相平衡-三元相图

三元相图的绘制(氯仿、盐酸、水)

基 础 化 学 实 验 实验 三相图的绘制——O H HCl CHCl 23--体系

三元相图的绘制 本实验是综合性实验。其综合性体现在以下几个方面: 1.实验内容以及相关知识的综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其是在一般的实验中(比如分析化学实验、无机化学实验等)作图都是用的直角坐标体系,几乎没有用过三角坐标体系,因此该实验中的等边三角形作图法就具有独特的作用。这类相图的绘制不仅在相平衡的理论课中有重要意义,而且对化学实验室和化工厂中经常用到的萃取分离中具有重要的指导作用。 2.运用实验方法和操作的综合 本实验中涉及到多种基本实验操作和实验仪器(如电子天平、滴定管等)的使用。本实验中滴定终点的判断,不同于分析化学中的大多数滴定。本实验的滴定终点,是在本来可以互溶的澄清透明的单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定的终点,有助于学生掌握多种操作,例如取样的准确、滴定的准确、终点的判断准确等。 一.实验目的 1. 掌握相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制三组分相图的基本原理和实验方法。 二.实验原理 三组分体系K = 3,根据相律: f = K–φ+2 = 5–ф 式中ф为相数。恒定温度和压力时: f = 3–φ 当:φ= 1 则: f = 2 因此,恒温恒压下可以用平面图形来表示体系的状态与组成之间的关系,称为三元相图。一般用等边三角形的方法表示三元相图。 对共轭溶液的三组分体系,即三组分中二对液体AB及AC完全互溶,而另一对BC则不溶或部分互溶的相图,如图5-1所示。图中EK1K2K3DL3L2L1F是互溶度曲线;K1L1,K2L2是连结线。互溶度曲线下面是两相区,上面是一相区。 共轭溶液的三元相图(A:醋酸;B:水;C:氯仿) 三.实验准备

物理化学相图小知识

1.相律的有关概念与相律表达式 (1)独立组份数C=S-R-R′。S为物种数,R为独立化学反应计量式数目。R′ 为同一相中独立的浓度限制条件数(包括不同物种依反应计量式比例关系及离子物种电中性条件) (2)自由度数f,系指相平衡体系中相数保持不变时,所具有独立可变的强度变量数。 (3)相律内容及其数学表达式。相律就是揭示pVT平衡系统中自由度数、独立组份数和相数三者之间的制约关系。 表达式为:f=C-Φ+2;式中(式中 2 指T、p两强度变量) 当T、p中有任一固定,则表达式为:条件自由度数f*=C-Φ+1 当考虑除T、p、X B以外的其他变量或相间有某种限制时,则表达式为f=C-Φ+n;(式中n≥2)(4)相律的局限性与应用的关键性。相律是一个定性规律,它指明特定条件下该平衡系统至多存在的相数及其相应的独立变量数,但不能指明是哪些相共存?哪些性质可作为独立变量及其它们之间的定量关系?相律对单相与复相都适用,但应用相律时,首先要考察系统是否满足相律成立的条件,并确定系统的组份数。 2.单组份系统的相图与特征 (1)单组份系统相律与相图:因C=1 ,故相律表达式为f=3-Φ。显然f最小为零,Φ最多应为 3 ,因相数最少为 1 ,故自由度数最多为 2 。相图是用几何图形来描述多相平衡系统宏观状态与T、p、X B(组成)的关系。在单组份相图中有单相的面、两相平衡线和三相平衡的点,自由度分别为f=2、f=1、f=0。 (2)单组份相变的特征与类型。相变是一个连续的质的飞跃。相平衡时物质在各相中的化学势相等,相变时某些物理性质有突变。根据物性的不同变化有一级相变和连续相变(包括二级相变等高阶相变)之分;前者广为存在如气、液、固之间转变,其特点是物质在两相中的化学势一级导数不相等,且发生有限的突 变〔即〕,此 类相变平衡曲线斜率符合克拉贝龙方程。后者如氦He(Ⅰ)与He(Ⅱ)的转变。正常状态与超导状态的转变,其特点是化学势的一级导数在相变点连续〔即V1=V2,S1=S2〕,但化学势二级导数 在相变点附近则迅速变化,出现一个极大峰如; 或。二级相变平衡曲线斜率符 合爱伦菲斯(Ehrenfest)方程: 3.克拉贝龙—克劳修斯方程及其应用条件 (ⅰ)克拉贝龙方程:适用于单组份系统两相间平衡 (ⅱ)克拉贝龙—克劳修斯方程:适用与其中含气相的两相间平衡,且气相应服从理想气体状态方程。

三组分体系相图绘制.doc

实验八三组分体系等温相图的绘制 一、目的要求 1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制相图的基本原理。 二、实验原理 对于三组分体系,当处于恒温恒压条件时,根据相律,其自由度f*为:f*=3-Φ式中,Φ为体系的相数。体系最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-8-1所示。 等边三角形的三个顶点分别表示纯物A、B、C,三条边AB、BC、CA 分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-8-1中, P点的组成表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。

