非晶态材料

非晶态金属材料综述

非晶态金属材料 一,非晶态金属材料 非晶态金属材料是指在原子尺度上结构无序的一种金属材料。大部分金属材料具有很高的有序结构,原子呈现周期性排列(晶体),表现为平移对称性,或者是旋转对称,镜面对称,角对称(准晶体)等。而与此相反,非晶态金属不具有任何的长程有序结构,但具有短程有序和中程有序(中程有序正在研究中)。一般地,具有这种无序结构的非晶态金属可以从其液体状态直接冷却得到,故又称为“玻璃态”,所以非晶态金属又称为“金属玻璃”或“玻璃态金属”。 制备非晶态金属的方法包括:物理气相沉积,固相烧结法,离子辐射法,甩带法和机械法。 二,非晶态金属的特点 由于传统的金属材料都以晶态形式出现。但这类金属熔体,由于极快的速率急剧冷却,例如每秒钟冷却温度大于100万度,冷却速度极快,而高温下液态时原子呈无序状态,因被迅速“冻结”而形成无定形的固体,此时这称为非晶态金属;由于其内部结构与玻璃相似,故又称金属玻璃。 这种材料强度和韧性兼具,即强度高而韧性好,一般的金属在两点上是相互矛盾的,即强度高而韧性低,或与此相反。而对于非晶态金属,其耐磨性也明显地高于钢铁材料。 非晶态金属还具有优异的耐蚀性,远优于典型的不锈钢,这可能是因为其表面易形成薄而致密的钝化膜;同时由于其结构均匀,没有金属晶体中经常存在的晶粒、晶界和缺陷,所以不易产生引起电化学腐蚀 并且非晶态金属还具有优良的磁学性能;由于其电阻率比一般金属晶体高,可以大大减少涡流损失,低损耗、高磁导,故使其成为引人注目的新型材料,也被誉为节能的“绿色材料”。 另外,非晶态金属有明显的催化性能;它还可作为储氢材料。 但是非晶态合金也有其致命弱点,即其在500度以上时就会发生结晶化过程,因而使材料的使用温度受到限制。还有其制造成本较高,这点也限制非晶态金属广泛应用。

非线性光学材料小结

非线性光学材料 一、概述 20 世纪60 年代, Franken 等人用红宝石激光束通过石英晶体,首次观察到倍频效应,从而宣告了非线性光学的诞生,非线性光学材料也随之产生。 定义:可以产生非线性光学效应的介质 (一)、非线性光学效应 当激光这样的强光在介质传播时,出现光的相位、频率、强度、或是其他一些传播特性都发生变化,而且这些变化与入射光的强度相关。 物质在电磁场的作用下,原子的正、负电荷中心会发生迁移,即发生极化,产生一诱导偶极矩p 。在光强度不是很高时,分子的诱导偶极矩p 线性正比于光的电场强度E。然而,当光强足够大如激光时,会产生非经典光学的频率、相位、偏振和其它传输性质变化的新电磁场。分子诱导偶极矩p 就变成电场强度E 的非线性函数,如下表示: p = α E + β E2 + γ E3 + ?? 式中α为分子的微观线性极化率;β为一阶分子超极化率(二阶效应) ,γ为二阶分子超极化率(三阶效应) 。即基于电场强度E 的n 次幂所诱导的电极化效应就称之为n 阶非线性光学效应。 对宏观介质来说, p = x (1) E + x(2) E2 + x (3)E3 + ?? 其中x (1) 、x(2) 、x(3) ??类似于α、β、γ??,表示介质的一阶、二阶、三阶等n 阶非线性系数。因此,一种好的非线性光学材料应是易极化的、具有非对称的电荷分布的、具有大的π电子共轭体系的、非中心对称的分子构成的材料。另外,在工作波长可实现相位匹配,有较高的功率破环阈值,宽的透过能力,材料的光学完整性、均匀性、硬度及化学稳定性好,易于进行各种机械、光学加工也是必需的。易于生产、价格便宜等也是应当考虑的因素。 目前研究较多的是二阶和三阶非线性光学效应。 常见非线性光学现象有: ①光学整流。E2项的存在将引起介质的恒定极化项,产生恒定的极化电荷和相应的电势差,电势差与光强成正比而与频率无关,类似于交流电经整流管整流后得到直流电压。 ②产生高次谐波。弱光进入介质后频率保持不变。强光进入介质后,由于介质的非线性效应,除原来的频率ω外,还将出现2ω、3ω、……等的高次谐波。1961年美国的P.A.弗兰肯和他的同事们首次在实验上观察到二次谐波。他们把红宝石激光器发出的3千瓦红色(6943埃)激光脉冲聚焦到石英晶片上,观察到了波长为3471.5埃的紫外二次谐波。若把一块铌酸钡钠晶体放在1瓦、1.06微米波长的激光器腔内,可得到连续的1瓦二次谐波激光,波长为5323埃。非线性介质的这种倍频效应在激光技术中有重要应用。 ③光学混频。当两束频率为ω1和ω2(ω1>ω2)的激光同时射入介质时,如果只考虑极化强度P的二次项,将产生频率为ω1+ω2的和频项和频率为ω1-ω2的差频项。利用光学混频效应可制作光学参量振荡器,这是一种可在很宽范围内调谐的类似激光器的光源,可发射从红外到紫外的相干辐射。 ④受激拉曼散射。普通光源产生的拉曼散射是自发拉曼散射,散射光是不相干的。当入射光采用很强的激光时,由于激光辐射与物质分子的强烈作用,使散射过程具有受激辐射的性质,称受激拉曼散射。所产生的拉曼散射光具有很高的相干性,其强度也比自发拉曼散射光强得多。利用受激拉曼散射可获得多种新波长的相干辐射,并为深入研究强光与

