2017年-2018年普通高等学校招生全国统一考试数学试题文(全国卷3,参考解析)

合集下载

2018年普通高等学校招生全国统一考试数学试题文(全国卷3,含答案)-精选.pdf

2018年普通高等学校招生全国统一考试数学试题文(全国卷3,含答案)-精选.pdf

解答: cos2 1 2sin 2
5.答案: B
27
1
. 故选 B.
99
解答:由题意 P 1 0.45 0.15 0.4 . 故选 B.
6.答案: C
解答:
f (x)
tan x
2
1 tan x
sin x
cos x
2
sin x
1
2
cos x
sin x cos x
2
2
sin x cos x
sin x cos x 1 sin 2x ,∴ f (x) 的周期
3
1
D ABC 体积最大值 VD ABC
9 3 (2 4) 18
3
42 3.
(2 3) 2
2 ,∴三棱锥
8
二、填空题
13.答案: 1 2
解答:
2a b (4,2) ,∵ c / /(2 a b) ,∴ 1 2
14.答案:分层抽样
4 0 ,解得
1
.
2
解答:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法
该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样, 则最合适的抽样方法是 ________.
15.若变量 x,y 满足约束条件
2x y 3≥ 0,
x 2 y 4 ≥ 0 , 则 z x 1 y 的最大值是 ________.
x 2 ≤ 0.
3
16.已知函数 f x ln 1 x2 x 1 , f a 4 ,则 f a ________.
AM 的中点; ∴ OP / /MC ,∵ OP 在平面 PDB 内, MC 不在平面 PDB 内,∴ MC / / 平面 PDB .

2017-2018年普通高等学校招生全国统一考试数学试题文(全国卷3,包括解析)

2017-2018年普通高等学校招生全国统一考试数学试题文(全国卷3,包括解析)

绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为( ) A .1B .2C .3D .4【答案】B2.复平面内表示复数z=i(–2+i)的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】由题意:12z i =-- .本题选择B 选项.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由折线图,7月份后月接待游客量减少,A 错误; 本题选择A 选项. 4.已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C . 29D .79【答案】A5.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是( ) A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]【答案】B【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()0,3A 处取得最小值033z =-=- . 在点()2,0B 处取得最大值202z =-= . 本题选择B 选项.6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为( )A .65B .1C .35D .15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ , 则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , 函数的最大值为65. 本题选择A 选项. 7.函数y =1+x +2sin xx 的部分图像大致为( )A BD .C D 【答案】D8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2【答案】D9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以r BC ==,那么圆柱的体积是223124V r h πππ⎛==⨯⨯= ⎝⎭,故选B.10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C【解析】根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立,D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .3B .3C .3D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,3c e a ==,故选A. 12.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =( )A .12-B .13C .12D .1【答案】C二、填空题:本题共4小题,每小题5分,共20分。

2016年-2017年普通高等学校招生全国统一考试数学文试题(全国卷2,参考版解析)

2016年-2017年普通高等学校招生全国统一考试数学文试题(全国卷2,参考版解析)

