08届高三数学空间距离

08届高三数学空间距离
08届高三数学空间距离

g3.1066空间距离

一. 知识回顾:

1.点到平面的距离: . 2.直线到平面的距离: . 3.两个平面的距离: . 4.异面直线间的距离:

二.基础训练:

1.在ABC ?中,9,15,120AB AC BAC ==∠= ,ABC ?所在平面外一点P 到三顶点

,,A B C 的距离都是14,则P 到平面ABC 的距离是

( B ) ()A 6 ()B 7

()C 9 ()D 13 2.在四面体P ABC -中,,,PA PB PC 两两垂直,M 是面ABC 内一点,M 到三个面 ,,PAB PBC PCA 的距离分别是2,3,6,则M 到P 的距离是 ( A )

()A 7

()B 8 ()C 9 ()D 10 3.已知⊥PA 矩形ABCD 所在平面,cm AB 3=,cm PA cm BC 4,4==,则P 到CD

P 到BD 的距离为

cm . 4.已知二面角βα--l 为60

,平面α内一点A 到平面β的距离为4AB =,则B 到平面α的距离为 2 . 三.例题分析:

例1.已知二面角PQ αβ--为 60,点A 和B 分别在平面α和平面β内,点C 在棱PQ 上

30=∠=∠BCP ACP ,a CB CA ==,(1)求证:PQ AB ⊥;(2)求点B 到平面α的距离;(3)设R 是线段CA 上的一点,直线BR 与平面α所成的角为

45,求CR 的长

(1)证明:作BM PQ ⊥于M ,连接AM ,

30=∠=∠BCP ACP ,a CB CA ==, ∴MBC MAC ???,∴AM PQ ⊥,

PQ ⊥平面ABM ,AB ?平面ABM , ∴PQ AB ⊥. 解:(2)作BN AM ⊥于N ,

∵PQ ⊥平面ABM ,∴BN PQ ⊥,

∴BN α⊥,BN

是点B 到平面α的距离,由(1)知60BMA ∠=

∴sin 60sin 30sin 60

4BN BM CB ===

.∴点B 到平面α的距离为4

(2)连接,NR BR

,∵BN α⊥,BR 与平面α所成的角为45BRN ∠=

4RN BN ==

,cos302

CM BC ==

, ∴1

2

RN CM =

,∵60BMA ∠= ,BM AM =,BMA ?为正三角形, N 是BM 中点,∴R 是CB 中点,∴2

a

CR =.

小结:求点B 到平面α的距离关键是寻找点B 到α的垂线段.

例2.在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,E D ,分别是1CC ,与B A 1的中点,点E 在平面ABD 上的射影是ABD ?的重心G ,(1)求B A 1与平面ABD 所成角的正弦值;(2)求点1A 到平面ABD 的距离.

解:建立如图的空间直角坐标系,设1(,0,0)A a , 则1(0,,0)B a ,(,0,2)A a ,(0,,2)B a ,(0,0,2)C , ∵E D ,分别是1CC ,与B A 1的中点,

∴(0,0,1),(,,1)22

a a

D E ,∵G 是ABD ?的重心,

G E D C 1

B 1

A 1

C B

A

5

(,,)333a a G ,∴2(,,)663a a EG =- ,(,,0)AB a a =- , (0,,1)AD a =--

,∵EG ⊥平面ABD ,,,EG AB EG AD ⊥⊥

得2a =,且B A 1与平面ABD 所成角EBG ∠

,||3EG = ,

112BE BA ==

sin 3

EG EBG BE ∠==

, (2)E 是B A 1的中点,1A 到平面ABD 的距离等于E 到平面ABD 的距离的两倍,

∵EG ⊥平面ABD ,1A 到平面ABD

的距离等于2||EG =

小结:根据线段B A 1和平面ABD 的关系,求点1A 到平面ABD 的距离可转化为求E 到平面ABD 的距离的两倍.

例3.已知正四棱柱1111ABCD A BC D -,11,2,AB AA ==点E 为1CC 的中点,点F 为1BD 的中点,(1)证明:EF 为异面直线11BD CC 与的公垂线; (2)求点1D 到平面BDE 的距离.

解:(1)以1,,DA DC DD 分别为,,x y z 轴建立坐标系,

则(1,1,0)B ,1(0,0,2)D ,(0,1,1)E ,11

(,,1)22

F ,

11(,,0)22EF =- ,1(0,0,2)CC = ,1(1,1,2)BD =- ,

∴110,0EF BD EF CC ?=?=

∴EF 为异面直线11BD CC 与的公垂线.

(2)设(1,,)n x y = 是平面BDE 的法向量,∵(1,1,0)DB = ,(0,1,1)DE =

∴10n DB x ?=+= ,0n DE x y ?=+= ,(1,1,1)n =-

点1D 到平面BDE

的距离1||||

BD n d n ?==

. 小结:由平面的法向量能求出点到这个平面的距离.