2 苯-醋酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-8-2所示。 图2-8-1 等边三角形法表示三元相图图2-8-2 共轭溶液的三元相图图2-8-2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-醋酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 三、仪器试剂 具塞锥形瓶(100mL,2只、25mL,4只);酸式滴定管(20mL,1支);碱式滴定管(50mL,1支);移液管(1mL,1支、2mL,1支);刻度移液管(10mL,1支、20mL,1支);锥形瓶(150mL,2只)。

(完整版)材料科学基础知识点总结剖析

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。

相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据 T R k ?∝1可知当过冷度T ?为零时临界晶核半径R k 为无穷大,临界形核功(21T G ?∝?)也为无穷大。临界晶核半径R k 与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。 三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。 基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。 相律:f = c – p + 1其中,f 为 自由度数,c 为 组元数,p 为 相数。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。 合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。 合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。 四、铁碳合金 重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算。 基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。 钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的

相图基本知识简介

第二章 二 元 合 金 相 图 纯金属在工业上有一定的应用,通常强度不高,难以满足许多机器零件和工程结构件对 力学性能提出的各种要求;尤其是在特殊环境中服役的零件,有许多特殊的性能要求,例如要求耐热、耐蚀、导磁、低膨胀等,纯金属更无法胜任,因此工业生产中广泛应用的金属材料是合金。合金的组织要比纯金属复杂,为了研究合金组织与性能之间的关系,就必须了解合金中各种组织的形成及变化规律。合金相图正是研究这些规律的有效工具。 一种金属元素同另一种或几种其它元素,通过熔化或其它方法结合在一起所形成的具有 金属特性的物质叫做合金。其中组成合金的独立的、最基本的单元叫做组元。组元可以是金属、非金属元素或稳定化合物。由两个组元组成的合金称为二元合金,例如工程上常用的铁碳合金、铜镍合金、铝铜合金等。二元以上的合金称多元合金。合金的强度、硬度、耐磨性等机械性能比纯金属高许多,这正是合金的应用比纯金属广泛得多的原因。 合金相图是用图解的方法表示合金系中合金状态、温度和成分之间的关系。利用相图可 以知道各种成分的合金在不同温度下有哪些相,各相的相对含量、成分以及温度变化时所可能发生的变化。掌握相图的分析和使用方法,有助于了解合金的组织状态和预测合金的性能,也可按要求来研究新的合金。在生产中,合金相图可作为制订铸造、锻造、焊接及热处理工艺的重要依据。 本章先介绍二元相图的一般知识,然后结合匀晶、共晶和包晶三种基本相图,讨论合金 的凝固过程及得到的组织,使我们对合金的成分、组织与性能之间的关系有较系统的认识。 2.1 合金中的相及相图的建立 在金属或合金中,凡化学成分相同、晶体结构相同并有界面与其它部分分开的均匀组成 部分叫做相。液态物质为液相,固态物质为固相。相与相之间的转变称为相变。在固态下,物质可以是单相的,也可以是由多相组成的。由数量、形态、大小和分布方式不同的各种相组成合金的组织。组织是指用肉眼或显微镜所观察到的材料的微观形貌。由不同组织构成的材料具有不同的性能。如果合金仅由一个相组成,称为单相合金;如果合金由二个或二个以上的不同相所构成则称为多相合金。如含30%Zn 的铜锌合金的组织由α相单相组成;含38%Zn 的铜锌合金的组织由α和β相双相组成。这两种合金的机械性能大不相同。 合金中有两类基本相:固溶体和金属化合物。 2.1.1 固溶体与复杂结构的间隙化合物 2.1.1.1 固溶体 合金组元通过溶解形成一种成分和性能均匀的、 且结构与组元之一相同的固相称为固溶体。与固溶 体晶格相同的组元为溶剂,一般在合金中含量较多; 另一组元为溶质,含量较少。固溶体用α、β、γ等 符号表示。A 、B 组元组成的固溶体也可表示为A (B ),其中A 为溶剂,B 为溶质。例如铜锌合金中 锌溶入铜中形成的固溶体一般用α表示,亦可表示 为Cu (Zn )。 图2.1 置换与间隙固溶体示意图 ⑴固溶体的分类 ①按溶质原子在溶剂晶格中的位置(如图2.1)分为: ? ??--的间隙之中;溶质原子进入溶剂晶格间隙固溶体格某些结点上的原子;溶质原子代换了溶剂晶置换固溶体

