实验五栈和队列的应用(xuesheng)
实验五 队列的应用(参考答案)

实验五、队列的应用一、实验原理:一种“先进先出”(FIFO---First In First Out)的数据结构:即插入在队尾一端进行,而删除在队头进行。
键盘缓冲区问题:设计算法实现模拟键盘缓冲区问题。
假设有两个进程同时存在于一个应用程序之中,第一个进程连续在屏幕上显示字符“X”,第二个进程不断检查键盘上是否有输入,若有则读入用户键入的字符,将其保存到键盘缓冲区之中。
程序约定当用户键入一个逗号“,”,则表示第一进程结束,系统开始显示那些在键盘缓冲区中的字符;接着继续执行第一个进程,即,在屏幕上显示字符“X”;当用户输入“;”的时候,刚结束整个程序。
算法提示:为了充分利用缓冲区的空间往往将缓冲区设计成循环队列的结构,并为循环队列结构的缓冲区设置一个队首指针和一个队尾指针。
每输入法一个字符到缓冲区中,就将尾指针后移,链入缓冲区的循环队列之中;每输出一个字符号,就将队头指针前移,将它从缓冲队列中删除。
参考代码:/*键盘缓冲区问题*/#define MAXSIZE 20#define TRUE 1#define FALSE 0#include "stdio.h"#include "conio.h"#include "dos.h"typedef char elemtype;typedef struct{elemtype elem[MAXSIZE];int front, rear;}queuetype;int enque(queuetype *s, elemtype x) /*数据入队列*/{if (( s->rear+1)%MAXSIZE==s->front ) /*队列已满*/return (FALSE);else{s->rear=(s->rear+1) % MAXSIZE;s->elem[s->rear]=x;return(true);}}elemtype delqueue (queuetype *s ) /*数据出队列*/{if (s-front==s->rear) /*队列为空*/return(NULL);else /*队列非空*/{s->front=(s->front+1)%MAXSIZE;return(s->elem[s->front]);}}main(){char ch1,ch2;queuetype *p;int t,f;p=(queuetype *)malloc(sizeof(queuetype));p->front=0;p->rear=0;while(1) /*开始交替执行*/{while(1) /*第一个进程的执行*/{if(kbhit()) /*检测是否有键盘输入*/{ch1=bdos(7,0,0); /*中断调用,键入字符存入ch1*/f=enqueue( p, ch1 ); /*字符入循环队列*/if ( f== FALSE ){printf(" The queue is already full !\n");break;}}if ( ch1==';' || ch1==',' )break; /*第一个进程正常结束情况*/printf("X"); /*执行第一个进程*/}ch2=delqueue(p);while( ch2 != NULL ){putchar(ch2); /*在屏幕上显示输入缓冲区中的内容*/ch2=delqueue(p); /*字符出队列*/}getchar(); /*为看清屏幕内容, 在此暂停, 按回车继续if (ch1==';'||f==FALSE) /*程序结束*/break;else /*继续执行*/ch1=''; /*先置空ch1*/}}。
栈和队列的实验报告

栈和队列的实验报告栈和队列的实验报告引言:栈和队列是计算机科学中常用的数据结构,它们在算法设计和程序开发中起着重要的作用。
本实验旨在通过实际操作和观察,深入理解栈和队列的概念、特点以及它们在实际应用中的作用。
一、栈的实验1.1 栈的定义和特点栈是一种具有特殊操作约束的线性数据结构,它的特点是“先进后出”(Last-In-First-Out,LIFO)。
栈的操作包括入栈(push)和出栈(pop),入栈操作将元素放入栈顶,出栈操作将栈顶元素移除。
1.2 实验步骤在本次实验中,我们使用编程语言实现了一个栈的数据结构,并进行了以下实验步骤:1.2.1 创建一个空栈1.2.2 向栈中依次压入若干元素1.2.3 查看栈顶元素1.2.4 弹出栈顶元素1.2.5 再次查看栈顶元素1.3 实验结果通过实验,我们观察到栈的特点:最后入栈的元素最先出栈。
在实验步骤1.2.2中,我们依次压入了元素A、B和C,栈顶元素为C。
在实验步骤1.2.4中,我们弹出了栈顶元素C,此时栈顶元素变为B。
二、队列的实验2.1 队列的定义和特点队列是一种具有特殊操作约束的线性数据结构,它的特点是“先进先出”(First-In-First-Out,FIFO)。