例4. 如图,已知正四棱柱ABCD -A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC ∥ D 1B 且面EAC 与底面ABCD 所成的角为45°,AB =a 。(1)求截面EAC 的面积;(2)求异面直线A 1B 1与AC 之间的距离。

四、作业同步练习g3.1066 空间距离

3.已知PD ⊥正方形ABCD 所在平面,1PD AD ==,点C 到平面PAB 的距离为1d , 点B 到平面PAC 的距离为2d ,则

()A 121d d << ()B 121d d << ()C 121d d << ()D 211d d <<

4.把边长为a 的正三角形ABC 沿高线AD 折成60

的二面角,点A 到BC 的距离是( )

()A a

()

B 2

()

C 3

()

D 4

5.四面体ABCD 的棱长都是1,,P Q 两点分别在棱,AB CD 上,则P 与Q 的最短距离是(

F E

1

1

1

1

D C B A D C

B

A

1y D A C A 1 B 1 C 1 D 1 B

()A 2

()

B 3

2

()

C 56 ()

D 67

6.已知二面角βα--l 为

45, 30,,成与l AB B l A α∈∈角,5=AB ,则B 到平面β的距离为 .

7.已知长方体1111D C B A ABCD -中,12,51==AB AA ,那么直线11C B 到平面11BCD A 的距离是 .

8.已知⊥PA 矩形ABCD 所在平面,cm AB 3=,cm PA cm BC 4,4==,则P 到CD 的距离为 cm ,P 到BD 的距离为 cm .

9.已知二面角βα--l 为60

,平面α内一点A 到平面β的距离为4AB =,则B 到平面α的距离为 .

12.在棱长为1的正方体1111D C B A ABCD -中,

(1)求:点A 到平面1BD 的距离;(2)求点1A 到平面11D AB 的距离; (3)求平面11D AB 与平面D BC 1的距离;(4)求直线AB 到11B CDA 的距离.

参考答案

1、B

2、A 8、

5

9、2 10、解:(1)以1,,DA DC DD 分别为,,x y z 轴建立坐标系, 则(1,1,0)B ,1(0,0,2)D ,(0,1,1)E ,11(,,1)22

F ,

11(,,0)22EF =- ,1(0,0,2)CC = ,1(1,1,2)BD =-

∴110,0EF BD EF CC ?=?=

∴EF 为异面直线11BD CC 与的公垂线.

(2)设(1,,)n x y = 是平面BDE 的法向量,∵(1,1,0)DB = ,(0,1,1)DE =

∴10n DB x ?=+= ,0n DE x y ?=+= ,(1,1,1)n =-

点1D 到平面BDE 的距离1||3||

BD n d n ?==

小结:由平面的法向量能求出点到这个平面的距离.

11、解:建立如图的空间直角坐标系,设1(,0,0)A a , 则1(0,,0)B a ,(,0,2)A a ,(0,,2)B a ,(0,0,2)C , ∵E D ,分别是1CC ,与B A 1的中点,

∴(0,0,1),(,,1)22a a

D E ,∵G 是ABD ?的重心, 5

(,,)333a a G ,∴2(,,)663a a EG =- ,(,,0)AB a a =- , (0,,1)AD a =--

,∵EG ⊥平面ABD ,,,EG AB EG AD ⊥⊥ 得2a =,且B A 1与平面ABD 所成角EBG ∠

,||EG = ,

112BE BA ==

sin EG EBG BE ∠==

(2)E 是B A 1的中点,1A 到平面ABD 的距离等于E 到平面ABD 的距离的两倍,

∵EG ⊥平面ABD ,1A 到平面ABD

的距离等于2||3

EG = .

1y

版空间直角坐标系空间两点间的距离公式

版空间直角坐标系空间两点间的距离公式

————————————————————————————————作者:————————————————————————————————日期:

4.3空间直角坐标系 4.3.1空间直角坐标系 4.3.2空间两点间的距离公式 1.了解空间直角坐标系的建系方式.(难点) 2.能在空间直角坐标系中求出点的坐标和已知坐标作出点.(重点、易错点) 3.理解空间两点间距离公式的推导过程和方法.(难点) 4.掌握空间两点间的距离公式,能够用空间两点间距离公式解决简单的问题.(重点)

[基础·初探] 教材整理1空间直角坐标系 阅读教材P134~P135“例1”以上部分,完成下列问题.1.空间直角坐标系 定义以空间中两两垂直且相交于一点O的三条直线分别为x轴、y轴、z 轴,这时就说建立了空间直角坐标系Oxyz,其中点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面

画法在平面上画空间直角坐标系Oxyz时,一般使∠xOy=135°,∠yOz =90° 图示 说明本书建立的坐标系都是右手直角坐标系,即在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,中指指向z轴的正方向,则称这个坐标系为右手直角坐标系 2.空间中一点的坐标 空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标. 判断(正确的打“√”,错误的打“×”)