高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。

穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。

食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。

如果可能的话,每天吃一两个水果,补充维生素。

另外,进考场前一定要少喝水!住:考前休息很重要。

好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。

考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。

用:出门考试之前,一定要检查文具包。

看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。

行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。

2016年高考新课标Ⅱ卷文数试题参考解析一、 选择题:本大题共12小题。

每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

1. 已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =I ,故选D. 2. 设复数z 满足i 3i z +=-,则z =(A )12i -+ (B )12i - (C )32i + (D )32i - 【答案】C【解析】由3z i i +=-得,32z i =-,故选C. 3. 函数=sin()y A x ωϕ+ 的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=【答案】A4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B )323π (C )8π (D )4π 【答案】A【解析】因为正方体的体积为8,所以正方体的体对角线长为233,所以球面的表面积为243)12ππ⋅=,故选A.5. 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12 (B )1 (C )32(D )2【答案】D【解析】(1,0)F ,又因为曲线(0)ky k x=>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D.6. 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =(A )−43 (B )−34(C )3 (D )2 【答案】A【解析】圆心为(1,4),半径2r =,所以2211a =+,解得43a =-,故选A.7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为 (A )710 (B )58 (C )38 (D )310【答案】B【解析】至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 9. 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34【答案】C【解析】第一次运算,a=2,s=2,n=2,k=1,不满足k>n; 第二次运算,a=2,s=2226⨯+=,k=2,不满足k>n; 第三次运算,a=5,s=62517⨯+=,k=3,满足k>n , 输出s=17,故选C .10. 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是 (A )y =x (B )y =lg x (C )y =2x(D )y x=【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .11. 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5(C )6(D )7【答案】B【解析】因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5,选B.12. 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数 y =|x 2-2x -3| 与 y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m 【答案】B【解析】因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 二.填空题:共4小题,每小题5分.13. 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6-【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.14. 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________.【答案】5-15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin(C)sin cos cos sin 65B A AC A C =+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==.16. 有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+= (I )求{n a }的通项公式;(II)设nb =[na ],求数列{nb }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2【试题分析】(I )先设{}n a 的首项和公差,再利用已知条件可得1a 和d ,进而可得{}n a 的通项公式;(II )根据{}n b 的通项公式的特点,采用分组求和法,即可得数列{}n b 的前10项和.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。

2017年普通高等学校招生全国统一考试数学(含答案)

2017年普通高等学校招生全国统一考试数学(含答案)

