2019年中考数学圆专题复习试卷含详解

合集下载

2019届中考复习《一元二次方程的根与系数的关系》专题练习含答案

2019届中考复习《一元二次方程的根与系数的关系》专题练习含答案

北京市朝阳区普通中学2019届初三中考数学复习一元二次方程的根与系数的关系专题复习练习题1.设α,β是一元二次方程x2+2x-1=0的两个实数根,则αβ的值是( ) A.2 B.1 C.-2 D.-12.若方程3x2-4x-4=0的两个实数根分别为x1,x2,则x1+x2=( )A.-4 B.3 C.-43D.433.下列一元二次方程两实数根和为-4的是( )A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=04. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,35.已知一元二次方程x2-3x-1=0的两个根分别是x1,x2,则x12x2+x1x22的值为( ) A.-3 B.3 C.-6 D.66. 已知α,β是一元二次方程x2-5x-2=0的两个实数根,则α2+αβ+β2的值为( )A.-1 B.9 C.23 D.277. 已知一元二次方程的两根之和是3,两根之积是-2,则这个方程是( )A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x-2=0 D.x2-3x+2=08. 已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( )A.-10 B.4 C.-4 D.109. 菱形ABCD的边长是5,两条对角线交于O点,且AO,BO的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根,则m的值为( )A.-3 B.5 C.5或-3 D.-5或310. 如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=________,x1x2=________.11. 一元二次方程2x2+7x=8的两根之积为________.12. 设m,n分别为一元二次方程x2+2x-2 018=0的两个实数根,则m2+3m+n=________.13. 已知x1,x2是方程x2+6x+3=0的两实数根,则x2x1+x1x2的值为________.14. 已知方程x2+4x-2m=0的一个根α比另一个根β小4,则α=______,β=______,m=______.15. 关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负,则实数m的取值范围是________.16. 在解某个方程时,甲看错了一次项的系数,得出的两个根为-9,-1;乙看错了常数项,得出的两根(1) 求m的取值范围;(2) 当x12+x22=6x1x2时,求m的值.18. 关于x的方程kx2+(k+2)x+k4=0有两个不相等的实数根.(1) 求k的取值范围;(2) 是否存在实数k,使方程的两个实数根的倒数和等于0.若存在,求出k的值;若不存在,说明理由.19. 不解方程,求下列各方程的两根之和与两根之积.(1) x2+2x+1=0;(2) 3x2-2x-1=0;(3) 2x2+3=7x2+x;(4) 5x-5=6x2-4.20. 已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1) 求k的取值范围;(2) 若|x1+x2|=x1x2-1,求k的值.21. 已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1) 是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2) 求使(x1+1)(x2+1)为负整数的实数a的整数值.答案:1---9 DDDAA DCCA10. -a/b c/a11. -412. 201913. 1014. 10 -4 0 015. m>1/216. x 2-10x +9=017. 解:(1)∵原方程有两个实数根,∴Δ=(-2)2-4(m -1)≥0,整理得:4-4m +4≥0,解得:m≤2(2)∵x 1+x 2=2,x 1·x 2=m -1,x 12+x 22=6x 1x 2,∴(x 1+x 2)2-2x 1·x 2=6x 1·x 2,即4=8(m -1),解得:m=32.∵m =32<2,∴m 的值为3218. 解:(1)由题意可得Δ=(k +2)2-4k×k 4>0,∴4k +4>0,∴k >-1且k≠0 (2)∵1x 1+1x 2=0,∴x 1+x 2x 1x 2=0,∴x 1+x 2=0,∴-k +2k=0,∴k =-2,又∵k>-1且k≠0,∴不存在实数k 使两个实数根的倒数和等于019. 解:(1)x 1+x 2=-2,x 1·x 2=1(2)x 1+x 2=23,x 1·x 2=-13(3)x 1+x 2=-15,x 1·x 2=-35(4)x 1+x 2=56,x 1·x 2=1620. 解:(1)由Δ≥0得k≤12(2)当x 1+x 2≥0时,2(k -1)=k 2-1,∴k 1=k 2=1(舍去);当x 1+x 2<0时,2(k -1)=-(k 2-1),∴k 1=1(舍去),k 2=-3,∴k =-321. 解:(1)存在.理由如下:根据题意,得Δ=(2a)2-4a(a -6)=24a≥0,解得a≥0,∵a -6≠0,∴a ≠6.由根与系数的关系得x 1+x 2=-2a a -6,x 1x 2=a a -6.∵-x 1+x 1x 2=4+x 2.∴x 1+x 2+4=x 1x 2.即-2a a -6+4=a a -6,解得a =24.经检验,a =24是方程-2a a -6+4=a a -6的解.∴a=24 (2)∵原式=x 1+x 2+x 1x 2+1=-2a a -6+a a -6+1=66-a为负整数.∴6-a =-1,-2,-3,-6,解得a =7,8,9,122019-2020学年数学中考模拟试卷一、选择题1.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°2.如图,半径为3的扇形AOB ,∠AOB=120°,以AB 为边作矩形ABCD 交弧AB 于点E ,F ,且点E ,F 为弧AB 的四等分点,矩形ABCD 与弧AB 形成如图所示的三个阴影区域,其面积分别为1S ,2S ,3S ,则132S S S +-为( )(π取3)A .92-B .92C .152-D .272- 3.如图,已知矩形 AOBC 的三个顶点的坐标分别为 O(0,0),A(0,3), B(4,0),按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧, 分别交 OC ,OB 于点 D ,E ;②分别以点 D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠BOC 内交于点 F ;③作射线 OF ,交边 BC 于点 G ,则点 G 的坐标为( )A .(4, 43 )B .( 43 ,4)C .( 53 ,4)D .(4, 53) 4.关于x 的一元二次方程240x x k -+=有两个根,则k 的取值范围是( )A.4k <-B.4k ≤-C.4k <D.4k ≤5.若点A (x 1,﹣3)、B (x 2,﹣2)、C (x 3,1)在反比例函数y =﹣的图象上,则x 1、x 2、x 3的大小关系是( )A. B. C. D.7.如图,在Rt △ABC 中,∠B=90°,AB=6,BC=8,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A.10B.8C.6D.48.若一个多边形的外角和是其内角和的12,则这个多边形的边数为( ) A.2 B.4 C.6 D.89.计算|+|2|=( )A . 1B .1﹣C .﹣1D .310.一个不透明的布袋里装有2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A.15 B.25 C.35 D.1211.下列尺规作图中,能确定圆心的是( )①如图1,在圆上任取三个点A ,B ,C ,分别作弦AB ,BC 的垂直平分线,交点O 即为圆心②如图2,在圆上任取一点B ,以B 为圆心,小于直径长为半径画弧交圆于A ,C 两点连结AB ,BC ,作∠ABC 的平分线交圆于点D ,作弦BD 的垂直平分线交BD 于点O ,点O 即为圆心③如图3,在圆上截取弦AB =CD ,连结AB ,BC ,CD ,分别作∠ABC 与∠DCB 的平分线,交点O 即为圆心A .①②B .①③C .②④D .①②③12.在平面直角坐标系中,有A ()21,,B ()33,两点,现另取一点C ()1a , ,当a = ( )时,AC+BCA.2 B.53C.114D.3二、填空题13.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2014个正方形的面积为_________。

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试卷(含答案解析)(2)

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试卷(含答案解析)(2)

