中考数学总复习 5-1 圆的有关概念与性质 五年中考荟萃

合集下载

中考数学圆知识点总结

中考数学圆知识点总结

中考数学圆知识点总结一、圆的基本概念1.1 圆的定义圆是由平面上到定点到距离等于定值的所有点的集合。

这个定点叫做圆心,这个定值叫做圆的半径。

1.2 圆的元素圆的元素有圆心、半径、直径、弦、弧、扇形等。

1.3 圆的相关概念圆周率π:定圆的周长与直径的比值。

圆心角:以圆心为顶点的角。

圆周角:角的顶点在圆周上,并且角的两边都是圆上的弧。

1.4 圆的性质圆的性质有很多,比如半径相等的圆,直径相等的圆,弦长相等的圆等等。

二、圆的计算2.1 圆的周长圆的周长又叫做圆周长,也叫做圆的周长,通常用字母C表示。

圆的周长等于圆的直径乘以圆周率π。

C=πd2.2 圆的面积圆的面积是圆内部的所有点的集合,通常用字母A表示。

圆的面积等于圆心角的正弦值乘以半径的平方再乘以圆周率π。

A=πr²2.3 圆的相关角和弧长的求解在圆中,角和弧是密切相关的。

圆心角的度数等于它所对的弧所代表的圆周的长度所占整个圆周的比例。

所以我们可以利用这个性质来求解圆的相关问题。

三、圆的相关定理3.1 圆的切线与切点圆的切线与切点是圆的一个重要定理,它的性质有点多。

比如一个圆与直线相切,与圆外一点两切线为公切线或两切线的交点到原圆的距离相等。

3.2 圆的相交定理圆的相交定理也是圆的一个重要定理。

比如两个圆相交于两个不同的点,那么连接这两个交点和两个圆心就组成了一个四边形,并且它的对角线相交于一点。

3.3 圆的正接弦定理圆的正接弦定理是圆的一个重要定理。

它表示一个圆内部的一个锐角与它所对的正切弦之间的关系,这个定理在圆的相关计算中是非常重要的。

四、圆的应用圆在现实生活中有很多应用,比如钟面就是一个圆,轮胎也是一个圆,圆锥形的灯泡和圆球等等都是圆的应用。

而在数学中,圆也是几何图形中的一个重要内容,比如在三角函数中,圆和三角函数是密切相关的。

在平面几何中,圆与直线相交的问题也是经常出现的。

所以掌握圆的知识对于学生来说是非常重要的。

总之,圆是中考数学中的一个重要知识点。

中考圆的知识点总结总结

中考圆的知识点总结总结

中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。

这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。

2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。

圆心角的度数等于对应的弧所对的圆周的度数。

如果圆心角的度数为360度,那么这个角就是周角。

(2)弧圆上的一段弧是圆周的一部分。

圆的周长就是圆周的长度,可以用角度和弧度来表示。

(3)切线和切点切线是一个直线,它与圆相切于一个点。

在圆上,切线与半径的夹角为90度。

(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。

同位角的性质也可以应用到圆上。

(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。

相似的圆的半径之比等于它们的直径之比。

二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。

2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。

3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。

4. 弧长定理同样的圆上,相对的圆周弧长相等。

5. 切线定理切线和半径的夹角为90度。

6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。

7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。

三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。

比如在工程测量中,需要计算环形的周长和面积。

2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。

3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。

四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。

1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。

圆的有关概念和性质-2024年中考数学考点总复习(全国通用)(解析版)

圆的有关概念和性质-2024年中考数学考点总复习(全国通用)(解析版)