三元系相图绘制

实验三组分相图的绘制 一实验目的 绘制苯一醋酸一水体系的互溶度相图。为了绘制相图就需通过实验获得平衡时,各相间的组成及二相的连结线。即先使体系达到平衡,然后把各相分离,再用化学分析法或物理方法测定达成平衡时各相的成分。但体系达到平衡的时间,可以相差很大。对于互溶的液体,一般平衡达到的时间很快;对于溶解度较大,但不生成化合物的水盐体系,也容易达到平衡;对于一些难溶的盐,则需要相当长的时间,如几个昼夜。由于结晶过程往往要比溶解过程快得多,所以通常把样品置于较高的温度下,使其较多溶解,然后把它移放在温度较低的恒温槽中,令其结晶,加速达到平衡。另外摇动、搅拌、加大相界面也能加快各相间扩散速度,加速达到平衡。由于在不同温度时的溶解度不同,所以体系所处的温度应该保持不变。 二实验原理 水和苯的互溶度极小,而醋酸却与水和苯互溶,在水和苯组成的二相混合物中加入醋酸,能增大水和苯之间的互溶度,醋酸增多,互溶度增大。当加入醋酸到达某一定数量时,水和苯能完全互溶。这时原来二相组成的混合体系由浑变清。在温度恒定的条件下,使二相体系变成均相所需要的醋酸量,决定于原来混合物中水和苯的比例。同样,把水加到苯和醋酸组成的均相混合物中时,当水达到一定的数量,原来均相体系要分成水相和苯相的二相混合物,体系由清变浑。使体系变成二相所加水的量,由苯和醋酸混合物的起始成分决定。因此利用体系在相变化时的浑浊和清亮现象的出现,可以判断体系中各组分间互溶度的大小。一般由清变到浑,肉眼较易分辨。所以本实验采用由均相样品加人第三物质而变成二相的方法,测定二相间的相互溶解度。 当二相共存并且达到平衡时,将二相分离,测得二相的成分,然后用直线连接这二点,即得连结线。 一般用等边三角形的方法表示三元相图(图1)。等边三角形的三个顶点各代表纯组分;三角形三条边AB、BC、CA分别代表A和B、B和C、C和A所组成的二组分的组成;而三角形内任何一点表示三组分的组成。 例如图1-1中的P点,其组成可表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等分,则P点的A、B、C组成分别为: A%=Cb,B%=Ac,C%=Ba 对共轭溶液的三组分体系,即三组分中二对液体AB及AC完全互溶,而另一对BC则不溶或部分互溶的相图,如图1-2所示。图中EK1K2K3DL3L2L1F是互溶度曲线,K1L1、K2L2等是连结线。互溶度曲线下面是两相区,上面是一相区。 图1-1等边三角形法表示三元相图图1-2共轭溶液的三元相图

相图的基本知识

第二章相图的基础知识 教学章节:第二章2.1 教学内容:合金及其组织 教学要求:1、掌握合金的概念及相的概念。 2、掌握合金的组织概念、性能特点。 3、掌握固溶解,金属化合物质、混合物。 4、了解二元合全相同的建立。 重点难点:1、掌握合金的概念是教学重点; 2、掌握三种合金组织的名称及性能。 教学过程(板书设计): 一、金属材料的分类: 二、合金的基本概念 1、合金:以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。即合金是由两种或两种以上的元素所组成的金属材料。 2、组元:组成合金最简单的、最基本的、能够独立存在的元物质,简称元 3、相:合金中成分、结构及性能相同的组成部分。 4、组织:合金中不同相之间相互组合配置的状态。换言之,数量、大小和分布方式不同的相构成了合金不同的组织。 提问:相与组元的区别: 答:1、相是合金中同一化学成分、同一聚集状态,并以界面相

互分开的各个均匀组成部分。 2、组元是组成合金的基本独立物质,组元可以是金属和非金属,也可以是化合物。 三、合金的组织 合金组织的分类: 1、固熔体 固熔体是一种组元的在子深入另一组元的晶格中所形成的均匀固相。溶入的元素称为溶质,而基体元素称为溶剂。固溶体仍然保持溶剂的晶格类型。 1)隙固溶体 溶质原子分布于溶剂晶格间隙之中而形成的固溶体称为间隙固溶体。 2)置换固溶体 溶质原子置换了溶剂晶格结点上某些原子而形成的固容体称为置换固溶体。

3)金属化合物 合金组元间发生相互作用而形成一种具有金属特性的物质称为金属化合物。其性能物特点是熔点高,硬度高,脆性大。金属化合物能提高合金的硬度和耐磨性,但塑性和韧性会降低。 4)混合物 两种或两种以上的相按一定质量分类组成的物质称为混合物。 课后习题: 1.合金是一种_________与_________________或_____________通过熔炼或其他方法结合而成的具有___________的物质。 2.合金中成分、结构、及性能相同的组成部分称为___________。 3.根据合金中各组元之间的相互作用不同,合金组织可分为___________、____________和____________三种类型。

第8章-三元相图-笔记及课后习题详解(已整理-袁圆-201487)(DOC)

第8章三元相图 8.1 复习笔记 一、三元相图的基础 三元相图的基本特点:完整的三元相图是三维的立体模型;三元系中的最大平衡相数为四。三元相图中的四相平衡区是恒温水平面;三元系中三相平衡时存在一个自由度,所以三相平衡转变是变温过程,反应在相图上,三相平衡区必将占有一定空间。 1.三元相图成分表示方法 (1)等边成分三角形 图8-1 用等边成分三角形表示三元合金的成分 三角形内的任一点S都代表三元系的某一成分点。 (2)等边成分三角形中的特殊线 ①等含量规则:平行于三角形任一边的直线上所有合金中有一组元含量相同,此组元为所对顶角上的元素。 ②等比例规则:通过三角形定点的任何一直线上的所有合金,其直线两边的组元含量之比为定值。 ③背向规则:从任一组元合金中不断取出某一组元,那么合金浓度三角形位置将沿背离此元素的方向发展,这样满足此元素含量不断减少,而其他元素含量的比例不变。 ④直线定律:在一确定的温度下,当某三元合金处于两相平衡时,合金的成分点和两平衡相的成分点必定位于成分三角形中的同一条直线上。 (3)成分的其他表示方法: ①等腰成分三角形:两组元多,一组元少。 ②直角成分坐标:一组元多,两组元少。 ③局部图形表示法:一定成分范围内的合金。 2.三元相图的空间模型

