4代数式的初步知识

合集下载

初一上册数学知识点大全

初一上册数学知识点大全

初一上册数学知识点大全数学知识点大全一、代数初步知识1、代数式:用运算符号“+ - ……”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“”乘,或省略不写。

(2)数与数相乘,仍应使用“”乘,不用“”乘,也不能省略乘号。

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a。

(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a 写成的3/a形式;(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3、几个重要的代数式:(1)a与b的平方差是:a2-b2; a与b差的平方是:(a-b)2。

(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。

(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1。

(4)若b0,则正数是:a2+b ,负数是:-a2-b,非负数是:b2 ,非正数是:-b2 。

二、有理数1、有理数:(1)凡能写成b/a(a、b都是整数且a0)形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

(注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p 不是有理数)(2)有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

(3)自然数是指0和正整数;a0,则a是正数;a0,则a是负数;a0 ,则a是正数或0(即a是非负数);a0,则a是负数或0(即a是非正数)。

代数式的概念和运算

代数式的概念和运算

代数式的概念和运算知识要点:重点、难点:1、代数式的分类:代数式包括有理式和无理式。

有理式包括整式和分式;整式包括单项式和多项式。

[注](1)有理式和无理式的区别,要看字母显现的位置,若是字母出此刻根号下面,那个代数式确实是无理式。

(2)整式与分式的区别,一样看字母显现的位置,若是字母出此刻分数线下面,那个代数式是分式。

(3)易混的概念:如代数式x x+1是无理式,而不该是分式,因为根号下显现了字母“x ”,就应属无理式,而不是有理式,也就可不能是分式。

2、正整数指数幂的几个公式:(以下这几个公式是整式乘除法的基础必需熟练把握)(1)同底数的幂乘法:a a a m n m n ·=+(a m n ≠0,,是正整数)(2)幂的乘方:()a a a m n m n m n =≠·,,(0是正整数)(3)积的乘方:()ab a b n n n =·(a b m n ·,≠0,是正整数)(4)同底数的幂相除:a a a m n m n ÷=- (a m n ≠0,,是正整数)(5)分式的乘方:a b a b nn n ⎛⎝ ⎫⎭⎪=(a b ≠≠00,,n 是正整数) (6)零指数幂:a 01=(a ≠0)(7)负整数指数幂:a a p p -=1(a ≠0,P 是正整数) 3、整式的乘除法: (1)单项式乘以单项式:系数相乘,结果是积的系数,同底数的幂相乘,单独因式写入积里。

(2)单项式除以单项式:系数相除,同底数的幂相除,作为商的因式,被除式单有的字母,连同它的指数也作为商的一个因式。

(3)单项式乘以多项式:()m a b c ma mb mc ++=++。

(4)多项式除以单项式:把多项式的每一项除以那个单项式,再把所得的商相加。

(5)多项式乘以多项式:用一个多项式的每一项乘法另一个多项式的每一项所得的积相加。

(6)经常使用的乘法公式: ()()()()()a b a b a b a b a ab b a b a ab b a b +-=-±=±+±+=±2222222332 4、代数式的求值:注意:第一化简所给的代数式,然后代入字母的值;在求代数式的值时,可有向几种情形,第一种情形是字母的值直接给出的,第二种情形是通非负数和为零的情形给出的;如:当()a b -+-=2302,求关于含有a ,b 的代数式的值;第三种情形可能通过方程形式给出,如a a 2340-+=时,求某代数式的值。

第4章 代数式专题

第4章 代数式专题

第4章 代数式专题【知识要点】1、 列代数式及代数式的求值:用运算符号把数与表示数的字母连接而成的式子,叫做代数式,单独一个数或一个字母也是代数式;代数式分为有理式、无理式,有理式又分为整式、分式,整式分为单项式、多项式。

列代数式时,要注意问题的语言叙述所直接或间接表示的运算顺序。

一般来说,先读的先写;要正确使用表明运算顺序的括号;列代数式时,出现乘法时,通常省略乘号,数与字母相乘,要将数写在字母前面;带分数要化成假分数,然后再与字母相乘;数字与数字相乘仍用“×”号:出现除法运算时,一般按分数的写法来写。