【中考高分指南】数学(选择+填空)【备战2024年中考·数学考点总复习】(全国通用)圆的有关概念和性质一、圆的有关概念弦 连接圆上任意两点的线段叫做弦。

直径经过圆心的弦叫做直径。

弧 圆上任意两点间的部分叫做圆弧,简称弧。

优弧 大于半圆的弧叫做优弧。

劣弧小于半圆的弧叫做劣弧。

常用公式:Lr r n S r n L 213601802===π,π扇形三角形扇形弓形S S S ±=三、垂径定理1.定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.2.推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2:圆的两条平行弦所夹的弧相等.注意:轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.二、弧、弦、圆心角、圆周角的关系定理1.弧、弦、圆心角的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,则它们所对应的其余各组量也分别相等.2.圆心角:顶点在圆心,角的两边和圆相交的角叫做圆心角.圆周角:顶点在圆上且角的两边和圆相交的角叫做圆周角.3.圆周角定理定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论:①同弧或等弧所对的圆周角相等.②半圆(或直径)所对的圆周角是直径,90°的圆周角所对的弦是圆的直径.③圆内接四边形的对角互补.【考点1】圆的相关概念⏜上的点,连接AD并延长与OB的延长线交于点C,若CD=OA,【例1】(2023·江苏)如图,在扇形AOB中,D为AB∠O=75°,则∠A的度数为( )A. 35°B. 52.5°C. 70°D. 72°【答案】C【分析】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理、等腰三角形的性质.连接OD ,如图,设∠C 的度数为n ,由于CD =OA =OD ,根据等腰三角形的性质得到∠C =∠DOC =n ,则利用三角形外角性质得到∠ADO =2n ,所以∠A =2n ,然后利用三角形内角和定理得到75°+n +2n =180°,然后解方程求出n ,从而得到∠A 的度数. 【解析】解:连接OD ,如图,设∠C 的度数为n , ∵CD =OA =OD , ∴∠C =∠DOC =n ,∴∠ADO =∠DOC +∠C =2n , ∵OA =OD , ∴∠A =∠ADO =2n ,∵∠AOC +∠C +∠A =180°,∠AOC =75°, ∴75°+n +2n =180°, 解得n =35°, ∴∠A =2n =70°. 故选:C .【例2】(2024·全国模拟)如图,在△ABC 中,∠C =90°,AB =10.若以点C 为圆心,CA 长为半径的圆恰好经过AB 的中点D ,则⊙C 的半径为( ) A. 5√ 3 B. 8 C. 6 D. 5 【答案】D【解析】解:如图,连结CD , ∵CD 是直角三角形斜边上的中线, ∴CD =12AB =12×10=5. 故选:D .连结CD ,根据直角三角形斜边中线定理求解即可.本题考查了直角三角形斜边上的中线,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键. 【例3】(2024·江西模拟)一张直径为10cm 的半圆形卡纸,过直径的两端点剪掉一个三角形,以下四种裁剪图中,所标数据(单位:cm)长度不合理的是( )A.B.C.D.【答案】D【解析】解:A 、B 、C 图形中的三角形,满足三角形三边关系定理,且三角形三边长度合理,故A 、B 、C 不符合题意;D 、如图,过A 作AH ⊥BC 于H ,∵AB =AC ,∴BH =12BC =12×10=5(cm), ∴AH =√ AB 2−BH 2=√ 39, ∴AH >5, ∴A 在圆外,∴三角形三边长度不合理, 故D 不符合题意. 故选:D .由三角形三边关系定理,点和圆的位置关系即可判断.本题考查三角形三边关系,等腰三角形的性质,勾股定理,点和圆的位置关系,关键是由等腰三角形的性质,勾股定理求出AH 的长.1.(2024·湖北模拟)以下命题:(1)等弧所对的弦相等;(2)相等的圆心角所对的弧相等;(3)三点确定一个圆;(4)圆的对称轴是直径;(5)在同圆或等圆中,同一条弦所对的圆周角相等;(6)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等.其中正确的命题的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】A【分析】本题主要考查圆的相关概念和性质,深刻理解圆的相关性质是解题的关键.根据圆的相关概念和性质,对各个选项逐一分析判断即可得出答案.【解析】解:(1)等弧所对的弦相等;正确;(2)在同圆或等圆中,相等的圆心角所对的弧相等;故(2)错误;(3)不在同一直线上的三点确定一个圆;故(3)错误;(4)圆的对称轴是直径所在直线;故(4)错误;(5)在同圆或等圆中,同一条弦所对的弧有两条,每一条弧所对的圆心角不一定相等,则所对的圆周角也不一定相等;故(5)错误;(6)三角形三边的垂直平分线的交点即为其外接圆的圆心,外心到三角形三个顶点的距离相等.故(6)正确;综上所述,正确的有(1)(6),故选A.2.(2024·江苏模拟)下列说法中,正确的是①对角线垂直且互相平分的四边形是菱形;②对角线相等的四边形是矩形;③同弧或等弧所对的圆周角相等;④半圆是弧,但弧不一定是半圆.( )A. ①④B. ②③C. ①③④D. ②③④【答案】A【解析】解:①、对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形为菱形,故该项正确;②、对角线相等的平行四边形为矩形,故该选项错误;③、在同圆或等圆中,同弧或等弧所对的圆周角相等,故该选项错误;④、弧分为优弧、劣弧、半圆弧,则半圆是弧,但弧不一定是半圆,故该项正确;故选:A.