图8-2 三元匀晶相图及合金的凝固(a)相图(b)冷却曲线 3.三元相图的截面图和投影图 (1)等温截面 定义:等温截面图又称水平截面图,它是以某一恒定温度所作的水平面与三元相图立体模型相截的图形在成分三角形上的投影。 作用:①表示在某温度下三元系中各种合金所存在的相态; ②表示平衡相的成分,并可以应用杠杆定律计算平衡相的相对含量。 图8-3 三元合金相图的水平截面图 (2)垂直截面 定义:固定一个成分变量并保留温度变量的截面,必定与浓度三角形垂直,所以称为垂直截面,或称为变温截面。 常用的垂直截面有两种: ①通过浓度三角形的顶角,使其他两组元的含量比固定不变; ②固定一个组元的成分,其他两组元的成分可相对变动。 图8-4 三元相图的垂直截面图

三元相图的绘制详解

三元相图的绘制 本实验是综合性实验。其综合性体现在以下几个方面: 1.实验内容以及相关知识的综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其是在一般的实验中(比如分析化学实验、无机化学实验等)作图都是用的直角坐标体系,几乎没有用过三角坐标体系,因此该实验中的等边三角形作图法就具有独特的作用。这类相图的绘制不仅在相平衡的理论课中有重要意义,而且对化学实验室和化工厂中经常用到的萃取分离中具有重要的指导作用。 2.运用实验方法和操作的综合 本实验中涉及到多种基本实验操作和实验仪器(如电子天平、滴定管等)的使用。本实验中滴定终点的判断,不同于分析化学中的大多数滴定。本实验的滴定终点,是在本来可以互溶的澄清透明的单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定的终点,有助于学生掌握多种操作,例如取样的准确、滴定的准确、终点的判断准确等。 一.实验目的 1. 掌握相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制三组分相图的基本原理和实验方法。 二.实验原理 三组分体系K = 3,根据相律: f = K–φ+2 = 5–ф 式中ф为相数。恒定温度和压力时: f = 3–φ 当φ= 1,则f = 2 因此,恒温恒压下可以用平面图形来表示体系的状态与组成之间的关系,称为三元相图。一般用等边三角形的方法表示三元相图。 在萃取时,具有一对共轭溶液的三组分相图对确定合理的萃取条件极为重要。在定温定压下,三组分体系的状态和组分之间的关系通常可用等边三角形坐标表示,如图1所示:

图1 图2 等边三角形三顶点分别表示三个纯物质A,B,C。AB,BC,CA,三边表示A和B,B和C,C和A所组成的二组分体系的组成。三角形内任一点则表示三组分体系的组成。如点P 的组成为:A%=Cb B%=Ac C%=Ba 具有一对共轭溶液的三组分体系的相图如图2所示。该三液系中,A和B,及A和C 完全互溶,而B和C部分互溶。曲线DEFHIJKL为溶解度曲线。EI和DJ是连接线。溶解度曲线内(ABDEFHIJKLCA)为单相区,曲线外为两相区。物系点落在两相区内,即分为两相。 图3(A醋,B水,C氯仿)绘制溶解度曲线的方法有许多种,本实验采用的方法是:将将完全互溶的两组分(如氯仿和醋酸)按照一定的比例配制成均相溶液(图中N点),再向清亮溶液中滴加另一组分(如水),则系统点沿BN线移动,到K点时系统由清变浑。再往体系里加入醋酸,系统点则沿AK上升至N’点而变清亮。再加入水,系统点又沿BN’由N’点移至J点而再次变浑,再滴加醋酸使之变清……如此往复,最后连接K、J、I……即可得到互溶度曲线,如图3所示。 三. 实验准备 1. 仪器:具塞磨口锥形瓶,酸式滴定管,碱式滴定管,移液管,分析天平。 2. 药品:冰醋酸,氯仿,NaOH溶液(0.2mol·mol–3),酚酞指示剂。

三元相图的绘制详解

三元相图得绘制 本实验就就是综合性实验。其综合性体现在以下几个方面: 1、实验内容以及相关知识得综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其就就是在一般得实验中(比如分析化学实验、无机化学实验等)作图都就就是用得直角坐标体系,几乎没有用过三角坐标体系,因此该实验中得等边三角形作图法就具有独特得作用。这类相图得绘制不仅在相平衡得理论课中有重要意义,而且对化学实验室与化工厂中经常用到得萃取分离中具有重要得指导作用。 2、运用实验方法与操作得综合 本实验中涉及到多种基本实验操作与实验仪器(如电子天平、滴定管等)得使用。本实验中滴定终点得判断,不同于分析化学中得大多数滴定。本实验得滴定终点,就就是在本来可以互溶得澄清透明得单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定得终点,有助于学生掌握多种操作,例如取样得准确、滴定得准确、终点得判断准确等。 一、实验目得 1、掌握相律,掌握用三角形坐标表示三组分体系相图。 2、掌握用溶解度法绘制三组分相图得基本原理与实验方法。 二、实验原理 三组分体系K= 3,根据相律: f =K–φ+2=5–ф 式中ф为相数。恒定温度与压力时: f= 3–φ 当φ= 1,则f = 2 因此,恒温恒压下可以用平面图形来表示体系得状态与组成之间得关系,称为三元相图。一般用等边三角形得方法表示三元相图。 在萃取时,具有一对共轭溶液得三组分相图对确定合理得萃取条件极为重要。在定温定压下,三组分体系得状态与组分之间得关系通常可用等边三角形坐标表示,如图1所示:

图1图2 等边三角形三顶点分别表示三个纯物质A,B,C。AB,BC,CA,三边表示A与B,B与C,C 与A所组成得二组分体系得组成。三角形内任一点则表示三组分体系得组成。如点P得组成为:A%=Cb B%=Ac C%=Ba 具有一对共轭溶液得三组分体系得相图如图2所示。该三液系中,A与B,及A与C完全互溶,而B与C部分互溶。曲线DEFHIJKL为溶解度曲线。EI与DJ就就是连接线。溶解度曲线内(ABDEFHIJKLCA)为单相区,曲线外为两相区。物系点落在两相区内,即分为两相。 图3(A醋,B水,C氯仿) 绘制溶解度曲线得方法有许多种,本实验采用得方法就就是:将将完全互溶得两组分(如氯仿与醋酸)按照一定得比例配制成均相溶液(图中N点),再向清亮溶液中滴加另一组分(如水),则系统点沿BN线移动,到K点时系统由清变浑。再往体系里加入醋酸,系统点则沿AK上升至N’点而变清亮。再加入水,系统点又沿BN’由N’点移至J点而再次变浑,再滴加醋酸使之变清……如此往复,最后连接K、J、I……即可得到互溶度曲线,如图3所示。 三、实验准备 1、仪器:具塞磨口锥形瓶,酸式滴定管,碱式滴定管,移液管,分析天平。 2、药品:冰醋酸,氯仿,NaOH溶液(0、2mol·mol–3),酚酞指示剂。 四、操作要点(各实验步骤中得操作关键点) 1、因所测得体系中含有水得成分,所以玻璃器皿均需干燥。

Fe-C相图与非平衡相转变基础知识讲义(doc 9页)(正式版)

Fe-C相图与非平衡相转变总结 钢通常被定义为一种铁和碳的合金,其中碳含量在几个ppm到2.11wt%之间。其它的合金元素在低合金钢中可总计达5wt%,在高合金钢例如工具钢,不锈钢(>10.5%)和耐热CrNi钢(>18%)合金元素含量甚至更高。钢可以展现出一系列的性能,这些性能依据于钢的组成,相状态和微观组 成结构,而这些又取决 于钢的热处理。 Fe-C相图 理解钢的热处理 的基础是Fe-C相图(图 一)。 图一实际上有两 个图:(1)稳定态Fe-C图(点划线),(2)亚稳态Fe-Fe3C图。由于稳态需要很长时间才能达到,特别是在低温和低碳情况下,亚稳态往往引起人们更多的兴趣。Fe-C相图告诉我们,在不同碳含量的组成和温度下,达稳态平衡或亚稳态平衡时哪些相会生成。 我们区别了a-铁素体和奥氏体,a-铁素体在727°C (1341°F)时最多溶解0.028%C,奥氏体在1148°C (2098°F)可溶解2.11wt%C。在碳多的一侧我们发现了渗碳体(Fe3C),另外,除了高合金钢之外,高温下存在的a-铁素体引起我们较少的兴趣。 在单相区之间存在着两相混合区,例如铁素体和渗碳体,奥氏体

和渗碳体,铁素体和奥氏体。在最高温下,液相区可被发现,在液相区以下有两相区域液态奥氏体,液态渗碳体和液态铁素体。在钢的热处理中,我们总是避免液相的生成。我们给单相区一些重要的边界特殊的名字:(1)A1,低共熔温度,是奥氏体生成的最低温度;(2)A3,奥氏体区域的低温低碳边界,也即r/(r+a)边界;(3)Acm,奥氏体区域的高碳边界,也即r/(r+Fe3C)边界。 低共熔温度碳含量是指在奥氏体生成的最低温度时的碳含量(0.77wt%C)。铁素体-渗碳体混合相在冷却形成时有一个特殊的外貌,被称为珠光体,可作为微观结构实体或微观组成物来进行处理。珠光体是一种a-铁素体和渗碳体薄片的混合物,渗碳体薄片又退化为渗碳体颗粒散步在一个铁素体基质中,散步过程发生在铁素体基质扩散接近A1边界之后。 Fe-C相图源于实验。但是,热力学原理和现代热力学的数据的相关知识可以为我们提供关于相图的精确计算。当相图边界不得不被推测和低温下实验平衡很慢达到时,这种计算特别有用。如果合金元素加入Fe-C相图,A1,A3,Acm边界的位置和低共熔组成的位置会变化。值得一提的是,所有重要的合金元素降低了低共熔碳含量。奥氏体的稳定元素锰,镍降低了A3,铁素体稳定元素铬,硅,钼和钨增加A3。平衡相图不能说明的相变动力学过程与亚稳态相,必须用非稳态相转变图来描述。 各种相转变图 在钢的热处理中,相变的动力学因素与平衡图表同样重要。对于