队列的操作包括入队(enqueue)和出队(dequeue),入队操作将元素放入队尾,出队操作将队头元素移除。
2.2 实验步骤在本次实验中,我们使用编程语言实现了一个队列的数据结构,并进行了以下实验步骤:2.2.1 创建一个空队列2.2.2 向队列中依次插入若干元素2.2.3 查看队头元素2.2.4 删除队头元素2.2.5 再次查看队头元素2.3 实验结果通过实验,我们观察到队列的特点:最先入队的元素最先出队。
在实验步骤2.2.2中,我们依次插入了元素X、Y和Z,队头元素为X。
在实验步骤2.2.4中,我们删除了队头元素X,此时队头元素变为Y。
三、栈和队列的应用栈和队列在实际应用中有广泛的应用场景,下面简要介绍一些常见的应用:3.1 栈的应用3.1.1 表达式求值:通过栈可以实现对表达式的求值,如中缀表达式转换为后缀表达式,并计算结果。
栈和队列的应用实验报告

二、选做题:
1、火车车厢调度问题
[问题描述] 假设停在铁路调试站入口处车厢序列的编号依次为:1,2,3,…,n。设计一个程序,求出所有可能由此输出的长度为n的车厢序列。
姓名
学号
专业年级
单元
第3章
内容
栈和队列的应用
日期
实验题目
实验目的
本次实习的目的在于深入了解栈和队列的特征,以便在实际问题背景下灵活运用它们;同时还将巩固这两种结构的构造方法,接触较复杂问题的递归算法设计。
实验内容
一、必做题(选做两题):
1、称正读和反读都相同的字符序列为“回文”,例如,abcddcba、qwerewq是回文,ashgash不是回文。试写一个算法,判断读入的一个以“@”为结束符的字符序列是否为回文。
四、写出算法设计、编程和调试运行的体会。
数据结构实验报告
一、抄写自己所选择的题目。
二、写出算法设计思路。
三、编写代码,调试运行,实现题目要求(提示:考虑到插入和删除的位置是否超出范围等可能出现的异常问题)。
四、写出算法设计、编程和调试运行的体会。
[基本要求] 程序对栈的任何存取(即更改,读取和状态判别等操作)必须借助于基本运算进行。
[测试数据] 分别取n=1,2,3和4。
实验要求及讨论
(本次实验的要求是否达到,有何问题,是怎么解决的)
一、抄写自己所选择的题目。
二、写出算法设计思路。
三、编写代码,调试运行,实现题目要求(提示:考虑到插入和删除的位置是否超出范围等可能出现的异常问题)。
2、假设以数组se[m]存放循环队列的元素,同时设变量rear和front分别作为队首、队尾指针,且队首指针指向队首节点前一个位置,写出这样设计的循环队列的入队、出队的算法。
栈和队列的应用实验报告

}SqStack;
void CreateStack(SqStack &S);
void PushStack(SqStack &S,int e);
void PopStack(SqStack &S);
void DestroyStack(SqStack &S);
void PrintfStack(SqStack &S);
}
void DestroyStack(SqStack &S)
{ free(S.base);
S.base=NULL;
*S.top=-1;
S.stacksize=0;
printf("栈清空成功\n");
}
void PrintfStack(SqStack &S)
{ int *p;
p=S.top;
printf("The stack is:");
}
*S.top++=e;
printf("%d插入成功!\n",e);
}
void PopStack(SqStack &S)
{ int m;
if(S.top==S.base)
{ printf("The stack is empty!\n");
return;
}
m=*--S.top;
printf("%d is out of the stack!\n",m);
scanf("%d",&m);
}
while(m--)
{ printf("请输入要入栈的元素:");
栈和队列的应用实验报告

栈和队列的应用(10003809389j)一实验目的使学生掌握栈的特点及其逻辑结构和物理结构的实现;使学生掌握队列的特点及其逻辑结构和物理结构的实现;使学生掌握链栈和顺序栈结构的插入、删除等基本运算的实现;使学生掌握链队列和顺序队列结构的插入、删除等基本运算的实现;使学生熟练运用栈结构解决常见实际应用问题;使学生熟练运用队列结构解决常见实际应用问题;二实验环境所需硬件环境为微机;所需软件环境为 Microsoft Visual C++ 6.0 ;三实验内容链栈:#include "LinkList0.c"/*详见实验1*/LinkList InitStack_Sl() {LinkList S;S=InitList_Sl();return S; }Status DestroyStack_Sl(LinkList S) {if(!S) return ERROR;/*链栈不存在*/DestroyList_Sl(S);return