根据对角线互相垂直的平行四边形为菱形,对角线相等的平行四边形为矩形,在同圆或等圆中,同弧或等弧所对的圆周角相等,弧分为优弧、劣弧、半圆弧分别判断即可.本题考查基本概念,熟记知识点是解题关键.3.(2023·全国模拟)下列说法中,不正确的是( )A. 直径是最长的弦B. 同圆中,所有的半径都相等C. 圆既是轴对称图形又是中心对称图形D. 长度相等的弧是等弧【答案】D【分析】本题主要考查了圆的基本概念,解答此题的关键是正确理解弦,弧的定义,解答此题根据圆的基本概念判断即可.【解析】解:A.直径是最长的弦,正确;B.同一个圆的半径相等,正确;C.圆既是轴对称图形,也是中心对称图形,正确;D.长度相等的弧不一定是等弧,同圆或等圆中长度相等的弧才是等弧,故该选项的说法错误.故选D.4.(2024·广东模拟)如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为( )A. 38°B. 52°C. 76°D. 104°【答案】C【分析】本题考查了圆的认识:掌握与圆有关的概念.根据半径相等得到OM=ON,则∠M=∠N=52°,然后根据三角形内角和定理计算∠MON的度数.【解析】解:∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°−2×52°=76°.故选:C.【考点2】垂径定理【例1】(2023·四川)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=2√ 3,则OC=( )A. 1B. 2C. 2√ 3D. 4【答案】B【解析】解:连接OB,设OA交BC于E,如图:∵∠ADB=30°,∴∠AOB=60°,∵OA⊥BC,BC=2√ 3,BC=√ 3,∴BE=12,在Rt△BOE中,sin∠AOB=BEOB,∴sin60°=√ 3OB∴OB=2,∴OC=2;故选:B.连接OB,设OA交BC于E,由∠ADB=30°,得∠AOB=60°,根据OA⊥BC,BC=2√ 3,得BE=1BC=√ 3,2故sin60°=√ 3,从而OC=OB=2.OB本题考查垂径定理,圆周角定理及勾股定理的应用,解题的关键是掌握含30°角的直角三角形三边关系.【例2】(2024·湖南模拟)如图,AB是⊙O的直径,弦CD⊥OA于点E,连接OC,OD.若⊙O的半径为m,∠AOD=α,则下列结论一定成立的是A. OE=m·tanαB. CD=2m·sinαC. AE=m·cosαD. S△OCD=m2·sinα【答案】B【分析】本题考查了垂径定理,解直角三角形,解决本题的关键是掌握垂径定理,解直角三角形等知识.根据垂径定理和锐角三角函数计算则可进行判断.【解析】解:A.∵AB是⊙O的直径,弦CD⊥OA于点E,CD,∴DE=12在Rt△EDO中,OD=m,∠AOD=∠α,∴tanα=DEOE,∴OE=DEtanα=CD2tanα,故选项A错误不符合题意;B.∵AB是⊙O的直径,CD⊥OA,∴CD=2DE,∵⊙O的半径为m,∠AOD=∠α,∴DE=OD⋅sinα=m⋅sinα,∴CD=2DE=2m⋅sinα,故选项B正确符合题意;C.∵cosα=OEOD,∴OE=OD⋅cosα=m⋅cosα,∵AO=DO=m,∴AE=AO−OE=m−m⋅cosα,故选项C错误不符合题意;D.∵CD=2m⋅sinα,OE=m⋅cosα,∴S△COD=12CD×OE=12×2m⋅sinα×m⋅cosα=m2sinα⋅cosα,故选项D错误不符合题意;故选B.【例3】(2024·全国模拟)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为.( )A. 3√ 3B. 32C. 3√ 32D. 3【答案】C【解析】连接OC、OD,如图所示,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°.∵OC=OD,OG⊥CD,∴∠COG =30°. ∵⊙O 的周长等于6π,∴OC =3,∴CG =32,∴OG =3√ 32. 故选C .1.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.根据垂径定理构造直角三角形,一般为过圆心作已知弦的弦心距,常用于求线段的长度.1.(2024·广东模拟)已知:如图,在⊙O 中,OA ⊥BC ,∠AOB =70°,则∠ADC 的度数为( )A. 30°B. 35°C. 45°D. 70°【答案】B【分析】本题考查的是垂径定理、圆周角定理、圆心角与弧的关系定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.先根据垂径定理得出AB ⏜=AC ⏜,再由圆周角定理即可得出结论. 【解析】解:如图,连接OC .∵OA ⊥BC , ∴AB⏜=AC ⏜, ∴∠AOC =∠AOB =70°,∴∠ADC =12∠AOC =35°. 故选B .2.(2024·江苏模拟)如图,AB 是⊙O 的直径,弦CD ⊥AB 于E 点,若AD =CD =2√3.则BC ⌒的长为( ) A. π3B.2π3C. √3π3D.2√3π3【答案】B【解析】解:连接AC 、OC , ∵AB 是⊙O 的直径,CD ⊥AB , ∴CE =ED =12CD =√3,BC ⌒=BD ⌒,∴AB 是线段CD 的垂直平分线, ∴AC =AD , ∵AD =CD , ∴AC =AD =CD , ∴△ACD 为等边三角形, ∴∠CAD =60∘, ∴∠COB =60∘,在Rt △COE 中,OC =CEsin∠COE =2, ∴BC ⌒的长=60π×2180=2π3, 故选:B.