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

届高三文科数学立体几何空间角专题复习

届高三文科数学立体几何空间角专题复习 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2015届高三文科数学立体几何空间角专题复习 考点1:两异面直线所成的角 例1.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 例2.(2010全国卷1文数)直三棱柱111ABC A B C -中,若 90BAC ∠=?,1AB AC AA ==,则异面直线1BA 与1AC 所成的 角等于( C ) (A) 30° (B) 45° (C) 60° (D) 90° 变式训练: 1.(2009全国卷Ⅱ文)已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 中点,则异面直线BE 与1CD 所形成角的余弦值为( C ) (A ) 1010 (B) 15 (C ) 31010 (D) 35 2.如图,直三棱柱111ABC A B C -,90BCA ?∠=,点1D 、1F 分别是11A B 、11A C 的中点, 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B .21 C .15 30 D . 10 15 3.(2012年高考(陕西理))如图,在空间直角坐标系中有直三棱 111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( ) A . 55 B . 53 C . 5 5 D .35 第3题图 第4题图 第5题图 4.(2007全国Ⅰ·文)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线 1A B 与1AD 所成角的余弦值为( )

空间两点之间的距离公式

空间两点间的距离公式 教学目标: 1、通过特殊到一般的情况推导出空间两点间的距离公式 2、感受空间两点间距离公式与平面两点间距离公式的联系与区别 教学重点 两点间距离公式的应用 教学难点 利用公式解决空间几何问题 教学过程 一、复习 1、空间点的坐标的特点 2、平面两点间的距离公式P 1(x 1,y 1),P 2(x 2,y 2) ________________ 线段P 1P 2中点坐标公式______________ 二、新课 1、设P 的坐标是(x,y,z),求|OP| |OP|=___________________________ 2、空间两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),求 |P 1P 2| |P 1P 2|=___________________________ 线段P 1P 2中点坐标公式_________________ 例:()()间的距离求空间两点1,0,6523 21--,P ,,P 练习:()()()513432251,,,C ,,,B ,,A ABC 的三个顶点已知? (1)求。ABC 中最短边的边长 ? (2)求边上中线的长度AC

例:试解释()()()365312222=-+++-z y x 的几何意义。 练习:1、已知()1,,222=++z y x z y x M 满足则M 点的轨迹为_________________ 2、求P ??? ? ??66,33,22到原点的距离。 3、()()。a AB a ,B ,,A 的值求设,4,,3,0210= 4、在长方体1111D C B A ABCD -,AD=2,AB=3,AA 1=2,E 为AC 中点,求D 1E 的长。 三、小结

2019年高中数学第四章圆与方程4.3.1空间直角坐标系4.3.2空间两点间的距离公式课时作业(含解析)

4.3.1 空间直角坐标系4.3.2 空间两点间的距离公式 1.点P(1,0,2)在空间直角坐标系中的位置是在( C ) (A)y轴上(B)xOy面上 (C)xOz面上(D)yOz面上 解析:由于点P(1,0,2)的纵坐标y=0知,该点在xOz面上.故选C. 2.点A(2,1,-1)关于x轴对称的点的坐标为( A ) (A)(2,-1,1) (B)(2,-1,-1) (C)(-2,-1,-1) (D)(-2,1,-1) 解析:关于x轴对称的两点的横坐标相等,其他坐标分别互为相反数.故选A. 3.空间两点A,B的坐标分别为(x,-y,z),(-x,-y,-z),则A,B两点的位置关系是( B ) (A)关于x轴对称 (B)关于y轴对称 (C)关于z轴对称 (D)关于原点对称 解析:A,B两点纵坐标相同,横坐标和竖坐标互为相反数,故A,B两点关于y轴对称,故选B. 4.如图,在空间直角坐标系中有一棱长为a的正方体ABCD-A′B′C′D′,则A′C的中点E与AB的中点F的距离为( B ) (A) a (B) a (C)a (D) a 解析:由题图可得,F(a,a,0),A′(a,0,a),C(0,a,0), 所以E(a,a,a), 则|EF|== a. 5.在空间直角坐标系中,已知三点A(1,0,0),B(1,1,1),C(0,1,1),则三角形ABC是( A ) (A)直角三角形 (B)等腰三角形 (C)等腰直角三角形(D)等边三角形

解析:由题|AB|==, |AC|==, |BC|==1, 所以AC2=AB2+BC2, 所以三角形ABC是直角三角形. 6.点P(1,4,-3)与点Q(3,-2,5)的中点坐标是( C ) (A)(4,2,2) (B)(2,-1,2) (C)(2,1,1) (D)(4,-1,2) 解析:设点P与点Q的中点坐标为(x,y,z),则x==2,y==1,z==1.选C. 7.已知空间中两点A(1,2,3),B(4,2,a),且|AB|=,则a的值为( D ) (A)2 (B)4 (C)0 (D)2或4 解析:由空间两点间的距离公式得 |AB|==, 即9+a2-6a+9=10,所以a2-6a+8=0, 所以a=2或a=4.选D. 8.在空间直角坐标系中,已知点P(x,y,z)的坐标满足方程(x-2)2+(y+ 1)2+(z-3)2=1,则点P的轨迹是( C ) (A)圆 (B)直线 (C)球面 (D)线段 解析:(x-2)2+(y+1)2+(z-3)2=1表示(x,y,z)到点(2,-1,3)的距离的平方为1,它表示以(2,-1,3)为球心,以1为半径的球面,故选C. 9.给出下列命题: ①在空间直角坐标系中,在x轴上的点的坐标一定是(0,b,c); ②在空间直角坐标系中,在yOz平面上的点的坐标一定是(0,b,c); ③在空间直角坐标系中,在z轴上的点的坐标一定是(0,0,c); ④在空间直角坐标系中,在xOy平面上的点的坐标一定是(a,0,c). 其中正确命题的序号是.(把你认为正确的答案编号都填上) 解析:命题①错,坐标应为(a,0,0);命题②③正确;命题④错,坐标应为(a,b,0). 答案:②③ 10.已知点A(-2,2,3),点B(-3,-1,1),在z轴上有一点M,满足|MA|=|MB|,则点M的坐标是. 解析:设点M的坐标为(0,0,z),因为|MA|=|MB|,所以= ,解得z=,所以点M的坐标为(0,0,).