OK; }Status StackEmpty_Sl(LinkList S) {if(!S) return ERROR;/*链栈不存在*/if(S->next==NULL)return TRUE;elsereturn FALSE; }/*若链栈S存在,则当S非空时返回栈顶元素e */Status StackGetTop_Sl(LinkList S) {if(!S) return ERROR;/*链栈不存在*/if(S->next==NULL) return FALSE;/*栈空*/elsereturn (S->next->elem); }/*若链栈S存在,则当S非空时,删除栈顶元素并用e保存删除的栈顶元素*/ Status StackPop_Sl(LinkList S,ElemType *e) {if(!S) return ERROR;/*链栈不存在*/ListDelete_Sl(S,e);return OK; }/*若链栈S存在时,插入元素e为新的栈顶元素*/Status StackPush_Sl(LinkList S,ElemType e) {if(!S) return ERROR;/*链栈不存在*/ListInsert_Sl(S,e);return OK; }/*若链栈S存在,返回链栈中元素个数*/int StackLength_Sl(LinkList S) {if(!S) return ERROR;/*链栈不存在*/return ListLength_Sl(S); }/*若链栈S存在,遍历链栈S,对每个元素执行操作void(*operate)(ElemType*)*/Status StackTraverse_Sl(LinkList S,void(*operate)(ElemType*)) { if(!S) return ERROR;/*链栈不存在*/return(ListTraverse_Sl(S,operate)); }链队列#include "LinkList0.c"/*详见实验1*/typedef struct Qode{ElemType elem;struct Qode *next;} Qode,*Queue;typedef struct {Queue front;Queue rear;}Linkqueue, *LinkQueue;/*InitQueue_Sq()构造一个空的队列*/LinkQueue InitQueue_Sl() {LinkQueue Q;Q->front=Q->rear=(Queue)malloc(sizeof(Qode));if(!Q->front) return NULL;/*存储分配失败*/Q->front->next=NULL;return Q; }/*若队列Q存在,销毁链队列Q*/Status DestroyQueue_Sl(LinkQueue Q) {Queue p;if(!Q) return ERROR;/*链队列不存在*/do{ /*释放单向线性链表空间*/p=Q->front;Q->front=Q->front->next;free(p);}while(Q->front);return OK; }/*若链队列Q存在,则当Q为空时返回TRUE,否则返回FALSE*/Status QueueEmpty_Sl(LinkQueue Q) {if(!Q) return ERROR;/*链队列不存在*/if(Q->front==Q->rear)return TRUE;elsereturn FALSE; }/*若链队列Q存在,则当Q非空时,返回队头元素e */Status QueueGetTop_Sl(LinkQueue Q,ElemType e) {if(!Q) return ERROR;/*链队列不存在*/if(QueueEmpty_Sl(Q)==TRUE) return FALSE;/*队列空*/else return (Q->front->next->elem); }/*若链队列Q存在,则当Q非空时,删除队头元素并用e保存删除的队头元素*/ Status DeQueue_Sl(LinkQueue Q,ElemType *e) {Queue p;if(!Q) return ERROR;/*顺序队列不存在*/if(QueueEmpty_Sl(Q)==TRUE) return FALSE;/*队列空*/else{p=Q->front->next;*e=p->elem;Q->front->next=p->next;if(Q->front->next==NULL) Q->rear=Q->front;free(p);return OK; } }/*若链队列Q存在时,插入元素e为新的队头元素*/ Status EnQueue_Sl(LinkQueue Q,ElemType e) {Queue p;if(!Q) return ERROR;/*单向线性链表结点L不存在*/ p=(Queue)malloc(sizeof(Qode));if(!p) exit(OVERFLOW); /*存储空间增加失败*/p->next=NULL;p->elem=e;Q->rear->next=p;Q->rear=p;return OK; }/*若链队列Q存在,返回链队列元素个数*/int QueueLength_Sl(LinkQueue Q) {int i=0;Queue p;if(!Q) return ERROR;/*链队列不存在*/p=Q->front;while(p!