连接AC 、OC ,根据垂径定理得到CE =ED =12CD =√3,BC ⌒=BD ⌒,根据线段垂直平分线的性质得到AC =AD ,根据等边三角形的性质求出∠CAD =60∘,根据正弦的定义求出OC ,根据弧长公式计算,得到答案. 本题考查的是弧长的计算、垂径定理,掌握弧长公式:l =nπr180是解题的关键. 3.(2024·陕西模拟)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,且∠ACD =22.5°,CD =4,则⊙O 的半径长为( ) A. 2 B. 2√ 2 C. 4 D. 10【答案】B【解析】解:连接OD ,如图所示:∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =4,∴CE =DE =12CD =2,∵∠ACD =22.5°,∴∠AOD =2∠ACD =45°,∴△DOE 为等腰直角三角形,∴OD =√ 2DE =2√ 2,即⊙O 的半径为2√ 2,故选:B .连接OD ,由圆周角定理得出∠AOD =45°,根据垂径定理可得CE =DE =2,证出△DOE 为等腰直角三角形,利用特殊角的三角函数可得答案.此题主要考查了圆周角定理、垂径定理、以及三角函数的应用;关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.(2023·江苏)如图,矩形内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是( )A. 414π−20B. 412π−20C. 20πD. 20【答案】D【解析】解:如图,连接BD ,则BD 过点O ,在Rt △ABD 中,AB =4,BC =5,∴BD 2=AB 2+AD 2=41,S 阴影部分=S 以AB 为直径的圆+S 以AD 为直径的圆+S 矩形ABCD −S 以BD 为直径的圆=π×(42)2+π×(52)2+4×5−π×(BD 2)2 =41π4+20−41π4=20,故选:D .根据矩形的性质可求出BD ,再根据图形中各个部分面积之间的关系,即S 阴影部分=S 以AB 为直径的圆+S 以AD 为直径的圆+S 矩形ABCD −S 以BD 为直径的圆进行计算即可.本题考查勾股定理,矩形的性质以及圆形面积的计算,掌握矩形的性质、勾股定理以及圆形面积的计算方法是正确解答的前提.5.(2023·内蒙古)如图,⊙O 是锐角三角形ABC 的外接圆,OD ⊥AB ,OE ⊥BC ,OF ⊥AC.垂足分别为D ,E ,F ,连接DE ,EF ,FD.若DE +DF =6.5,△ABC 的周长为21,则EF 的长为( )A. 8B. 4C. 3.5D. 3【答案】B【解析】解:∵OD ⊥AB ,OE ⊥BC ,OF ⊥AC ,∴AD =BD ,AF =CF ,BE =CE ,∴DE ,DF ,EF 是△ABC 的中位线,∴DE =12AC,DF =12BC,EF =12AB ,∴DE +DF +EF =12(AB +BC +AC)=12×21=10.5,∵DE +DF =6.5,∴EF =10.5−6.5=4,故选:B .根据垂径定理得到AD =BD ,AF =CF ,BE =CE ,根据三角形的中位线定理得到DE +DF +EF =12(AB +BC +AC)=12×21=10.5,于是得到结论.本题考查了三角形外接圆与外心,三角形中位线定理,垂径定理,熟练掌握三角形中位线定理是解题的关键.【考点3】垂径定理的应用【例1】(2023·湖北)如图,一条公路的转弯处是一段圆弧(AC⏜),点O 是这段弧所在圆的圆心,B 为AC ⏜上一点,OB ⊥AC 于D.若AC =300√ 3m ,BD =150m ,则AC⏜的长为( )A. 300πmB. 200πmC. 150πmD. 100√ 3πm【答案】B【解析】解:如图所示:∵OB ⊥AC ,∴AD =12AC =150√ 3m ,∠AOC =2∠AOB ,在Rt △AOD 中,∵AD 2+OD 2=OA 2,OA =OB ,∴AD 2+(OA −BD)2=OA 2,∴(150√ 3)2+(OA −150)2=OA 2解得:OA =300m ,∴sin∠AOB =AD OA =√ 32, ∴∠AOB =60°,∴∠AOC =120°,∴AC ⏜的长=120×300π180=200πm .故选:B .先根据垂径定理求出AD 的长,由题意得OD =OA −BD ,在Rt △AOD 中利用勾股定理即可求出OA 的值,然后再利用三角函数计算出AC⏜所对的圆心角的度数,由弧长公式求出AC ⏜的长即可. 本题考查的是垂径定理,勾股定理及弧长的计算公式,根据垂径定理得出AD 的长,再由勾股定理求出半径是解答此题的关键,同时要熟记圆弧长度的计算公式.【例2】(2024·山东模拟)唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船的轮子被水面截得的弦AB 长8m ,轮子的吃水深度CD 为2m ,则该桨轮船的轮子直径为( )A. 10mB. 8mC. 6mD. 5m【答案】A【解析】解:设半径为r m ,则OA =OC =r m ,∴OD =(r −2)m ,∵AB =8m ,∴AD =4m ,在Rt △ODA 中,有:OA 2=OD 2+AD 2,即:r 2=(r −2)2+42,解得r =5m ,则该桨轮船的轮子直径为10m .故选:A .设半径为r ,再根据圆的性质及勾股定理,可求出答案.本题考查垂径定理,勾股定理,关键在于知道OC 垂直平分AB 这个隐藏的条件.垂径定理及其推论方法技巧:1.圆中模型“知2得3”由图可得以下5点:①AB ⊥CD ;②AE=EB ;③AD 过圆心O ;④⋂⋂=BC AC ;⑤⋂⋂=BD AD ;以上5个结论,知道其中任意2个,剩余的3个都可以作为结论使用。