代数式的求值是用代数值代替代数式里的字母,按照代数式指明的运算顺序计算出结果。

列代数式时,如果代数式后跟单位,应该将含有加减运算的代数式用括号括起来。

2、 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,把同类项合并成一项就叫做合并同类项。

合并同类项的法则就是字母及字母的指数不变,系数相加。

同类项与系数的大小没有关系。

3、 单项式:数与字母的乘积的代数式叫做单项式,单项式中的数字因数叫做单项式的系数,一个单项式中,所有字母的指数和叫做这个单项式的次数。

单独一个数或一个字母也是单项式。

单独一个非零数的次数是0。

4、 多项式:几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,一个多项式中,次数最高的项的次数,叫做这个多项式的次数,单项式和多项式统称为整式。

5、 π是数,是一个具体的数,而不是一个字母。

0是单项式,也是整式。

6、 整式的加减法则:整式的加减实质上是合并同类项。

几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接起来,一般步骤是:(1)如果遇到括号,按去括号法则先去括号;(2)合并同类项。

【例题分析】例1. (2010•湛江)3的正整数次幂:13=3,23=9,3333=27,43=81,53=243, 63=729,73=2187,83=6561…观察归纳,可得20073的个位数字是( )A 、1B 、3C 、7D 、9例2. (2010•安顺)四个电子宠物排座位,一开始,小鼠、小猴、小兔、小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换…这样一直下去,则第2005次交换位置后,小兔所在的号位是( )A 、1B 、2C 、3D 、4例 3. (2009•鄂州)为了求20083222221+++++ 的值,可令S= 20083222221+++++ ,则2S= 2009322222+++,因此2S-S= 20092-1,所以20083222221+++++ =20092-1.仿照以上推理计算出20093255551+++++ 的值是( )A 、20095-1B 、20105-1C 、4152009-D 、4152010- 例4.. 一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的( )A 、31,32,64B 、31,62,63C 、31,32,33D 、31,45,46例5. (2003•宁波)如图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )个.A 、25B 、66C 、91D 、120【模拟试题】选择题1、为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a 0a 1a 2,其中a 0a 1a 2均为0或1,传输信息为h 0a 0a 1a 2h 1,其中h 0=a 0+a 1,h 1=h 0+a 2.运算规则为:0+0=0,0+1=1,1+0=1,1+1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )A 、11010B 、10111C 、01100D 、000112、在一列数1,2,3,4,…,200中,数字“0”出现的次数是( )A 、30个B 、31个C 、32个D 、33个3、把在各个面上写有同样顺序的数字1~6的五个正方体木块排成一排(如图所示),那么与数字6相对的面上写的数字是( )A 、2B 、3C 、5D 、以上都不对4、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:)A 、288B 、178C 、28D 、1105、如图,△ABC中,D为BC的中点,E为AC上任意一点,BE交AD于O.某同学在研究这一问题时,发现了如下事实:①当==时,有==;②当==时,有=;③当==时,有=;…;则当=时,=()A、B、C、D、二.填空题6、(2010•南宁)古希腊数学家把数1,3,6,10,15,21…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为a n,计算a2﹣a1,a3﹣a2,a4﹣a3,…,由此推算,a100﹣a99=_________,a100=_________.7、(2008•烟台)表2是从表1中截取的一部分,则a=_________.8、(2007•防城港)瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_________.9、(2000•江西)有一列数:1,2,3,4,5,6,…,当按顺序从第2个数数到第6个数时,共数了_________个数;当按顺序从第m个数数到第n个数(n>m)时,共数了_________个数.10、我们把形如的四位数称为“对称数”,如1991、2002等.在1000~10000之间有_________个“对称数”.11、在十进制的十位数中,被9整除并且各位数字都是0或5的数有_________个.12、(2008•武汉)下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒______根.13、(2006•崇左)如下图所示,由一些点组成形如三角形的图形,每条边(包括两个顶点)有n(n>1)个点,每个图形总的点数是S,当n=50时,S=_________.14、请你将一根细长的绳子,沿中间对折,再沿对折后的绳子中间再对折,这样连续对折5次,最后用剪刀沿对折5次后的绳子的中间将绳子剪断,此时绳子将被剪成________段.15、观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为_________.16、如图所示,黑珠、白珠共126个,穿成一串,这串珠子中最后一个珠子是_________颜色的,这种颜色的珠子共有_________个.17、观察规律:如图,PM1⊥M1M2,PM2⊥M2M3,PM3⊥M3M4,…,且PM1=M1M2=M2M3=M3M4=…=M n﹣1M n=1,那么PM n的长是_________(n为正整数).18、探索规律:右边是用棋子摆成的“H”字,按这样的规律摆下去,摆成第10个“H”字需要_个棋子.19、现有各边长度均为1cm的小正方体若干个,按下图规律摆放,则第5个图形的表面积是_____cm2.20、正五边形广场ABCDE的周长为2000米.甲,乙两人分别从A,C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过_________分钟,甲、乙两人第一次行走在同一条边上.三.解答题21、(试比较20062007与20072006的大小.为了解决这个问题,写出它的一般形式,即比较n n+1和(n+1)n的大小(为正整数),从分析n=1、2、3、…这些简单问题入手,从中发现规律,经过归纳、猜想出结论:(1)在横线上填写“<”、“>”、“=”号:12___21,23____32,34_____43,45______54,56______65,…(2)从上面的结果经过归纳,可以猜想出n n+1和(n+1)n的大小关系是:当n≤_________时,n n+1_________(n+1)n;当n>_________时,n n+1_________(n+1)n;(3)根据上面猜想得出的结论试比较下列两个数的大小:20062007_________20072006.22、从1开始,连续的自然数相加,它们的和的倒数情况如下表:(1)根据表中规律,求=_________.(2)根据表中规律,则=_________.(3)+++的值是_________.23、从1开始,连续的奇数相加,它们和的情况如下表:(1)如果n=11时,那么S的值为_________;(2)猜想:用n的代数式表示S的公式为S=1+3+5+7+…+2n﹣1=_________;(3)根据上题的规律计算1001+1003+1005+…+2007+2009= _________.。