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

非晶态合金 玻璃态金属

非晶态合金玻璃态金属 作者:佚名 英文名称:metal-glass;amorphous alloy 说明:又称非晶态合金或玻璃态金属。使金属熔体在瞬间冷凝,以致金属原子还处在杂乱无章的状态,来不及排列整齐就被“冻结”。它兼有金属和玻璃的优点,又克服了各自的弊病。金属玻璃具有一定的韧性和刚性,强度高于钢,硬度超过高硬工具钢,断裂强度也比一般的金属材料高得多。由于避免了晶间腐蚀,有良好的化学稳定性。有些还有良好的磁学性质。 可用以制造高压容器、火箭等关键部位的零部件、机械振荡器、电流脉冲变压器、磁泡器件等。非晶态软磁材料还可用以制造录音、录像的磁头、磁带。 人们赞扬金属玻璃为“敲不碎、砸不烂”的“玻璃之王”。美国、西欧称之为“21世纪的材料”。 在大多数人想到玻璃时,玻璃板的概念便迅速跃人我们的脑海中。但在一定的条件下,金属也能做成玻璃,例如:这种玻璃可作为电力变压器和高尔夫球棍的理想材料。巴尔的摩港,约翰斯·郝彼科恩斯(JohnsHopkins)大学研究员FoddHufnagel正在研究一种生产超强,富有弹性和磁性特点的金属玻璃的方法。Hufnagel希望了解,金属玻璃形成时,发生溶化金属冷却成固体时的金相转变。 对科学家来讲,玻璃是任何能从液体冷却成固体而无结晶的材料。大多数金属冷却时就结晶,原子排列成有规则的形式称作品格。如果不发生结晶并且原子依然排列不规则,就形成金属玻璃。 不象玻璃板,金属玻璃不透明或者不发脆,它们罕见的原子结构使它们有着特殊的机械特性及磁力特性。普通金属由于它们品格的缺陷而容易变形或弯曲导致永久性地失形。对比之下,金属玻璃在变形后更容易弹回至它的初始形状。缺乏结晶的缺陷使得原铁水的金属玻璃成立有效的磁性材料。 在国家科学基金和美国军队研究总局的支助下,Hufnagel已建立了试验新合金的实验室。他试图创建一种在高温下将依然为固体并不结晶的合金金属玻璃,使它能成为发动机零件有用的材料。该材料也可用于穿甲炮弹等军事场合。不象大多数结晶金属炮弹,在冲击后从平的形状变为蘑菇形状,Hufnagel相信;金属玻璃弹头的各边将转向并给出最好穿透力的削尖射弹。 制造厚的、笨重形状的金属玻璃是困难的,因为大多数金属在冷却时会突然出现结晶现象,制造玻璃,金属必会变硬,因为品格成形时会改变,从纯金属—诸如铜、镍去创建玻璃,它将以每秒钟一万亿摄氏度的速率下冷却。 在1950年,冶金学家学会了通过混入一定量的金属一诸如镍和锆一去显出结晶体。当合金的薄层在每秒一百万摄氏度的速率下冷却时,它们形成金属玻璃。但因为要求迅速冷却,它们只能制造成很薄的条状物、导线或粉末。 最近,科学家通过混合四到五种不同大小原子的元素,去形成诸如条状的多种多样的金属玻璃。变化原子大小使它混合而形成玻璃从而变得更韧。这些新合金的用途之一是在商业上用来制造高尔夫球棍的头。 通常的金属,几乎无一例外地属于晶态材料。早在20世纪初就有人突发奇想,如果把晶态的金属变成非晶态,会有什么物理性质上的变化呢?1934年德国人克雷默采用蒸发沉积法制备出非晶态合金,发现非晶态合金的强度、韧性和耐磨性明显高于晶态合金。 1969年,美国人庞德和马丁研究了生产非晶态合金带材的技术,为规模生产奠定了技

影响金属材料疲劳强度的八大因素和预防措施

影响金属材料疲劳强度的八大因素和预防措施 材料的疲劳强度对各种外在因素和内在因素都极为敏感,外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分、组织状态、纯净度和残余应力等。 这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 01、应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。 这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt : 在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf: 光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。

疲劳缺口敏感度系数q: 疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算: q的数据范围是0~1,q值越小,表征材料对缺口越不敏感。 试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 02、尺寸因素的影响 由于材料本身组织的不均匀性以及内部缺陷的存在,尺寸增加造成材料破坏概率的增加,从而降低材料的疲劳极限。 尺寸效应的存在,是把试验室小试样测得的疲劳数据运用于大尺寸实际零件中的一个重要问题,由于不可能把实际尺寸的零件上存在的应力集中、应力梯度等完全相似地在小试样上再现出来,从而造成试验室结果与某些具体零件疲劳破坏之间的互相脱节。 03、表面加工状态的影响 机加工的表面总存在着高低不平的加工痕迹,这些痕迹就相

金属材料的晶体结构

金属材料的晶体结构 一、晶体与非晶体 固态物质可分为晶体与非晶体两类。 ●晶体是指其组成微粒(原子、离子或分子)呈规则排列的物质。 晶体具有固定的熔点和凝固点、规则的几何外形和各向异性特点,如金刚石、石墨及一般固态金属材料等。 ●非晶体是指其组成微粒无规则地堆积在一起的物质,如玻璃、沥青、石蜡、松香等都是非晶体。非晶体没有固定的熔点,而且性能具有各向同性。 图1-18 简单立方晶格及其晶胞示意图 二、金属的晶体结构 (一)晶格 ●抽象地用于描述原子在晶体中排列形式的空间几何格子,称为晶格。 (二)晶胞 ●反映晶格特征、具有代表性的最小几何单元称为晶胞。 晶胞的几何特征可以用晶胞的三条棱边的边长(晶格常数)a、b、c和三条棱边之间的夹角α、β、γ等六个参数来描述。 (三)常见的金属晶格类型 常见的晶格类型是:体心立方晶格、面心立方晶格和密排六方晶格: 1.体心立方晶格 体心立方晶格的晶胞是立方体,立方体的8个顶角和中心各有一个原子,每个晶胞实有原子数是2个。具有这种晶格的金属有:α铁(α-Fe)、钨(W)、钼(Mo)、铬(Cr)、钒(V)、铌(Nb)等约30种金属。

