法就是真空镀膜法。二次复制法是明胶复制法。一次复制法是一次制成,而二次复制法是先复制母光栅的划痕,然后用该划痕印划在毛胚的明胶上。二次复制的工艺比较烦琐,但需要设备和条件都比较简单,明胶法复制光栅质量是比母光栅差些。 还有刻制光栅的方法叫全息照相刻划法,其原理如下:二束相干光重叠会产生干涉条纹,其间距为。D=λ/2sinα其中入为光束波长,α为两束光干涉前的夹角。如图示激光的射出的相干光束,通过发散物镜O和针孔S,再经抛物镜P反射后落人两块平面反射镜P1和P2。由于平面镜P1和P2的反射使已分离的两束光成交于E面,其交角为2α。这两束光是相干的所以在正面产生干涉条纹,条纹的间距d。若在面上放置一块予先涂上抗光蚀层的毛胚,则在蚀层获得干涉条纹的空间潜象,经显影后则在毛胚上获得干涉条纹的立体象(全息象),这就是透射衍射光栅。镀反射膜后可成为反射式衍射光栅。光栅的质量与膜层厚度同光

光栅衍射实验报告

光栅衍射实验报告 字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期:20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为

光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入 射时衍射光路 图3光栅衍射光谱示意图图4载物台当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色 1=435.8nm;绿色 2=546.1nm;黄色两条 3=577.0nm和 4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比: (3)

全息光栅制作

实验三 全息光栅的制作 【实验目的】 1、了解用全息方法制作一维光栅和二维正交光栅的基本原理。 2、掌握全息实验光路的基本调节方法和制作技巧。 3、初步了解全息干涉的处理方法。 【实验原理】 由光的干涉原理可知,两束平行的相干光干涉,干涉场是一组明暗相间的等间隔的干涉条纹,其周期由两束平行线的夹角和光波波长确定,若将全息记录干版置于该干涉场中,则干版上记录到得干涉条纹将呈现等间隔的干涉直线条纹,这就是全息光栅。采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。下面介绍制作平面全息光栅的制作。 设两束平行光的夹角为θ,光波波长为λ,且两束平行光对于全息干版呈对称入射,如下图所示。显然,干板记录的全息光栅的透射率应该呈余弦函数分布,称为余弦光栅。由干涉原理可知,全息光栅周期d 由下式确定: ( ) 012sin /2d f λθ== (1) 0f 为光栅空间频率,用来表征光栅线密度特性,其单位通常为lp/mm (lp 表示“线对”,指一条亮纹和一条暗纹构成的一个线对,对应光栅的一个周期)。由式1可知,通过改变两束光之间的夹角可以得到不同空间周期或频率的全息光栅。对于低频光栅,两束平行光的夹角很小,利用小角度近似,可以用下式来计算光栅的周期和频率: 01d f λθ =≈ (2) 1. 全息光栅的记录光路 记录全息光栅的光路有多种,图1和图2是其中常见的两种光路。 图1所示光路中

BS :分光比为1:1的分束镜 S 、A :电子快门和光强衰减器(不用) M1、M2:全反镜 L1、L2和L3、L4:两路扩束准直 H :全息干板 图1 全息光栅记录光路之一 从图 1可知,θ很小时,有()tan /2/2/D l θθ≈=,则012l d f D λ= ≈,实验中可用此式来估算低频光栅的空间周期和空间频率。 图2所示光路是马赫—曾德干涉仪光路。利用该光路所形成的全息光栅的空间周期和空间频率仍可用式(1)和式(2)来确定。实验中可用图2(b)所示的方法来测量计算光栅的空间周期和空间频率,其中L 时焦距已知的透镜,把它放在图2(a)所示光路中的全息干板H 处,在透镜后焦面上测量得到两束平行光束会聚点之间的距离2D ,则有()tan /2/2/D f θθ≈=成

全息光栅的制作方法

课程结业论文 课程名称:普通物理实验 院系专业:物理学系物理学学号:201211141928 姓名:马宏志

用全息照相法制作光栅及实验结果的分析 作者:马宏志(201211141928) 单位:北京师范大学物理系2012级师范班 论文摘要 光栅是具有周期性透光性质的光学分光元件,不透明屏上N 个等宽等间距的狭缝就形成了一个光栅。全息光栅的基本原理是全息照相技术。光全息技术,主要是利用光相干叠加原理,简单地将就是通过对复数项(时间项)的调整,使两束光波列的峰值叠加,峰谷叠加,达到相干场具有较高的对比度的技术。利用相干光叠加,在记录平面上形成亮暗相间的的干涉条纹,再经过显影,定影处理,就形成了呈平行排列的光栅,一般单位宽度上的光栅数密度很大,从几百条到几千条不等。制作好的光栅可以用来测定它的光栅常数,还可以用作分光器件使白光发生色散,利用光栅方程sin d k θλ=测出不同色光的波长。最后利用空间滤波原理对全息照相技术加以改进,消除不利条件的影响,提高照片质量。 关键词:全息照相、光的干涉、空间滤波、光栅、光栅常数。 引言 光学是物理学的一个很重要的分支,光学中有很多奇特的光现象和许多精密的光学元件。这些光学元件的制作都要建立在严密的科学理论之上,同时也需要很高的实验操作技能。光栅作为一种精度很高且很重要的光学元件,在许多领域有着很广泛的作用。光栅的研究开始于18世纪中叶,主要代表人物有李敦豪斯、夫琅和费,伍德,迈克尔逊等人。最初的光栅种类少,精度

不高,每毫米的光栅条数只有几到几十条,主要是刻画光栅和复制光栅。随着科技的发展,光栅制作技术日渐成熟。伽伯发明的全息照相技术是光栅制作史上一次伟大的革命,通过使两束激光在胶片上叠加,形成亮暗相间的干涉条纹,再用化学试剂洗去亮条纹区域,由于光波很短,条纹间距很小,这就为制作高精度的光栅创造了有利的条件。 光栅种类较多,常见的有反射光栅和透射光栅,用途也十分广泛,在很多领域起着极其重要的作用。光学是我们本学期的专业课,光栅这一节内容比较重要,在课堂上我学的也很认真,总体上比较深刻地理解了光栅的基本知识和制作原理。物理学是一门理论联系实践的科学,理论应当和实验探索有机地结合起来,才能有更多的突破,所以我认为用全息照相法制作光栅的实验能够进一步加深我对光栅知识的理解,同时能够提高动手能力,此外还能对当今比较前沿的科技也有一点基本了解,可以说是一举多得。 本次实验我们用全息照相原理制作振幅型平面透射光栅。实验中用到的仪器有防震桌,激光器,光电计时器(快门),光电接收器,针孔低通滤波器,准直镜(凸透镜),分束镜两面,全反镜两面,全息干板,全息干片若干,架子,刻度尺,汞灯,白屏,线,显影液,定影液等。 实验步骤 一、首先调节各仪器等高共轴,调节等高共轴的方法是打开激光,粗条各仪器致等高共轴,然后把仪器放在不同远近的位置,通过比较光点的位置来调节激光器的俯仰角和左右偏向角,直至光点在近处和远处不发生变化,之后运用在反射光自准法,通过调节元件的俯仰角和左右偏向角让入射光和反射光重合。用同样的方法依次调节。

相关文档
最新文档