空间角与距离求法(高二)

1 空间角与点面距离求法 求空间角和点到平面的距离是教学的重点,也是学生学习的难点,更是高考的必考点.新课标强调要求利用向量的运算来解决这两个问题,而新教材的处理是通过探究引导学生推理得出相关公式.在复习时,作为教师有必要帮助学生对相关的知识进行梳理、归纳和小结. 1.空间角的求法 在立体几何中,求空间角是学习的重点,也是学习的难点,更是高考的必考点.我们在复习时,必须对相关的知识进行梳理、归纳和小结,才会灵活运用公式熟练地求出空间角. 一、相关概念和公式 (1) b a ,是空间两个非零向量,过空间任意一点O ,作,,b a ==则AOB ∠叫做 向量a 与向量b 的夹角,记作>≤≤=< . (3) 设),,(111z y x a = , ),,(222z y x b = 则212121||z y x a ++= ,222222||z y x b ++= , 212121z z y y x x b a ++=? . 二、两条异面直线所成的角 (1) 定义:已知两条异面直线a 和b ,经过空间任一点O 作直线,//,//b b a a ''我们把a '与b ' 所成的锐角(或直角)叫做异面直线a 和b 所成的角(或夹角). (2) 范围: 异面直线a 和b 所成的角为θ: 900≤<θ, 则cos 0≥θ . (3) 求法: ▲① 平移法: 把两条异面直线a 和b 平移经过某一点(往往选取图中的特殊点),构造三角形(有时会用到补形法,如三棱柱补成平行六面体等),解三角形(通常用到余弦定理).特别提醒:若由边角关系求得为钝角.. 时,注意取其补角为异面直线所成的角. ▲② 向量法: 若a 和b 分别是异面直线a 和b 的方向向量,则 | ||||||||||||,cos |cos b a b a b a b a b a ??=??=><=θ . 说明: ① 其中=θ或- 180 ; ② 在计算b a ?时可用向量分解或坐标进行运算. 三、直线与平面所成的角 (1) 定义: 一个平面的斜线和它在这个平面内的射影的夹角,叫 做斜线和平面所成的角(或斜线和平面的夹角) 如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平

空间角及空间距离的计算知识点

空间角及空间距离的计算 1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在在两异面直线中的一条上取一点, 过该点作另一条直线平行线, 2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA 是平面α的一条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面α上射影,PAO ∠为线面角。 3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角l αβ--,二面角的大小 指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 用二面角的平面角的定义求二面角的大小的关键点是: ①明确构成二面角两个半平面和棱; ②明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。(求空间角的三个步骤是“一 找”、“二证”、“三计算”) 4.异面直线间的距离:指夹在两异面直线之间的公垂线段的长度。如图PQ 是两异面直线间的 距离 (异面直线的公垂线是唯一的,指与两异面直线垂直且相交的直线) 5. 点到平面的距离:指该点与它在平面上的射影的连线段的长度。 如图:O 为P 在平面α上的射影, 线段OP 的长度为点P 到平面α的距离 长方体的“一角” 模型 在三棱锥P ABC -中,,,PA PB PB PC PC PA ⊥⊥⊥,且,,PA a PB b PC c ===. ①以P 为公共点的三个面两两垂直; ③P 在底面ABC 的射影是△ABC 的垂心 ----,,l OA OB l OA l OB l AOB αβαβαβ??⊥⊥∠如图:在二面角中,O 棱上一点,,, 的平面角。 且则为二面角 a b ''??如图:直线a 与b 异面,b//b ,直线a 与直线b 的夹角为两异 面直线与所成的角,异面直线所成角取值范围是(0,90] 求法通常有:定义法和等体积法 等体积法:就是将点到平面的距离看成是 三棱锥的一个高。 如图在三棱锥V ABC -中有: S ABC A SBC B SAC C SAB V V V V ----=== C A

空间直角坐标系 空间两点间的距离公式(解析版)