图1-19 体心立方晶格示意图 2.面心立方晶格 面心立方晶格的晶胞也是立方体,立方体的八个顶角和六个面的中心各有一个原子,每个晶胞实有原子数是4个。具有这种晶格的金属有:γ铁(γ-Fe)、金(Au)、银(Ag)、铝(Al)、铜(Cu)、镍(Ni)、铅(Pb)等金属。 图1-20 面心立方晶格示意图 3.密排六方晶格 密排六方晶格的晶胞是六方柱体,在六方柱体的十二个顶角和上下底面中心各有一个原子,另外在上下面之间还有三个原子,每个晶胞实有原子数是6个。具有这种晶格的金属有:α钛(α-Ti)、镁( Mg)、锌(Zn)、铍(Be)、镉(Cd)等金属。 图1-21 密排六方晶格示意图 三、金属的实际晶体结构 ●原子从一个核心(或晶核)按同一方向进行排列生长而形成的晶体,称为单晶体。 自然界存在的单晶体有水晶、金刚石等,采用特殊方法也可获得单晶体,如单晶硅、单

常用的金属材料疲劳极限试验方法

常用的金属材料疲劳极限试验方法 疲劳试验可以预测材料或构件在交变载荷作用下的疲劳强度,一般该类试验周期较长,所需设备比较复杂,但是由于一般的力学试验如静力拉伸、硬度和冲击试验,都不能够提供材料在反复交变载荷作用下的性能,因此对于重要的零构件进行疲劳试验是必须的。 MTS 810 金属材料疲劳试验的一些常用试验方法通常包括单点疲劳试验法、升降法、高频振动试验法、超声疲劳试验法、红外热像技术疲劳试验方法等。 单点疲劳试验法

适用于金属材料构件在室温、高温或腐蚀空气中旋转弯曲载荷条件下服役的情况。该种方法在试样数量受限制的情况下,可近似测定疲劳曲线并粗略估计疲劳极限。试验所需的疲劳试验机一般为弯曲疲劳试验机和拉压试验机。 升降法疲劳试验 升降法疲劳试验是获得金属材料或结构疲劳极限的一种比较常用而又精确的方法,在常规疲劳试验方法测定疲劳强度的基础上或在指定寿命的材料或结构的疲劳强度无法通过试验直接测定的情况下,一般采用升降法疲劳试验间接测定疲劳强度。 主要用于测定中、长寿命区材料或结构疲劳强度的随机特性。所需试验机一般为拉压疲劳试验机。 高频振动疲劳试验法 常规疲劳试验中交变载荷的频率一般低于200Hz,无法精确测得一些零件在高频环境状态下的疲劳损伤。高频振动试验利用试验器材产生含有循环载荷频率为1000Hz左右特性的交变惯性力作用于疲劳试样上,可以满足在高频、低幅、高循环环境条件下服役金属材料的疲劳性能研究。

高频振动试验主要用于军民机械工程的需要。试验装置通常包括:控制仪、电荷适配器、功率放大器、加速度计、振动台等。 超声法疲劳试验 超声法疲劳试验是一种加速共振式的疲劳试验方法,其测试频率(20kHz)远远超过常规疲劳测试频率(小于200Hz)。超声疲劳试验可以在不同载荷特征、不同环境和温度等条件下进行,为疲劳研究提供了一个很好的手段。嘉峪检测网提醒超声疲劳试验一般用于超高周疲劳试验,主要针对10^9以上周次疲劳试验。高周疲劳时,材料宏观上主要表现为弹性的,所以在损伤本构关系中采用应力、应变等参量的弹性关系处理,而不涉及微塑性。 红外热像技术疲劳试验方法 为缩短试验时间、减少试验成本,能量方法成为疲劳试验研究的重要方法之一。金属材料的疲劳是一个耗散能量的过程,而温度变化则是研究疲劳过程能量耗散极为重要的参量。 红外热像技术是一种波长转换技术,即将目标的热辐射转换为可见光的技术,利用目标自身各部分热辐射的差异获取二维可视图像,用计

有机非线性光学材料

有机非线性光学材料 杨韶辉 摘要: 该文简要介绍非线性光学材料及其特性,阐述了有机非线性光学材料的分类及其应用,着重对各类有机低分子非线性光学材料进行分类讨论。 关键词:有机非线性光学材料,有机低分子非线性光学材料 一、非线性光学材料概述 [1] 1961年,Franken首次发现了若干材料的激光倍频现象。因非线性光学的 发展与激光技术的发展密切相关,故这种现象的发现,不仅标志着非线性光学的诞生,而且强有力地推动了非线性光学材料科学的发展。科技工作者之所以对非线性光学感兴趣,主要有以下原因:可利用非线性光学效应做成某种器件,例如变频器,从而有可能提供从远红外到亚毫米波、从真空紫外到X射线的各种波段的相干光源;由于某些非线性光学效应,例如双光子吸收、受激喇曼散射等,会引起入射到介质中的光束的衰减,从而限制了通过介质的光通量,又如自聚焦现象会引起入射光束的畸变,强度太强时,甚至会导致介质的不可逆损伤,这就从实际向人们提出了急需解决的问题;由于非线性光学效应是通过强激光与组成非线性介质的原子或分子的相互作用体现的,因而非线性光学现象是获得这些原子或分子的微观性质信息的一种手段。 正因非线性光学的诸多特性,使人们对具此类特性的材料研究日益深化,并正不断地被应用到光通信技术等各个方面。尤其多年来对有机材料的非线性光学特性研究,为其应用提供了理论依据,如酞菁类化合物,它的非线性系数高、响应快、光损伤阈值高和化学稳定等特性, [2,3]因而有着无法估量的非线性光学应用前景。