中考圆形知识点总结

中考圆形知识点总结

中考圆形知识点总结一、圆的定义圆是由平面上任意一点到圆心的距离都相等的一组点的集合,这个相等的距离就是圆的半径,用R或r表示。

如果把圆心用O表示,圆上一点用A表示,那么圆的表示就是O为圆心,R为半径的圆,通常写作O(R)。

二、圆的性质1. 圆的周长和面积圆的周长,即圆周长,也称为圆的周长。

由于圆是一个闭合曲线,所以圆的周长是指圆的周围的长度。

圆的周长L可以用公式L=2πr来表示,其中π取约等于3.14。

圆的面积A也和圆的半径r有关,圆的面积A=πr^2。

2. 圆的直径圆的直径是圆上任意两点之间经过圆心的线段的长度,它恰好是圆的半径的两倍,即d=2r。

3. 圆心角的度数圆心角是指以圆心为顶点的角,圆心角的度数可以用角度或弧度来表示。

圆心角的度数等于所对圆弧的中心角。

例如,一个圆的圆周角是360°,因此圆周角所对的圆弧的中心角也等于360°。

4. 圆锥相似圆锥相似是指对于两个圆,如果它们的半径之比相等,则这两个圆是相似的。

5. 圆内接四边形在一个圆中,如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。

在圆内接四边形中,相对的角相等,两对相对边之积相等。

6. 圆对称圆对称是指图形绕圆心旋转180°后,图形不变。

圆对称的图形具有很高的美感,例如很多具有圆对称的图案都可以被人们所接受和欣赏。

三、相关定理1. 圆心角定理圆心角定理是指圆心角的度数等于所对圆弧的中心角,即一个圆心角的度数等于它所对的圆弧的度数。

2. 弦长定理弦长定理是指一个圆上任意一条弦所对的两个弧的长度之和,等于这条弦的长度的平方。

3. 垂径定理垂径定理是指一个圆上的直径垂直于与之相交的弦,且中点与圆心和交点共线。

4. 弧长、扇形面积圆的弧长可以用弧度来表示,即弧长s=θr,其中r为半径,θ为圆心角的弧度。

圆的扇形面积也可以用弧度来表示,扇形的面积等于所对圆心角的弧度的一半乘以半径的平方。

四、计算题1. 计算圆的周长和面积计算圆的周长和面积是圆形题目中最基本的计算题,需要根据给定的半径或直径进行计算。

数学初三圆的知识点总结

数学初三圆的知识点总结

数学初三圆的知识点总结一、圆的概念1.1 圆的定义圆是平面上所有与一个给定点的距离相等的点的集合。

这个距离称为圆的半径,而给定的那个点叫做圆心。

1.2 相关术语(1)圆心:圆的中心点。

(2)半径:圆心到圆上任一点的距离。

(3)直径:通过圆心并且两端点在圆上的线段叫做圆的直径。

(4)弧长:圆上一部分的长度。

(5)圆周:圆的边界。

(6)扇形:由圆心和圆上两点组成的区域。

(7)弦:圆上连接两点的线段。

(8)切线:与圆相切的直线。

1.3 圆的元素圆的位置和形状是由圆心和半径共同决定的,而圆的面积则是与圆的半径有关。

二、圆的性质2.1 圆周率圆周率是圆的重要常数,通常用π表示。

它的值是一个无理数,约等于3.14159。

圆周率在数学中有广泛的应用,涉及到圆的面积、周长和体积等问题。

2.2 圆的面积和周长(1)圆的周长圆的周长公式为:C = 2πr,其中C表示圆的周长,r表示圆的半径,π表示圆周率。

(2)圆的面积圆的面积公式为:S = πr²,其中S表示圆的面积,r表示圆的半径,π表示圆周率。

2.3 圆的关系(1)直径与半径的关系圆的直径是圆的半径的两倍,即d = 2r。

(2)弧长与圆周角的关系弧长l与半径r和所对的圆周角θ之间有一个简单的关系:l = rθ。

(3)圆心角与圆周角的关系圆心角和它所对的圆周角是成等比关系的,即θ = 2α。

(4)弦的性质圆上的两条弦若相交,则交点至两条弦的两端的交点距离相等。

2.4 圆与直线的关系(1)切线定理切线定理指的是,若直线与圆相切,则该直线与圆心的连线和切点的连线是垂直的。

(2)弦切定理弦切定理是指,若一个直线既是弦又是切线,则该直线与圆心的连线和切点的连线也是垂直的。

三、圆的相关定理3.1 圆的基本定理(1)切线定理定理表明,切线与半径的夹角是直角,即触点与圆心与切点的连线共线。

(2)弦长定理定理表明,与直径垂直的弦,把弦分成的两段乘积等于圆的半径的平方。

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。

中考圆知识点总结复习

中考圆知识点总结复习

中考圆知识点总结复习圆是数学中重要的基本概念之一,也是我们日常生活中经常遇到的形状。

在中考数学中,圆的知识点是不可避免的,掌握好圆的相关知识对于中考数学的考试至关重要。

本文将对中考数学中关于圆的知识点进行总结复习,希望对同学们的复习有所帮助。

一、圆的基本概念1. 圆的定义:在平面上的所有到一个固定点距离相等的点的集合,这个固定的点叫作圆心,这个相等的距离叫作圆的半径。

2. 直径、半径和周长的关系:圆的直径是通过圆心的两个相对的点之间的线段,它等于半径的两倍,周长等于直径的π倍或者半径的两倍π。

二、圆的性质1. 圆心角的性质:圆内切于同一弧上的两条弦所对圆心的两个角是相等的,当圆心角的度数是180°时,这两条弦构成的角是直角。

2. 圆周角的性质:位于圆的同一弧上的两条弦所对的圆周角相等。

3. 圆内接四边形的性质:圆内接四边形的对角和等于180°。

4. 弦长定理:圆内一条弦和它所对的两个圆周角的性质。

5. 弦切定理和切割定理:切割定理:切线与过切点作直径的两个弧所对的圆周角等于90°。

三、圆的相关计算1. 圆的周长和面积的计算公式:周长C=2πr面积S=πr²2. 圆的内、外接正多边形的周长和面积的计算四、圆的位置关系1. 圆的位置关系的判定:“点和圆的位置关系”、“直线和圆的位置关系”、“圆和圆的位置关系”。