一、选择题1.如图,在半径为6的O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,33tanD =,下列结论正确的个数有:( ) ①63BC =; ②3sin 2AOB ∠=; ③四边形ABOC 是菱形;④劣弧BC 的长度为4π.A .4个B .3个C .2个D .1个 2.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .83D .23.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A 3B 5C .23D .254.已知△ABC 是半径为2的圆内接三角形,若BC =23∠A 的度数( )A .30°B .60°C .120°D .60°或120° 5.如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,则PC 的长为( )A .6B .25C .210D .214 6.如图,AB 是O 的直径,CD 是O 的弦,30,3ACD AD ∠=︒=,下列说法错误的是( )A .30B ∠=︒ B .60BAD ∠=︒C .23BD = D .23AB = 7.如图,AB 为半圆O 的直径,C 是半圆上一点,且60COA ∠=º,设扇形AOC 、COB △、弓形BmC 的面积为1S 、2S 、3S ,则他们之间的关系是( )A .123S S S <<B .213S S S <<C .132S S S <<D .321S S S << 8.如图,ABC 中,10,8,4AB AC BC ===,以点A 为圆心,AB 为半径作圆,交BC 的延长线于点D ,则CD 长为( )A .10B .9C .45D .89.如图,在ABC 中,5AB AC ==,6BC =,D ,E 分别为线段AB ,AC 上一点,且AD AE =,连接BE 、CD 交于点G ,延长AG 交BC 于点F .以下四个结论正确的是( )①BF CF =;②若BE AC ⊥,则CF DF =;③若BE 平分ABC ∠,则32FG =; ④连结EF ,若BE AC ⊥,则2DFE ABE ∠=∠. A .①②③ B .③④C .①②④D .①②③④ 10.如图,有一块半径为1m ,圆心角为120︒扇形铁皮,要把它做成一个圆锥体容器(接缝忽略不计),那么这个圆锥体容器的高为( )A .13mB .23mC .223mD .43m 11.如图,AB 是O 的直径,C 、D 分别是O 上的两点.若33BAC ∠=︒,则D∠的度数等于( )A .57︒B .60︒C .66︒D .67︒12.4.如图,AD 是ABC ∆的外接圆O 的直径,若50BCA ︒∠=,则BAD ∠=( )A .30︒B .40︒C .50︒D .60︒二、填空题13.如图,四边形OABC 是菱形,点B ,C 在以点O 为圆心的弧EF 上,且∠1=∠2,若菱形边OA=3,则扇形OEF 的面积为___________14.如图,在矩形ABCD 中,∠DBC=30º,DC=2,E 为AD 上一点,以点D 为圆心,以DE 为半径画弧,交BC 于点F ,若CF=CD ,则图中的阴影部分面积为______________.(结果保留π)15.如图,点P 为⊙O 外一点,PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =90°.若⊙O 的半径为2,则图中阴影部分的面积为_____(结果保留π).16.如图,是由一个大圆和四个相同的小圆组成的图案,若大圆的半径为2,则阴影部分的面积为______.17.如图,菱形ABCD 中,已知2AB =,60DAB ∠=︒将它绕着点A 逆时针旋转得到菱形ADEF ,使AB 与AD 重合,则点C 运动的路线CE 的长为________.18.如图,从一块直径为2m 的圆形铁皮上画出一个圆心角为90的扇形.若随机在圆及其内部投针,则针孔扎在扇形(阴影部分)的概率为____.19.已知扇形的弧长为4π,半径为9,则此扇形的圆心角为_______度.20.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,70A ∠=,50C ∠=,那么tan AEB ∠=___________.三、解答题21.在下列网格图中,每个小正方形的边长均为1个单位.Rt ABC 中,∠C =90°,AC =3,BC =4(1)试在图中作出ABC 绕A 顺时针方向旋转90°后的图形11AB C △;(2)求1BB 的长.22.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD .(1)求证:BD 平分∠ABC ;(2)若OE =3,AO =5,求AC 的长.23.如图,AB 是O 的弦,AC 是O 的直径,将AB 沿着AB 弦翻折.恰好经过圆心O .若O 的半径为6,求图中阴影部分的面积.24.如图,已知AB 是O 的直径,BC AB ,连接OC ,弦//AD OC ,直线CD 交BA 的延长线于点E .(1)求证:CD 是O 的切线; (2)若2DE BC =,O 的半径为2,求线段EA 的长.25.如图所示,AC 与O 相切于点C ,线段AO 交O 于点B .过点B 作//BD AC 交O 于点D ,连结,CD OC ,且OC 交DB 于点E .若30,53cm ∠=︒=CDB DB .(1)求COB ∠的大小和O 的半径长.(2)求由弦,CD BD 与弧BC 所围成的阴影部分的面积(结果保留π).26.如图,某零件的截面为弓形.(1)请用直尺和圆规作出该弓形的圆心.(2)若23AB =,弓形的高为1.①求弓形的半径②求AB 的长【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用特殊角的三角函数值求得∠D=30°,由点A 是劣弧BC 的中点,根据圆周角定理得到∠AOC=∠AOB=2∠D=60°,可对②进行判断;证得△OAC 、△OAB 都为等边三角形,根据等边三角形的性质和垂径定理可计算出BC ,可对①进行判断;利用AB=AC=OA=OC=OB 可对③进行判断;利用弧长公式,可对④进行判断.【详解】∵3tanD =, ∴∠D=30°,∵点A 是劣弧BC 的中点,∴OA ⊥BC ,∴∠AOC=∠AOB=2∠D=60°,∴sin AOB sin 60∠=︒=,所以②正确; 而OA=OC=OB=6,∴△OAC 、△OAB 都为等边三角形,∴BC26=⨯=①正确; ∵△OAC 、△OAB 都为等边三角形,∴AB=AC=OA=OC=OB ,∴四边形ABOC 是菱形,所以③正确;∵△OAC 、△OAB 都为等边三角形,∴∠COB=120°,∴劣弧BC 的长度为12064180ππ⨯=,所以④正确. 综上,正确的个数有4个,故选:A .【点睛】 本题考查了圆周角定理,弧长公式,菱形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.B解析:B【分析】连接CD ,根据圆周角定理,可以得到30CAD ∠=︒,在Rt ACD △中,利用锐角三角函数求出AC 的长即可.【详解】解:如图,连接CD ,∵AB BC =,30BAC ∠=︒,∴AB 和BC 所对的圆心角都是60︒,∵AD 是直径,∴CD 所对的圆心角也是60︒,∴30CAD ∠=︒,在Rt ACD △中,3cos308432AC AD =⋅︒=⨯=. 故选:B .【点睛】本题考查圆周角定理和锐角三角函数,解题的关键是掌握圆周角定理,以及利用锐角三角函数解直角三角形的方法. 3.A解析:A【分析】连接AD ,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE 是直角三角形,用勾股定理求AE 即可.【详解】解:连接AD ,∵∠BOD =120°,AB 是⊙O 的直径,∴∠AOD =60°,∵OA=OD ,∴∠OAD =∠ODA =60°,∵点C 为弧BD 的中点,∴∠CAD =∠BAC =30°,∴∠AED =90°,∵DE =1,∴AD=2DE=2,AE 2222213AD DE -=-=故选:A .【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.4.D解析:D【分析】首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.【详解】解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23∴BD=4,∴22,BD BC∴CD=1BD,2∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°-∠A=120°,∴∠A的度数为:60°或120°.故选:D.【点睛】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.5.D解析:D【分析】延长AO 交⊙O 于B ,连接AC ,证明△PAC ∽△PCB ,进而得到PC 2=PA•PB 即可求出PC 的长.【详解】解:如下图所示:连接OC ,延长AO 交⊙O 于B ,连接AC ,BC ,∵AB 为直径,∴∠1+∠2=90°,∵OC=OA ,∴∠1=∠3,∵PC 为圆的切线,∴∠3+∠4=90°,∴∠2=∠4,又∠P=∠P ,∴△PCA ∽△PBC , ∴=PC PA PB PC,即24(104)56=⨯=⨯+=PC PA PB , ∴214=PC故选:D .【点睛】本题考查了相似三角形的性质和判定,圆的切线及圆周角定理等,熟练掌握圆的性质及相似三角形的性质和判定是解决本题的关键.6.C解析:C【分析】根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,再利用互余可计算出∠BAD 的度数,然后利用含30度的直角三角形三边的关系求出BD 、AB 的长即可.【详解】解:∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=90°-30°=60°,故选项A 、B 不符合题意,在Rt △ADB 中,3,3故选项C 符合题意,选项D 不符合题意,故选:C .本题考查了圆周角定理以及含30°角的直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.7.B解析:B【分析】设出半径,作出△COB 底边BC 上的高,利用扇形的面积公式和三角形的面积公式表示出三个图形面积,比较即可求解.【详解】解:作OD ⊥BC 交BC 与点D ,∵∠COA =60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =22603606ππ=R R ; S 扇形BOC =221203603ππ=R R . 在三角形OCD 中,∠OCD =30°,∴OD =2R ,CD =3R ,BC =3R , ∴S △OBC =23R ,S 弓形=2233R R π-=2(433)π-R , 2(433)12π-R >26πR >234R , ∴S 2<S 1<S 3.故选:B .【点睛】此题考查扇形面积公式及弓形面积公式,解题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形﹣三角形的关系求出弓形的面积,进行比较得出它们的面积关系.8.B解析:B【分析】如图,过点A 作AE ⊥BD 于点E ,连接AD ,可得AD=AB=10,根据垂径定理可得DE=BE ,得CE=BE-BC=DE-4,再根据勾股定理即可求得DE 的长,进而可得CD 的长.解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=10,根据垂径定理,得DE=BE,∴CE=BE-BC=DE-4,根据勾股定理,得AD2-DE2=AC2-CE2,102-DE2=82-(DE-4)2,解得DE=132,∴CD=DE+CE=2DE-4=9,故选:B.【点睛】本题考查了垂径定理,解决本题的关键是掌握垂径定理.9.D解析:D【分析】先证明∆BAE≅ ∆CAD,再证明∆ABG≅ ∆ACG,得AF是∠BAC的平分线,进而即可判断①;先证明BDC=∠CEB=90°,根据直角三角形的性质,即可判断②;根据角平分线的性质,得点G到∆ABC的三边距离都相等,结合“等积法”即可判断③;先证明B,C,D,E在以点F为圆心的圆上,进而即可判断④.【详解】∵AB=AC,∠BAE=∠CAD,AE=AD,∴∆BAE≅ ∆CAD,∴∠ABE=∠ACD,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC-∠ABE=∠ACB-∠ACD,即:∠GBC=∠GCB,∴BG=CG,∴∆ABG≅ ∆ACG,∴∠BAG=∠CAG,即AF是∠BAC的平分线,∴BF CF=,故①正确;∵BE AC⊥,∴∠CEB=90°,由①可知:BD=CE ,∠ABC=∠ACB ,又∵BC=CB ,∴∆BDC ≅∆CEB ,∴∠BDC=∠CEB=90°,∵点F 是BC 的中点,∴CF DF =,故②正确;∵BE 平分ABC ∠,AF 平分∠BAC ,∴点G 是角平分线的交点,∴点G 到∆ABC 的三边距离都相等,且等于FG ,∵5AB AC ==,6BC =,AF ⊥BC ,∴AF=22AB BF -= 22534-=, ∴S ∆ABC =12(AB+AC+BC)∙FG=12×16FG=8FG ,S ∆ABC =12BC∙AF=12, ∴8FG=12,即:32FG =,故③正确; ∵BE AC ⊥,由①可知:CD ⊥AB , ∴B ,C ,D ,E 在以点F 为圆心的圆上,∴2DFE ABE ∠=∠,故④正确. 故选D .【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,角平分线的性质,圆周角定理,熟练掌握“等腰三角形三线合一”,“直角三角形,斜边上的中线等于斜边的一半”,是解题的关键.10.C解析:C【分析】设做成圆锥之后的底面半径为r ,可得12012180r ππ⋅=,再利用勾股定理即可求解. 【详解】 解:设做成圆锥之后的底面半径为r ,则12012180r ππ⋅=, 解得13r =, ∴这个圆锥体容器的高为22122133h ⎛⎫=-= ⎪⎝⎭, 故选:C .【点睛】本题考查圆锥的计算,求出圆锥的底面半径是解题的关键.11.A解析:A【分析】连接OC ,根据圆周角定理计算即可;【详解】连接OC ,∵33BAC ∠=︒,∴266BOC AOC ∠=∠=︒,又∵180DOC AOC ∠+∠=︒,∴180114AOC BOC ∠=︒-∠=︒,∴1572D AOC ∠=∠=︒; 故答案选A .【点睛】本题主要考查了圆周角定理,准确计算是解题的关键.12.B解析:B【分析】根据圆周角定理即可得到结论.【详解】解:∵AD是△ABC的外接圆⊙O的直径,∴∠ABD=90°,∵∠BCA=50°,∴∠ADB=∠BCA=50°,∴BAD∠=90°-50°=40°故选:B.【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题13.3π【分析】算出扇形OEF的圆心角即可得到解答【详解】解:如图连结OB由题意可知:OC=OB=BC∴∠COB=60°∠COA=120°∵∠1=∠2∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA解析:3π【分析】算出扇形OEF的圆心角,即可得到解答.【详解】解:如图,连结OB,由题意可知:OC=OB=BC,∴∠COB=60°,∠COA=120°,∵∠1=∠2,∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA=120°,∴扇形OEF的面积=22 12012033360360OAπππ⨯⨯⨯⨯==,故答案为3π .【点睛】本题考查扇形与菱形的综合应用,熟练掌握菱形的性质及扇形面积的计算是解题关键.14.【分析】连接由矩形ABCD分别求解再求解从而可得答案【详解】解:连接矩形ABCD 故答案为:【点睛】本题考查的是矩形的性质等腰直角三角形的性质含的直角三角形的性质勾股定理的应用扇形的面积掌握以上知识是 解析:432.π--【分析】 连接DF ,由矩形ABCD ,30,2,DBC DC CF ∠=︒==分别求解,,,EDF DF BC ∠ 再求解43,,2DFC ABCD DEF S S Sπ===矩形扇形,从而可得答案.【详解】解:连接DF ,矩形ABCD ,30,2,DBC DC CF ∠=︒== 2290,4,45,2222,ADC BD DFC FDC DF ∴∠=︒=∠=∠=︒=+=224223,904545,BC EDF ∴=-=∠=︒-︒=︒(24522123243,,2223602DFC ABCD DEF S S S ππ⨯∴=====⨯⨯=矩形扇形, 432.S π∴=-阴影故答案为:32.π-【点睛】本题考查的是矩形的性质,等腰直角三角形的性质,含30的直角三角形的性质,勾股定理的应用,扇形的面积,掌握以上知识是解题的关键.15.4-π【分析】连接OAOB 由S 阴影=S 正方形OBPA-S 扇形AOB 则可求得结果【详解】解:连接OAOB ∵PAPB 分别与⊙O 相切于点AB ∴OA ⊥APOB ⊥PBPA=PB ∴∠OAP=∠OBP=90°=∠解析:4-π【分析】连接OA ,OB ,由S 阴影=S 正方形OBPA -S 扇形AOB 则可求得结果.【详解】解:连接OA ,OB ,∵PA ,PB 分别与⊙O 相切于点A ,B ,∴OA ⊥AP ,OB ⊥PB ,PA=PB ,∴∠OAP=∠OBP=90°=∠BPA ,∴四边形OBPA 是正方形,∴∠AOB=90°,∴阴影部分的面积=S 正方形OBPA -S 扇形AOB 则=22-904360π⨯⨯=4-π. 故答案为:4-π.【点睛】此题考查了切线长定理,正方形的判定与性质,扇形面积公式等知识.解题关键是连接半径,构造正方形,把阴影部分面积转化为正方形面积与扇形面积差.16.【分析】如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积再由勾股定理可得:从而可得答案【详解】解:如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积大圆的半 解析:48π-【分析】如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,再由勾股定理可得:28,AC =从而可得答案.【详解】解:如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,大圆的半径为2,90,,ACB AC BC ∠=︒=∴ 4,AB =2216,AC BC +=28,AC ∴=22248.S AC ππ∴=⨯-=-故答案为:48.π-【点睛】本题考查的是阴影部分面积的求解,勾股定理的应用,圆的对称性与正方形的性质,扇形面积与弓形面积的理解,正多边形与圆,掌握以上知识是解题的关键.17.【分析】连接ACBD 交于点O 由菱形的性质得出AC 的长由旋转的性质∠EAC=60゜再根据弧长公式求解即可【详解】解:连接ACBD 交于点O 如图∵四边形ABCD 是菱形∴AC ⊥BDOA=OC ∠BAC=∠DA 解析:233π 【分析】连接AC ,BD 交于点O ,由菱形的性质得出AC 的长,由旋转的性质∠EAC=60゜,再根据弧长公式求解即可.【详解】解:连接AC ,BD 交于点O ,如图,∵四边形ABCD 是菱形 ∴AC ⊥BD ,OA=OC ,∠BAC=12∠DAB=30゜ ∴ 112OB AB == 由勾股定理得,3OA =∴23AC =连接AE , 当AB 与AD 重合时,旋转了60゜,则∠EAC=60゜ ∴6023231803CE π== 23 【点睛】此题主要考查了旋转的性质、菱形的性质以及求弧长,运用菱形的性质求出AC 是解答此题的关键.18.【分析】连接AC 根据圆周角定理得出AC 为圆的直径解直角三角形求出AB 求出扇形面积和面积两者的面积比即是针孔扎在扇形(阴影部分)的概率【详解】解:连接AC ∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为 解析:12【分析】连接AC ,根据圆周角定理得出AC 为圆的直径,解直角三角形求出AB ,求出扇形面积和O 面积,两者的面积比,即是针孔扎在扇形(阴影部分)的概率.【详解】解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90︒的扇形,即∠ABC=90︒, ∴AC 为直径,即AC=2m ,AB=BC (扇形的半径相等),∵AB 2+BC 2=22, ∴2m ,∴S 阴影部分=29023602ππ︒⨯=︒(m 2), 则:P 针孔扎在扇形(阴影部分)=212==2OS S OA =阴影部分ππ故答案为:12. 【点睛】 本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.19.80【分析】设此扇形的圆心角为x°代入弧长公式计算得到答案【详解】解:设此扇形的圆心角为x°由题意得解得x=80故答案为:80【点睛】本题考查的是弧长的计算掌握弧长的公式是解题的关键解析:80【分析】设此扇形的圆心角为x°,代入弧长公式计算,得到答案.【详解】解:设此扇形的圆心角为x°,由题意得,94180x ππ=, 解得,x=80,故答案为:80.【点睛】 本题考查的是弧长的计算,掌握弧长的公式180n r l π=是解题的关键. 20.【分析】求出∠AEB 的度数再求三角函数值即可【详解】解:∵∠B=∠C=50°∠A=70°∴∠AEB=180°-∠A-∠B=60°故答案为:【点睛】本题考查了圆周角的性质三角形内角和特殊角的三角函数值解析:3【分析】求出∠AEB 的度数,再求三角函数值即可.【详解】解:∵∠B=∠C=50°,∠A=70°,∴∠AEB=180°-∠A-∠B=60°,tan tan 603AEB ∠=︒=,故答案为:3.【点睛】本题考查了圆周角的性质,三角形内角和,特殊角的三角函数值,解题关键是灵活运用圆中角的关系,把已知条件集中在一个三角形中求角.三、解答题21.(1)见解析;(2)52π. 【分析】(1)根据△ABC 绕A 顺时针方向旋转90°,即可得到△AB 1C 1;(2)根据弧长计算公式,即可得出点B 运动路径的长.【详解】解:(1)如图所示,△AB 1C 1即为所求;(2)Rt ABC 中,∠C =90°,AC =3,BC =4∴AB 5==又∠BAB 1=90°,∴点B 的运动路径的长为:90551802ππ⨯=. 【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 22.(1)见解析;(2)8.【分析】(1)先根据垂径定理得出AD =CD ,再利用圆周角定理即可得出结论;(2)先根据垂径定理得出AE =12AC ,在Rt △AOE 中,利用勾股定理即可求出AE 的长,进而得出结论.【详解】(1)证明:∵OD ⊥AC ,∴AD =CD ,∴∠ABD =∠CBD ,即BD 平分∠ABC ;(2)解:∵OD ⊥AC ,∴AE =12AC ,∠OEA =90°, ∵OE =3,OA =5,∴在Rt △AOE 中,AE 2222534OE ,∴AC =2AE =8.【点睛】 本题考查了垂径定理、圆周角性质等知识,熟练掌握垂径定理与圆周角的相关性质是解答此题的关键.23【分析】根据翻折的意义,垂径定理的性质,直径上的圆周角是直角,扇形的面积等,把阴影的面积等量转化为三角形OBC 的面积求解即可.【详解】解:如图,连接OB ,BC .过点O 作OD ⊥AB ,垂足为E ,连接BD ,根据题意,得OE=ED=12OD=12OB , ∴∠ABO=∠OAB=30°,∵AC 是圆的直径,∴∠ABC=90°,∠ACB=60°,∴△OBC 是等边三角形,△OBD 是等边三角形,∴弓形OnB 的面积=弓形BmC 的面积,∴=S S △OBC 阴影=34×26=93.【点睛】本题考查了垂径定理,直径上的圆周角,阴影部分的面积,熟练掌握圆的基本性质,把阴影面积合理转型为三角形的面积是解题的关键.24.(1)见解析;(2)22AE =.【分析】(1)连接OD ,通过证明△COD ≌△COB 得到90CDO CBO ∠=∠=︒即可得到结论; (2)根据全等三角形的性质,在结合平行线分线段成比例的性质,即可求解【详解】(1)如图,连接OD .∵//AD OC ,∴DAO COB ∠=∠,ADO COD ∠=∠.又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.∵OD OB =,OC OC =,∴在COD △和COB △中OD OB COD COB OC OC =⎧⎪∠=∠⎨⎪=⎩∴()SAS COD COB ≌△△, ∴90CDO CBO ∠=∠=︒.又∵点D 在O 的切线. ∴CD 是O 的切线.(2)∵COD COB ≌△△,∴CD CB =. ∵DE =, ∴ED =.∵//AD OC , ∴DE AE CE OE=. ∵O 的半径为2,∴2AE AE =+, ∴AE =【点睛】本题考查了圆切线的判定,以及平行线分线段成比例的性质,熟练掌握圆切线的判定定理是解题关键.25.(1)60COB ∠=︒,O 的半径长为5cm ;(2)()225cm 6π 【分析】(1)根据切线的性质定理和平行线的性质定理得到OC ⊥BD ,根据垂径定理得到BE 的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE ≌△BOE ,则它们的面积相等,故阴影部分的面积就是扇形OBC 的面积.【详解】解:(1)∵AC 与⊙O 相切于点C ,∴∠ACO=90°,∵BD ∥AC ,∴∠BEO=∠ACO=90°,∴DE=EB=12(cm ) ∵∠D=30°,∴∠O=2∠D=60°,在Rt △BEO 中,sin60°=BE OB,∴22OB=, ∴OB=5,即⊙O 的半径长为5cm .(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°,又∵∠CED=∠BEO ,BE=ED ,∴△CDE ≌△OBE ,∴S 阴=S 扇OBC =60360π•52=256π(cm 2), 答:阴影部分的面积为256πcm 2.【点睛】本题考查扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形,掌握扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形是解题关键.26.(1)见解析;(2)①2;②4=3AB π的长 【分析】(1)在弧AB 上取一点C ,连接AC ,分别作出AC 、AB 的垂直平分线即可;(2)①根据垂径定理可得3AE BE ==,再根据勾股定理求解即可;②根据1cos 2OE AOE OA ∠==,求出圆心角,根据公式计算即可; 【详解】 (1)在弧AB 上取一点C ,连接AC ,分别作出AC 、AB 的垂直平分线,如图,点O 即为所求.(2)①如图,过点O 作OE AB ⊥交圆O 与点D ,∵23AB = ∴3AE BE ==设弓形的半径为r ,在Rt △AOE 中,222OA AE OE =+, 即()22231r r =+-, 解得:2r;②∵2OA =,1OE =, ∴1cos 2OE AOE OA ∠==, ∴60AOE =︒∠,∴2120AOB AOE ∠=∠=︒, ∴120241801803n rl πππ⨯⨯===; 【点睛】本题主要考查了尺规作图垂直平分线、垂径定理、锐角三角函数、弧长的计算,准确计算是解题的关键.。