代数式知识点

代数式知识点

第二章:代数式基础知识点:一、代数式1、代数式:用运算符号把数或表示数得字母连结而成得式子,叫代数式。

单独一个数或者一个字母也就是代数式。

2、代数式得值:用数值代替代数里得字母,计算后得到得结果叫做代数式得值。

3、代数式得分类:二、整式得有关概念及运算1、概念(1)单项式:像x、7、,这种数与字母得积叫做单项式。

单独一个数或字母也就是单项式。

单项式得次数:一个单项式中,所有字母得指数叫做这个单项式得次数.单项式得系数:单项式中得数字因数叫单项式得系数。

(2)多项式:几个单项式得与叫做多项式.多项式得项:多项式中每一个单项式都叫多项式得项。

一个多项式含有几项,就叫几项式.多项式得次数:多项式里,次数最高得项得次数,就就是这个多项式得次数。

不含字母得项叫常数项。

升(降)幂排列:把一个多项式按某一个字母得指数从小(大)到大(小)得顺序排列起来,叫做把多项式按这个字母升(降)幂排列.(3)同类项:所含字母相同,并且相同字母得指数也分别相同得项叫做同类项。

2、运算(1)整式得加减:合并同类项:把同类项得系数相加,所得结果作为系数,字母及字母得指数不变。

去括号法则:括号前面就是“+”号,把括号与它前面得“+”号去掉,括号里各项都不变;括号前面就是“–”号,把括号与它前面得“–"号去掉,括号里得各项都变号。

添括号法则:括号前面就是“+”号,括到括号里得各项都不变;括号前面就是“–”号,括到括号里得各项都变号。

整式得加减实际上就就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

(2)整式得乘除:幂得运算法则:其中m、n都就是正整数同底数幂相乘:;同底数幂相除:;幂得乘方:积得乘方:。

单项式乘以单项式:用它们系数得积作为积得系数,对于相同得字母,用它们得指数得与作为这个字母得指数;对于只在一个单项式里含有得字母,则连同它得指数作为积得一个因式。