空间直角坐标系空间两点间的距离公式班级:____________ 姓名:__________________

C .(-4,0,-6) D .(-4,7,0) 解析:点M 关于y 轴对称的点是M ′(-4,7,-6),点M ′在xOz 平面上的射影的坐标为(-4,0,- 6). 答案:C 二、填空题 7.如图,长方体ABCD -A 1B 1C 1D 1中,已知A 1(a,0,c ),C (0,b,0),则点B 1的坐标为________. 解析:由题中图可知,点B 1的横坐标和竖坐标与点A 1的横坐标和竖坐标相 同,点B 1的纵坐标与点C 的纵坐标相同,所以点B 1的坐标为(a ,b ,c ). 答案:(a ,b ,c ) 8.在空间直角坐标系中,点(4,-1,2)关于原点的对称点的坐标是________. 解析:空间直角坐标系中关于原点对称的点的坐标互为相反数,故点(4,-1,2)关于原点的对称点的坐标是(-4,1,-2). 答案:(-4,1,-2) 9.点P (-1,2,0)与点Q (2,-1,0)的距离为________. 解析:∵P (-1,2,0),Q (2,-1,0), ∴|PQ |=(-1-2)2+[2-(-1)]2+02=3 2. 答案:3 2 10.已知点P ????32,52,z 到线段AB 中点的距离为3,其中A (3,5,-7),B (-2,4,3),则z =________. 解析:由中点坐标公式,得线段AB 中点的坐标为??? ?12,92,-2.又点P 到线段AB 中点的距离为3,所以 ????32-122+??? ?52-922+[z -(-2)]2=3, 解得z =0或z =-4. 答案:0或-4 三、解答题 11.已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,|AB |=|AC |=|AA 1|=4,M 为BC 1的中点,N 为A 1B 1的中点,求|MN |. 解析:如右图,以A 为原点,射线AB ,AC ,AA 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系, 则B (4,0,0),C 1(0,4,4),A 1(0,0,4),B 1(4,0,4),因为M 为BC 1的中点,N 为A 1B 1的中点,所以由空间

高中数学北师大版必修二2.3.3【教学设计】《空间两点间的距离公式》

《空间两点间的距离公式》 本节课为高中必修二第二章第三节第三课时的内容,它是在学生已经学过的平面直角坐标系的基础上的推广。距离是几何中的基本度量,几何问题和一些实际问题经常涉及距离,点又是确定线、面的几何要素之一,所以本节课对学习点线面的距离公式的推导和进一步学习。 【知识与能力目标】 理解空间内两点间的距离公式的推导过程,掌握两点间距离公式及其简单应用,会用坐标法证明一些简单的几何问题。 【过程与方法目标】 通过推导公式发现,由特殊到一般,由空间到平面,由未知到已知的基本解题思想,培养学生观察发现、分析归纳等基本数学思维能力。 【情感态度价值观目标】 培养学生思维的严密性和条理性,同时感受数学的形式美与简洁美,从而激发学生学习兴趣。 【教学重点】 空间两点间的距离公式和它的简单应用。 【教学难点】 空间两点间的距离公式的推导。 电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。 一、导入部分

我们知道,数轴上两点的距离是两点的坐标之差的绝对值,即d=|x1-x2|;平面直角坐标系中,两点的距离是()(),同学们想一下,在空间直角坐标系中,如果已知两点的坐标,如何求它们之间的距离呢? 二、研探新知,建构概念 1、电子白板投影出上面实例。 2、教师组织学生分组讨论:先让学生分析,师生一起归纳。 (1)长方体的对角线及其长的计算公式 ①连接长方体两个顶点A,C′的线段AC′称为长方体的对角线。(如图) ②如果长方体的长、宽、高分别为a、b、c,那么对角线长. 注意:(①)就推导过程而言,其应用了把空间长度向平面长度转化的思想,即通过构造辅助平面,将空间问题降维到平面中处理。 (②)就公式而言,该公式可概括为:长方体的对角线长的平方等于一个顶点上三条棱长的平方和。 (2)两点间的距离公式 空间两点A(x1,y1,z1),B(x2,y2,z2)间的距离 ()()() 注意:①空间中两点间的距离公式是数轴上和平面上两点间距离公式的进一步推广。 (①)当空间中的任意两点P1,P2落在同一坐标平面内或与坐标平面平行的平面内时,此公式可转化为平面直角坐标系中的两点间的距离公式; (②)当空间中的任意两点P1,P2落在同一坐标轴上时,则该公式转化为数轴上两点间的距离公式。 ②空间任意一点P(x0,y0,z0)与原点的距离. 三、质疑答辩,发展思维 1、举例:如图,在长方体ABCD-A1B1C1D1中,|AB|=|AD|=3,|AA1|=2,点M在A1C1上,|MC1|=2|A1M|,N在D1C上且为D1C中点,求M、N两点间的距离。

利用空间向量求空间角和距离

利用空间向量求空间角和距离 A 级——夯基保分练 1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.30 30 B .3015 C. 3010 D. 1515 解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→ =(-1,-1,-2),D 1N ―→ =(1,0,-2), ∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→ | |B 1M ―→|·|D 1N ―→|= |-1+4|1+1+4×1+4=30 10 . 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的 正弦值为( ) A.33535 B .277 C.33 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→,n =DC 1―→·n |DC 1―→|·|n| =33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 .