2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<32}B.A∩B=⌀C.A∪B={x|x<32}D.A∪B=R2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π45.已知F是双曲线C:x2-y 23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )7.设x,y满足约束条件{x+3y≤3,x-y≥1,y≥0,则z=x+y的最大值为( )A.0B.1C.2D.38.函数y=sin2x1-cosx的部分图象大致为( )9.已知函数f(x)=ln x+ln(2-x),则( )A. f(x)在(0,2)单调递增B. f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+211.△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( )A.π12B.π6C.π4D.π312.设A,B是椭圆C:x 23+y2m=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,√3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,√3]∪[4,+∞)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m= .14.曲线y=x2+1x在点(1,2)处的切线方程为.15.已知α∈(0,π2),tan α=2,则cos(α-π4)= .16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;,求该四棱锥的侧面积.(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为8319.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04抽取次序9 10 11 12 13 14 15 16零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得x =116∑i=116x i =9.97,s=√116∑i=116(x i -x )2=√116(∑i=116x i 2-16x 2)≈0.212,√∑i=116(i -8.5)2≈18.439,∑i=116(x i -x )(i-8.5)=-2.78,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i ,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(x -3s,x +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x -3s,x +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本(x i ,y i )(i=1,2,…,n)的相关系数r=∑i=1n(x i -x )(y i -y )√∑i=1n (x i -x )√∑i=1n(y i -y ).√0.008≈0.09.20.(12分)设A,B 为曲线C:y=x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM⊥BM,求直线AB 的方程.21.(12分)已知函数f(x)=e x(e x-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为{x =3cosθ,y =sinθ(θ为参数),直线l 的参数方程为{x =a +4t ,y =1-t(t 为参数). (1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为√17,求a.23.[选修4—5:不等式选讲](10分)已知函数f(x)=-x 2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围.2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.A 本题考查集合的运算.由3-2x>0得x<32,则B={x |x <32},所以A∩B={x |x <32},故选A.2.B 本题考查样本的数字特征.统计问题中,体现数据的稳定程度的指标为数据的方差或标准差.故选B.3.C 本题考查复数的运算和纯虚数的定义. A.i(1+i)2=i×2i=-2; B.i 2(1-i)=-(1-i)=-1+i; C.(1+i)2=2i;D.i(1+i)=-1+i,故选C. 4.B 本题考查几何概型.设正方形的边长为2,则正方形的内切圆的半径为1,其中黑色部分和白色部分关于正方形的中心对称,则黑色部分的面积为π2,所以在正方形内随机取一点,此点取自黑色部分的概率P=π22×2=π8,故选B.5.D 本题考查双曲线的几何性质. 易知F(2,0),不妨取P 点在x 轴上方,如图.∵PF⊥x 轴,∴P(2,3),|PF|=3,又A(1,3), ∴|AP|=1,AP⊥PF, ∴S △APF =12×3×1=32.故选D.6.A 本题考查线面平行的判定.B 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;C 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;D 选项中,AB ∥NQ,且AB ⊄平面MNQ,NQ ⊂平面MNQ,则AB ∥平面MNQ.故选A.7.D 本题考查简单的线性规划问题. 作出约束条件表示的可行域如图:平移直线x+y=0,可得目标函数z=x+y 在A(3,0)处取得最大值,z max =3,故选D.8.C 本题考查函数图象的识辨.易知y=sin2x1-cosx 为奇函数,图象关于原点对称,故排除B 选项;sin 2≈sin 120°=√32,cos 1≈cos 60°=12,则f(1)=sin21-cos1=√3,故排除A 选项; f(π)=sin2π1-cos π=0,故排除D 选项,故选C.9.C 本题考查函数的图象与性质.函数f(x)=ln x+ln(2-x)=ln[x(2-x)],其中0<x<2,则函数f(x)由f(t)=ln t,t(x)=x(2-x)复合而成,由复合函数的单调性可知,x ∈(0,1)时, f(x)单调递增,x ∈(1,2)时, f(x)单调递减,则A 、B 选项错误;t(x)的图象关于直线x=1对称,即t(x)=t(2-x),则f(x)=f(2-x),即f(x)的图象关于直线x=1对称,故C 选项正确,D 选项错误.故选C. 10.D 本题考查程序框图问题.本题求解的是满足3n-2n>1 000的最小偶数n,判断循环结构为当型循环结构,即满足条件要执行循环体,不满足条件应输出结果,所以判断语句应为A≤1 000,另外,所求为满足不等式的偶数解,因此中语句应为n=n+2,故选D.11.B 本题考查正弦定理和两角和的正弦公式.在△ABC 中,sin B=sin(A+C),则sin B+sin A(sin C-cos C) =sin(A+C)+sin A(sin C-cos C)=0,即sin Acos C+cos Asin C+sin Asin C-sin Acos C=0,∴cos Asin C+sin Asin C=0,∵sin C≠0,∴cos A+sin A=0,即tan A=-1,即A=34π. 由a sinA =c sinC 得√22=√2sinC ,∴sin C=12,又0<C<π4,∴C=π6,故选B.12.A 本题考查圆锥曲线的几何性质.当0<m<3时,椭圆C 的长轴在x 轴上,如图(1),A(-√3,0),B(√3,0),M(0,1).