第二十讲三元相图总结

第二十讲三元相图总结 第五节三元相图总结 一、主要内容: 三元系的两相平衡 三元系的三相平衡 三元系的四相平衡 三元相图的相区接触法则 三元合金相图应用举例 二、要点: 三元系的两相平衡特点,共轭曲面,共轭曲线,三元系三相平衡特点(共晶型,包晶型),等温截面的相区接触法则,三元系的四相平衡特点,三元共晶反应型,包晶反应型,三元包晶反应型,利用单变量线的走向判断四相平衡类型,相区接触法则 三、方法说明: 掌握三元合金相图的特点,使学生能够看懂并应用三元相图,重点是掌握相区接触法则,利用单变量线判断四相平衡的类型,利用杠杆定律,重心法则估算出各组成相的相对含量 授课内容: 一、三元系的两相平衡 三元相图的两相区以一对共轭曲面为边界,所以无论是等温截面还是变温截面都截取一对曲线为边界。 在等温截面上平衡相的成分由两相区的连线确定,可用杠杆定律计算相的相对含量。 在变温截面上,只能判断两相的温度变化范围,不反应平衡相的成分。 二、三元系的三相平衡 三元系的三相平衡区的立体模型是一个三棱柱体,三条棱边为三个相成分的单变量线。 三相区的等温截面图的三个顶点就是三个相的成分点。各连接一个单相区,三角形的三个边各邻接一个两相区。可以用重心法则计算三个相的含量。 如何判断三相平衡是二元共晶反应还是二元包晶反应? 在垂直截面图中,曲边三角形的顶点在上方的是二元共晶反应;顶点在下方的是二元包晶反应。 三、三元系的四相平衡 三元系的四相平衡,为恒温反应。如果四相平衡中由一个相是液体三个相是固体,会有如下三种类型: 1)三元共晶反应: 2)包共晶反应: 3)三元包晶反应: 四个三相区与四相平衡平面的邻接关系有三种类型: 1)在四相平面之上邻接三个三相区,是三元共晶反应。 2)在四相平面之上邻接两个三相区,是包共晶反应。 3)在四相平面之上邻接一个三相区,是三元包晶反应。 液相面的投影图应用的十分广泛。 以单变量线的走向判断四相反应类型: 当三条液相单变量线相交于一点时,在交点所对应的温度必然发生四相平衡转变。 1)若三个箭头都指向交点为三元共晶反应。 2)若两条液相单变量线的箭头指向交点,一条背离交点,发生包共晶反应。 3)若一条液相单变量线的箭头指向交点,两条背离交点,发生三元包晶反应。

第八章 三元相图

第八章三元相图

三元合金系(ternery system)中含有三个组元,因此三元相图是表示在恒压下以温度变量为纵轴,两个成分变量为横轴的三维空间图形。由一系列空间区面及平面将三元图相分隔成许多相区。

第一节三元相图的基础知识 三元相图的基本特点: (1) 完整的三元相图是三维的立体模型; (2) 三元系中可以发生四相平衡转变。四相平衡区是恒温水平面; (3) 三元相图中有单相区、两相区、三相区和四相区。除四相平衡区外,一、二、三相平衡区均占有一定空间,是变温转变。

一、三元相图成分表示方法 三元相图成分通常用浓度(或成分)三角形(concentration/composition triangle)表示。常用的成分三角形有等边成分三角形、等腰成分三角形或直角成分三角形。

(一) 等边成分三角形-图形 1. 等边成分三角形图形 在等边成分三角形中,三角形的三个顶点分别代表三个组元A、B、C,三角形的三个边的长度定为0~100%,分别表示三个二元系(A—B系、B—C系、C—A系)的成分坐标,则三角形内任一点都代表三元系的某一成分。其成分确定方法如下:由浓度三角形所给定点S,分别向A、B、C顶点所对应的边BC、CA、AB 作平行线(sa、sb、sc),相交于三边的c、a、b点,则A、 B、C组元的浓度为:WA = sc = Ca WB = sa= Ab WC = sb= Bc ?注:sa+ sb+ sc = 1 Ca + Ab+ Bc= 1

2. 等边成分三角形中特殊线 (1) 平行等边成分三角形某一边的直线。 凡成分点位于该线上的各三元相,它们所含与此线对应顶角代表的组元的质量分数(浓度)均相等。 (2) 通过等边成分三角形某一顶点的直线 位于该线上的所有三元系,所含另外两顶点所代表的的组元质量分数(浓度)比值为恒定值。