=Q->rear){ i++;p=p->next; }return (i); }/*若链队列Q存在,遍历链队列Q,对每个元素执行操作void(*operate)(ElemType*)*/ Status QueueTraverse_Sl(LinkQueue Q,void(*operate)(ElemType*)) {Queue p;if(!Q) return ERROR;/*链队列不存在*/p=Q->front->next;while(p!=NULL){ operate(&p->elem);p=p->next; }return(OK); }表达式求解#include "LinkStack.c"//用链栈实现中缀表达式求解。
数据结构实验报告-栈和队列的应用

《数据结构》第五次实验报告学生姓名学生班级学生学号指导老师雷大江重庆邮电大学计算机学院一、实验内容1) 利用栈深度优先进行迷宫求解。
用数组表示迷宫建立栈,利用栈实现深度优先搜索2) 利用队列宽度优先进行迷宫求解。
用数组表示迷宫建立队列,利用队列实现宽度优先搜索二、需求分析利用栈的结构,走过的路入栈,如果不能走出栈,采用遍历法,因此栈内存储的数据就是寻一条路径。
当到达了某点而无路可走时需返回前一点,再从前一点开始向下一个方向继续试探。
因此,压入栈中的不仅是顺序到达的各点的坐标,而且还要有从前一点到达本点的方向,即每走一步栈中记下的内容为(行,列,来的方向)。
三、详细设计(1)基本代码struct item{int x ; //行int y ; //列} ;item move[4] ;(2)代码栈构造函数:void seqstack::Push(int x,int y,int d) //入栈{if(top>=StackSize-1)throw"上溢";top++;data[top].d=d;data[top].x=x;data[top].y=y;}寻找路径:int seqstack::findpath(int a,int b){item move[4]={{0,1},{1,0},{0,-1},{-1,0}};//定义移动结构int x, y, d, i, j ;Push(a,b,-1); //起点坐标入栈while(top!=-1){d=data[top].d+1;x=data[top].x;y=data[top].y;Pop(); //出栈while (d<4) //方向是否可以移动{i=x+move[d].x ; j=y+move[d].y ; //移动后坐标if(Map[i][j]==0) //是否能移动 {Push(x,y,d); //移动前坐标入栈x=i;y=j;Map[x][y]= -1 ;if(x==m&&y==n) //判断是否为终点坐标 {Push(x,y,-1);return 1 ;}else d=0 ;}else d++ ;}}return 0;}(3)伪代码a)栈初始化;b)将入口点坐标及到达该点的方向(设为-1)入栈c)while (栈不空){栈顶元素=(x , y , d)出栈 ;求出下一个要试探的方向d++ ;while (还有剩余试探方向时){ if (d方向可走)则 { (x , y , d)入栈 ;求新点坐标 (i, j ) ;将新点(i , j)切换为当前点(x , y) ;if ( (x ,y)= =(m,n) ) 结束 ;else 重置 d=0 ;}else d++ ;}}(4)时间复杂程度时间复杂程度为O(1)2.3 其他在运行时可选择是否自己构造地图,实现函数如下:void creatmap() //自创地图函数{for(int i=1;i<9;i++){for(int j=1;j<9;j++)Map[i][j]=0;}Map[8][9]=1;printmap();cout<<"请设置障碍物位置:(x,y)。
数据结构实验报告 栈和队列

数据结构实验报告栈和队列
栈(Stack)和队列(Queue)都是常用的数据结构。
它们都是有限的数据存储结构,主要用于记录数据的存储和检索。
它们具有许多相同的特征,可以根据每一个实例的需要而定制遍历,并可以使用相同的存储方法。
但是,从数据操作和操作数据的角度来看,它们仍有差异。
首先,栈和队列的数据操作模式不同。
栈是遵循“先进后出”(LIFO)的原则,只有最后一个元素可以被弹出或者取出;而队列则是遵循“先进先出”(FIFO)的原则,第一个元素是最先被取出或弹出的。