2.4空间直角坐标系与空间两点的距离公式

2.4. 空间直角坐标系与空间两点的距离公式 课程学习目标 [课程目标] 目标重点:空间直角坐标系和点在空间直角坐标系中的坐标及空间两点距离公式.目标难点:确定点在空间直角坐标系中的坐标,以及空间距离公式的推导. [学法关键] 1.在平面直角坐标系中,过一点作一条轴的平行线交另一条轴于一点,交点在这个轴上的坐标,就是已知点相应的一个坐标,类似地,在空间直角坐标系中,过一点作两条轴确定的平面的平行平面交另一条轴于一点,交点在这条轴上的坐标就是已知点的一个相应的坐标. 2.通过类比平面内两点间的距离公式来理解空间两点的距离公式 研习点1.空间直角坐标系 为了确定空间点的位置,我们在空间中取一点O作为原点,过O点作三条两两垂直的数轴,通常用x、y、z表示. 轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合. 这时,我们在空间建立了一个直角坐标系O-xyz,O叫做坐标原点. 如何理解空间直角坐标系? 1.三条坐标轴两两垂直是建立空间直角坐标系的基础; 2.在空间直角坐标系中三条轴两两垂直,轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合; 3.如果让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,那么称这个坐标系为右手直角坐标系,一般情况下,建立的坐标系都是右手直角坐标系; 4.在平面上画空间直角坐标系O-xyz时,一般情况下使∠xOy=135°,∠yOz=90°. 研习点2.空间点的坐标 1.点P的x坐标:过点P作一个平面平行于平面yOz,这样构造的平面同样垂直于x轴,这个平面与x轴的交点记为P x,它在x轴上的坐标为x,这个数x就叫做点P的x坐标;2.点P的y坐标:过点P作一个平面平行于平面xOz,这样构造的平面同样垂直于y轴,这个平面与y轴的交点记为P y,它在y轴上的坐标为y,这个数y就叫做点P的y坐标;3.点P的z坐标:过点P作一个平面平行于平面xOy,这样构造的平面同样垂直于z轴,这个平面与z轴的交点记为P z,它在z轴上的坐标为z,这个数z就叫做点P的z坐标; 这样,我们对空间的一个点,定义了一组三个有序数作为它的坐标,记做P(x,y,z),其中x,y,z也可称为点P的坐标分量.

空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离 一、考点梳理 1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。 2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下: 1)求直线和直线所成的角 若直线AB 、CD 所成的角是α,cos α=|,cos |>

计算公式为: 4).利用法向量求点面距离 如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,则点P 到平面的距离 θcos ||||PA PO d == 5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面 间的距离,以及平行平面间的距离等。其一,这三类距离都可以转化为点面间的距离;其二, 异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即 为所求。n 为异面直线AD 、BC 公共垂直的方向向量,可由0n AD ?=及0n BC ?=求得,其计算公式为: || || n AB d n =。其本质与求点面距离一致。 向量是新课程中引进的一个重要解题工具。而法向量又是向量工具中的一朵厅葩,解题方法新颖,往往能使解题有起死回生的效果,所以在学习中应起足够的重视。 二、范例分析 例1 已知ABCD 是上、下底边长分别为2和6,3将它沿对称轴1 OO n α A P O θ

空间的角度与距离(附答案)

基础训练34(A) 空间的角度与距离 ●训练指要 掌握空间有关的角与距离的概念、范围、计算方法,会计算有关的距离和角. 一、选择题 1.(2001年全国高考题)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜,记三种盖法屋顶面积分别为P1、P2、P3. 若屋顶斜面与水平面所成的角都是α,则 A.P3>P2>P1 B.P3>P2=P1 C.P3=P2>P1 D.P3=P2=P1 2.给出下列四个命题: ①如果直线a∥平面α,a 平面β,且α∥β,则a与平面α的距离等于平面α与β的距离; ②两条平行直线分别在两个平行平面内,则这两条平行直线的距离等于这两个平面间的距离; ③异面直线a、b分别在两个平行平面内,则a、b的距离等于这两个平面的距离; ④若点A在平面α内,平面α和β平行,则A到平面β的距离等于平面α与平面β的距离. 其中正确的命题的个数是

A.1 B.2 C.3 D.4 3.如图,正三棱柱ABC —A 1B 1C 1的各条棱长均相等,则AC 1与平面 BB 1C 1C 所成角的余弦值等于 A.4 10 B.66 C.26 D.2 10 二、填空题 4.二面角α—l —β的面α内有一条直线a 与l 成45°的角,若这个二面角的平面角也是45°,则直线a 与平面β成角的度数为_________. 5.三个两两垂直的平面,它们的三条交线交于一点O ,点P 到三个平面的距离的比为1∶ 2∶3,PO =214,则P 点到这三个平面的距离分别是_________. 三、解答题 6.如图,在正三棱锥P —ABC 中,侧棱长3 cm ,底面边长2 cm ,E 是BC 的中点,EF ⊥P A ,垂足为F . (1)求证:EF 为异面直线P A 与BC 的公垂线段; (2)求异面直线P A 与BC 间的距离. 7.如图,正四棱锥S —ABCD 的所有棱长都相等,过底面对角线 AC 作平行于侧棱SB 的截面交SD 于E . (1)求AB 与SC 所成角的大小; (2)求二面角E —AC —D 的大小; (3)求直线BC 与平面EAC 所成角的大小. 8.在棱长为a 的正四面体ABCD 中,M 、E 分别是棱BD 、BC 的中点,N 是BE 的中点,

向量法求空间距离和角

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法 向量, 则斜线l 与平 面 α 所成的角 α=arcsin | ||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角 l αβ--的平面角α=arccos |||| a b a b 法二、设12,,n n 是二面角l αβ--的两

个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角 l αβ--的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 法一、找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ==(此方法移植于点面距离的求法).