2019年数学中考试卷(含答案)

2019年数学中考试卷(含答案)
(2)如图 2,当 6<t<10 时,DE 是否存在最小值?若存在,求出 DE 的最小值;若不存 在,请说明理由. (3)当点 D 在射线 OM 上运动时,是否存在以 D,E,B 为顶点的三角形是直角三角形? 若存在,求出此时 t 的值;若不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
24.某公司销售两种椅子,普通椅子价格是每把 180 元,实木椅子的价格是每把 400 元. (1)该公司在 2019 年第一月销售了两种椅子共 900 把,销售总金额达到了 272000 元,求两 种椅了各销售了多少把? (2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降 30 元后销售,实 木椅子每把降价 2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上
22.4 月 18 日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝 A,小 江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在 附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江 与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
7.D
解析:D 【解析】 【分析】 【详解】
解:A 选项中,根据对顶角相等,得 1与 2 一定相等; B、C 项中无法确定 1与 2 是否相等;
D 选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1. 故选:D
8.A
解析:A 【解析】
【分析】
【详解】
该班男生有
x
人,女生有
y
人.根据题意得:
x y 30 3x 2y 78

天津市红桥区2019届中考数学复习《圆》专题综合训练题含答案

天津市红桥区2019届中考数学复习《圆》专题综合训练题含答案

天津市红桥区普通中学2019届初三中考数学复习圆专题综合训练题1. 如果两个圆心角相等,那么( )A.这两个圆心角所对的弦相等 B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对2. 若ABCD为圆内接四边形,则下列哪个选项可能成立( )A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=2∶1∶3∶4C.∠A∶∠B∶∠C∶∠D=3∶2∶1∶4D.∠A∶∠B∶∠C∶∠D=4∶3∶2∶13. 下列直线是圆的切线的是( )A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆的直径外端点的直线4.在半径为12的⊙O中,60°圆心角所对的弧长是( )A.6πB.4πC.2πD.π5. 圆的内接梯形一定是________梯形.6. 如图,已知直线EF经过⊙O上的点E,且OE=EF,若∠EOF=45°,则直线EF和⊙O的位置关系是________.7. 已知扇形的半径为3 cm,面积为3π cm2,则扇形的圆心角是________°,扇形的弧长是________cm.(结果保留π)8. 如图,∠BAC和∠BOC分别是⊙O中的弧BC所对的圆周角和圆心角,若∠BAC=60°,那么∠BOC=________.9. 如图,AB,AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=30°,那么∠BOC=________.10. 120°的圆心角所对的弧长是12π cm,则此弧所在的圆的半径是________.11.如图,在4×4的方格中(共有16个方格),每个小方格都是边长为1的正方形.O,A,B分别是小正方形的顶点,则扇形OAB的弧长等于________.(结果保留根号及π)12.如图,矩形ABCD中,AB=1,AD=2,以AD的长为半径的⊙A交BC边于点E,则图中阴影部分的面积为________.13.如图,若BC ︵的度数为100°,则∠BOC=________,∠A =________.14.如图,四边形ABCD 中,∠B 与∠1互补,AD 的延长线与DC 所夹的∠2=60°,则∠1=________,∠B =________.15. 如图,四边形ABCD 内接于⊙O,则∠A+∠C=________,∠B +∠ADC=________;若∠B=80°,则∠ADC =________,∠CDE =________;16. 如图,四边形ABCD 内接于⊙O,∠AOC =100°,则∠D=________,∠B =________;17. 四边形ABCD 内接于⊙O,∠A ∶∠C =1∶3,则∠A =________;18. 如图,梯形ABCD 内接于⊙O,AD ∥BC ,∠B =75°,则∠C=________.19.如图,AB 和DE 是⊙O 的直径,弦AC∥DE,若弦BE =3,求弦CE 的长.20.如图,在⊙O 中,C ,D 是直径AB 上两点,且AC =BD ,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.(1)求证:AM ︵=BN ︵;(2)若C ,D 分别为OA ,OB 中点,则AM ︵=MN ︵=BN ︵成立吗?21. 如图,在Rt △ABC 和Rt △ABD 中,∠C =90°,∠D =90°,点O 是AB 的中点.求证:A ,B ,C ,D 四个点在以点O 为圆心的同一圆上.22. 圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58 cm ,高为20 cm ,要制作20顶这样的纸帽至少要用多少纸?(结果精确到0.1 cm 2)23. 已知扇形的圆心角为120°,面积为300π cm 2. (1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?参考答案: 1—4 DBBB 5. 等腰 6. 相切7. 120 2π 8. 120° 9. 120° 10. 18 cm 11. .2π12. 2-12-14π13. 100° 50° 14. .120° 60°15. 180° 180° 100° 80° 16. 130° 50° 17. 45° 18. 75° 19. 320. (1)连接OM ,ON ,证明△MCO≌△NDO,得出∠MOA=∠NOB,得出AM ︵=BN ︵; (2)成立.21. 证明OA =OB =OC =OD 即可.22. 解:设纸帽的底面半径为r cm ,母线长为l cm ,则r =582π, l =(582π)2+202≈22.03, S 纸帽侧=πrl ≈12×58×22.03=638.87(cm),638.87×20=12777.4(cm 2),所以,至少需要12777.4 cm 2的纸. 23. 解:(1)如图所示:∵300π=120πR2360,∴R=30,∴弧长l =120×π×30180=20π(cm),(2)如图所示: ∵20π=2πr , ∴r =10,R =30,AD=900-100=202,∴S轴截面=12×BC×AD=12×2×10×202=2002(cm2),因此,扇形的弧长是20π cm,卷成圆锥的轴截面是200 2 cm2.2019-2020学年数学中考模拟试卷一、选择题1.下列图形既是轴对称图形,又是中心对称图形的是( )A.B.C. D.2.如图,抛物线2y ax bx c =++(a≠0)的对称轴为直线x =1,与x 轴的交点(1x ,0),(2x ,0),且﹣1<1x <0<2x ,有下列5个结论:①abc <0;②b >a+c ;③a+b >k (ka+b )(k 为常数,且k≠1);④2c <3b ;⑤若抛物线顶点坐标为(1,n ),则2b =4a (c ﹣n ),其中正确的结论有( )个.A .5B .4C .3D .23.我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正六边形数”.设第n 个“平行四边形数”和“正六边形数”分别为a 和b ,若a+b =103,则ab的值是( )A.619B.837C.1093D.12914.如图,菱形ABCD 的对角线AC 、BD 相交于点O .若周长为20,BD =8,则AC 的长是( )A.3B.4C.5D.65.分式方程的解是( )A.3B.-3C.D.96.若二次函数2(2)4y ax a x a =+++的图像与x 轴有两个交点12(,0),(,0)x x ,且121x x <<,则a 的取值范围是() A .2153a -<<- B .103a -<< C .203a <<D .1233a << 7.一组数据2,3,8,6,x 的唯一众数是x ,其中x 是不等式组26070x x ->⎧⎨-<⎩的解,则这组数据的中位数是( ) A .3 B .5C .6D .88.计算11x -- 1xx -的结果为( ) A .1B .2C .﹣1D .﹣29.一个直角三角形两边长分别为3和4,则它的面积为( )A .6B .12C .6或10D .6或210.对于函数y=-2(x-3)2,下列说法不正确的是( ) A.开口向下B.对称轴是3x =C.最大值为0D.与y 轴不相交11.如图,点A (0,2),在x 轴上取一点B ,连接AB ,以A 为圆心,任意长为半径画弧,分别交OA 、AB 于点M 、N ,再以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点D ,连接AD 并延长交x 轴于点P .若△OPA 与△OAB 相似,则点P 的坐标为( )A .(1,0)B .0)C .(230) D .(0)12.如图,将一副三角板叠放在一起,使顶点A 在另一直角三角形的斜边DE 上,斜边BC 与直角边EF 在一直线上,则图中∠EAC 的度数为( )A .60°B .75°C .65°D .55°二、填空题13.如图,△ABC 中,D 、E 、F 分别是各边的中点,随机地向△ABC 中内掷一粒米,则米粒落到阴影区域内的概率是_____.14.如图,某飞机于空中探测某座山的高度,在点A 处飞机的飞行高度是3700AF =米,从飞机上观测山顶目标C 的俯角是45,飞机继续以相同的高度飞行300米到B 地,此时观察目标C 的俯角是50,则这座山的高度CD 是________米(参考数据:sin500.77≈,cos500.64≈,tan50 1.20≈)15.关于x 的一元二次方程x 2+4x ﹣k=0有实数根,则k 的取值范围是__________.16.如图,直线a ,b 与直线c ,d 相交,已知∠1=∠2,∠3=110°,则∠4的度数为________.17.如图,已知正方形ABCD 的边长为1,连接AC ,BD ,CE 平分∠ACD 交BD 于点E ,则DE=_________.18.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____. 三、解答题19.解不等式组()3151924x x xx ⎧-≤+⎪⎨-<⎪⎩,并写出它的所有整数解. 20.阅读下列材料,解决问题:12345678987654321这个数有这样一个特点:各数位上的数字从左到右逐渐增大(由1到9,是连续的自然数),到数9时,达到顶峰,以后又逐渐减小(由9到1),它活像一只橄榄,我们不妨称它为橄榄数.记第一个橄榄数为a 1=1,第二个橄榄数为a 2=121,第三个橄榄数为a 3=12321……有趣的是橄榄数还是一个平方数,如1=12,121=112,12321=1112,1234321=11112……而且,橄榄数可以变形成如下对称式:1111⨯=2222121121⨯=++3333331232112321⨯=++++……根据以上材料,回答下列问题(1)11111112= ;将123454321变形为对称式:123454321= .(2)一个两位数(十位大于个位),交换其十位与个位上的数字,得到一个新的两位数,将原数和新数相加,就能得到橄榄数121,求这个两位数.(3)证明任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除(m =1,2…9,n =1,2…9,m >n ) 21.某公司用100万元研发一种市场急需电子产品,已于当年投入生产并销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y (万件)与销售价格x (元/件)的关系如图所示,其中AB 为反比例函数图象的一部分,设公司销售这种电子产品的年利润为s (万元). (1)请求出y (万件)与x (元/件)的函数表达式;(2)求出第一年这种电子产品的年利润s (万元)与x (元/件)的函数表达式,并求出第一年年利润的最大值.22.如图,AB ⊥EF ,DC ⊥EF ,垂足分别为B 、C ,且AB =CD ,BE =CF .AF 、DE 相交于点O ,AF 、DC 相交于点N ,DE 、AB 相交于点M .(1)请直接写出图中所有的等腰三角形; (2)求证:△ABF ≌△DCE .23.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,过点A 作AE ⊥BC 于点E ,延长BC 至F ,使CF =BE ,连接DF .(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.24.解方程:213xx x+=-.25.如图,在平行四边形ABCD中,点H为DC上一点,BD、AH交于点O,△ABO为等边三角形,点E在线段AO上,OD=OE,连接BE,点F为BE的中点,连接AF并延长交BC于点G,且∠GAD=60°.(1)若CH=2,AB=4,求BC的长;(2)求证:BD=AB+AE.【参考答案】***一、选择题二、填空题13.1 414.1900 15.k≥﹣4 16.110°17118.3 5三、解答题19.﹣2≤x<1,整数解有﹣2、﹣1、0.【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可. 【详解】()3151924x x xx ①②⎧-≤+⎪⎨-<⎪⎩, 解不等式①,得x≥﹣2, 解不等式②,得x <1,∴不等式组的解集为﹣2≤x<1, ∴不等式组的整数解有﹣2、﹣1、0. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.(1)55555555551234567654321,123454321⨯++++++++;(2)65,74,83,92;(3)任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除. 【解析】 【分析】(1)根据题中给出的定义,直接可得:(2)设十位数字是x ,个位数字是y ,根据题意得到x+y=11,进而确定两位数; (3)根据数的规律求得a m 的各数位之和m 2,a n 的各数位之和n 2,然后因式分解证明结论. 【详解】(1)根据题中给出的定义,直接可得: 11111112=1234567654321,123454321=⨯++++++++5555555555123454321;(2)设十位数字是x ,个位数字是y ,x >y , 10x+y+10y+x =11(x+y )=121, ∴x+y =11,∴这个两位数是65,74,83,92;(3)a m 的各数位之和1+2+3+…+m+(m ﹣1)+…+2+1=(1)(1)22m m m m +-+=m 2, a n 的各数位之和1+2+3+…+m+(m ﹣1)+…+2+1=(1)(1)22n n n n +-+=n 2, ∴a m ,a n 的各数位之和的差为m 2﹣n 2=(m+n )(m ﹣n ), ∵m >n ,∴m 2﹣n 2=(m+n )(m ﹣n )能被m ﹣n 整除,∴任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除. 【点睛】本题考查新定义,字母表示数,自然数求和,因式分解;能够理解定义,熟练掌握因式分解,自然数求和方法是解题的关键.21.(1)y =160(48)28(828)x x x x ⎧≤≤⎪⎨⎪-+≤⎩;(2)当每件的销售价格定为16元时,第一年年利润的最大值为44万元. 【解析】 【分析】(1)依据待定系数法,即可求出y (万件)与x (元/件)之间的函数关系式;(2)分两种情况进行讨论,当x =8时,s max =﹣20;当x =16时,s max =44;根据44>﹣20,可得当每件的销售价格定为16元时,第一年年利润的最大值为44万元. 