在线性光学范围内,描述电磁辐射在介质中传播规律的麦克斯韦方程组是一组线性的微分方程,它们只包括场强矢量的一次项。当单一频率的辐射入射到非吸收介质时,除喇曼散射外,其频率是不会发生变化的。如果不同频率的光同时入射到介质时,它们彼此之间不产生耦合,不可能产生新的频率,若以数学形式表示时,具有线性的关系。但在激光出现后,介质在强激光作用下产生的电极化强度P与入射辐射强度E的关系,不是简单的线性关系。从而引起非线性光学效应。它反映了介质与强激光束相互作用的基本规律。非线性光学是由于构成物质 [4]的原子核及其周围电子在电磁波场的作用下产生非谐振性运动的结果。一般而言,要寻找具有好的非线性光学性质的材料,其关键性能指标是:(1)非线性系数高;(2)响应时间短;(3)光损 [4]伤阈值高。 产生非线性光学效应的首要条件取决于材料。一般来说,无论从材料的组成,还是结构,就种类而言,大致分两类:无机非线性光学材料和有机非线性光学材料。 非线性光学材料人们已经找到很多,按其非线性效应来分可以分为二阶非线性光学材料和三阶非线性光学材料二阶非线性光学材料主要有: (1)无机倍频材料如三硼酸锂(LBO)、铌酸锂(LiNbO)、碘酸短(LiIO,KDP)、33磷酸氧钛钾(KTiOPO,KTP)、β-偏硼酸钡(β-BaBO,BBO)、α石英等 424 ( 2)半导体材料有硒化镉( CdSe)、硒化镓(GaSe)、硫镓银、硒镓银、碲(Te)、硒(Se)等 (3)有机倍频材料有尿素、L-磷酸精胺酸(LAP)、醌类、偏硝基苯胺、2-甲苯-4-硝基苯胺、羟四甲基四氢吡咯基硝基吡啶、氨基硝基二苯硫醚、硝苯基羟基四氢吡咯以及它们的衍生物 (4)金属有机化合物,如二氯硫脲合镉、二茂铁类化合物、苯基或吡啶基过渡金属羰

金属材料疲劳研究综述

金属材料疲劳研究综述 摘要:人会疲劳,金属也会疲劳吗?早在100多年前,人们就发现了金属也是会疲劳的,并且发现了金属疲劳带给人们各个方面的危害,所以研究金属材料的疲劳是非常有必要的。本文主要讲述了国内外关于金属疲劳的研究进展,概述了金属产生疲劳的原因及影响因素,以及金属材料疲劳的试验方法。 关键词:金属材料疲劳裂纹疲劳寿命 一.引言 金属疲劳的概念,最早是由J.V.Poncelet 于1830 年在巴黎大学讲演时采用的。当时,“疲劳”一词被用来描述在周期拉压加载下材料强度的衰退。引述美国试验与材料协会( ASTM) 在“疲劳试验及数据统计分析之有关术语的标准定义”( EZ06-72) 中所作的定义: 在某点或某些点承受挠动应力,且在足够多的循环挠动作用之后形成裂纹或完全断裂时,材料中所发生的局部永久结构变化的发展过程,称为“疲劳”。金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。在材料结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。据统计金属材料失效80%是由于疲劳引起的,且表现为突然断裂,无论材料为韧性材料还是塑性材料都表现为突然断裂,危害极大,所以研究金属的疲劳是

非常有必要的。 由于金属材料的疲劳一般难以发现,因此常常造成突然的事故。早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。由于但是条件的限制,还不能查明疲劳破坏的原因。在第二次世界大战期间,美国的5000艘货船共发生1000多次破坏事故,有238艘完全报废,其中大部分要归咎于金属的疲劳。2002 年 5 月,华航一架波音747-200 型客机在由台湾中正机场飞往香港机场途中空中解体,19 名机组人员及206名乘客全部遇难。调查发现,飞机后部的金属疲劳裂纹造成机体在空中解体,是导致此次空难的根本原因。直到出现了电子显微镜之后,人类在揭开金属疲劳秘密的道路上不断取得了新的成果,才开发出一些发现和消除金属疲劳的手段。 二.金属疲劳的有关进展 1839年巴黎大学教授在讲课中首先使用了“金属疲劳”的概念。1850一1860年德国工程师提出了应力-寿命图和疲劳极限的概念。1870一1890年间,Gerber研究了平均应力对疲劳寿命的影响。Goodman提出了考虑平均应力影响的简单理论。1920年Griffith发表了关于脆性材料断裂的理论和试验结果。发现玻璃的强度取决于所包含的微裂纹长度,Griffith理论的出现标志着断裂力学的开端。1945年Miner用公式表达出线性积累损伤理论。五十年代,力学理论上对提出应力强度因子K的概念。六十年代,Manson—Coffin公式概括了塑性应变幅值和疲劳寿命之间的关系。Paris在1963年提出疲劳裂纹扩展速率da/dN和应力强度因子幅值?k之间的关系。1974年,美