立体几何专题空间几何角和距离的计算

立体几何专题:空间角和距离的计算 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值。 B 1 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角,(1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ;(2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小; D 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2,(1)求直线D 1F 和AB 和所成的角;(2)求D 1F 与平面AED 所成的角。 1 2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB , AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角 的大小。 B 1

三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点,(1)证明AB 1∥平面DBC 1;(2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小。 B 1 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5,(1)求面SCD 与面SBA 所成的二面角的大小;(2)求SC 与面ABCD 所成的角。 B C 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小。 1 四 空间距离计算 (点到点、异面直线间距离)1.在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,P 是BC 的中点,DP 交AC 于M ,B 1P 交BC 1于N ,(1)求证:MN 上异面直线AC 和BC 1的公垂线;(2)求异面直线AC 和BC 1间的距离; C 1 A

空间直角坐标系与空间两点的距离公式

空间直角坐标系与空间两点的距离公式 空间直角坐标系 为了确定空间点的位置,我们在空间中取一点0作为原点,过0点作三条两两垂 直的数轴,通常用x、y、z 表示. 轴的方向通常这样选择:从z 轴的正方向看,x 轴的半轴沿逆时针方向转90 能与y轴的半轴重合.这时,我们在空间建立了一个直角坐标系O —xyz, 0叫做坐标原点. 如何理解空间直角坐标系?1.三条坐标轴两两垂直是建立空间直角坐标系的基础; 2. 在空间直角 坐标系中三条轴两两垂直,轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合; 3. 如果让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的 正方向,那么称这个坐标系为右手直角坐标系,一般情况下,建立的坐标系都是右手直角坐标系; 4. 在平面上画空间直角坐标系O —xyZ时,一般情况下使/ xOy=135°, / yOz=90°. 空间点的坐标 1. 点P的x坐标:过点P作一个平面平行于平面yOz,这样构造的平面同样垂直于x轴, 这个平面与X轴的交点记为P x,它在X轴上的坐标为X,这个数X就叫做点P的x坐标; 2. 点P的y坐标:过点P作一个平面平行于平面xOz,这样构造的平面同样垂直于y轴, 这个平面与y轴的交点记为P y,它在y轴上的坐标为y,这个数y就叫做点P的y坐标; 3. 点P的z坐标:过点P作一个平面平行于平面xOy,这样构造的平面同样垂直于z轴, 这个平面与Z轴的交点记为P z,它在Z轴上的坐标为Z,这个数Z就叫做点P的z坐标; 这样,我们对空间的一个点,定义了一组三个有序数作为它的坐标,记做P (x, y, z),其中x, y, z也可称为点P的坐标分量. 已知数组(x, y, z),如何作出该点?对于任意三个实数的有序数组(x, y, z):(1)在坐标轴上分别作出点P x, P y, P z,使它们在x轴、y轴、z轴上的坐标分别是x、y、z; (2)再分别通过这些点作平面平行于平面yOz、xOz、xOy,这三个平面的交点就是 所求的点. 空间点的坐标 1. 在空间直角坐标系中,每两条轴分别确定的平面xOy、yOz、xOz叫做坐标平面; 2. 坐标平面上点的坐标的特征:

用向量法求空间角与距离

用向量法求空间角与距离 1.1. 向量的数量积和坐标运算 b a ,是两个非零向量,它们的夹角为 ,则数 cos |||| b 叫做与的数量积(或内积),记作b a ,即.cos |||| 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是: 若),,(),,,(222111z y x b z y x a ,则 ①212121z z y y x x b a ; ②2 22222212121||,||z y x b z y x a ; ③212121z z y y x x b a ④2 2 2 22 22 12 12 12 12121,cos z y x z y x z z y y x x b a 1.2. 异面直线n m ,所成的角 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角 等于向量b a ,所成的角或其补角(如图1所示),则 .||||| |cos b a b a (例如2004年高考数学广东卷第18题第(2)问) 1.3. 异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的 向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在 上的射影长,即| |n d . 图1

证明:设CD 为公垂线段,取b a ,(如图1所示),则 | |||)( | |||n d 设直线n m ,所成的角为 ,显然.||||| |cos b a b a 1.4. 直线L 与平面 所成的角 在L 上取定,求平面 的法向量2所示), 再求 | |||cos n AB 2 为所求的角. 1.5. 二面角 方法一:构造二面角 l 的两个半平面 、的法向量 21n n 、(都取向上的方向,如图3所示),则 ① 若二面角 l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即| |||cos 2121n n (例如2004年高考数学广 东卷第18题第(1)问). ② 若二面角 l 是“锐角型”的如图3乙所示, 那么其大 小等于两法向量21n n 、的夹角, 即| |||cos 2121n n (例如 2004年高考数学广东卷第18题第(1)问). 方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面 、内求出与l 垂直的向量21n n 、(如图4所示) ,则二面角 l 的大小等于向量21n n 、的夹角,即 图3乙 图3 图4 图2