图(1)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|MO|≤1,即0<m≤1; 当m>3时,椭圆C 的长轴在y 轴上,如图(2),A(0,√m ),B(0,-√m ),M(√3,0)图(2)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|OA|≥3,即√m ≥3,即m≥9.综上,m ∈(0,1]∪[9,+∞),故选A.二、填空题 13.答案 7解析 本题考查向量数量积的坐标运算. ∵a=(-1,2),b=(m,1),∴a+b=(m -1,3),又(a+b)⊥a, ∴(a+b)·a=-(m-1)+6=0,解得m=7. 14.答案 x-y+1=0解析 本题考查导数的几何意义.∵y=x 2+1x,∴y'=2x -1x2,∴y'|x=1=2-1=1,∴所求切线方程为y-2=x-1,即x-y+1=0.15.答案3√1010解析 因为α∈(0,π2),且tan α=sinαcosα=2,所以sin α=2cos α,又sin 2α+cos 2α=1,所以sin α=2√55,cos α=√55,则cos (α-π4)=cos αcos π4+sin αsin π4=√55×√22+2√55×√22=3√1010.16.答案 36π解析 由题意作出图形,如图.设球O 的半径为R,由题意知SB⊥BC,SA⊥AC,又SB=BC,SA=AC,则SB=BC=SA=AC=√2R.连接OA,OB,则OA⊥SC,OB⊥SC,因为平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,所以OA⊥平面SCB,所以OA⊥OB,则AB=√2R,所以△ABC 是边长为√2R 的等边三角形,设△ABC 的中心为O 1,连接OO 1,CO 1. 则OO 1⊥平面ABC,CO 1=23×√32×√2R=√63R,则OO 1=√R 2-(√63R)2=√33R,则V S-ABC =2V O-ABC =2×13×√34(√2R)2×√33R=13R 3=9, 所以R=3.所以球O 的表面积S=4πR 2=36π.三、解答题17.解析 本题考查等差、等比数列. (1)设{a n }的公比为q,由题设可得{a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q=-2,a 1=-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n·2n+13.由于S n+2+S n+1=-43+(-1)n·2n+3-2n+23=2[-23+(-1)n·2n+13]=2S n ,故S n+1,S n ,S n+2成等差数列.18.解析 本题考查立体几何中面面垂直的证明和几何体侧面积的计算. (1)证明:由已知∠BAP=∠CDP=90°, 得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD, 从而AB⊥平面PAD. 又AB ⊂平面PAB, 所以平面PAB⊥平面PAD.(2)在平面PAD 内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD, 故AB⊥PE,可得PE⊥平面ABCD. 设AB=x,则由已知可得AD=√2x,PE=√22x. 故四棱锥P-ABCD 的体积V P-ABCD =13AB·AD·PE=13x 3.由题设得13x 3=83,故x=2.从而PA=PD=2,AD=BC=2√2,PB=PC=2√2.可得四棱锥P-ABCD 的侧面积为12PA·PD+12PA·AB+12PD·DC+12BC 2sin 60°=6+2√3.19.解析 本题考查统计问题中的相关系数及样本数据的均值与方差. (1)由样本数据得(x i ,i)(i=1,2,…,16)的相关系数为r=∑i=116(x i -x )(i -8.5)√∑i=1(x i -x )2√∑i=1(i -8.5)2=0.212×√16×18.439≈-0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)由于x =9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(x -3s,x +3s)以外,因此需对当天的生产过程进行检查.(ii)剔除离群值,即第13个数据,剩下数据的平均数为115×(16×9.97-9.22)=10.02, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1 591.134,剔除第13个数据,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计值为√0.008≈0.09.20.解析 本题考查直线与抛物线的位置关系. (1)设A(x 1,y 1),B(x 2,y 2),则x 1≠x 2,y 1=x 124,y 2=x 224,x 1+x 2=4, 于是直线AB 的斜率k=y 1-y2x 1-x 2=x 1+x 24=1.(2)由y=x 24,得y'=x2,设M(x3,y3),由题设知x32=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=x 24得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2√m+1.从而|AB|=√2|x1-x2|=4√2(m+1).由题设知|AB|=2|MN|,即4√2(m+1)=2(m+1),解得m=7.所以直线AB的方程为y=x+7.21.解析本题考查了利用导数研究函数的单调性、最值.(1)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-ae x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在(-∞,+∞)单调递增.②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.③若a<0,则由f '(x)=0得x=ln(-a2).当x∈(-∞,ln(-a2))时,f '(x)<0;当x∈(ln(-a2),+∞)时, f '(x)>0.故f(x)在(-∞,ln(-a2))单调递减,在(ln(-a2),+∞)单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a 2ln a≥0,即a≤1时, f(x)≥0.③若a<0,则由(1)得,当x=ln (-a 2)时, f(x)取得最小值,最小值为f (ln (-a2))=a 2[34-ln (-a2)].从而当且仅当a 2[34-ln (-a2)]≥0, 即a≥-2e 34时, f(x)≥0. 综上,a 的取值范围是[-2e 34,1].22.解析 本题考查极坐标与参数方程的应用. (1)曲线C 的普通方程为x 29+y 2=1.当a=-1时,直线l 的普通方程为x+4y-3=0. 由{x +4y -3=0,x 29+y 2=1解得{x =3,y =0或{x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x+4y-a-4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d=√17.当a≥-4时,d 的最大值为√17,由题设得√17=√17,所以a=8;当a<-4时,d 的最大值为√17,由题设得17=√17,所以a=-16.综上,a=8或a=-16.23.解析 本题考查含绝对值不等式的求解问题.(1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0.①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x≤-1+√17.2所以f(x)≥g(x)的解集为}.{x|-1≤x≤-1+√172(2)当x∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a≤1.所以a的取值范围为[-1,1].。