【详解】解:(1)当4≤x≤8时,设y =kx,将A (4,40)代入得k =4×40=160, ∴y 与x 之间的函数关系式为y =160x; 当8<x≤28时,设y =k'x+b ,将B (8,20),C (28,0)代入得,820280k b k b +=⎧⎨+=''⎩, 解得k 1b 28=-⎧⎨='⎩,∴y 与x 之间的函数关系式为y =﹣x+28,综上所述,y =160(48)28(828)x x x x ⎧⎪⎨⎪-+<≤⎩剟;(2)当4≤x≤8时,s =(x ﹣4)y ﹣160=(x ﹣4)•160x ﹣100=640x-+60,∵当4≤x≤8时,s 随着x 的增大而增大, ∴当x =8时,s max =640x-+60=﹣20; 当8<x≤28时,s =(x ﹣4)y ﹣80=(x ﹣4)(﹣x+28)﹣80=﹣(x ﹣100)2+44, ∴当x =16时,s max =44; ∵44>﹣20,∴当每件的销售价格定为16元时,第一年年利润的最大值为44万元. 【点睛】本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x 的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解. 22.(1)△EOF ,△AOM ,△DON ;(2)证明见解析 【解析】 【分析】(1)可以证明△ABF ≌△DCE ,根据全等三角形对应角相等可得∠A =∠D ,∠DEC =∠AFB ,所以△EOF 是等腰三角形,再根据等角的余角相等可得∠A =∠AMO ,∠D =∠DNO ,从而得到△AOM 与△DON 也都是等腰三角形;(2)由BE =CF ,可以证明EC =BF ,然后根据方法“边角边”即可证明△ABF 与△DCE 全等. 【详解】(1)解:△EOF ,△AOM ,△DON ;(2)证明:∵AB ⊥EF 于点B ,DC ⊥EF 于点C , ∴∠ABC =∠DCB =90°, ∵CF =BE , ∴CF+BC =BE+BC , 即BF =C E…在△ABF 和△DCE 中, AB DC DCB BF CE =⎧⎪⎨⎪=⎩∠ABC=∠, ∴△ABF ≌△DCE , 【点睛】本题主要考查了全等三角形的证明,常用的方法有“边边边”,“边角边”,“角边角”,“角角边”,本题证明得到BF =CE 是解题的关键. 23.(1)见解析;(2)CD =5. 【解析】 【分析】(1)根据菱形的性质得到AD ∥BC 且AD =BC ,等量代换得到BC =EF ,推出四边形AEFD 是平行四边形,根据矩形的判定定理即可得到结论,(2)设BC =CD =x ,则CF =8﹣x 根据勾股定理即可得到结论. 【详解】(1)证明:∵在菱形ABCD 中, ∴AD ∥BC 且AD =BC , ∵BE =CF , ∴BC =EF , ∴AD =EF , ∵AD ∥EF ,∴四边形AEFD 是平行四边形, ∵AE ⊥BC ,∴∠AEF=90°,∴四边形AEFD是矩形.(2)解:设BC=CD=x,则CF=8﹣x,在Rt△DCF中,∵x2=(8﹣x)2+42 ,∴x=5,∴CD=5.【点睛】本题考查了矩形的判定和性质,菱形的性质,勾股定理,正确的识别图形是解题的关键.24.x=65.【解析】【分析】根据分式方程的解法求解即可. 【详解】去分母得:2x﹣6+x2=x2﹣3x,解得:x=65,检验x=65是原方程的解.【点睛】本题主要考查分式方程的解法,注意根的验证.25.(1)BC (2)详见解析【解析】【分析】(1)延长AH、BC相交于点M,可证明△MCH∽△MBA,得出MH=AH,BM=2BC;由∠DOH=∠AOB=60°,∠ODH=∠OBA=60°,∠OHD=∠OAB=60°,可得△DOH是等边三角形,AE=OA-OE=OA-OD=2,得点E是OA的中点,根据“三线合一”可得BE的长度、BE⊥OA,根据勾股定理求出BM的长,而BC=12BM;(2)AB=OB,由(1)知,AE=OE=OD,可证BD=OB+OD=AB+AE.【详解】解:延长AH、BC相交于点M,∵▱ABCD∴CD=AB=4,CD∥AB∴∠MHC=∠MAB,∠MCH=∠MBA∴△MCH∽△MBAMH MC CH∴==MA MB AB∵CH=2MH MC21∴===MA MB42∴MH=AH,BM=2BC∵△ABO为等边三角形∴∠AOB=∠OAB=∠OBA=60°,OA=AB=4∴∠DOH=∠AOB=60°∴∠ODH=∠OBA=60°,∠OHD=∠OAB=60°∴∠DOH=∠ODH=∠OHD∴△DOH是等边三角形∴OH=OD=DH=2∴MH=AH=OA+OH=4+2=6,EM=OE+OH+MH=10 ∵OD=OE=2∴AE=OA﹣OE=4﹣2=2∴点E是OA的中点∵△ABO为等边三角形∴BE⊥OA,∠ABE=30°BE∴==在Rt△BEM中,∠BEM=90°∴BE2+EM2=BM2222∴+=10BM∴=BM∴=BC(2)∵△ABO为等边三角形∴AB=OB由(1)知,AE=OE=OD∵BD=OB+OD∴BD=AB+AE【点睛】本题考查了等边三角形的判定和性质、勾股定理、相似三角形的判定和性质.这道题的关键是证明点E是OA的中点、BM=2BC.2019-2020学年数学中考模拟试卷一、选择题 1.若函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A.m >﹣2 B.m <﹣2 C.m >2 D.m <22.函数11y x =-中自变量x 的取值范围是( ) A .2x ≤B .2x ≤且1x ≠C .x <2且1x ≠D .1x ≠3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°4.如图,一只蚂蚁从长、宽都是3cm ,高是8cm 的长方体纸盒的A 点沿纸盒面爬到B 点,那么它所行的最短路线的长是( )+8)cmB.10cmC.14cmD.无法确定5.下列选项中,可以用来证明命题“若a 2>b 2,则a >b“是假命题的反例是( ) A .a =﹣2,b =1B .a =3,b =﹣2C .a =0,b =1D .a =2,b =16.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数不少于20的频率为( )A .0.1B .0.17C .0.33D .0.97.如图,与的平分线相交于点P,,PB与CE交于点H,交BC于F,交AB于G,下列结论:①;②;③ BP垂直平分CE;④,其中正确的判断有()A.①②B.③④C.①③④D.①②③④8.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=kx(x>0)的图象上,若∠C=60°,AB=2,则k的值为()A B C.1 D.29.如图,点P是正方形ABCD内一点,连接AP并延长,交BC于点Q.连接DP.将△ADP绕点A顺时针旋转90°至△ABP'.连结PP',若AP=1,,,则正方形的边长为()ABCD10.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE 中,DE的最小值是()A.10B.8C.6D.411.如图,点A ,B 为反比例函数y=kx在第一象限上的两点,AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,若B 点的横坐标是A 点横坐标的一半,且图中阴影部分的面积为k ﹣2,则k 的值为( )A .43B .83C .143 D .16312.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A .6B .8C .10D .12二、填空题13.如图,在平面直角坐标系中,()()0,2,A B ,点C 是线段AB 上一点,将OCB ∆沿AB 翻折得到'B CB ∆,且满足'B C AO ∕∕. 若反比例函数y (0)kk x=>图象经过点C ,则k 的值为____.14.函数y =x 的取值范围是______.15.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是______. 16.计算:(﹣2)2019×0.52018=_______.17.如图所示,是一个运算程序示意图,若第一次输人k 的值为216,则第2019次输出的结果是______.18.如图,在△ABC 中,M 、N 分别为AC 、BC 的中点.若S △CMN =1,则S 四边形ABNM =________.三、解答题19.如图1,正方形ABCD 中,AB =5,点E 为BC 边上一动点,连接AE ,以AE 为边,在线段AE 右侧作正方形AEFG ,连接CF 、DF .设BE x =.(当点E 与点B 重合时,x 的值为0),12DF y CF y ==,.小明根据学习函数的经验,对函数12y y 、随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x 与y 1、y 2的几组对应值;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点12()()x y x y ,,,,并画出函数y 1,y 2的图象;(3)结合函数图象2,解决问题:当△CDF 为等腰三角形时,BE 的长度约为 cm . 20.如图1,点D 、E 、F 、G 分别为线段AB 、O B 、OC 、AC 的中点. (1)求证:四边形DEFG 是平行四边形;(2)如图2,若点M 为EF 的中点,BE :CF :DG =2:3:MOF =∠EFO .21.初三某班同学小代想根据学习函数的经验,探究函数32y x =-的图象和性质,下面是他的探究过程,请补充完整: (1)函数32y x =-的自变量的取值范围是 ; (2)下表是函数y 与自变量x 的几组对应值:则m= ,n= ;(3)在平面直角坐标系xoy 中,补全此函数的图象:(4)根据函数图象,直接写出不等式322x x >--的解集 ; (5)若函数32y x =-与函数y =x +k 图象有三个不同的交点,则k 的取值范围是 . 22.如图,在△ABC 中,AB =AC ,以AC 为直径做⊙O 交BC 于点D ,过点D 作⊙O 的切线,交AB 于点E ,交CA 的延长线于点F . (1)求证:FE ⊥AB ; (2)填空:当EF =4,35OA OF =时,则DE 的长为 .23.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯,如图,已知原阶梯式自动扶梯AB 的长为m ,坡角∠ABE =45°,改造后的斜坡自动扶梯坡角∠ACB =15°,求改造后的斜坡式自动扶梯AC 的长,(精确到0.1m ,参考数据;sin15°≈0.26,cos15°≈0.97,tan15°≈0,27)24.计算:(12)﹣1|+(π﹣3.14)0 25.如图,矩形ABCD 中,E 是AD 的中点,延长CE ,BA 交于点F ,连接AC ,DF .(1)判断四边形ACDF 的形状;(2)当BC=2CD 时,求证:CF 平分∠BCD .【参考答案】*** 一、选择题二、填空题1314.x≥-3 15.1316.-2 17.18.3三、解答题19.(1)见解析;(2)见解析;(3)2.59.【解析】【分析】(1)画图、测量可得;(2)依据表中的数据,描点、连线即可得;(3)由题意得出△CDF是等腰三角形时BE的长度即为y1与y2交点的横坐标,据此可得答案.【详解】(1)补全表格如下:(2)函数图象如下:(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为2.5906,故答案为:2.59.【点睛】本题是四边形的综合问题,解题的关键是掌握函数思想的运用及函数图象的画法、数形结合思想的运用.20.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据中位线定理得:DG∥BC,11DG BC,EF//BC,EF BC22==,则DG=BC,DE∥BC,根据一组对边平行且相等的四边形是平行四边形可得:四边形DEFG是平行四边形;(2)先根据已知的比的关系设未知数:设BE=2x,CF=3x,DG=,根据勾股定理的逆定理得:∠EOF=90°,最后利用直角三角形斜边中线的性质可得OM=FM,由等边对等角可得结论.【详解】解:(1)∵D是AB的中点,G是AC的中点,∴DG 是△ABC 的中位线, ∴DG ∥BC ,DG =12BC , 同理得:EF 是△OBC 的中位线, ∴EF ∥BC ,EF =12BC , ∴DG =EF ,DG ∥EF ,∴四边形DEFG 是平行四边形;(2)∵BE :CF :DG =2:3:∴设BE =2x ,CF =3x ,DG , ∴OE =2x ,OF =3x ,∵四边形DEFG 是平行四边形,∴DG =EF , ∴OE 2+OF 2=EF 2, ∴∠EOF =90°, ∵点M 为EF 的中点, ∴OM =MF , ∴∠MOF =∠EFO . 【点睛】本题考查的是三角形中位线定理、平行四边形的判定、勾股定理的逆定理,掌握三角形中位线定理是解题的关键.21.(1)x 2≠;(2)m=0.75,n= 3;(3)在平面直角坐标系xoy 中,补全此函数的图象见解析;(4)222x x 或<<<+;(5)2k >. 【解析】 【分析】(1)根据分母不能为0确定自变量的取值范围; (2)把x=-2,3分别代入32y x =-可求得m,n 的值; (3)把两组点分别顺次连接可得图象;(4)作出函数y=x-2的图象,得直线与32y x =-的交点的横坐标为.根据图象可得到不等式的解集;(5)直线y=x+k 与右边曲线总有一个交点,故可求当直线与左边曲线有一个交点时k 的值,将直线向上平移就会满足题中有三个交点的条件,从而得到k 的取值范围. 【详解】(1)根据分母不能为0得│x -2│≠0,解得: x 2≠ ;(2)将x=-2代入32y x =-,得y=0.75,即m=0.75; 将x=3代入32y x =-,得y=3,即n=3; 故答案为:m= 0.75 ,n= 3 ; (3)如图所示:(4)如图,作出函数y=x-2的图象,这条直线与32y x =-的交点的横坐标为观察图象可得,不等式322x x >--的解集为2x <或22x <<+. (5)由(4)的结论可知,直线y=x+k 与32y x =-的图象的右边的曲线总有一个交点,故考虑当x <2时,直线y=x+k 与32y x =-的图象的左边的曲线的交点情况. ∵x <2,∴32y x =-,列方程32x-=x+k , 整理得2(2)(32)0x k x k +-+-=,当240b ac =-=时,方程有唯一解,直线与左边曲线有一个交点,直线继续往上平移,会有两个交点. ∴()2(2)4320k k ---=解得122,2k k ==- (由图像知2k 不合题意舍去)所以当2k >-时,直线y=x+k 与32y x =-共有三个不同的交点.故答案为:2k >. 【点睛】本题主要考查函数与方程的结合,根的判别式的应用,根据定义作出函数的图象,利用数形结合思想是解决本题的关键.22.(1)详见解析;(2)6. 【解析】 【分析】(1)连接OD ,如图,先根据切线的性质得到OD ⊥DF ,然后利用等腰三角形的性质和平行线的判定证明OD ∥AB ,从而可判断EF ⊥AB ;(2)根据平行线分线段比例,由AE ∥OD 得35DE OA DF OF ==,然后根据比例性质可求出DE . 【详解】(1)连接OD ,如图, ∵DF 为⊙O 的切线, ∴OD ⊥DF , ∵OC =OD , ∴∠C =∠ODC , ∵AB =AC , ∴∠B =∠C , ∴∠B =∠ODC , ∴OD ∥AB , ∴EF ⊥AB ; (2)∵AE ∥OD ,∴35DE OA DF OF ==, 即345DE DE =+,解得DE =6, 故答案为:6.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活运用相似比进行几何计算.也考查了等腰三角形的性质和切线的性质.23.改造后的斜坡式自动扶梯AC的长度约为23.1米.【解析】【分析】先在Rt△ABD中,用三角函数求出AD,最后在Rt△ACD中用三角函数即可得出结论.【详解】解:如图,过点A作AD⊥CE于点D,在Rt△ABD中,∠ABD=45°,AB=,∴AD=AB•sin45°=6(m).在Rt△ACD中,∠ACD=15°,sin∠ACD=AD AC,∴AC=AD6sin150.26︒=≈23.1(m),即:改造后的斜坡式自动扶梯AC的长度约为23.1米.【点睛】此题主要考查了解直角三角形的应用,锐角三角函数的应用,求出AD是解本题的关键.24.4【解析】【分析】根据特殊角的三角函数值进行计算即可.【详解】解:原式=4﹣2×2﹣1+1=4﹣1+1=4.【点睛】本题主要考查特殊角的三角函数的计算,这是基本知识点,应当熟练的掌握.25.(1)四边形ACDF是平行四边形;(2)见解析.【解析】【分析】(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF 是平行四边形;(2)先判定ACDF是平行四边形,可得FB=BC,再根据∠BCF=∠DCF=45°,即可得到答案.【详解】解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)证明:∵BC=2CD,ACDF是平行四边形,∴FB=BC,∴∠BCF=45°,∴∠DCF=45°,∴CF平分∠BCD.【点睛】此题考查矩形的性质,全等三角形的判定与性质,平行四边形的判定,解题关键在于利用全等三角形的性质进行求证.。