湖北省恩施州巴东一中高中数学人教A版必修二教案:§ 空间两点间的距离公式

§4.3.2 空间两点间的距离公式 一、教材分析 平面直角坐标系中,两点之间的距离公式是学生已学的知识,不难把平面上的知识推广到空间,遵循从易到难、从特殊到一般的认识过程,利用类比的思想方法,借助勾股定理得到空间任意一点到原点的距离;从平面直角坐标系中的方程x 2+y 2=r 2表示以原点为圆心,r 为半径的圆,推广到空间直角坐标系中的方程x 2+y 2+z 2=r 2表示以原点为球心,r 为半径的球面.学生是不难接受的,这不仅不增加学生负担,还会提高学生学习的兴趣. 二、教学目标 1.知识与技能 使学生掌握空间两点间的距离公式 2.过程与方法 3.情态与价值观 通过空间两点间距离公式的推导,使学生经历从易到难,从特殊到一般的认识过程 三、教学重点与难点 教学重点:空间两点间的距离公式. 教学难点:一般情况下,空间两点间的距离公式的推导. 四、课时安排 1课时 先推导特殊情况下空间两点间的距离公式 推导一般情况下的空间两点间的距离公式

五、教学设计 (一)导入新课 思路1.距离是几何中的基本度量,几何问题和一些实际问题经常涉及距离,如飞机和轮船的航线的设计,它虽不是直线距离,但也涉及两点之间的距离,一些建筑设计也要计算空间两点之间的距离,那么如何计算空间两点之间的距离呢?这就是我们本堂课的主要内容. 思路2.我们知道,数轴上两点间的距离是两点的坐标之差的绝对值,即d=|x 1—x 2|;平面直角坐标系中,两点之间的距离是d=212212)()(y y x x -+-.同学们想,在空间直角坐标系中,两点之间的距离应怎样计算呢?又有什么样的公式呢?因此我们学习空间两点间的距离公式. (二)推进新课、新知探究、提出问题 1平面直角坐标系中,两点之间的距离公式是什么?它是如何推导的? 2设A (x,y,z )是空间任意一点,它到原点的距离是多少?应怎样计算? 3给你一块砖,你如何量出它的对角线长,说明你的依据. 4同学们想,在空间直角坐标系中,你猜想空间两点之间的距离应怎样计算? 5平面直角坐标系中的方程x 2+y 2=r 2表示什么图形?在空间中方程x 2+y 2+z 2=r 2表示什么图形? ⑥试根据23推导两点之间的距离公式. 活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,大胆猜想,发散思维.1学生回忆学过的数学知识,回想当时的推导过程;2解决这一问题,可以采取转化的方法,转化成我们学习的立体几何知识来解;3首先考虑问题的实际意义,直接度量,显然是不可以的,我们可以转化为立体几何的方法,也就是求长方体的对角线长.4回顾平面直角坐标系中,两点之间的距离公式,可类比猜想相应的公式;5学生回忆刚刚学过的知识,大胆类比和猜想;⑥利用3的道理,结合空间直角坐标系和立体几何知识,进行推导.

《空间两点间的距离公式》教学设计(优质课)

空间两点间的距离公式 (一)教学目标 1.知识与技能 使学生掌握空间两点间的距离公式 2.过程与方法 3.情态与价值观 通过空间两点间距离公式的推导,使学生经历从易到难,从特殊到一般的认识过程 (二)教学重点、难点 重点:空间两点间的距离公式; 难点:一般情况下,空间两点间的距离公式的推导。 (三)教学设计 先推导特殊情况下空间两点间的距离公式 推导一般情况下的空间两点间的距离公式

巩固练习 1.先在空间直角坐标系中标出A、B两点,再求它们之间的距离:

|.求MN 的长. 备选例题 例1 已知点A 在y 轴 ,点B (0,1,2)且||AB =A 的坐标为 . 【解析】由题意设A (0,y ,0)= 解得:y = 0或y = 2,故点A 的坐标是(0,0,0)或(0,2,0) 例2 坐标平面yOz 上一点P 满足:(1)横、纵、竖坐标之和为2;(2)到点A (3,2,5),B (3,5,2)的距离相等,求点P 的坐标. 【解析】由题意设P (0,y ,z ),则

222222 2 (03)(2)(5)(03)(5)(2) y z y z y z +=??-+-+-=-+-+-? 解得:1 1 y z =??=? 故点P 的坐标为(0,1,1) 例3 在yOz 平面上求与三个已知点A (3,1,2),B (4,–2,–2),C (0,5,1)等距离的点的坐标. 【解析】设P (0,y ,z ),由题意||||||||PA PC PB PC =??=? 所以==即4607310y z y z --=??+-=?,所以12y z =??=-?, 所以P 的坐标是(0,1,–2).

相关文档
最新文档