相平衡基础知识巩固练

相平衡练习题 一、是非题,下列各题的叙述是否正确,对的画√错的画× 1、纯物质两相达平衡时,两相的吉布斯函数值一定相等。() 2、理想液态混合物与其蒸气达成气、液两相平衡时,气相总压力p与液相组成x B呈线性关系。是不是?() 3、已知Cu-Ni 可以形成完全互溶固熔体,其相图如右图,理论上,通过精炼可以得到两个纯组分。是不是?() 4、二组分的理想液态混合物的蒸气总压力介于二纯组分的蒸气压之间。是不是?( ) 5、在一定温度下,稀溶液中挥发性溶质与其蒸气达到平衡 时气相中的分压与该组分在液相中的组成成正比。是不是() 6、恒沸混合物的恒沸温度与恒沸组成不随压力而改变。是 不是?( ) 二、选择题 1、在p下,用水蒸气蒸馏法提纯某不溶于水的有机物时, 系统的沸点:()。 (1)必低于373.2 K;(2)必高于373.2 K; (3)取决于水与有机物的相对数量;(4)取决于有机物相对分子质量的大小。 2、二组分理想液态混合物的蒸气总压力:()。 (1)与溶液的组成无关;(2)介于两纯组分的蒸气压之间; (3)大于任一纯组分的蒸气压;(4)小于任一纯组分的蒸气压。 3、已知A(l)、B(l)可以组成其t-x(y)图具有最大恒沸点的液态完全互溶的系统, 则将某一组成的系统精馏可以得到:( )。 (1)两个纯组分;(2)两个恒沸混合物;(3)一个纯组分和一个恒沸混合物。 4、已知A和B 可构成固溶体,在组分A 中,若加入组分B 可使固溶体的熔点提高,则组

B 在此固溶体中的含量必________组分B 在组分液相中的含量。 (1)大于;(2)小于;(3)等于;(4)不能确定。 5、硫酸与水可形成H2SO4?H2O(s),H2SO4?2H2O(s),H2SO4?4H2O(s)三种水合物,问在101325 Pa的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有多少种?( ) (1) 3种;(2) 2种;(3) 1种;(4) 不可能有硫酸水合物与之平衡共存 6、对恒沸混合物的描写,下列各种叙述中哪一种是不正确的? (1) 与化合物一样,具有确定的组成; (2) 恒沸混合物的组成随压力的改变而改变; (3) 平衡时,气相和液相的组成相同; (4) 其沸点随外压的改变而改变。 7、将固体NH4HCO3(s) 放入真空容器中,等温在400 K,NH4HCO3按下式分解并达到平衡:NH4HCO3(s) === NH3(g) + H2O(g) + CO2(g) 系统的组分数C和自由度数F为:( )。 (1)C=2,F=1;(2)C=2,F=2; (3)C=1,F=0;(4)C=3,F=2。 8、在101 325 Pa的压力下,I2在液态水和CCl4中达到分配平衡(无固态碘存在)则该系统的自由度数为:( )。 (1)F=1;(2)F=2;(3)F=0;(4)F=3。 9、已知A,B两液体可组成无最高或最低恒沸点的液态完全互溶的系统,则将某一组成的溶液蒸馏可以获得:( )。 (1)一个纯组分和一个恒沸混合物; (2)两个恒沸混合物; (3)两个纯组分。 10、组分A(高沸点)与组分B(低沸点)形成完全互溶的二组分系统,在一定温度下,向纯B 中加入少量的A,系统蒸气压力增大,则此系统为:( )。 (1)有最高恒沸点的系统; (2)不具有恒沸点的系统; (3)具有最低恒沸点的系统。 三、填空题 1、已知NaHCO3(s)热分解反应为

第8章_三元相图_笔记及课后习题详解(已整理_袁圆_2014.8.7)

8.1 复习笔记 一、三元相图的基础 三元相图的基本特点:完整的三元相图是三维的立体模型;三元系中的最大平衡相数为四。三元相图中的四相平衡区是恒温水平面;三元系中三相平衡时存在一个自由度,所以三相平衡转变是变温过程,反应在相图上,三相平衡区必将占有一定空间。 1.三元相图成分表示方法 (1)等边成分三角形 图8-1 用等边成分三角形表示三元合金的成分 三角形内的任一点S都代表三元系的某一成分点。 (2)等边成分三角形中的特殊线 ①等含量规则:平行于三角形任一边的直线上所有合金中有一组元含量相同,此组元为所对顶角上的元素。 ②等比例规则:通过三角形定点的任何一直线上的所有合金,其直线两边的组元含量之比为定值。 ③背向规则:从任一组元合金中不断取出某一组元,那么合金浓度三角形位置将沿背离此元素的方向发展,这样满足此元素含量不断减少,而其他元素含量的比例不变。 ④直线定律:在一确定的温度下,当某三元合金处于两相平衡时,合金的成分点和两平衡相的成分点必定位于成分三角形中的同一条直线上。 (3)成分的其他表示方法: ①等腰成分三角形:两组元多,一组元少。 ②直角成分坐标:一组元多,两组元少。 ③局部图形表示法:一定成分范围内的合金。