此外,栈不允许插入新元素,而队列允许任何位置插入和删除元素。
此外,栈只能被依次访问,而队列允许改变已有元素的位置。
此外,栈和队列可以用相似的实现方式来构建。
一般来说,它们都使用 .链表,数组或者树来存储数据,并使用相同的Pointers来指向数据结构中的元素。
栈和队列也可以使用交换的方式来改变其存储方式,从而提高其效率。
对于实际应用来说,栈和队列都有自己的优势,具体取决于应用中的需求。
比如,栈通常被用于数据的深度优先遍历,而队列则可以用于数据的广度优先遍历。
此外,栈也可以用于处理函数调用,而队列可以用于处理操作系统任务或者打印池中的任务等。
实验报告——栈和队列的应用

实验报告——栈和队列的应用第一篇:实验报告——栈和队列的应用实验5 栈和队列的应用目的和要求:(1)熟练栈和队列的基本操作;(2)能够利用栈与队列进行简单的应用。
一、题目题目1.利用顺序栈和队列,实现一个栈和一个队列,并利用其判断一个字符串是否是回文。
所谓回文,是指从前向后顺读和从后向前倒读都一样的字符串。
例如,a+b&b+a等等。
题目2.假设在周末舞会上,男士们和女士们进入舞厅时,各自排成一队。
跳舞开始时,依次从男队和女队的队头上各出一人配成舞伴。
若两队初始人数不相同,则较长的那一队中未配对者等待下一轮舞曲。
现要求写一算法模拟上述舞伴配对问题,并实现。
题目3.打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
每台打印机具有一个队列(缓冲池),用户提交打印请求被写入到队列尾,当打印机空闲时,系统读取队列中第一个请求,打印并删除之。
请利用队列的先进先出特性,完成打印机网络共享的先来先服务功能。
题目4.假设以数组Q[m]存放循环队列中的元素, 同时设置一个标志tag,以tag == 0和tag == 1来区别在队头指针(front)和队尾指针(rear)相等时,队列状态为“空”还是“满”。
试编写与此结构相应的插入(enqueue)和删除(dlqueue)算法。
题目5.利用循环链队列求解约瑟夫环问题。
请大家从本组未讨论过的五道题中选择一道,参照清华邓俊辉老师MOOC视频及课本相关知识,编写相应程序。
选择题目3:打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
二、程序清单//Ch3.cpp #include #include #include“ch3.h” template void LinkedQueue::makeEmpty()//makeEmpty//函数的实现{ LinkNode*p;while(front!=NULL)//逐个删除队列中的结点{p=front;front=front->link;delete p;} };template bool LinkedQueue::put_in(T&x){//提交命令函数if(front==NULL){//判断是否为空front=rear=new LinkNode;//如果为空,新结点为对头也为对尾front->data=rear->data=x;if(front==NULL)//分配结点失败return false;} else{rear->link=new LinkNode;//如不为空,在链尾加新的结点rear->link->data=x;if(rear->link==NULL)return false;rear=rear->link;} return true;};template bool LinkedQueue::carry_out()//执行命令函数 { if(IsEmpty()==true)//判断是否为空{return false;} cout<data<LinkNode*p=front;front=front->link;//删除以执行的命令,即对头修改delete p;//释放原结点return true;};void main()//主函数 { LinkedQueue q;//定义类对象char flag='Y';//标志是否输入了命令const int max=30;//一次获取输入命令的最大个数while(flag=='Y')//循环{ int i=0;char str[max];//定义存储屏幕输入的命令的数组gets(str);//获取屏幕输入的命令while(str[i]!=''){q.put_in(str[i]);//调用提交命令函数,将每个命令存入队列中i++;}for(int j=0;j<=i;j++){if(q.IsEmpty()==true)//判断是否为空,为空则说明没有可执行的命令{cout<cin>>flag;continue;//为空跳出for循环为下次输入命令做好准备}q.carry_out();//调用执行命令的函数,将命令打印并删除}三、程序调试过程中所出现的错误无。