2019年辽宁中考专题突破训练(22)与圆有关的计算(含解析)

2019年辽宁中考专题突破训练(22)与圆有关的计算(含解析)

第22讲 与圆有关的计算 (时间40分钟 满分80分)一、选择题(每小题3分,共18分)1.(2019·南宁)如图,⊙O 是△ABC 的外接圆,BC =2,∠BAC =30°,则劣弧BC ︵的长等于( A ) A.2π3 B.π3 C.23π3 D.3π3第1题图第2题图2.(2019·山西)如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD.若AC =10 cm ,∠BAC =36°,则图中阴影部分的面积为( B )A .5π cm 2B .10π cm 2C .15π cm 2D .20π cm 23.(2019·荆门)如图,从一块直径为24 cm 的圆形纸片上剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( C )A .12 cmB .6 cmC .3 2 cmD .2 3 cm第3题图第4题图4.(2019·河南)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为点O′,B ′,连接BB′,则图中阴影部分的面积是( C )A.2π3 B .23-π3C .23-2π3 D .43-2π3(导学号 58824187)5.(2019·丽水)如图,点C 是以AB 为直径的半圆O 的三等分点,AC =2,则图中阴影部分的面积是( A ) A.4π3- 3 B.4π3-2 3 C.2π3- 3 D.2π3-32第5题图第6题图6.(2019·烟台)如图,▱ABCD 中,∠B =70°,BC =6,以AD 为直径的⊙O 交CD 于点E ,则DE ︵的长为( B )A.13πB.23πC.76πD.43π 二、填空题(每小题3分,共18分)7.(2019·台州)如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30厘米,则BC ︵的长为_20π_厘米.(结果保留π)8.(2019·菏泽)一个扇形的圆心角为100°,面积为15π cm 2,则此扇形的半径长为9.(2019·日照)如图,四边形ABCD 中,AB =CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB =6,则扇形(图中阴影部分)的面积是_6π_.(导学号 58824188)第9题图第10题图10.(2019·十堰改编)如图,从一张腰长为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为11.(2019·青岛)如图,直线AB ,CD 分别与⊙O 相切于B ,D 两点,且AB⊥CD,垂足为P ,连接BD ,若BD =4,则阴影部分的面积为_2π-4_.第11题图第12题图12.(2019·武汉改编)如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是_π_.(导学号 58824189)三、解答题(本大题4小题,共44分)13.(11分)(2019·随州)如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E.(1)求证:AD 平分∠BAC;(2)若CD =1,求图中阴影部分的面积(结果保留π). (1)证明:如解图,连接DE ,OD ,∵BC 相切⊙O 于点D , ∴∠CDA =∠AED,∵AE 为直径,∴∠ADE =90°, ∵AC ⊥BC ,∴∠ACD =90°,∴∠DAO =∠CAD,∴AD 平分∠BAC; (2)解:S 阴影=1-π4.14.(11分)(2019·鞍山模拟)如图,在△BCE 中,点A 是边BE 上一点,以AB 为直径的⊙O 与CE 相切于点D ,AD ∥OC ,点F 为OC 与⊙O 的交点,连接AF. (1)求证:CB 是⊙O 的切线;(2)若∠ECB=60°,AB =6,求图中阴影部分的面积.(导学号 58824190) (1)证明:如解图,连接OD ,与AF 相交于点G ,∵CE 与⊙O 相切于点D , ∴OD ⊥CE ,∴∠CDO =90°,∵AD ∥OC ,∴∠ADO =∠DOC,∠DAO =∠BOC, ∵OA =OD ,∴∠ADO =∠DAO,∴∠DOC =∠BOC,在△CDO 和△CBO 中,⎩⎪⎨⎪⎧CO =CO ,∠DOC =∠BOC,OD =OB ,∴△CDO ≌△CBO(SAS),∴∠CBO =∠CDO=90°,∴CB 是⊙O 的切线;(2)解:由(1)可知∠DCO=∠BCO,∠DOC =∠BOC,∵∠ECB =60°,∴∠DCO =∠BCO=12∠ECB=30°,∴∠DOC =∠BOC=60°,∴∠DOA =60°, ∵OA =OD ,∴△OAD 是等边三角形, ∴AD =OD =OF ,∵∠GOF =∠ADO, 在△ADG 和△FOG 中,⎩⎪⎨⎪⎧∠GOF=∠ADG,∠FGO =∠AGD,AD =OF ,,∴△ADG ≌△FOG(AAS),∴S △ADG =S △FOG ,∵AB =6,∴⊙O 的半径r =3, ∴S 阴影=S 扇形ODF =60π×32360=32π.15.(11分)(2019·长沙)如图,AB 与⊙O 相切于点C ,OA ,OB 分别交⊙O 于点D ,E ,CD ︵=CE ︵. (1)求证:OA =OB ;(2)已知AB =43,OA =4,求阴影部分的面积. (1)证明:如解图,连接OC ,∵AB 与⊙O 相切于点C , ∴∠ACO =90°, 由于CD ︵=CE ︵,∴∠AOC =∠BOC,∴∠A =∠B,∴OA =OB ;(2)解:由(1)可知:△OAB 是等腰三角形,∴BC =12AB =23,∴sin ∠COB =BC OB =32,∴∠COB =60°,∴∠B =30°,∴OC =12OB =2,∴S 扇形OCE =60π×22360=2π3,△OCB 的面积为:12×23×2=23,∴S 阴影=23-23π.16.(11分)(2019·潍坊)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为BC ︵的中点,作DE⊥AC,交AB 的延长线于点F ,连接DA. (1)求证:EF 为半圆O 的切线;(2)若DA =DF =63,求阴影区域的面积.(结果保留根号和π) (1)证明:如解图,连接OD ,∵D 为BC ︵的中点,∴∠CAD =∠BAD,∵OA =OD ,∴∠BAD =∠ADO,∴∠CAD =∠ADO, ∵DE ⊥AC ,∴OD ⊥EF ,∴EF 为半圆O 的切线; (2)解:连接OC 、CD ,∵DA =DF ,∴∠BAD =∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F =30°,∠BAC =60°.∵DF =63,∴OD =DF·tan30°=6,∵DA =63,∠CAD =30°,∴DE =DA·sin30°=33,EA =DA·cos30°=9, ∵∠COD =180°-∠AOC-∠DOF=60°, ∴CD ∥AB ,故S △ACD =S △COD ,∴S 阴影=S △AED -S 扇形COD =12×9×33-60360π×62=2732-6π.2019-2020学年数学中考模拟试卷一、选择题1.设x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两根,则x 12+x 22的值为( ) A.6B.8C.14D.162.如图,⊙O 与BC 相切于点B ,弦AB ∥OC ,若∠C =40°,则∠AOB 的度数是( )A.60B.70°C.80°D.90°3.2019年3月份,雷州市市区一周空气质量报告中某项污染指数的数据是35,32,33,35,36,33,35,则这组数据的众数是( )A .36B .35C .33D .324.如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论①∠DCF =12∠BCD ;②S △BEC =2S △CEF ;③∠DFE =3∠AEF ;④当∠AEF =54°时,则∠B =68°,中一定成立的是( )A.①③B.②③④C.①④D.①③④5.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.6.下列运算中正确的是( ) A .235()a a = B .()()2212121x x x +-=-C .824a a a =D .22(3)69a a a -=-+7.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20%8.如图,己知点A 是双曲线y=kx -1(k>0)上的一个动点,连AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y=mx -1(m<0)上运动,则m 与k 的关系是( )A .m= -kB .m=C .m= -2kD .m= -3k9.y =x 2+(1﹣a )x+1是关于x 的二次函数,当x 的取值范围是1≤x≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( ) A .a≤﹣5 B .a≥5 C .a =3D .a≥310.如图,在菱形中,,,点是这个菱形内部或边上的一点,若以点,,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )A. B. C. D.11.2016年西峡香菇年出口值达到4380000000亿元,成为国内最大的干香菇出口货源集散中心.其中数学4380000000用科学记数法表示为( ) A .743810⨯ B .84.3810⨯ C .94.3810⨯D .104.3810⨯12.在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B 的得票为( )A .300B .90C .75D .85二、填空题13.如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径是6,若点P 是⊙O 上的一点,PB =AB ,则PA 的长为_____.14.因式分解:3223x 6x y 3xy -+=______.15.已知∠A 是锐角,且A=_____. 16.关于x 的方程=3的解为_____.17.要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的______(填“平均数”或“频数分布”) 18.不等式组的解集是__________.三、解答题19.如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长线于点F . (1)求证:△DAE ≌△CFE ; (2)若AB =BC+AD ,求证:BE ⊥AF ;(3)在(2)的条件下,若∠D =90°,AD AF =10,则点E 到AB 的距离是 .(直接写出结果即可,不用写出演推过程)20.如图,△ABC (∠B >∠A ).(1)在边AC上用尺规作图作出点D,使∠ADB+2∠A=180°(保留作图痕迹);(2)在(1)的情况下,连接BD,若CB=CD,∠A=35°,求∠C的度数.21.已知:点D是△ABC边BC上的中点,DE⊥AC,DF⊥AB,垂足分别是点E、F.(1)若∠B=∠C,BF=CE,求证:△BFD≌△CED.(2)若∠B+∠C=90°,求证:四边形AEDF是矩形.22 |+(3)0+(﹣1)201923.某公司销售一种产品,进价为20元/件,售价为80元/件,公司为了促销,规定凡一次性购买10万件以上的产品,每多买1万件,每件产品的售价就减少2元,但售价最低不能低于40元/件,设一次性购买x万件(x>10)(1)若x=15,则售价应是元/件;(2)若以最低价购买此产品,求x的值;(3)当x>10时,求此产品的利润y(万元)与购买数量x(万件)的关系式;(4)经营中公司发现售出19万件的利润反而比售出24万件的利润还多,在促销条件不变的情况下,为了使每次销售的越多总利润也越多,最低售价应调整到多少元/件?并说明理由.24.如图,大楼AC的一侧有一个斜坡,斜坡的坡角为30°.小明在大楼的B处测得坡面底部E处的俯角为33°,在楼顶A处测得坡面D处的俯角为30°.已知坡面DE=20m,CE=30m,点C,D,E在同一平面内,求A,B两点之间的距离.(结果精确到1mtan33°≈0.65)25.如图,在△ABC中,AB=BC,∠B=90°,点D为线段BC上一个动点(不与点B,C重合),连接AD,将线段AD绕点D顺时针旋转90°得到线段DE,连接EC.(1)①依题意补全图1;②求证:∠EDC=∠BAD;(2)①小方通过观察、实验,提出猜想:在点D运动的过程中,线段CE与BD的数量关系始终不变,用等式表示为 ;②小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF . 想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC . 想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形. ……请你参考上面的想法,帮助小方证明(2)①中的猜想.(一种方法即可)【参考答案】*** 一、选择题二、填空题1314.23x(x y) 15.30° 16.x =2 17.频数分布 18.三、解答题19.(1)见解析;(2)见解析;(3 【解析】 【分析】(1)根据AD ∥BC 可知∠ADC=∠ECF ,再根据E 是CD 的中点,可证明△ADE ≌△FCE ;(2)由(1)知△ADE ≌△FCE ,得到AE=EF ,AD=CF ,由于AB=BC+AD ,等量代换得到AB=BC+CF ,即AB=BF ,证得△ABE ≌△FBE ,即可得到结论;(3)在(2)的条件下有△ABE ≌△FBE ,得到∠ABE=∠FBE ,由勾股定理求DE 的长,根据角平分线的性质即可得到结果.(1)∵AD ∥BC ,∴∠ADC =∠ECF ,∵E 是CD 的中点,∴DE =EC ,∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)由(1)知△ADE ≌△FCE ,∴AE =EF ,AD =CF ,∵AB =BC+AD ,∴AB =BC+CF ,即AB =BF ,在△ABE 与△FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩,∴△ABE ≌△FBE (SSS ),∴∠AEB =∠FEB =90°,∴BE ⊥AE ;(3)在(2)的条件下有△ABE ≌△FBE ,∴∠ABE =∠FBE ,∴E 到BF 的距离等于E 到AB 的距离,由(1)知△ADE ≌△FCE ,∴AE =EF =12AF =5, ∵∠D =90°,∴DE==∴CE =DE,∵CE ⊥BF ,∴点E 到AB.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,等腰三角形的性质、勾股定理等知识.证明三角形全等是解题的关键.20.(1)作AB 的垂直平分线,交边AC 于D ,如图所示:见解析;(2)∠C =40°.(1)作AB的垂直平分线,交边AC于D即可;(2)依据等腰三角形的性质以及三角形内角和定理,即可得到∠C的度数.【详解】(1)作AB的垂直平分线,交边AC于D,如图所示:∴点D即为所求;(2)∵CB=CD,∴∠CDB=∠CBD,由(1)可得,DA=DB,∴∠A=∠ABD=35°,∴∠CDB=70°,∴△BCD中,∠C=40°.【点睛】本题主要参考了等腰三角形的性质以及线段垂直平分线的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.(1)见解析;(2)见解析.【解析】【分析】(1)由“SAS”可证△BFD≌△CED;(2)由三角形内角和定理可得∠A=90°,由三个角是直角的四边形是矩形可判定四边形AEDF是矩形.【详解】(1)∵点D是△ABC边BC上的中点∴BD=CD又∵DE⊥AC,DF⊥AB,垂足分别是点E、F∴∠BFD=∠DEC=90°∵BD=CD,∠BFD=∠DEC,BF=CE∴△BFD≌△CED(SAS)(2)∵∠B+∠C=90°,∠A+∠B+∠C=180°∴∠A=90°∵∠BFD=∠DEC=90°∴∠A=∠BFD=∠DEC=90°∴四边形AEDF是矩形.本题考查了矩形的判定,全等三角形的判定和性质,熟练运用矩形的判定是本题的关键.22.2【解析】【分析】结合绝对值,二次根式,指数幂和三角函数值计算,计算结果,即可。