五、圆的几何变换1. 圆的平移、旋转、对称的基本概念。

2. 圆的平移、旋转、对称的性质。

六、圆的应用.1. 圆的应用在实际生活和工作中运用。

2. 圆在建筑、设计、制图中的应用。

3. 圆的运动的应用。

七、典型例题解析1. 利用圆的数学知识解决问题的方法。

2. 典型例题的解题思路和方法。

3. 典型例题的解题技巧和技巧。

八、练习题1. 适当安排时间,每天复习一定的题目,加深对知识点的理解和掌握。

2. 定期进行模拟考试,检测自己对圆的知识点的掌握情况。

3. 及时总结巩固,弥补知识点的不足。

初中复习资料圆的有关性质知识点归纳

初中复习资料圆的有关性质知识点归纳

初中复习资料圆的有关性质知识点归纳一、圆的有关概念及其对称性1.圆的定义(1)圆是平面内到一定点的距离等于定长的所有点组成的图形.这个定点叫做________,定长叫做________;(2)平面内一个动点绕一个定点旋转一周所形成的图形叫做圆,定点叫做圆心,定点与动点的连线段叫做半径.2.圆的有关概念(1)连接圆上任意两点的________叫做弦;(2)圆上任意两点间的________叫做圆弧,简称弧.(3)________相等的两个圆是等圆.(4)在同圆或等圆中,能够互相________的弧叫做等弧.3.圆的对称性(1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;(2)圆的中心对称性:圆是以圆心为对称中心的中心对称图形;(3)圆是旋转对称图形:圆绕圆心旋转任意角度,都能和原来的图形重合.这就是圆的旋转不变性.二、垂径定理及推论1.垂径定理垂直于弦的直径________这条弦,并且________弦所对的两条弧.2.推论1(1)平分弦(________)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过________,并且平分弦所对的________弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2圆的两条平行弦所夹的弧________.4.(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.若一条直线具备这五项中任意两项,则必具备另外三项.三、圆心角、弧、弦之间的关系1.定理在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________.2.推论同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,则其余对应的两项也成立.四、圆心角与圆周角1.定义顶点在________上的角叫做圆心角;顶点在________上,角的两边和圆都________的角叫做圆周角.2.性质(1)圆心角的度数等于它所对的______的度数.(2)一条弧所对的圆周角的度数等于它所对________的度数的一半.(3)同弧或等弧所对的圆周角________,同圆或等圆中相等的圆周角所对的弧________.(4)半圆(或直径)所对的圆周角是______,90°的圆周角所对的弦是________.五、圆内接四边形的性质圆内接四边形的对角互补.与圆有关的位置关系一、点与圆的位置关系1.点和圆的位置关系点在圆______,点在圆______,点在圆______.2.点和圆的位置关系的判断如果圆的半径是r,点到圆心的距离为d,那么点在圆外⇔________;点在圆上⇔________;点在圆内⇔________.3.过三点的圆(1)经过三点的圆:①经过在同一直线上的三点不能作圆;②经过不在同一直线上的三点,有且只有一个圆.(2)三角形的外心:经过三角形各顶点的圆叫做三角形的外接圆;外接圆的圆心叫做三角形的________;这个三角形叫做这个圆的内接三角形.二、直线与圆的位置关系1.直线和圆的位置关系________、________、________.2.概念(1)直线和圆有两个交点,这时我们就说这条直线和圆________,这条直线叫做圆的________;(2)直线和圆有唯一公共点,这时我们说这条直线和圆________,这条直线叫做圆的切线,这个点叫做切点;(3)直线和圆没有公共点,这时我们说这条直线和圆________.3.直线和圆的位置关系的判断如果圆的半径是r,直线l到圆心的距离为d,那么直线l和⊙O相交⇔________;直线l和⊙O相切⇔________;直线l和⊙O相离⇔________.三、切线的判定和性质1.切线的判定方法(1)经过半径的________并且垂直于这条半径的直线是圆的切线;(2)到圆心的距离________半径的直线是圆的切线.2.切线的性质圆的切线垂直于经过________的半径.3.切线长定理过圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.四、三角形(多边形)的内切圆1.与三角形(多边形)内切圆有关的一些概念(1)和三角形各边都______的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的______,这个三角形叫做圆的______三角形;(2)和多边形各边都______的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.2.三角形的内心的性质三角形的内心是三角形三条________的交点,它到三边的距离相等,且在三角形内部.五、圆与圆的位置关系1.概念①两圆外离:两个圆______公共点,并且一个圆上的点都在另一个圆的______;②两圆外切:两个圆有______的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的______;③两圆相交:两个圆有______公共点;④两圆内切:两个圆有______的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的______;⑤两圆内含:两个圆______公共点,并且一个圆上的点都在另一个圆的______.2.圆与圆位置关系的判断设两圆半径分别为R 和r ,圆心距为O 1O 2=d .两圆外离⇔d >______;两圆外切⇔d =______;两圆相交⇔______<d <______(R ≥r );两圆内切⇔d =______(R >r );两圆内含⇔______≤d <______(R >r ).六、两圆位置关系的相关性质1.两圆相切、相交的有关性质(1)相切两圆的连心线必经过________.(2)相交两圆的连心线垂直平分________.2.两圆位置关系中常作的辅助线(1)两圆相交,可作公共弦.(2)两圆相切,可作公切线.圆的有关计算一、弧长、扇形面积的计算1.如果弧长为l ,圆心角的度数为n °,圆的半径为r ,那么弧长的计算公式为l =__________.2.由组成圆心角的两条半径和圆心角所对弧围成的图形叫做扇形.若扇形的圆心角为n °,所在圆半径为r ,弧长为l ,面积为S ,则S =__________或S =12lr ;扇形的周长=2r +l .二、圆柱和圆锥1.圆柱的侧面展开图是__________,这个矩形的长等于圆柱的底面圆的__________,宽等于圆柱的__________.