单项式乘以多项式:就就是用单项式去乘多项式得每一项,再把所得得积相加。

第4章 代数式(单元小结)-2023-2024学年七年级数学上册同步精品课堂(浙教版)

第4章 代数式(单元小结)-2023-2024学年七年级数学上册同步精品课堂(浙教版)

单元小结
知识点二 同类项、合并同类项
1.同类项:所含字母__相__同____,并且相同字母的次数也__相__同__的项叫做同类 项.常数项与常数项也是同类项.
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项. 3.合并同类项法则:同类项系数相加,所得结果作为系数,字母和字母的次 数不变. [注意] (1)同类项不考虑字母的排列顺序,如-7xy与yx是同类项; (2)只有同类项才能合并,如x2+x3不能合并.
单元小结
2.化简: (1)(x+2y)-(-2x-y).
(2)6a-3(-a+2b).
解:(1)原式=x+2y+2x+y =3x+3y;
(2)原式=6a+3a-6b =9a-6b;
(3)3(a2-ab)-5(ab+2a2-1). (3)原式=3a2-3ab-5ab-10a2+5
=-7a2-8ab+5.
数学(浙教版)
七年级 上册
第4章 代数式
单元小结
单元小结
知识点一 整式的有关概念
1.代数式:用加、乘、除及乘方等运算符号将数或表示数的字母连接而成 的式子,叫做代数式.单个的数或字母也是代数式.
2.单项式:都是数或字母的__积__,这样的式子叫做单项式,单独的一个数 或一个字母也是单项式.
3.单项式的系数:单项式中的数字因数叫做这个单项式的系数. 4.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的 次数.
4,
其中x=-2.
解:原式=3x2 x2 6x 3 4 2x2 6x 1.
当x=-2时,原式=2×(-2)2+6×(-2)+1=-3.
(2)3x2+(2x2-3x)-(-x+5x2),其中x=314.

4.代数式和整式的初步知识

4.代数式和整式的初步知识

初三数学总复习4.代数式和整式的初步知识一:前提诊测,明确目标 (一):【知识目标】(一):【知识梳理】1. 代数式的分类:2. 代数式的有关概念(1)代数式: 用 (加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式。

单独的一个数或者一个字母也是代数式.(2)有理式: 和 统称有理式。

(3)无理式:3.代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

求代数式的值可以直接代入、计算。

如果给出的代数式可以化简,要先化简再求值。

1.整式有关概念(1)单项式:只含有 的积的代数式叫做单项式。

单项式中____________叫做这个单项式的系数;单项式中____________叫做这个单项式的次数;(2)多项式:几个 的和,叫做多项式。

____________ 叫做常数项。

多项式中____________的次数,就是这个多项式的次数。

多项式中____________的个数,就是这个多项式的项数。

2.同类项、合并同类项(1)同类项:________________________________ 叫做同类项; (2)合并同类项:________________________________ 叫做合并同类项; (3)合并同类项法则: 。

(4)去括号法则:括号前是“+”号,________________________________ 括号前是“-”号,________________________________ (5)添括号法则:添括号后,括号前是“+”号,插到括号里的各项的符号都 ;括号前是“-”号,括到括号里的各项的符号都 。

3.整式的运算(1)整式的加减法:运算实质上就是合并同类项,遇到括号要先去括号。

(2)整式的乘除法: ①幂的运算:0;;();()11,(0,)m n m n m n m n m n mn n n np p a a a a a a a a ab a b a a a p a+--⋅=÷=====≠为整数代数式 有理式 无理式②整式的乘法法则:单项式乘以单项式:。