2019届中考复习《一元二次方程的根与系数的关系》专题练习含答案

2019届中考复习《一元二次方程的根与系数的关系》专题练习含答案

北京市朝阳区普通中学2019届初三中考数学复习一元二次方程的根与系数的关系专题复习练习题1.设α,β是一元二次方程x2+2x-1=0的两个实数根,则αβ的值是( ) A.2 B.1 C.-2 D.-12.若方程3x2-4x-4=0的两个实数根分别为x1,x2,则x1+x2=( )A.-4 B.3 C.-43D.433.下列一元二次方程两实数根和为-4的是( )A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=04. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,35.已知一元二次方程x2-3x-1=0的两个根分别是x1,x2,则x12x2+x1x22的值为( ) A.-3 B.3 C.-6 D.66. 已知α,β是一元二次方程x2-5x-2=0的两个实数根,则α2+αβ+β2的值为( )A.-1 B.9 C.23 D.277. 已知一元二次方程的两根之和是3,两根之积是-2,则这个方程是( )A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x-2=0 D.x2-3x+2=08. 已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( )A.-10 B.4 C.-4 D.109. 菱形ABCD的边长是5,两条对角线交于O点,且AO,BO的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根,则m的值为( )A.-3 B.5 C.5或-3 D.-5或310. 如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=________,x1x2=________.11. 一元二次方程2x2+7x=8的两根之积为________.12. 设m,n分别为一元二次方程x2+2x-2 018=0的两个实数根,则m2+3m+n=________.13. 已知x1,x2是方程x2+6x+3=0的两实数根,则x2x1+x1x2的值为________.14. 已知方程x2+4x-2m=0的一个根α比另一个根β小4,则α=______,β=______,m=______.15. 关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负,则实数m的取值范围是________.16. 在解某个方程时,甲看错了一次项的系数,得出的两个根为-9,-1;乙看错了常数项,得出的两根(1) 求m的取值范围;(2) 当x12+x22=6x1x2时,求m的值.18. 关于x的方程kx2+(k+2)x+k4=0有两个不相等的实数根.(1) 求k的取值范围;(2) 是否存在实数k,使方程的两个实数根的倒数和等于0.若存在,求出k的值;若不存在,说明理由.19. 不解方程,求下列各方程的两根之和与两根之积.(1) x2+2x+1=0;(2) 3x2-2x-1=0;(3) 2x2+3=7x2+x;(4) 5x-5=6x2-4.20. 已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1) 求k的取值范围;(2) 若|x1+x2|=x1x2-1,求k的值.21. 已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1) 是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2) 求使(x1+1)(x2+1)为负整数的实数a的整数值.答案:1---9 DDDAA DCCA 10. -a/b c/a 11. -4 12. 2019 13. 1014. 10 -4 0 0 15. m>1/216. x 2-10x +9=017. 解:(1)∵原方程有两个实数根,∴Δ=(-2)2-4(m -1)≥0,整理得:4-4m +4≥0,解得:m≤2(2)∵x 1+x 2=2,x 1·x 2=m -1,x 12+x 22=6x 1x 2,∴(x 1+x 2)2-2x 1·x 2=6x 1·x 2,即4=8(m -1),解得:m =32.∵m =32<2,∴m 的值为32 18. 解:(1)由题意可得Δ=(k +2)2-4k×k 4>0,∴4k +4>0,∴k >-1且k≠0 (2)∵1x 1+1x 2=0,∴x 1+x 2x 1x 2=0,∴x 1+x 2=0,∴-k +2k =0,∴k =-2,又∵k>-1且k≠0,∴不存在实数k 使两个实数根的倒数和等于019. 解:(1)x 1+x 2=-2,x 1·x 2=1 (2)x 1+x 2=23,x 1·x 2=-13(3)x 1+x 2=-15,x 1·x 2=-35(4)x 1+x 2=56,x 1·x 2=1620. 解:(1)由Δ≥0得k≤12 (2)当x 1+x 2≥0时,2(k -1)=k 2-1,∴k 1=k 2=1(舍去);当x 1+x 2<0时,2(k -1)=-(k 2-1),∴k 1=1(舍去),k 2=-3,∴k =-321. 解:(1)存在.理由如下:根据题意,得Δ=(2a)2-4a(a -6)=24a≥0,解得a≥0,∵a -6≠0,∴a ≠6.由根与系数的关系得x 1+x 2=-2a a -6,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2.∴x 1+x 2+4=x 1x 2.即-2a a -6+4=a a -6,解得a =24.经检验,a =24是方程-2a a -6+4=aa -6的解.∴a=24 (2)∵原式=x 1+x 2+x 1x 2+1=-2a a -6+a a -6+1=66-a 为负整数.∴6-a =-1,-2,-3,-6,解得a =7,8,9,122019-2020学年数学中考模拟试卷一、选择题1.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A.120°B.135°C.150°D.165°2.下列计算正确的是()3.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.164.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=5.如图,在平面直角坐标系中,矩形ABCD的面积为定值,它的对称中心恰与原点重合,且AB∥y轴,CD 交x轴于点M,过原点的直线EF分别交AD、BC边于点E、F,以EF为一边作矩形EFGH,并使EF的对边GH所在直线过点M,若点A的横坐标逐渐增大,图中矩形EFGH的面积的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小6.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()724a =5===;④= )A .①B .②C .③D .④8.如图所示物体的俯视图是( )A .B .C .D .9.如图是二次函数2y ax bx c =++(a 、b 、c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①当13x -<<时,0y >;②0ab <;③20a b +=;④3a+c>0,其中正确的是( )A .①③B .①④C .②③D .②④10.如图,AD 为等边△ABC 的高,E 、F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =A .112.5°B .105°C .90°D .82.5°11.如图,半径为3的⊙A 的ED 与▱ABCD 的边BC 相切于点C ,交AB 于点E ,则ED 的长为( )A.94πB.98πC.274πD.278π12.已知,四边形ABCD和四边形AEFG均为正方形,,连接BE与DG,则BEDG=()A B.1 C D.二、填空题13.如图,将矩形ABCD绕点C沿逆时针方向旋转,使点B的对应点刚好落在DC延长线上,形成矩形A'B'CD',AB=4,AD=8,则阴影部分的面积为____.14.若关于x的一元二次方程240x x a++=有两个相等的实数根,则a的值是______.15.如图,在△ABC中,∠ABC=90°,且BC=6,AB=3,AD是∠BAC的平分线,与BC相交于点E,点G是BC上一点,E为线段BG的中点,DG⊥BC于点G,交AC于点F,则FG的长为_____.16.计算:30=_____;=_____.17.分解因式:2a2b-8b=______.18.扬州2月份某日的最高气温是6℃,最低气温是-3℃,则该日扬州的温差(最高气温-最低气温)是______℃.三、解答题19.已知:如图,△ABC中,∠ACB=90°,以AC为直径作⊙O,D为⊙O上一点,BD=CB,DO的延长线交20.某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)本次调查的学生共有人,扇形统计图中喜欢乒乓球的学生所占的百分比为;(2)请补全条形统计图(图2),并估计全校500名学生中最喜欢“足球”项目的有多少人?(3)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.21.已知直线y1=﹣x+2和抛物线222y kx kx=-相交于点A,B.(1)当k=32时,求两函数图象的交点坐标;(2)二次函数y2的顶点为P,PA或PB与直线y1=﹣x+2垂直时,求k的值.(3)当﹣4<x<2时,y1>y2,试直接写出k的取值范围.22.端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图.(1)本次参加抽样调查的居民有多少人?(2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.23﹣2019024.如图,已知在平面直角坐标系内,点A(1,﹣4),点B(3,3),点C(5,1)(1)画出△ABC;(2)画出△ABC关于y轴对称的△A1B1C1;(3)求四边形ABB1A1的面积.25.某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):七年级:89,92,92,92,93,95,95,96,98,98八年级:88,93,93,93,94,94,95,95,97,98整理得到如下统计表根据以上信息,完成下列问题(1)填空:a=;m=;n=;(2)两个年级中,年级成绩更稳定;(3)七年级两名最高分选手分别记为:A1,A2,八年级第一、第二名选手分别记为B1,B2,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.【参考答案】***一、选择题二、填空题14.1516.17.2b(a+2)(a-2)18.9三、解答题19.(1)证明见解析;(2)AB=.【解析】【分析】(1)连接OB,只要证明OD⊥BD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OCE中,根据OE2=EC2+OC2,可得(8−r)2=r2+42,推出r=3,由tan∠E=OC BDCE DE=,可得BD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)连接OB.∵CB=BD,BO=BO,OC=OD,∴△OCB≌△OCD(SSS),∴∠OCB=∠ODB,∵∠ACB=90°,∴∠ODB=90°,∴OD⊥BD,又∵OD是⊙O的半径,∴BD是⊙O的切线.(2)设⊙O的半径为r.在Rt△OCE中,∵OE2=EC2+OC2,∴(8﹣r)2=r2+42,∴r=3,∴AC=6,∵∠ODB=∠OCE=90°,∴tan∠E=OC BD CE DE=,∴348BD =,∴BD=6,∴BC=6,在Rt△ABC中,AB==【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线.20.(1)50,28%;(2)见解析,全校500名学生中最喜欢“足球”项目的约有80人;(3)见解析,16.【解析】【分析】(1)利用参加篮球活动的人数÷所占百分比,可得被调查的学生总数;先计算出其他所占的百分比,然后用总体减去除乒乓球外所有活动的百分比即可得出答案;(2)根据乒乓球所占的百分比求出人数即可补全条形统计图;用360°乘以喜欢足球项目人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【详解】解:(1)学生总数=2040%=50,∵其他所占的百分比=2=450%,∴乒乓球所占的百分比=1-4%-12%-16%-40%=28%;(2)补全条形统计图如下:乒乓球项目人数=50×28%=14(人),500×16%=80,答:全校500名学生中最喜欢“足球”项目的约有80人. (3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2, 所以抽取的两人恰好是甲和乙的概率=21126=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图. 21.(1)A(2,0),B(﹣23,83);(2)1或-133;(3) 1-2<k <14且k≠0. 【解析】 【分析】(1)联立方程组22332y x y x x =-+⎧⎪⎨=-⎪⎩即可求交点; (2)当PA 与y 1=-x+2垂直时,k=1;当PB 与y 1=-x+2垂直时,k=-133; (3)当x=-4时,y 1>y 2,6>24k ;只有开口向上时成立,所以k >0; 【详解】 (1)当k =32时,22332y x x =-, 联立方程组22332y x y x x =-+⎧⎪⎨=-⎪⎩, ∴20x y =⎧⎨=⎩或2383x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴A(2,0),B(﹣23,83); (2)222y kx kx =-的顶点P(1,﹣k),当PA 与y 1=﹣x+2垂直时,k =1; 当PB 与y 1=﹣x+2垂直时,k =﹣133; (3)当x =2时,y 1=y 2=0, 当x =﹣4时,y 1>y 2, 当k >0时, ∴6>24k ,∴k <14, ∴0<k <14;当k <0时,直线与抛物线有一个交点时:-x+2=kx 2-2kx , ∵△=(1+2k )2=0,∴k=1 -2,∴1-2<k<0;综上所述;1-2<k<14且k≠0;【点睛】本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握函数交点的求法,数形结合解不等式是解题的关键.22.(1)本次参加抽样调查的居民有600人;(2)见解析;(3)16.【解析】【分析】(1)用喜欢B类的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢C类的人数,再计算出喜欢A类的人数的百分比和喜欢C类的人数的百分比,然后补全条形统计图和扇形统计图;(3)画树状图展示所有12种等可能的结果数,找出小明同时选中花生粽子和红枣粽子的结果数,然后根据概率公式求解.【详解】(1)60÷10%=600,所以本次参加抽样调查的居民有600人;(2)喜欢C类的人数为600﹣180﹣60﹣240=120(人),喜欢A类的人数的百分比为180600×100%=30%;喜欢C类的人数的百分比为120600×100%=20%;两幅统计图补充为:(3)画树状图为:共有12种等可能的结果数,其中小明同时选中花生粽子和红枣粽子的结果数为2,所以小明同时选中花生粽子和红枣粽子的概率=212=16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图.23.【解析】 【分析】按顺序先分别代入特殊角的三角函数值,化简二次根式 ,进行0次幂运算,然后再按运算顺序进行计算即可. 【详解】20190=2×12+﹣1=. 【点睛】本题考查了实数的综合运算能力,涉及了特殊角的三角函数值,二次根式的化简,0次幂,熟练掌握各运算的运算法则是解题的关键.24.(1)见解析;(2)见解析;(3)28. 【解析】 【分析】(1)根据A ,B ,C 三点坐标画出三角形即可. (2)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可. (3)四边形是梯形,利用梯形的面积公式计算即可. 【详解】解:(1)△ABC 如图所示.(2)△A 1B 1C 1如图所示. (3)1112ABB A S =四边形×(2+6)×7=28. 【点睛】本题考查作图﹣轴对称变换,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)94;(2)94,92,94;八;(3)2 3【解析】【分析】(1)根据中位数、众数和平均数的定义求解;(2)根据方差的意义进行判断;(3)画树状图展示所有12等可能的结果数,再找出这两人分别来自不同年级的结果数,然后利用概率公式求解.【详解】(1)n=110(88+93+93+93+94+94+95+95+97+98)=94(分);把七年级的10名学生的成绩从小到大排列,最中间的两个数的平均数是:93+952=94(分),则中位数a=94;七年级的10名学生的成绩中92分出现次数最多,故众数为92分;(2)七年级和八年级的平均数相同,但八年级的方差较小,所以八年级的成绩稳定;(3)列表得:共有12种等可能的结果,这两人分别来自不同年级的有8种情况,∴P(这两人分别来自不同年级的概率)=82= 123.【点睛】题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2019-2020学年数学中考模拟试卷一、选择题1.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.5B.﹣5C.3D.﹣32.如图,在Rt△ABC中,∠C=90°,∠CBA=30°,AE平分∠CAB交BC于D,BE⊥AE于E,给出下列结论:①BD=2CD;②AE=3DE;③AB=AC+BE;④整个图形(不计图中字母)不是轴对称图形.其中正确的结论有()A.1个B.2个C.3个D.4个3.下列命题是真命题的是()A.一元二次方程一定有两个实数根B.对于反比例函数y=2x,y随x的增大而减小C.有一个角是直角的四边形是矩形D.对角线互相平分的四边形是平行四边形4.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A. B.13 C. D.185.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率x,那么x满足的方程为()A.10(1+x)2=42B.10+10(1+x)2=42C.10+10(1+x)+10(1+2x)=42D.10+10(1+x)+10(1+x)2=426.如图1,一辆汽车从点M处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是()A. B.C. D.7④)A.①②B.③④C.①③D.①④8.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )A.20°B.25°C.35°D.40°9.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A.22.4m B.23.2m C.24.8m D.27.2m10.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.1411.一艘轮船从A港出发,沿着北偏东63︒的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27︒方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()A.63︒B.27︒C.90︒D.50︒12.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形二、填空题13.如图,,,,,将边沿翻折,使点落在上的点处;再将边沿翻折,使点落在的延长线上的点处,两条折痕与斜边分别交于点、,则线段的长为______.14.在矩形ABCD中,AB=3cm,BC=4cm,则点A到对角线BD的距离为___________15.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_____16.4与9的比例中项是_____.17在实数范围内有意义,则x的取值范围是_____.18.﹣95的绝对值是_____.三、解答题19.在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+a2+2的顶点C,过点B(0,t)作与y轴垂直的直线l,分别交抛物线于E,F两点,设点E(x1,y1),点F(x2,y2)(x1<x2).(1)求抛物线顶点C的坐标;(2)当点C到直线l的距离为2时,求线段EF的长;(3)若存在实数m,使得x1≥m﹣1且x2≤m+5成立,直接写出t的取值范围.20.解方程:1112x xx x-+-=.21.如图,A、B两点在反比例函数kyx=(k>0,x>0)的图象上,AC⊥y轴于点C,BD⊥x轴于点D,点A的横坐标为a,点B的横坐标为b,且a<b.(1)若△AOC的面积为4,求k值;(2)若a=1,b=k,当AO=AB时,试说明△AOB是等边三角形;(3)若OA=OB,证明:OC=OD.22.先化简,再求值:(a+22ab ba+)÷222a ba ab--,其中a=﹣2,b=3.23.如图,AB⊥EF,DC⊥EF,垂足分别为B、C,且AB=CD,BE=CF.AF、DE相交于点O,AF、DC相交于点N,DE、AB相交于点M.(1)请直接写出图中所有的等腰三角形;(2)求证:△ABF≌△DCE.24.如图,在△ABC中,∠BAC=90°,以AC为直径的⊙O交BC于点D,点E在AB上,连接DE并延长交CA的延长线于点F,且∠AEF=2∠C.(1)判断直线FD与⊙O的位置关系,并说明理由;(2)若AE=2,EF=4,求⊙O的半径.25.某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n ;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.【参考答案】***一、选择题二、填空题13.14.125cm15.16.±6 17.x≥﹣118.9 5三、解答题19.(1)(a,2);(2)EF=;(3)2<t≤11.【解析】【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,进而可得出顶点C 的坐标;(2)由抛物线的开口方向及点C 到直线l 的距离为2,可得出直线l 的解析式为直线y=4,再利用二次函数图象上点的坐标特征可求出点E ,F 的坐标,进而可得出线段EF 的长;(3)代入y=t 可求出点E ,F 的坐标,进而可得出线段EF 的长,结合存在实数m ,使得x 1≥m -1且x 2≤m+5成立,可得出关于t 的不等式组,解之即可得出t 的取值范围.【详解】(1)∵y =x 2﹣2ax+a 2+2=(x ﹣a)2+2,∴抛物线顶点C 的坐标为(a ,2);(2)如图:∵1>0,∴抛物线开口向上,又∵点C(a ,2)到直线l 的距离为2,直线l 垂直于y 轴,且与抛物线有交点,∴直线l 的解析式为y =4.当y =4时,x 2﹣2ax+a 2+2=4,解得:x 1=a,x 2=,∴点E 的坐标为(a,4),点F 的坐标为,4),∴EF =﹣(a)=;(3)当y =t 时,x 2﹣2ax+a 2+2=t ,解得:x 1=ax 2=∴EF =又∵存在实数m ,使得x 1≥m﹣1且x 2≤m+5成立,∴206t ->⎧⎪⎨⎪⎩, 解得:2<t≤11.【点睛】本题考查了二次函数的三种性质、二次函数图象上点的坐标特征、两点间的距离公式以及解不等式组,解题的关键是:(1)利用配方法将二次函数解析式由一般式变形为顶点式;(2)利用二次函数图象上点的坐标特征,求出点E ,F 的坐标;(3)由线段EF 长度的范围,找出关于t 的不等式组.20.x =﹣3【解析】【分析】两边都乘以2x 化分式方程为整式方程,解整式方程求得x 的值,最后代入最简公分母检验即可得;【详解】解:方程两边都乘以2x ,得2(x ﹣1)﹣(x+1)=2x2x ﹣2﹣x ﹣1=2x﹣x =3x =﹣3检验:把x =﹣3代入2x =﹣6≠0,∴原方程的解为:x =﹣3.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的基本步骤.21.(1)8(2)△AOB 是等边三角形(3)见解析【解析】【分析】(1)由反比例函数系数k 的几何意义解答;(2)根据全等三角形△ACO ≌△BDO (SAS )的性质推知AO =BO ,结合已知条件AO =AB 得到:AO =BO =AB ,故△AOB 是等边三角形;(3)证明:在Rt △ACO 和Rt △BDO 中,根据勾股定理得:AO 2=AC 2+OC 2,BO 2=BD 2+OD 2,结合已知条件OA =OB ,得到:AC 2+OC 2=BD 2+OD 2,由坐标与图形性质知:2222()()kka b a b +=+,整理得到:2222()()k k a b b a -=- ,2222222(k a b a b a b --=),易得k b a =,故OC =OD . 【详解】解:(1)∵AC ⊥y 轴于点C ,点A 在反比例函数k y x=(k >0,x >0)的图象上,且△AOC 的面积为4, ∴12|k|=4, ∴k =8;(2)由a =1,b =k ,可得A (1,k ),B (k ,1),∴AC =1,OC =k ,OD =k ,BD =1,∴AC =BD ,OC =OD .又∵AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,∴∠ACO =∠BDO =90°,∴△ACO ≌△BDO (SAS ).∴AO =BO .又AO =AB ,∴AO =BO =AB ,∴△AOB 是等边三角形;(3)证明:在Rt △ACO 和Rt △BDO 中,根据勾股定理得:AO 2=AC 2+OC 2,BO 2=BD 2+OD 2,∵OA =OB ,∴AC 2+OC 2=BD 2+OD 2, 即有:2222()()kka b a b +=+, ∴2222()()k k a b b a -=-,2222222(k a b a b a b --=), 因为0<a <b ,所以a 2﹣b 2≠0, ∴2221=k a b, ∴1k ab =±,负值舍去,得:1k ab=, ∴k b a =, ∴OC =OD .【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k 的几何意义以及全等三角形的判定与性质,利用数形结合解决此类问题,是非常有效的方法.22.a+b ,1.【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 与b 的值代入计算即可求出值.【详解】 原式=2222()()()()()()()a ab b a a b a b a a b a a b a b a a b a b ++-+-⋅=⋅+-+-=a+b , 当a =﹣2,b =3时,原式=1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)△EOF ,△AOM ,△DON ;(2)证明见解析【解析】【分析】(1)可以证明△ABF ≌△DCE ,根据全等三角形对应角相等可得∠A =∠D ,∠DEC =∠AFB ,所以△EOF 是等腰三角形,再根据等角的余角相等可得∠A =∠AMO ,∠D =∠DNO ,从而得到△AOM 与△DON 也都是等腰三角形;(2)由BE =CF ,可以证明EC =BF ,然后根据方法“边角边”即可证明△ABF 与△DCE 全等.【详解】(1)解:△EOF ,△AOM ,△DON ;(2)证明:∵AB ⊥EF 于点B ,DC ⊥EF 于点C ,∴∠ABC =∠DCB =90°,∵CF =BE ,∴CF+BC =BE+BC ,即BF =CE…在△ABF 和△DCE 中,AB DC DCB BF CE =⎧⎪⎨⎪=⎩∠ABC=∠, ∴△ABF ≌△DCE ,【点睛】本题主要考查了全等三角形的证明,常用的方法有“边边边”,“边角边”,“角边角”,“角角边”,本题证明得到BF =CE 是解题的关键.24.(1)直线FD 与⊙O 相切,理由详见解析;(2)⊙O 的半径为【解析】【分析】(1)连接OD ,根据已知条件得到∠AEF =∠AOD ,等量代换得到∠AOD +∠AED =180°,求得∠ODF =90°,于是得到结论;(2)解直角三角形得到∠F =30°,AF=OF =2OD ,于是得到OD =FA ,即可得到结论.【详解】解:(1)直线FD 与⊙O 相切;理由:连接OD ,∵∠AEF =2∠C ,∠AOD =2∠C ,∴∠AEF =∠AOD ,∵∠AEF+∠AED =180°,∴∠AOD+∠AED =180°,∵∠BAC =90°,∴∠ODF=90°,∴直线FD与⊙O相切;(2)∵∠BAC=90°,AE=2,EF=4,∴∠F=30°,AF=,∵∠ODF=90°,∴OF=2OD,∴OD=FA,∴⊙O的半径为【点睛】本题利用了切线的判定和性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.(1)40、12、=0.40;(2)90;(3)13.【解析】【分析】(1)由第一组的频数及其频率可得总人数,再根据频率=频数÷总数可得m、n的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能结果,然后根据概率公式计算即可得解.【详解】(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率21 ()63P A==;【点睛】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率.。