关于非晶态金属材料的研究

第三节非晶态金属材料研究现状与前景 1. 非晶态金属材料及性质 非晶态金属是一种“年轻”的金属材料,从它诞生以来,就显示出了巨大的潜能。人们不断地发现它的各种奇异的、优良的特性,非晶材料已被广泛应用与此同时,人们对该材料的磁性、电学性质、力学性质、化学性质以及非晶态之形成及结构进行了广泛的研究,希望在这个亚稳的非晶态结构基础上研发出具有全新的结构和性能的新材料。 1. 1 非晶态金属材料 物质的结构决定了其性质. 物质材料按其结构分类,可分为晶体和非晶体两大类.常见的金属材料从结构上看一般都属于晶体材料.近几十年来,人们发现了金属存在的另一种结构形式——非晶态. 如果把晶体结构的金属视为金属的“常现性态”的话,那么,非晶态金属就是金属的“特常现性态”.非晶态金属又可形象的称为金属玻璃(非晶合金原子的混乱排列类似于玻璃) .对于金属材料来说,通常情况下,当金属或合金从液体凝固成固体(例如钢水凝固成钢锭)时,原子总是从液体的混乱排列转变成固体的整齐排列,即成为晶体.因为只有这样,其结构才最稳定.但是,如果金属或合金的凝固速度非常快(例如以106℃/ s 的冷却速率将铁-硼合金熔体凝固) ,原子来不及整齐排列便被冻结住了,最终的原子排列方式类似于液体,是混乱的,这就是非晶合金.从理论上说,任何物质只要它的液体冷却速率足够快,原子来不及整齐排列就凝固,那么原子在液态时混乱排列并迅速冻结,就可以形成非晶[2 ].有人根据这一特点又将非晶合金称为“过冷液”.但是,不同的物质形成非晶所需要的冷却速度大不相同.例如,普通的玻璃熔体只要慢慢冷却下来,得到的玻璃就是非晶态. 而单一的金属则需要108℃/ s 以上的冷却速度才能形成非晶态. 目前,受工艺水平的限制,在实际生产中难以达到如此高的冷却速度,也就是说,普通的单一的金属难以在生产中制成非晶.故非晶态金属多为合金,纯的非晶态金属很少. 非晶态金属结构是一种亚稳态结构.在一定的条件下(比如高温、强冲击作用) 会向更稳定的状态——晶态转变而变成普通晶态金属.我们把这一转变过程称为

二维非线性光学材料

二维非线性光学材料 项目简介 光学信息处理是解决当前大数据处理系统在带宽、能耗、速度等瓶颈问题上的主要技术手段。纳米尺度非线性光学材料是全光集成系统中高性能单元器件(光开关、光调制器、探测器等)的核心。具有优异非线性光学特性,特别是非线性吸收和折射率的二维纳米半导体材料在物性、集成度、兼容性上独具优势,是构筑未来高性能全光信息系统的关键之一。 作为国际上最早开展二维材料非线性光学工作的研究者之一,在中组部、国家基金委、中科院、上海市科委等项目的资助下,我们团队在国际上率先揭示了石墨烯、过渡金属硫化物和黑磷等重要二维材料的超快非线性光学特性,验证了高性能二维半导体在强激光防护光限幅器和超短脉冲激光锁模器上的重要应用,取得如下主要成果: 成果一:二维半导体非线性光学效应及物理 在国际上首先揭示了过渡金属硫化物、石墨烯、黑磷等重要二维半导体的非线性光学特性;证实了钼硫族二维材料的宽带非线性吸收和折射率,以及禁带调控色散效应;实现了二维半导体的非线性特性调控工程;从单层MoS2中观测到暗态激子共振巨双光子吸收效应;观测到二维半导体中的自相位调制效应、非线性折射率色散、二维材料光学特征矩阵、光致透明效应、快/慢饱和吸收效应、全光开关调控和光限幅特性、双光子吸收饱和效应等;这些原创成果为理解二维半导体非线性光学物理机理,开发高性能非线性光学器件及全光计算等集成系统应用奠定了良好的实验和理论基础。 成果二:二维半导体非线性光学材料及应用 基于石墨烯、MoS2及其改性衍生材料等优异的非线性特性,实现了超短激光脉冲锁模器和强激光防护光限幅器等重要应用;合成出酞菁修饰的石墨烯宽带强激光防护光限幅材料;合成出MoS2、MoSe2、WS2、WSe2等过渡金属硫化物宽波段强激光防护光限幅材料;在批量制备大尺寸、高性能二维半导体非线性光学材料和二维半导体强激光防护光限幅复合材料等方面进行了大量原创性基础研究工作。特别是以非线性激光防护物理研究,结合高性能激光防护材料研制为基础,正在为中电53所、中航工业613所等单位的激光应用系统研制强激光防护装置,用于对某型号机载光电系统和激光雷达探测器进行防护,在宽波段、多时间尺度上对抗外部强激光的干扰和致盲,具有防护阈值低、消光比高、稳定性强等特点。该装置可以填补某型机载光电系统无激光防护装置的空白,可以对多种型号的激光雷达进行有效的激光损伤防护,具有很好的市场价值,如无人驾驶汽车激光雷达防护等。 2011-2016年期间,我们团队在ACS Nano、Laser & Photonics Reviews、Nanoscale、Carbon、Photonics Research、Optics Letters、Progress in Materials Science等国际SCI期刊发表二维材料非线性光学论文27篇,他引1269次。其中8篇代表性论文被他引988次,平均每篇被他人引用123次,最高单篇他引426次。主要完成人中1人入选国家青年拔尖人才和基金委优秀青年科学基金、2人入选中科院“百人计划”、3人入选上海市优秀学术带头人。