代数式的知识点

代数式的知识点

代数式的知识点代数式是数学中非常重要的概念,它是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式。

下面咱们就来详细聊聊代数式的相关知识点。

首先,代数式包含了单项式和多项式。

单项式是只有一个项的代数式,比如 3x、-5 等;而多项式则是由多个单项式通过加法或减法连接而成的,像 2x + 3y、x² 2x + 1 就是多项式。

在代数式中,字母起着至关重要的作用。

字母可以表示各种未知的数量或者变量。

比如,我们设一个正方形的边长为 a,那么它的周长就可以用 4a 来表示,面积则用 a²来表示。

通过这种方式,代数式能够简洁而准确地描述各种数学关系。

代数式的书写有一定的规范。

比如,数字与字母相乘时,数字通常要写在字母前面,并且乘号可以省略,像 3x 而不是 x3;当数字因数是1 或-1 时,“1”通常省略不写,比如-1x 应写成 x ;带分数与字母相乘时,要把带分数化成假分数,比如 1\frac{1}{2}x 应写成\frac{3}{2}x 。

代数式的运算规则也需要我们掌握。

加法和减法运算,就是将同类项的系数相加或相减,字母和指数不变。

例如,3x + 2x = 5x 。

乘法运算中,单项式乘以单项式,系数相乘,相同字母的幂分别相乘,比如 2x × 3x²= 6x³。

在多项式乘以多项式时,我们需要使用分配律逐步展开计算。

比如(x + 2)(x 3) ,就等于 x(x 3) + 2(x 3) ,展开得到 x² 3x + 2x 6 ,最后合并同类项得到 x² x 6 。

除法运算中,单项式除以单项式,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

例如,6x³ ÷ 2x = 3x²。

代数式的化简是常见的操作。

通过合并同类项、去括号等方法,将代数式化为最简形式,以便于计算和分析。

初四知识点总结数学

初四知识点总结数学

初四知识点总结数学一、整数1. 整数概念及表示方法2. 整数的加减乘除运算3. 整数的大小比较4. 整数的绝对值5. 整数的乘方运算6. 整数的应用问题二、分数1. 分数的概念及表示方法2. 分数的加减乘除运算3. 分数的化简与扩大4. 分数的大小比较5. 分数的乘方运算6. 分数的应用问题三、小数1. 小数的概念及表示方法2. 小数的加减乘除运算3. 小数的大小比较4. 小数转换为分数5. 小数的乘方运算6. 小数的应用问题四、代数1. 代数式的概念及表示方法2. 代数式的加减乘除运算3. 代数式的化简与展开4. 一元一次方程的解法5. 一元一次方程的应用问题6. 一元一次不等式的解法7. 一元一次不等式的应用问题五、方程与不等式1. 一元一次方程与一元一次不等式2. 一元二次方程的解法3. 一元二次方程的应用问题六、平面图形1. 点、线、面的概念2. 角的概念及分类3. 三角形的分类及性质4. 四边形的分类及性质5. 多边形的运算6. 圆的性质7. 平面图形的应用问题七、空间图形1. 空间图形的概念及表示方法2. 空间图形的表面积与体积3. 空间图形的应用问题八、统计与概率1. 数据的收集及整理2. 数据的统计分析3. 概率的概念及计算方法4. 概率的应用问题九、函数与图像1. 函数的概念及表示方法2. 函数的性质及运算3. 函数的应用问题4. 图像的绘制及分析以上就是初中数学的知识点总结,希望对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章节 第一章 课题 代数式的初步知识
课型 复习课 教法 讲练结合
教学目标(知识、能力、教育) 1.在具体情境中进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示.
2.理解代数式的含义,能解释一些简单代数式的实际背景或
几何意义,体会数学与现实世界的联系.
3.会求代数式的值,能根据代数式的值推断代数式反映的规
律.
4.会借助计算器探索数量关系,解决某些问题.
教学重点 能分析简单问题的数量关系,并用代数式表示.会求代数式
的值。

教学难点 借助计算器探索数量关系,解决某些问题.
教学媒体 学案
教学过程
一:【课前预习】
(一):【知识梳理】 1. 代数式的分类:
2. 代数式的有关概念
(1)代数式: 用 (加、减、乘、除、乘方、开方)把数或
表示数的字母连结而成的式子叫代数式。