2019中考数学试题及答案分类汇编:圆

2019中考数学试题及答案分类汇编:圆

2019中考数学试题及答案分类汇编:圆、选择题1. (天津3分)已知O O i 与O 。

2的半径分别为3 cm 和4 cm ,若OQ 2=7 cm ,则O O 1与O O 2的位置关系是(A ) 相交 (B ) 相离 (C ) 内切 (D ) 外切 【答案】Db【考点】圆与圆位置关系的判定。

【分析】两圆半径之和 3+4=7,等于两圆圆心距 OQ 2= 7,根据圆与圆位置关系的判定可知两圆外切。

2.(内蒙古包头3分)已知两圆的直径分别是 2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是A 、相交B 、外切C 、外离D 、内含【答案】B 。

【考点】两圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两 圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半 径之差),内含(两圆圆心距离小于两圆半径之差)。

•••两圆的直径分别是 2厘米与4厘米,•••两圆的半径分别是 •••圆心距是1+2=3厘米,•这两个圆的位置关系是外切。

故选3, (内蒙古包头3分)已知AB 是OO 的直径,点P 是AB 延长线上的 动点,过P 作OO 的切线,切点为 C,Z APC 的平分线交AC 于点D, / CDP 等于A 、30°B 、60°C 、45°D 50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。

【分析】连接OC•/ OC=O , , PD 平分/ APC •••/ CPD M DPA / CAP d ACO •/ PC 为OO 的切线,• OCLPG•••/ CPD # DPA f CAP +/ ACO=90,•/ DPA f CAP =45,即/ CDP=45。

故选 G1厘米与2厘米。

B 。

4. (内蒙古呼和浩特3分)如图所示,四边形ABCD中, DC/ ABBC=1, AB=AC=AD=2 贝U BD 的长为A. 14B. .15C. 3 2D. 2.3【答案】Bo【考点】圆周角定理,圆的轴对称性,等腰梯形的判定和性质,勾股定理。