非晶材料的应用原理及举例

非晶材料的应用原理及举例 许文贞 vincent.xu.chn@https://www.360docs.net/doc/f79804093.html, 随着人类认识的发展和技术的进步,从20 世纪50年代涌现了若干新型非晶态材料,包括非晶合金、非晶半导体、非晶超导体、非晶离子导体和有机高分子玻璃等。那么什么是非晶材料呢?首先在这里给非晶材料做一个简单的概念及特征介绍。非晶材料也叫无定形或玻璃态材料,这是一大类刚性固体,具有和晶态物质可相比较的高硬度和高粘滞系数。但其组成的原子、分子的空间排列不呈现周期性和平移对称性,晶态的长程序受到破坏;只是由于原子间的相互关联作用,使其在几个原子(或分子)直径的小区域内具有短程序。由于至今尚无任何有效的实验方法可以准确测定非晶态材料的原子结构,上述定义都是相对而言的。非晶材料具有的基本特性有: ①只存在小区间内的短程序,而没有任何长程序;波矢κ不再是一个描述运动状态的好量子数。 ②它的电子衍射、中子衍射和X射线衍射图是由较宽的晕和弥散的环组成;用电子显微镜看不到任何由晶粒间界、晶体缺陷等形成的衍衬反差。 ③任何体系的非晶态固体与其对应的晶态材料相比,都是亚稳态。当连续升温时,在某个很窄的温区内,会发生明显的结构变化,从非晶态转变为晶态,这个晶化过程主要取决于材料的原子扩散系数、界面能和熔解熵。 上述的非晶材料具有的特征也只是非晶材料所具有的一般材料特性,在各种具体的非晶材料中,如上述提及的非晶磁性材料、非晶半导体材料、非晶合金等材料,它们又具有一些各自特殊的特性。因此本文主要是对该三种非晶材料的结构及其特征做简要介绍,然后再举例说明它们的实际运用。 1. 非晶材料 1.1 非晶半导体材料 未来的社会属于信息化社会,信息化社会离不开各种微电子器件。目前,各种电子器大都是以单晶半导体特别是硅单晶体作为基片,在基片上制作各种器件。但是,使用单晶硅有两个缺点:一是从硅单生长到晶片的切、磨、抛光直至制成器件,工艺过程复杂,材料损耗大;而是硅单晶锭的直径受到限制,目前晶片直径都在150mm以下,因此制成大面积器件有—定的困难。而非晶半导体材料恰恰解决了这些问题。 五十午代,苏联学者已经开始研究非晶态半导体,但真正的突破是在六十年代末和七十年代初期。目前研究得最多的有两大类材料:一类是用于元素周期表上IV族元素的半导体,特别是非晶态硅。另一类是硫属非晶态半导体,其主要成分是周期表中硫属元素如硫、硒、碲等,包括二元系(如As3Se2)和多元系(如As81Se21Ge30Te18)。下面对非晶态硅做简单介绍。 和单晶硅比,非晶态硅主要表现在非晶硅具有一般晶体材料难以得到的特性:

金属材料疲劳研究综述资料讲解

金属材料疲劳研究综 述

金属材料疲劳研究综述 摘要:人会疲劳,金属也会疲劳吗?早在100多年前,人们就发现了金属也是会疲劳的,并且发现了金属疲劳带给人们各个方面的危害,所以研究金属材料的疲劳是非常有必要的。本文主要讲述了国内外关于金属疲劳的研究进展,概述了金属产生疲劳的原因及影响因素,以及金属材料疲劳的试验方法。 关键词:金属材料疲劳裂纹疲劳寿命 一.引言 金属疲劳的概念,最早是由 J. V. Poncelet 于 1830 年在巴黎大学讲演时采用的。当时,“疲劳”一词被用来描述在周期拉压加载下材料强度的衰退。引述美国试验与材料协会( ASTM) 在“疲劳试验及数据统计分析之有关术语的标准定义”( EZ06-72) 中所作的定义: 在某点或某些点承受挠动应力,且在足够多的循环挠动作用之后形成裂纹或完全断裂时,材料中所发生的局部永久结构变化的发展过程,称为“疲劳”。金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。在材料结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。据统计金属材料失效80%是由于疲劳引起的,且表现为突然断裂,无论材

料为韧性材料还是塑性材料都表现为突然断裂,危害极大,所以研究金属的疲劳是非常有必要的。 由于金属材料的疲劳一般难以发现,因此常常造成突然的事故。早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。由于但是条件的限制,还不能查明疲劳破坏的原因。在第二次世界大战期间,美国的5000艘货船共发生1000多次破坏事故,有238艘完全报废,其中大部分要归咎于金属的疲劳。2002 年 5 月,华航一架波音747-200 型客机在由台湾中正机场飞往香港机场途中空中解体,19 名机组人员及 206名乘客全部遇难。调查发现,飞机后部的金属疲劳裂纹造成机体在空中解体,是导致此次空难的根本原因。直到出现了电子显微镜之后,人类在揭开金属疲劳秘密的道路上不断取得了新的成果,才开发出一些发现和消除金属疲劳的手段。 二.金属疲劳的有关进展 1839年巴黎大学教授在讲课中首先使用了“金属疲劳”的概念。1850一1860年德国工程师提出了应力-寿命图和疲劳极限的概念。1870一1890年间,Gerber研究了平均应力对疲劳寿命的影响。Goodman提出了考虑平均应力影响的简单理论。1920年Griffith发表了关于脆性材料断裂的理论和试验结果。发现玻璃的强度取决于所包含的微裂纹长度,Griffith理论的出现标志着断裂力学的开端。1945年Miner用公式表达出线性积累损伤理论。五十年代,力学理论上对提出应力强度因子K的概念。六十年代,Manson—Coffin公

影响金属材料疲劳强度大小的因素

影响金属材料疲劳强度大小的因素 由于疲劳断裂通常是从机件最薄弱的部位或外部缺陷所造成的应力集中处发生,因此疲劳断裂对许多因素很敏感,例如,循环应力特性、环境介质、温度、机件表面状态、内部组织缺陷等,这些因素导致疲劳裂纹的产生或速裂纹扩展而降低疲劳寿命。为了提高机件的疲劳抗力,防止疲劳断裂事故的发生,在进行机械零件设计和加工时,应选择合理的结构 ()抗拉试验:一般说来,只有结构用、拉伸用和深拉伸用镀锌板有抗拉性能要求。 ()弯曲试验:是衡量薄板工艺性能的主要项目。但各国标准对各种镀锌板的要求并不一致。一般要求镀锌板弯曲后,外侧表面不得有锌层脱离,板基不得有龟裂及断裂。 .化学成份 对镀锌基板的化学成份的要求,各国标准规定不同。如日本就不要求,美国则要求。一般不作成品检验。 .板形 衡量板形好坏有两个指标,即平直度和镰刀弯。板的平直度和镰刀弯的最大允许值标准有一定规定。