如果圆柱的底面半径是r ,则S 侧=2πrh ,S 全=2πr 2+2πrh .2.圆锥的轴截面为由母线、底面直径组成的等腰三角形.圆锥的侧面展开图是一个__________,扇形的弧长等于圆锥的底面圆的__________,扇形的半径等于圆锥的__________.因此圆锥的侧面积:S 侧=12l ·2πr =πrl (l 为母线长,r 为底面圆半径);圆锥的全面积:S 全=S 侧+S 底=πrl +πr 2.三、正多边形和圆1.正多边形:各边__________、各角__________的多边形叫做正多边形.2.多边形的外接圆:经过多边形__________的圆叫做多边形的外接圆,这个多边形叫做圆的内接多边形.3.正多边形的__________的圆心叫做正多边形的中心,__________的半径叫做正多边形的半径.4.中心到正多边形的一边的__________叫做正多边形的边心距.5.正多边形每一边所对的__________的圆心角叫做正多边形的中心角,正n 边形的每个中心角都等于__________.温馨提示 (1)正多边形的各边、各角都相等.(2)正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n 边形的中心.(3)边数为偶数的正多边形是中心对称图形,它的中心是对称中心.(4)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.四、不规则图形面积的计算求与圆有关的不规则图形的面积时,最基本的思想就是转化思想,即把所求的不规则的图形的面积转化为规则图形的面积.常用的方法有:1.直接用公式求解.2.将所求面积分割后,利用规则图形的面积相互加减求解.3.将阴影中某些图形等积变形后移位,重组成规则图形求解.4.将所求面积分割后,利用旋转将部分阴影图形移位后,组成规则图形求解.5.将阴影图形看成是一些基本图形覆盖而成的重叠部分,用整体和差法求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章圆§5.1圆的有关概念与性质A组一、选择题1.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°解析根据圆内接四边形的对角互补可得.答案 D2.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是() A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径解析由于作图构造的是以AB为直径的圆,故选B.答案 B3.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80°B.90°C.100°D.105°解析由于点M在以C为圆心BC为半径的圆上,故∠AMB为直径所对的圆周角,是直角.答案 B4.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为( ) A .25° B .50° C .60° D .30°解析 ∵弦AC ∥半径OB ,∴∠C =∠BOC =50°,∴∠AOC =80°,∴∠AOB =80°+50°=130°.∵OA =OB ,∴∠OAB =25°. 答案 A5.如图,⊙O 是△ABC 的外接圆,∠B =60°,⊙O 的半径为4,则AC 的长等于( ) A .4 3 B .6 3 C .2 3D .8解析 如图,连结OA ,OC ,作OD ⊥AC 于点D .∵∠AOC =2∠B =120°,又∵OA =OC ,∴∠OAD =30°,∴OD =12OA =2,∴AD =42-22=2 3.再由垂径定理可得AC =2AD =4 3. 答案 A 二、填空题6.)如图,圆心角∠AOB =20°,将AB ︵旋转n °得到CD ︵,则CD ︵的度数是________度.解析 根据在同圆或等圆中,同弧或等弧所对的圆心角相等. 答案 20°7.)如图,在矩形ABCD 中,AB =8,AD =12,过A ,D 两点的⊙O 与BC 边相切于点E ,则⊙O 的半径为________.解析 如图,连结OE ,并反向延长交AD 于点F ,连结OA ,由已知可得OE ⊥BC ,则EF ⊥AD ,由垂径定理可得AF =6.可设圆的半径为r ,则(8-r )2+62=r 2,从而解得r =254. 答案 2548.)如图,AB 为⊙O 的直径,延长AB 至点D ,使BD =OB ,DC 切⊙O 于点C ,点B 是CF ︵的中点,弦CF 交AB 于点E ,若⊙O 的半径为2,则CF =________.解析 连结OC ,BC .∵DC 切⊙O 于点C ,∴∠OCD =90°.∵BD =OB ,⊙O 的半径为2,∴BC =BD =OB =OC =2,即△BOC 是等边三角形,∴∠BOC =60°.∵AB 为⊙O 的直径,点B 是CF ︵的中点,∴CE =EF ,AB ⊥CF ,即△OEC 为直角三角形.∵在Rt △OEC 中,OC =2,∠BOC =60°,∠OEC =90°,∴CF =2CE =2OC ·sin ∠BOC =2 3. 答案 2 3 三、解答题9.分)如图,直角梯形ABCD 中,AB ∥CD ,∠DAB=90°,且∠ABC =60°,AB =BC ,△ACD 的外接圆⊙O 交BC 于E 点.连结DE 并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=3时,试求E点到CF的距离.(1)证明连结AE.∵BC=AB,∠ABC=60°,∴△ABC是等边三角形.∵DC∥AB,∠DAB=90°,∴∠ADC=90°,∴AC是⊙O的直径,∴∠AEC=90°,∴CE=BE(三线合一).又∵∠1=∠2,∠3=∠4,∴△DCE≌△FBE,∴CD=BF,∴四边形BFCD是平行四边形,∴BD=CF.(2)解法一过E作EG⊥CF于G点.∵△ABC是等边三角形,∴∠CAB=60°,∴∠DCA=60°,∴∠DAC=30°.∵Rt△ADC中,AD=3,∴DC=AD·tan∠DAC=3×33=1,AC=2DC=2,∴AB=2,∴BD=7.∵四边形BFCD是平行四边形,∴BF=CD=1,CF=BD=7.又∵S △CEF =14S ▱BDCF , ∴12·CF ·GE =14BF ·AD , 即12×7·GE =14×1×3,GE =2114,∴E 点到CF 的距离为2114. 法二 作EG ⊥CF ,垂足为G , ∵∠BAD =90°,∠BAC =60°, ∴∠CAD =30°.又∵AE 是等边三角形BC 边上的高, ∴∠CAE =30°.∴CD ︵=CE ︵.又AC 是直径, ∴AC ⊥DE , ∴△FEG ∽△FCP ,∴EG CP =EF CF. ∵CP =12CD =12,EF =DE =3,CF =DB =7,∴EG ·7=12·3,即EG =2114,∴E 点到CF 的距离为2114. 10.分)如图,在平面直角坐标系中,点M 是第一象限内一点,过点M 的直线分别交x 轴,y 轴的正半轴于A ,B 两点,且点M 是AB 的中点.