2019年全国中考数学真题精选分类汇编:圆(填空题)含答案解析

2019年全国中考数学真题精选分类汇编:圆(填空题)含答案解析

2019年全国中考数学真题精选分类汇编:圆(填空题)含答案解析一.填空题(共40小题)1.(2019•铁岭)如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为.2.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.3.(2019•青海)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为.4.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是cm.5.(2019•鞍山)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB =30°,则的长为.6.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为.7.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.8.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.9.(2019•鄂尔多斯)如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.10.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.11.(2019•娄底)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD =.12.(2019•雅安)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为.13.(2019•陕西)若正六边形的边长为3,则其较长的一条对角线长为.14.(2019•宁夏)如图,AB是⊙O的弦,OC⊥AB,垂足为点C,将劣弧沿弦AB折叠交于OC的中点D,若AB=2,则⊙O的半径为.15.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD 为直径的⊙O交AD于点E,则图中阴影部分的面积为.16.(2019•铜仁市)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;17.(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).18.(2019•包头)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为.19.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.20.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.21.(2019•贵阳)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.22.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.23.(2019•齐齐哈尔)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.24.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.25.(2019•鸡西)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.26.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.27.(2019•贺州)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.28.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.29.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.30.(2019•河池)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.31.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.32.(2019•孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=.33.(2019•十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为.34.(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为.35.(2019•海南)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.36.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)37.(2019•咸宁)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).38.(2019•荆门)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.39.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是.40.(2019•河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC ⊥OA.若OA=2,则阴影部分的面积为.2019年去全国中考数学真题精选分类汇编:圆(填空题)含答案解析参考答案与试题解析一.填空题(共40小题)1.(2019•铁岭)如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为8π.【分析】连接OA,根据等腰三角形的性质求出∠OAC,根据题意和三角形内角和定理求出∠AOB,代入弧长公式计算,得到答案.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=70°,∴∠OAB=∠OAC﹣∠BAC=70°﹣60°=10°,∵OA=OB,∴∠OBA=∠OAB=10°,∴∠AOB=180°﹣10°﹣10°=160°,则的长==8π,故答案为:8π.【点评】本题考查的是弧长的计算、圆周角定理,掌握弧长公式是解题的关键.2.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=4.【分析】根据垂径定理得到AD=DC,由等腰三角形的性质得到AB=2OD=2×2=4,得到∠BAE=∠CAE=∠BAC=90°=45°,求得∠ABD=∠ADB=45°,求得AD=AB=4,于是得到DC=AD=4,根据勾股定理即可得到结论.【解答】解:∵OD⊥AC,∴AD=DC,∵BO=CO,∴AB=2OD=2×2=4,∵BC是⊙O的直径,∴∠BAC=90°,∵OE⊥BC,∴∠BOE=∠COE=90°,∴=,∴∠BAE=∠CAE=∠BAC=90°=45°,∵EA⊥BD,∴∠ABD=∠ADB=45°,∴AD=AB=4,∴DC=AD=4,∴AC=8,∴BC===4.故答案为:4.【点评】本题考查了三角形的外接圆与外心,圆周角定理,垂径定理,勾股定理,正确的识别图形是解题的关键.3.(2019•青海)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为1.【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB,进而得出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,且阴影部分面积=S△CEB=S△ABC=S正方形ABCD=×2×2=1故答案为1【点评】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.4.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是10cm.【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10【点评】考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.5.(2019•鞍山)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB =30°,则的长为2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【解答】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长==2π,故答案为:2π.【点评】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.6.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为3.【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:设该圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.【分析】根据已知条件得到∠AOB=60°,推出△AOB是等边三角形,得到OA=OB=AB=2,根据扇形的面积公式即可得到结论.【解答】解:∵正六边形ABCDEF内接于⊙O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∴扇形AOB的面积==,故答案为:.【点评】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是熟练掌握扇形的面积公式.8.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为10平方米.【分析】根据垂径定理得到AD=4,由勾股定理得到OD==3,求得OA﹣OD=2,根据弧田面积=(弦×矢+矢2)即可得到结论.【解答】解:∵弦AB=8米,半径OC⊥弦AB,∴AD=4,∴OD==3,∴OA﹣OD=2,∴弧田面积=(弦×矢+矢2)=×(8×2+22)=10,故答案为:10.【点评】此题考查垂径定理的应用,关键是根据垂径定理和扇形面积解答.9.(2019•鄂尔多斯)如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是3π﹣.【分析】根据S阴影部分=S扇形OAE﹣S△OAE即可求解.【解答】解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.【点评】本题考查扇形的面积公式,等腰三角形的性质,三角形的面积等知识,解题的关键是学会用分割法求阴影部分的面积.10.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=60°.【分析】连接OB,求出∠D,利用三角形的外角的性质解决问题即可.【解答】解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.11.(2019•娄底)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD =1.【分析】利用圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后根据含30度的直角三角形三边的关系求求AD的长.【解答】解:∵AB为直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴AD=AB=×2=1.故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.(2019•雅安)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为69°.【分析】直接利用圆周角定理得出∠BCD=90°,进而得出答案.【解答】解:∵△ABC内接于⊙O,BD是⊙O的直径,∴∠BCD=90°,∵∠CBD=21°,∴∠A=∠D=90°﹣21°=69°.故答案为:69°【点评】此题主要考查了三角形的外接圆与外心,正确掌握圆周角定理是解题关键.13.(2019•陕西)若正六边形的边长为3,则其较长的一条对角线长为6.【分析】根据正六边形的性质即可得到结论.【解答】解:如图所示为正六边形最长的三条对角线,由正六边形性质可知,△AOB,△COD为两个边长相等的等边三角形,∴AD=2AB=6,故答案为6.【点评】该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是灵活运用正多边形和圆的性质来分析、判断、解答.14.(2019•宁夏)如图,AB是⊙O的弦,OC⊥AB,垂足为点C,将劣弧沿弦AB折叠交于OC的中点D,若AB=2,则⊙O的半径为3.【分析】连接OA,设半径为x,用x表示OC,根据勾股定理建立x的方程,便可求得结果.【解答】解:连接OA,设半径为x,∵将劣弧沿弦AB折叠交于OC的中点D,∴OC=,OC⊥AB,∴AC==,∵OA2﹣OC2=AC2,∴,解得,x=3.故答案为:3.【点评】本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是根据勾股定理列出半径的方程.15.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD 为直径的⊙O交AD于点E,则图中阴影部分的面积为.【分析】连接OE,作OF⊥DE,先求出∠COE=2∠D=60°、OF=OD=1,DF=OD cos ∠ODF=,DE=2DF=2,再根据阴影部分面积是扇形与三角形的面积和求解可得.【解答】解:如图,连接OE,作OF⊥DE于点F,∵四边形ABCD是平行四边形,且∠A=150°,∴∠D=30°,则∠COE=2∠D=60°,∵CD=4,∴CO=DO=2,∴OF=OD=1,DF=OD cos∠ODF=2×=,∴DE=2DF=2,∴图中阴影部分的面积为+×2×1=+,故答案为:+.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.16.(2019•铜仁市)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为100°;【分析】直接利用圆内接四边形的性质:外角等于它的内对角得出答案.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°【点评】考查圆内接四边形的外角等于它的内对角.17.(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是25π﹣48(结果保留π).【分析】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=﹣8×6=25π﹣48.故答案为:25π﹣48.【点评】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.18.(2019•包头)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为2.【分析】连接CD,由圆周角定理得出∠BCD=90°=∠CAB,证明△ABC∽△CBD,得出=,即可得出结果.【解答】解:连接CD,如图:∵BD是⊙O的直径,∴∠BCD=90°=∠CAB,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,∴BC2=AB×BD=4×6=24,∴BC==2;故答案为:2.【点评】本题考查了圆周角定理、相似三角形的判定与性质;熟练掌握圆周角定理,证明三角形相似是解题的关键.19.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.【分析】根据三角形外角的性质得到∠C=∠ADO﹣∠CAB=65°,根据等腰三角形的性质得到∠AOC=50°,由扇形的面积公式即可得到结论.【解答】解:∵∠ADO=85°,∠CAB=20°,∴∠C=∠ADO﹣∠CAB=65°,∵OA=OC,∴∠OAC=∠C=65°,∴∠AOC=50°,∴阴影部分的扇形OAC面积==,故答案为:.【点评】本题考查了扇形面积的计算,由等腰三角形的性质和三角形的内角和求出∠AOC 是解题的关键.20.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为5.【分析】先根据题意画出图形,再连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,由垂径定理及正方形的性质得出OE=BE=,再由勾股定理即可求解.【解答】解:如图所示,连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,∵OE⊥BC,∴OE=BE=,即a=5.故答案为:5.【点评】本题考查的是正多边形和圆,解答此类问题的关键是根据题意画出图形,利用数形结合求解.21.(2019•贵阳)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是4π.【分析】由题意得出:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,求出圆的半径,由圆的周长公式即可得出结果.【解答】解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB、BC、CD、AD,则四边形ABCD是正方形,连接OB,如图所示:则正方形ABCD的对角线=2OA=4,OA⊥OB,OA=OB=2,∴AB=2,过点O作ON⊥AB于N,则NA=AB=,∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.【点评】本题考查了正多边形和圆、正方形的性质以及圆周长公式;由题意得出四叶幸运草的周长=2个圆的周长是解题的关键.22.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是150°.【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可.【解答】解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.【点评】本题考查了圆锥的计算,解题的关键是根据圆锥的侧面展开扇形的弧长等于圆锥的底面周长来求出弧长.23.(2019•齐齐哈尔)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为4cm.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.24.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为12.【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解答】解:设圆锥的母线长为l,根据题意得:=2π×4,解得:l=12,故答案为:12.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.25.(2019•鸡西)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为60°.【分析】利用圆周角与圆心角的关系即可求解.【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.【点评】此题考查了圆周角与圆心角定理,熟练掌握圆周角与圆心角的关系是解题关键.26.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为5或5.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC =AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC =OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.【点评】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.27.(2019•贺州)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是90度.【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:设圆锥的母线为a,根据勾股定理得,a=4,设圆锥的侧面展开图的圆心角度数为n°,根据题意得2π•1=,解得n=90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.28.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.【分析】利用弧长=圆锥的底面周长这一等量关系可求解.【解答】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:【点评】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.29.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为π﹣2.【分析】连接OB,作OH⊥BC于H,如图,利用等边三角形的性质得AB=BC=AC=2,∠ABC=60°,再根据三角形内切圆的性质得OH为⊙O的半径,∠OBH=30°,再计算出BH=CH=1,OH=BH=,然后根据扇形的面积公式,利用阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O进行计算.【解答】解:连接OB,作OH⊥BC于H,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB ﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质和扇形面积公式.30.(2019•河池)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=76°.【分析】由切线的性质得出P A=PB,P A⊥OA,得出∠P AB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠P AB=90°﹣∠OAB=52°,再由三角形内角和定理即可得出结果.【解答】解:∵P A,PB是⊙O的切线,∴P A=PB,P A⊥OA,∴∠P AB=∠PBA,∠OAP=90°,∴∠PBA=∠P AB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.【点评】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.31.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.32.(2019•孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=π﹣3.【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=π,∴圆的内接正十二边形的中心角为=30°,∴过A作AC⊥OB,∴AC=OA=,∴圆的内接正十二边形的面积S1=12××1×=3,∴则S﹣S1=π﹣3,故答案为:π﹣3.【点评】本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.33.(2019•十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为6π.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.34.(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为4和2.56.【分析】根据切线的性质得出△ABD是直角三角形,DB2=CD•AD,根据勾股定理求得AB,即可求得AE,然后分两种情况求得AP的长即可.【解答】解:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.【点评】本题考查了切线的性质,勾股定理的应用,垂径定理的应用,平行线的判定和性质,分类讨论是解题的关键.35.(2019•海南)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为144度.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.【点评】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.36.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是π﹣1.(结果保留π)【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年初三数学专题复习圆一、单选题1.下列说法,正确的是( )A. 半径相等的两个圆大小相等B. 长度相等的两条弧是等弧C. 直径不一定是圆中最长的弦D. 圆上两点之间的部分叫做弦2.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A. 50°B. 80°C. 90°D. 100°3.已知⊙O的半径为5,A为线段OP的中点,当OP=6时,点A与⊙O的位置关系是( )A. 点A在⊙O内B. 点A在⊙O上C. 点A在⊙O外D. 不能确定4.如果两圆半径分别为5和8,圆心距为3,那么这两个圆的位置关系是()A. 外离B. 外切C. 相交D. 内切5. 两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是()A. 内含B. 内切C. 相交D. 外切6.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为()。

A. B. C. D.7.钝角三角形的外心在()A. 三角形的内部B. 三角形的外部C. 三角形的钝角所对的边上D. 以上都有可能8.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A. 5πcmB. 6πcmC. 8πcmD. 9πcm9.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于( )A. 6πB. 9πC. 12πD. 15π10.直线a上有一点到圆心O的距离等于⊙O的半径,则直线a与⊙O的位置关系是()A. 相离B. 相切C. 相交D. 相切或相交11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠DAC等于()A. 90°B. 60°C. 45°D. 30°12.如图,AB是⊙O的直径,C,D在⊙O上,且BC=CD,过点C作CE⊥AD,交AD延长线于E,交AB延长线于F点.若AB=4ED,则cos∠ABC的值是()A. B. C. D.13.如图,PA、PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=5O°,则∠ACB的大小是()A. 60°B. 65°C. 70°D. 75°14.如图,半径为1cm的⊙O中,AB为⊙O内接正九边形的一边,点C、D分别在优弧与劣弧上.则下列结论:①S扇形AOB= πcm2;② ;③∠ACB=20°;④∠ADB=140°.错误的有()A. 0个B. 1个C. 2个D. 3个15.下列说法:①三点确定一个圆;②相等的圆周角所对的弧相等;③同圆或等圆中,等弦所对的弧相等;④等边三角形的内心与外心重合.其中,正确的个数共有()A. 1B. 2C. 3D. 416.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺3 寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π=3),则圆柱底周长约为(注:圆柱体的体积=底面积×高)()A. 1丈3尺B. 5丈4尺C. 9丈2尺D. 48丈6尺17.如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB 与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤=正确的有()A. ①②B. ①④⑤C. ①②④⑤D. ①②③④⑤二、填空题18.如图,某种鱼缸的主视图可视为弓形,该鱼缸装满水时的最大深度CD为18cm,半径OC为13cm,则鱼缸口的直径AB=________ cm.19.在圆的内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:3:4,则∠D的度数是________°.20.若圆锥底面圆的直径和母线长均为4cm,则它的侧面展开图的面积等于________ cm2.21.一个圆锥的侧面展开图是半径为16,且圆心角为90°的扇形,则这个圆锥的底面半径为________.22.一圆周上有三点A,B,C,∠A的平分线交边BC于D,交圆于E,已知BC=2,AC=3,AB=4,则AD•DE=________.三、解答题23.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP 上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.右图为点P及其关于⊙C的反演点P′的示意图.(1)如图1,当⊙O的半径为1时,分别求出点M(1,0),N(0,2),T(,)关于⊙O的反演点M′,N′,T′的坐标;(2)如图2,已知点A(1,4),B(3,0),以AB为直径的⊙G与y轴交于点C,D(点C位于点D下方),E为CD的中点.①若点O,E关于⊙G的反演点分别为O′,E′,求∠E′O′G的大小;②若点P在⊙G上,且∠BAP=∠OBC,设直线AP与x轴的交点为Q,点Q关于⊙G的反演点为Q′,请直接写出线段GQ′的长度.24.已知,如图,A是⊙O外一点,AB,AC分别与⊙O相切于点B,C,P是BC上任意一点,过点P作⊙O的切线,交AB于点M,交AC于点N,设AO=d,BO=r.求证:△AMN的周长是一个定值,并求出这个定值.25.如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,过A、B、D三点的圆交CB的延长线于点E.(1)求证:AE=CE.(2)若EF与过A、B、D三点的圆相切于点E,交AC的延长线于点F,若CD=CF=2cm,求过A、B、D三点的圆的直径.四、综合题26.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O 的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.27. 如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E 不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.28.如图,已知扇形的圆心角为120°,面积为300π.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的高为多少?答案解析部分一、单选题1.【答案】A2.【答案】D3.【答案】A4.【答案】D5.【答案】D6.【答案】A7.【答案】B8.【答案】D9.【答案】D10.【答案】D11.【答案】D12.【答案】A13.【答案】B14.【答案】B15.【答案】A16.【答案】B17.【答案】C二、填空题18.【答案】2419.【答案】9020.【答案】8π21.【答案】422.【答案】三、解答题23.【答案】解:(1)∵ON•ON′=1,ON=2,∴ON′=,∴反演点N′坐标(0,),∵OM•OM′=1,OM=1,∴OM′=1反演点M′坐标(1,0)∵,∴,∵T′在第一象限的角平分线上,∴反演点T′坐标(1,1)(2)①由题意:AB=2,r=,∵E(0,2),G(2,2),EG=2,E′G•EG=5,∴,∵OG•O′G=5,OG=2,∴O′G=,∵E′(﹣,2),O′(,),∴O′E′=,∴E′G2=E′O′2+O′G2,∴∠E′O′G=90°②如图:∵∠BAP1=∠OBC,∠CAP1+∠CBP1=∠CAB+∠BAP1+∠CBP1=180°,∠OBC+∠CBP1+∠P1BQ1=180°,∠CAB=45°,∴∠P1BQ1=45°,∵∠AP1B=∠BP1Q1=90°,∴△PBQ1是等腰直角三角形,由△AP1B∽△BOC得到:=3,∵AB=2,∴BP1=,BQ1=2,Q1(5,0),∵Q1′G•GQ1=5,∴Q1′G=,∵∠P2AB=∠BAP1,∴P1,P2关于直线AB对称,∵P1(4,1),易知:P2(,﹣),∴直线AP2:Y=﹣7X+11,∴Q2(,0),由:Q2′G•Q2G=5得到:Q2′G=.24.【答案】解:∵AB,AC分别与⊙O相切,∴OB⊥AB,∵AO=d,BO=r,∴AB==,∵MN切圆O于点P,∴MP=MB,NP=NC,∴△AMN的周长=AM+AN+MN=AM+PM+PN+AN=AM+BM+AN+PN=AB+AC=2AB=2,∴△AMN的周长是一个定值,这个定值为2.25.【答案】解:(1)证明:连接DE,∵∠ABC=90°,∴∠ABE=90°,∴AE是过A、B、D三点的圆的直径,∴∠ADE=90°,∴DE⊥AC,又∵D是AC的中点,∴DE是AC的垂直平分线,∴AE=CE.(2)解:∵CD=CF=2cm,∴AF=AC+CF=6cm,∵EF与过A、B、D三点的圆相切于点E,∴∠AEF=90°=∠ADE,又∵∠DAE=∠FAE,∴△ADE∽△AEF,∴=,即=,∴AE=2cm.四、综合题26.【答案】(1)解:证明:连接OD、OE,∵AD是⊙O的切线,∴OD⊥AB,∴∠ODA=90°,又∵弧DE的长度为4π,∴,∴n=60,∴△ODE是等边三角形,∴∠ODE=60°,∴∠EDA=30°,∴∠B=∠EDA,∴DE∥BC.(2)解:连接FD,∵DE∥BC,∴∠DEF=∠C=90°,∴FD是⊙0的直径,由(1)得:∠EFD= ∠EOD=30°,FD=24,∴EF= ,又∵∠EDA=30°,DE=12,∴AE= ,又∵AF=CE,∴AE=CF,∴CA=AE+EF+CF= ,又∵,∴BC=60.27.【答案】(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD= AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,,∴△AED≌△BFD(ASA),∴AE=BF;(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)解:∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF= = ,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF= ,∵EF= ,∴DE= × = ,∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴= ,即GE•ED=AE•EB,∴•GE=2,即GE= ,则GD=GE+ED= .28.【答案】(1)解:设扇形的半径为R,根据题意,得∴R2=900,∵R>0,∴R=30.∴扇形的弧长= .(2)解:设圆锥的底面半径为r,根据题意,得2πr=20π,∴r=10.h= =20 .答:这个圆锥的高是20 .。

相关文档
最新文档