2017年普通高等学校招生全国统一考试数学试题文全国卷2

2017年普通高等学校招生全国统一考试数学试题文全国卷2

绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

AB=????2,3,A?31,2,,4B?, 1.设集合则????????4,3,421,,313,2,21,,3,4 B. A. D. C.2.(1+i)(2+i)=A.1-iB. 1+3iC. 3+iD.3+3i???)(x2x+=sin f的最小正周期为函数 3.3???? B.2 D. C. A.42ba-+ab=a b,满足则4.设非零向量a=ba?b aa bb C. ∥ B. A ⊥ D.2x2-y?1的离心率的取值范围是,则双曲线若5.>1a2a(1,2)2))2(,+?,(2(,12) D. A. B. C.6.如图,格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为???? D.36 C.42 B.63A.90.2x+3y?3?0??2x?3y?3?0z?2x?y yx的最小值是 7.设、满足约束条件。

则??y?3?0?A. -15 B.-9 C. 1 D 928)x?ln(?x?2f(x) 8.函数的单调递增区间是????),-1) C.(1, +A.(-) D. (4, +,-2) B. (-位良好,22位优秀,老师说,9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,你们四人中有我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 B.丁可能知道两人的成绩A.乙可以知道两人的成绩乙、丁可以知道自己的成绩 D.C.乙、丁可以知道对方的成绩a S= ,则输出的=-1执行右面的程序框图,如果输入的10.A.2 B.3 C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为1213 B.A. C. D. 5510102lxly在的准线,点,N为CC于点M(M过抛物线12.C:在=4x的焦点F轴上方),且斜率为的直线交3l,则M到直线⊥NF的距离为上且MN3523232 D. B. C.A.二、填空题,本题共4小题,每小题5分,共20分.??=2cosx?sinfxx的最大值为函数 . 13.??????23f?2?xxx-0??,x上的奇函数,当是定义在时,R14., 已知函数xf??=f2则 O的表面积为3,2,1,其顶点都在球O的球面上,则球15.长方体的长、宽、高分别为caa,b,c,b B=cosC+则ABC的内角A,B,C的对边分别为若2cosA,cosB=16.△题为必考题,每个试题考2170分。

2018年普通高等学校招生全国统一考试数学试题文(全国卷3含解析)

2018年普通高等学校招生全国统一考试数学试题文(全国卷3含解析)

丰富丰富纷繁2018 年一般高等学校招生全国一致考试数学试题文(全国卷3)注意事项:1.答卷前,考生务势必自己的姓名和准考据号填写在答题卡上。

2.回答选择题时,选出每题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需变动,用橡皮擦洁净后,再选涂其余答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:此题共12 小题,每题 5 分,共 60 分.在每题给的四个选项中,只有一项为哪一项切合题目要求的.1.已知会合,,则A. B. C. D.【答案】 C【分析】剖析:由题意先解出会合A, 从而获得结果。

详解:由会合 A 得,所以故答案选 C.点睛:此题主要观察交集的运算,属于基础题。

2.A. B. C. D.【答案】 D【分析】剖析:由复数的乘法运算睁开即可。

应选 D.点睛:此题主要观察复数的四则运算,属于基础题。

3.中国古建筑借助榫卯将木构件连结起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右侧的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图能够是丰富丰富纷繁A.AB.BC.CD.D【答案】 A【分析】剖析:察看图形可得。

详解:观擦图形图可知,俯视图为故答案为 A.点睛:此题主要考擦空间几何体的三视图,观察学生的空间想象能力,属于基础题。

4.若,则A. B. C. D.【答案】 B【分析】剖析:由公式可得。

详解:故答案为 B.点睛:此题主要观察二倍角公式,属于基础题。

5.若某集体中的成员只用现金支付的概率为0.45 ,既用现金支付也用非现金支付的概率为0.15 ,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】 B【分析】剖析:由公式计算可得详解:设设事件 A 为只用现金支付,事件 B 为只用非现金支付,则因为所以应选 B.点睛:此题主要观察事件的基本关系和概率的计算,属于基础题。

2017年普通高等学校招生全国统一考试数学试题文(全国卷3,含答案)

2017年普通高等学校招生全国统一考试数学试题文(全国卷3,含答案)