下面列出有关镀锌板的国外主要标准,以作参考[,]: 镀锌钢板 电镀锌钢板及钢带 热浸镀锌薄钢板的一般要求 商业级热镀锌薄钢板 咬合成型级热镀锌薄钢板 深冲级热镀锌薄钢板 屋面和墙板用热浸镀锌薄钢板 沟渠用热浸镀锌薄钢板 结构级热镀锌薄钢板 适当地提高含铬量,做到既满足硬度与耐磨性的要求,又兼顾—定的耐腐蚀功能,工业上用作轴承、量具与刃具有不锈钢和钢,含碳量虽高达~%,由于它们的含铬量也相应地提高了,所以仍保证了耐腐蚀的要求。 总的来讲,目前工业中获得应用的不锈钢的含碳量都是比较低的,大多数不锈钢的含碳量在~%之间,耐酸钢则以含碳~%的居多。含碳量大于%的不锈钢仅占钢号总数的一小部分,这是因为在大多数使用条件下,不锈钢总是以耐腐蚀为主要目的。此外,较低的含碳量也是出于某些工艺上的要求,如易于焊接及冷变形等。 如何通过锰和氮代替铬镍不锈钢中镍原理 铬镍奥氏体钢的优点虽然很多,但近几十年来由于镍基耐热合金与含镍%以下的热强钢的

非线性光学晶体材料

非线性光学晶体材料 一、什么是非线性光学晶体 光通过晶体进行传播时,会引起晶体的电极化。当光强不太大时,晶体的电极化强度与光频电场之间呈线性关系,其非线性关系可以被忽略;但是,当光强很大时,如激光通过晶体进行传播时,电极化强度与光频电场之间的非线性关系变得十分显著而不能忽略,这种与光强有关的光学效应称为非线性光学效应,具有这种效应的晶体就称为非线性光学晶体。 二、非线性光学晶体材料的产生 1961年,美国科学家Franken将一束红宝石产生的激光束入射到石英晶体上,发现射出的激光束中除了红宝石的693.4nm的光束外,在紫外区还出现了一条二倍频率的347.2nm的光谱线,这是首次发现晶体的非线性光学效应。科学家们立即认识到非线性光学材料可以作为激光变频材料。在近50年的发展中,非线性光学晶体材料已成为最重要的信息材料之一,广泛应用于激光通信、光学雷达、医用器件、材料加工、x射线光刻技术等,在人们的生活中起到了越来越重要的作用。 图1 激光的倍频辐射现象 三、非线性光学晶体材料的应用和发展 非线性光学晶体与激光紧密相连,是实现激光的频率转换、调制、偏转和Q 开关等技术的关键材料。当前,直接利用激光晶体获得的激光波段有限,从紫外到红外谱区,尚有激光空白波段。而利用非线性光学晶体,可将激光晶体直接输

出的激光转换成新波段的激光,从而开辟新的激光光源,拓展激光晶体的应用范围。非线性光学晶体材料是光电子技术特别是激光技术的重要物质基础,可以用于激光频率转换、调制激光的强度和相位、实现激光信号的全息存储等,在激光通讯、激光信息存储与处理、激光材料加工以及军用激光技术等领域都有重要应用。 图2 非线性光学材料的广泛应用 近几十年来,人们在研究与探索非线性光学晶体材料方面做了大量工作,取得了丰硕的研究成果,涌现出了一批性能优良的非线性光学晶体。人们已将非线性光学晶体材料,由无机晶体拓展到有机晶体,由体块晶体发展到薄膜、纤维和超晶格材料。将非线性光学晶体的性质与其内部微观结构联系起来,有意识的通过分子设计、晶体工程等科学方法来探索与研制各种新型的非线性光学晶体材料,向科学更深层次的方向发展,从而促成了非线性光学领域内不断创新。

玻璃与非晶态材料

《玻璃与非晶态材料》课程教学大纲 一、《玻璃与非晶态材料》课程说明 (一)课程代码:08131018 (二)课程英文名称:Glass and Amorphous Materials (三)开课对象:材料物理专业本科生 (四)课程性质: 《玻璃与非晶态材料》是材料物理专业的一门专业必修课。 (五)教学目的: 本课程的任务是使学生了解各种玻璃与非晶态材料的制备原理以及应用。 (六)教学内容: 本课程包括,获得玻璃和无定形材料的特殊方法,玻璃形成和弛豫,非晶态固体结构模型,氧化物玻璃,有机玻璃和聚合物,玻璃的光学性质,玻璃的力学性质,玻璃的电学性质,光纤的材料工艺学等内容。 (七)学时数、学分数及学时数具体分配 学时数: 54 学时 分数: 3 学分 (八)教学方式 以板书为主要形式的课堂教学 (九)考核方式和成绩记载说明 考核方式为考试。严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格。综合成绩根据平时成绩和期末成绩评定,平时成绩占40% ,期末成绩占60% 。二、讲授大纲与各章的基本要求