单独的一个数或者一个字
母也是代数式.
(2)有理式: 和 统称有理式。

(3)无理式:
3.代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做
代数式的值。

求代数式的值可以直接代入、计算。

如果给出的代数式可以化简,要先化简再求值。

(二):【课前练习】
2. 当x=-2时,代数式-2x +2x-1的值等于( )
A.9
B.6
C.1
D.-1
3. 当代数式a+b 的值为3时,代数式2a+2b+1的值是( )
A.5
B.6
C.7
D.8
4. 一种商品进价为每件a 元,按进价增加25%出售, 后因库存积压降代数式
有理式
无理式
价,按售价的九折出售,每件还盈利( )
A.0.125a 元
B.0.15a 元
C.0.25a 元
D.1.25a 元
5.如图所示,四个图形中,图①是长方形,图②、③、 ④是正方形,
把图①、②、③三个图形拼在一起(不重合),其面积为S ,则S =______________;图④的面积P 为_____________,则P_____s 。

二:【经典考题剖析】
1. 判别下列各式哪些是代数式,哪些不是代数式。

(1)a 2-ab+b 2;(2)S=12
(a+b )h ;(3)2a+3b ≥0;(4)y ;(5)0; (6)c=2πR 。

2. 抗“非典”期间,个别商贩将原来每桶价格a 元的过氧乙酸消毒液提
价20%后出售,市政府及时采取措施,使每桶的价格在涨价一下降15%,那么现在每桶的价格是_____________元。

3.一根绳子弯曲成如图⑴所示的形状,当用剪刀像图⑵那样沿虚线把绳子剪断时,绳子被剪成5段;当用剪刀像图⑶那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪成9段,若用剪刀在虚线ab 之间把绳子再剪
(n-2)次(剪刀的方向与a 平行)这样一共剪n 次时绳子的段数是( )
A .4n+1
B .4n+2
C .4n+3
D .4n+5
4. 有这样一道题,“当a= 0.35,b=-0.28时,求代数式 7a 2-6a 3b+3a 3+
6a 3b -3a 2b -10a 3+3 a 2b -2的值”.小明同学说题目中给出的条件a=0.35,b=-0.28是多余的,你觉得他的说法对吗?试说明理由.
5. 按下列程序计算,把答案填在表格内,然后看看有什么规律,想想为
什么会有这个规律?x x x x →→+→÷→-→平方答案
(1)填写表内空格:
a+b a+b a a b b b 2a ④③②①⑵ ⑴
⑶ a a b
输入x 3 2 -
2
1
3
.
..
输出答案 1 1 ...
(2)发现的规律是:____________________。

(3)用简要的过程证明你发现的规律。

三:【课后训练】
1.下列各式不是代数式的是()
A.0 B.4x2-3x+1 C.a+b= b+a D、2 y
2.两个数的和是25,其中一个数用字母x表示,那么x与另一个数之积
用代数式表示为()
A.x(x+25) B.x(x—25) C.25x D.x (25-x)
3.若ab x与a y b2是同类项,下列结论正确的是()
A.X=2,y=1;B.X=0,y=0;C.X=2,y=0;D.X=1,y=1
4.小卫搭积木块,开始时用2块积木搭拼(第1步),
然后用更多的积木块完全包围原来的积木块(第
2步),如图反映的是前3步的图案,当第10步结
束后,组成图案的积木块数为()
A.306 B.361 C.380 D.420
第7题
5.科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,……仔细观察以上数列,则它的第11个数应该是.
6.22
x=-2,3x-x+2x+3x=
若则;
7.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一
部分如图所示,则这串珠子被盒子遮住的部分有_____颗.
第1步第2步第3步
8.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
⑴第4个图案中有白色地面砖块;
⑵第n个图案中有白色地面砖块.
9.下面是一个有规律排列的数表:
上面数表中第9行,第7列的数是_________.
10.观察下面的点阵图和相应的等式,探究其中的规律:
⑴在④和⑤后面的横线上分别写出相应的等式;
⑵通过猜想写出与第n个点阵相对应的等式. …………
①1=12;②1+3=22;③1+2+5=32;④;⑤;。

相关文档
最新文档