2.三元相图的空间模型 图8-2 三元匀晶相图及合金的凝固(a)相图(b)冷却曲线 3.三元相图的截面图和投影图 (1)等温截面 定义:等温截面图又称水平截面图,它是以某一恒定温度所作的水平面与三元相图立体模型相截的图形在成分三角形上的投影。 作用:①表示在某温度下三元系中各种合金所存在的相态; ②表示平衡相的成分,并可以应用杠杆定律计算平衡相的相对含量。 图8-3 三元合金相图的水平截面图 (2)垂直截面 定义:固定一个成分变量并保留温度变量的截面,必定与浓度三角形垂直,所以称为垂直截面,或称为变温截面。 常用的垂直截面有两种: ①通过浓度三角形的顶角,使其他两组元的含量比固定不变; ②固定一个组元的成分,其他两组元的成分可相对变动。

相图小知识

相图小知识 1.相律的有关概念与相律表达式 (1)独立组份数C=S-R-R′。S为物种数,R为独立化学反应计量式数目。R′ 为同一相中独立的浓度限制条件数(包括不同物种依反应计量式比例关系及离子物种电中性条件) (2)自由度数f,系指相平衡体系中相数保持不变时,所具有独立可变的强度变量数。 (3)相律内容及其数学表达式。相律就是揭示pVT平衡系统中自由度数、独立组份数和相数三者之间的制约关系。 表达式为:f=C-Φ+2;式中(式中 2 指T、p两强度变量) 当T、p中有任一固定,则表达式为:条件自由度数f*=C-Φ+1 当考虑除T、p、X B以外的其他变量或相间有某种限制时,则表达式为f=C-Φ+n;(式中n≥2) (4)相律的局限性与应用的关键性。相律是一个定性规律,它指明特定条件下该平衡系统至多存在的相数及其相应的独立变量数,但不能指明是哪些相共存?哪些性质可作为独立变量及其它们之间的定量关系?相律对单相与复相都适用,但应用相律时,首先要考察系统是否满足相律成立的条件,并确定系统的组份数。 2.单组份系统的相图与特征 (1)单组份系统相律与相图:因C=1 ,故相律表达式为f=3-Φ。显然f最小为零,Φ最多应为 3 ,因相数最少为 1 ,故自由度数最多为 2 。相图是用几何图形来描述多相平衡系统宏观状态与T、p、X B(组成)的关系。在单组份相图中有单相的面、两相平衡线和三相平衡的点,自由度分别为f=2、f=1、f=0。 (2)单组份相变的特征与类型。相变是一个连续的质的飞跃。相平衡时物质在各相中的化学势相等,相变时某些物理性质有突变。根据物性的不同变化有一级相变和连续相变(包括二级相变等高阶相变)之分;前者广为存在如气、液、固之间转变,其特点是物质在两相中的 化学势一级导数不相等,且发生有限的突变〔即 〕,此类相变平衡曲线斜率符合 克拉贝龙方程。后者如氦He(Ⅰ)与He(Ⅱ)的转变。正常状态与超导状态的转变,其特点是化学势的一级导数在相变点连续〔即V1=V2,S1=S2〕,但化学势二级导 数在相变点附近则迅速变化,出现一个极大峰如; 或。二级相变 平衡曲线斜率符合爱伦菲斯(Ehrenfest)方程: 3.克拉贝龙—克劳修斯方程及其应用条件

三元相图的绘制

三元相图的绘制 Plotting the Phase Diagram of a Ternary system 本实验是综合性实验。其综合性体现在以下几个方面: 1.实验内容以及相关知识的综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其是在一般的实验中(比如分析化学实验、无机化学实验等)作图都是用的直角坐标体系,几乎没有用过三角坐标体系,因此该实验中的等边三角形作图法就具有独特的作用。这类相图的绘制不仅在相平衡的理论课中有重要意义,而且对化学实验室和化工厂中经常用到的萃取分离中具有重要的指导作用。 2.运用实验方法和操作的综合 本实验中涉及到多种基本实验操作和实验仪器(如电子天平、滴定管等)的使用。本实验中滴定终点的判断,不同于分析化学中的大多数滴定。本实验的滴定终点,是在本来可以互溶的澄清透明的单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定的终点,有助于学生掌握多种操作,例如取样的准确、滴定的准确、终点的判断准确等。 一.实验目的 1. 掌握相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制三组分相图的基本原理和实验方法。 二.实验原理 三组分体系K = 3,根据相律: f = K–φ+2 = 5–ф 式中ф为相数。恒定温度和压力时: f = 3–φ 当:φ= 1 则: f = 2 因此,恒温恒压下可以用平面图形来表示体系的状态与组成之间的关系,称为三元相图。一般用等边三角形的方法表示三元相图。 对共轭溶液的三组分体系,即三组分中二对液体AB及AC完全互溶,而另一对BC则不溶或部分互溶的相图,如图5-1所示。图中EK1K2K3DL3L2L1F是互溶度曲线;K1L1,K2L2是连结线。互溶度曲线下面是两相区,上面是一相区。 图5-1共轭溶液的三元相图(A:醋酸;B:水;C:氯仿) 三. 实验准备 1. 仪器:具塞磨口锥形瓶,酸式滴定管,碱式滴定管,移液管,分析天平。 2. 药品:冰醋酸,氯仿,NaOH溶液(0.2mol·mol–3),酚酞指示剂。 四.操作要点(各实验步骤中的操作关键点)

相关文档
最新文档