以OM 为直径的⊙P 分别交x 轴,y 轴于C ,D 两点,交直线AB 于点E (位于点M 右下方),连结DE 交OM 于点K . (1)若点M 的坐标为(3,4),①求A ,B 两点的坐标;②求ME 的长; (2)若OKMK =3,求∠OBA 的度数;(3)设tan∠OBA=x(0<x<1),OKMK=y,直接写出y关于x的函数解析式.(备用图) 解(1)①连结DM,MC,∵OM为直径,∴∠MDO=∠MCO=90°.∵∠AOB=90°,∴MD∥OA,MC∥OB.∵M是AB中点,∴D是OB中点,C是OA中点.∵M(3,4),∴OB=2MC=8,OA=2MD=6,∴B(0,8),A(6,0).②在Rt△AOB中,OA=6,OB=8,∴AB=10.∵M为AB中点,∴BM=12AB=5.∵∠BOM=∠BED,∠OBM=∠EBD,∴△OBM∽△EBD,∴BMBD=BOBE.∴BE=BO·BDBM=4×85=6.4,∴ME=BE-BM,∴ME=6.4-5=1.4,(2)连结DP.∵OKMK =3,∴OK =3MK ,OM =4MK ,∴PK =MK .∵OP =PM ,BD =DO ,∴DP 为△BOM 的中位线, ∴DP ∥BM .∴∠PDK =∠MEK .又∵∠PKD =∠MKE , ∴△DPK ≌△EMK ,∴DK =KE . ∵OM 为直径,∴OM ⊥DE , ∴cos ∠DPK =PKPD .∵DP =PM =2PK ,∴cos ∠DPK =12, ∴∠DPK =60°,∠DOM =30°. ∵在Rt △AOB 中,M 为AB 中点. ∴BM =MO ,∴∠OBA =∠DOM , ∴∠OBA =30°.(3)y 关于x 的解析式为y =21-x 2. B 组一、选择题1.一条水管的截面如图所示,已知排水管的半径OB =10,水面宽AB =16,则截面圆心O 到水面的距离OC 是( ) A .4 B .5 C .6D .8解析 ∵OC ⊥AB ,故AC =BC =12AB =8.在Rt △OBC 中,OC =OB 2-BC 2=102-82=6.故选C. 答案 C2.如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是() A.45°B.85°C.90°D.95°解析根据直径所对的圆周角为90°,∠C=50°,可得∠BAC=40°,再利用圆周角定理和角平分线定义,∠CAD=∠CBD=90°2=45°,∠BAD=∠CAD+∠BAC=85°.答案 B3.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.215 B.8C.210 D.213解析连结BE.∵AE是直径,∴∠ABE=90°.∵OD⊥AB,AB=8,∴AC=BC=4.设OA=x,则OC=x-2.在Rt△AOC中,x2-(x-2)2=42,解得x=5,∴AO=5,AE=10.在Rt△ABE中,BE=AE2-AB2=102-82=6.在Rt△CBE中,CE=BE2+BC2=42+62=213.答案 D4.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°解析 ∵AB 是△ABC 外接圆的直径,∴∠C =90°.∵∠A =35°,∴∠B =90°-∠A =55°.故选C. 答案 C5.如图,AB 是半圆的直径,点D 是AC ︵的中点,∠ABC =50°,则∠DAB 等于 ( )A .55°B .60°C .65°D .70°解析 连结BD ,∵点D 是AC ︵的中点,∠ABC =50°,∴∠ABD =12∠ABC =25°.∵AB 是半圆的直径,∴∠ADB =90°.∴∠DAB =90°-∠ABD =90°-25°=65°. 答案 C6.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )解析 选项B 中,三角板的直角恰好为圆弧上的圆周角,90°的圆周角所对的弦是直径,故该圆弧为半圆.故选B. 答案 B 二、填空题7.)如图,将直角三角板60°角的顶点放在圆心O 上,斜边和一直角边分别与⊙O 相交于A ,B 两点,P 是优弧AB 上任意一点(与A ,B 不重合),则∠APB =________.解析 ∵∠APB 和∠AOB 分别是AB ︵所对的圆周角与圆心角,∴∠APB =12∠AOB =12×60°=30°. 答案 30°8.)如图AB 为⊙O 直径,CD 为⊙O 的弦,∠ACD=25°,则∠BAD 的度数为________. 解析 ∵∠ACD 和∠ABD 都是AD ︵所对的圆周角,∴∠ABD =∠ACD =25°.∵AB 是直径,∴∠ADB =90°.∴∠BAD =90°-25°=65°. 答案 65°9.)如图,以△ABC 的边BC 为直径的⊙O 分别交AB ,AC于点D ,E ,连结OD ,OE ,若∠A =65°,则∠DOE =________°.解析 ∵∠A =65°,∴∠B +∠C =180°-65°=115°.∵OB =OD =OE =OC ,∴∠BOD =180°-2∠B ,∠COE =180°-2∠C ,∴∠DOE =180°-∠BOD -∠COE =180°-(180°-2∠B )-(180°-2∠C )=2∠B +2∠C -180°=115°×2-180°=50°. 答案 50 三、解答题10.)已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D (如图所示). (1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆心O 到直线AB 的距离为6,求AC 的长.(1)证明 过点O 作OE ⊥AB 于点E ,则CE =DE ,AE=BE.∴AE-CE=BE-DE,即AC=BD.(2)解由(1)可知,OE⊥AB且OE⊥CD,∴CE=OC2-OE2=82-62=27.AE=OA2-OE2=102-62=8.∴AC=AE-CE=8-27.11.★)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.证明法一连结BD,AC.∵BC=CD,∠BCD=90°,∴△BCD是等腰直角三角形,∴∠CBD=45°.∵∠BAD=∠BCD=90°,∴A,B,C,D四点共圆.∴∠CAE=∠CBD=45°.又∵CE⊥AD,∴△ACE是等腰直角三角形.∴AE=CE.法二作BF⊥CE于F,∵∠BCF+∠DCE=90°,∠D+∠DCE=90°,∴∠BCF=∠D.又BC=CD,∴Rt△BCF≌Rt△CDE.∴BF=CE.又∵∠BFE=∠AEF=∠A=90°,∴四边形ABFE是矩形.∴BF=AE.∴AE=CE.12.分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB.延长DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.(1)证明∵AB为⊙O的直径,∴∠ACB=90°.∴AC⊥BC.∵DC=CB,∴AD=AB.∴∠B=∠D.(2)解设BC=x,则AC=x-2.在Rt△ABC中,AC2+BC2=AB2,∴(x-2)2+x2=42,解得x1=1+7,x2=1-7(舍去).∵∠B=∠E,∠B=∠D,∴∠D=∠E.∴CD=CE.∵CD=CB,∴CE=CB=1+7.。

相关文档
最新文档