第二章获得玻璃和无定形材料的特殊方法教学要点: 1.了解玻璃和无定形材料的概念 2.掌握熔体急冷,气相急冷技术,和固体方法。 教学时数: 4 学时 教学内容: 2.1 引言 2.1.1 玻璃和无定形材料 2.1.2 “新玻璃”概念 2.1. 3 获得非晶态固体的不同途径 2.2熔体急冷技术 2.2.1 非常规熔化 2.2.2 超快急冷 2.3气相急冷技术 2.3.1 蒸发 2.3.2 溅射 2.3.3 反应沉积 2.4 固态方法 2.4.1 辐照损伤 2.4.2 强冲击波作用 2.4.3 缓慢机械作用 2.4.4 扩散作用 考核要求: 1.了解玻璃和无定形材料的概念 2.掌握熔体急冷,气相急冷技术,和固体方法。 第三章玻璃形成和弛豫 教学要点: 1.了解玻璃的形成过程 2.掌握玻璃的制备方法 教学时数:6 学时 教学内容: 3.1 引言 3.2从熔体形成玻璃

金属疲劳

第10章金属材料的疲劳 材料或元件在交变应力(随时间作周期性改变的应力)作用下,经过一段时期后,在内部缺陷或应力集中的部位,局部产生细微的裂纹,裂纹逐渐扩展以致在应力远小于屈服点或强度极限的情况下,突然发生脆性断裂,这种现象称为疲劳,例如频繁进料、出料的周期性间歇操作的设备,往复式压缩机气缸,应考虑其疲劳失效的可能性. 疲劳分类: (1)高周疲劳 低应力,高循环次数。最常见 (2)低周疲劳 高应力,低循环次数。 (3)热疲劳 温度变化引起的热应力作用下引起的疲劳破坏。 (4)腐蚀疲劳 交变载荷与腐蚀介质共同作用下引起的破坏。 (5)接触疲劳 机件的接触表面在接触应力反复作用下出现表面剥落。 10.1交变载荷特性 大小或方向或两者同时随时间发生周期性变化的载荷。 交变载荷的特性可用几个参数来表示: 应力循环:交变应力在两个应力极值之间变化一次的过程。 最大应力(σmax):循环中代数值最大的应力。 最小应力(σmin):循环中代数值最小的应力。 平均应力:(σmax+σmax)/2 应力幅:(σmax-σmin)/2

不对称系数:r=(σmin/σmax);r=-1对称,r=0脉动;-1107曲线呈水平,对于铝合金等有色金属则没有明显水平部分。 10.2.3疲劳断裂的断口特征 脆性断裂,断口无明显塑性变形,贝壳状纹路。 对缺口敏感(材料外缘和芯部纹扩散速度不同),对 缺口不敏感。 10.2.4金属材料的疲劳抗力指标 10.2.4.1疲劳极限 材料经无限多次应力循环不断裂的交变应力幅值。对于铝合金取Nf>=105~107的应力幅值作为条件疲劳极限。 同一材料,对称循环疲劳极限也不同,弯曲疲劳极限(σ-1)>拉压疲劳极限(σ-1p)>扭转疲劳极限(τ-1n)。 10.2.4.2疲劳缺口的敏感度 应力集中程度用应力集中系数 缺口对疲劳强度的影响,用疲劳有效应力集中系数Kf

非线性光学材料

非线性光学材料 摘要:非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。在目前信息技术高速发展的时代,光电子工业发展迅猛,对光电功能材料的需求也日趋增长。在光电子工业中如光开关、光通讯、光信息处理、光计算机、激光技术等都需要以非线性光学材料为基础材料,因此,近几十年来非线性光学材料引起了人们的广泛关注,对它的研究也以日新月异的速度发展着。 关键词:非线性光学材料;光电功能材料 1.简介 在目前信息技术高速发展的时代,光电子工业发展迅猛,对光电功能材料的需求也日趋增长。在光电子工业中如光开关、光通讯、光信息处理、光计算机、激光技术等都需要以非线性光学材料为基础材料,因此,近几十年来非线性光学材料引起了人们的广泛关注,对它的研究也以日新月异的速度发展着。非线性光学材料是指一类受外部光场、电场和应变场的作用,频率、相位、振幅等发生变化,从而引起折射率、光吸收、光散射等变化的材料。在用激光做光源时,激光与介质间相互作用产生的这种非线性光学现象,会导致光的倍频、合频、差频、参量振荡、参量放大,引起谐波。利用非线性光学材料的变频和光折变功能,尤其是倍频和三倍频能力,可将其广泛应用于有线电视和光纤通信用的信号转换器和光学开关、光调制器、倍频器、限幅器、放大器、整流透镜和换能器等领域。物质在电磁场的作用下,原子的正、负电荷中心会发生迁移,即发生极化,产生一诱导偶极矩p。在光强度不是很高时,分子的诱导偶极矩p线性正比于光的电场强度E。然而,当光强足够大如激光时,会产生非经典光学的频率、相位、偏振和其它传输性质变化的新电磁场。分子诱导偶极矩p 就变成电场强度E的非线性函数,如下表示:p=αE+βE2+γE3+……式中α为分子的微观线性极化率;β为一阶分子超极化率(二阶效应),γ为二阶分子超极化率(三阶效应)。即基于电场强度E的n次幂所诱导的电极化效应就称之为n阶非线性光学效应。一种好的非线性光学材料应是易极化的、具有非对称的电荷分布的、具有大的π电子共轭体系的、非中心对称的分子构成的材料。另外,在工作波长可实现相位匹配,有较高的功率破环阈值,宽的透过能力,材料的光学完整性、均匀性、硬度及化学稳定性好,易于进行各种机械、光学加工也是必需的。易于生产、价格便宜等也是应当考虑的因素。目前研究较多的是二阶和三阶非线性光学效应。 2.非线性光学材料分类 自从20世纪60年代诞生起,非线性光学材料的研究取得了很大的进展,有很多已经进实用化阶段[1-3]。根据组成可将非线性光学材料大致分为无机非线性光学材料,有机非线性

相关文档
最新文档