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A .79-B .29-C . 29D .795.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为 A .65B .1C .35D .157.函数y =1+x +2sin x x 的部分图像大致为 A . B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3B .3 C .3 D .13 12.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a = A .12- B .13 C .12 D .1二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2018年高考全国卷1文科数学试题及含答案

(完整版)2018年高考全国卷1文科数学试题及含答案

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出の四个选项中,只有一项是符合题目要求の。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。

穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。

食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。

如果可能的话,每天吃一两个水果,补充维生素。

另外,进考场前一定要少喝水!住:考前休息很重要。

好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。

考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。

用:出门考试之前,一定要检查文具包。

看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。

行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。

绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为 A .1B .2C .3D .4【答案】B【解析】由题意可得:{}2,4A B =I .本题选择B 选项.2.复平面内表示复数z=i(–2+i)的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】由题意:12z i =-- .本题选择B 选项.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由折线图,7月份后月接待游客量减少,A 错误;本题选择A 选项.4.已知4sin cos 3αα-=,则sin 2α= A .79-B .29-C .29D .79【答案】A【解析】()2sin cos 17sin 22sin cos 19ααααα--===-- .本题选择A 选项.5.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]【答案】B【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()0,3A 处取得最小值033z =-=- . 在点()2,0B 处取得最大值202z =-= . 本题选择B 选项.6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ , 则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,函数的最大值为65.本题选择A 选项.7.函数y =1+x +2sin xx 的部分图像大致为A .B .C .D .【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A,C,当x →+∞时,1y x →+,故排除B,满足条件的只有D,故选D.8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D【解析】若2N =,第一次进入循环,12≤成立,100100,1010S M ==-=-,2i =2≤成立,第二次进入循环,此时101001090,110S M -=-==-=,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D.9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π4【解析】如果,画出圆柱的轴截面11,2AC AB ==,所以3r BC ==,那么圆柱的体积是223314V r h πππ==⨯⨯=⎝⎭,故选B.10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C 2D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离22d a a b==+,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,63c e a ==,故选A.12.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量(2,3),(3,)a b m =-=,且a ⊥b ,则m = .【答案】2【解析】由题意可得:2330,2m m -⨯+=∴= .14.双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a = .【答案】5【解析】由双曲线的标准方程可得渐近线方程为:3y x a=± ,结合题意可得:5a = .15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。

已知C =60°,b 6,c =3,则A =_________。

【答案】75°【解析】由题意:sin sin b cB C=,即36sin 22sin 3b C B c === ,结合b c < 可得45B =o ,则18075A B C =--=o o16.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是__________。

【答案】1(,)4-+∞【解析】由题意得: 当12x >时12221x x-+> 恒成立,即12x >;当102x <≤时12112x x +-+> 恒成立,即102x <≤;当0x ≤时1111124x x x ++-+>⇒>-,即104x -<≤;综上x 的取值范围是1(,)4-+∞三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)设数列{}n a 满足123(21)2n a a n a n +++-=K . (1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解:(1)需求量不超过300瓶,即最高气温不高于C ο25,从表中可知有54天,∴所求概率为539054==P . (2)Y 的可能值列表如下:最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)Y 100- 100-300 900 900 900低于C ο20:100445022506200-=⨯-⨯+⨯=y ;)25,20[:300445021506300=⨯-⨯+⨯=y ;不低于C ο25:900)46(450=-⨯=y ∴Y 大于0的概率为519016902=+=P .19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.(1)证明:取AC 中点O ,连OB OD , ∵CD AD =,O 为AC 中点, ∴OD AC ⊥,又∵ABC ∆是等边三角形, ∴OB AC ⊥,又∵O OD OB =I ,∴⊥AC 平面OBD ,⊂BD 平面OBD , ∴BD AC ⊥.20.(12分)在直角坐标系xOy 中,曲线y =x 2+mx –2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.解:(1)设()()12,0,,0A x B x ,则12,x x 是方程220x mx +-=的根, 所以1212,2x x m x x +=-=-,则()()1212,1,112110AC BC x x x x ⋅=-⋅-=+=-+=-≠u u u r u u u r,所以不会能否出现AC ⊥BC 的情况。

相关文档
最新文档