Vicriviroc maleate_599179-03-0_DataSheet_MedChemExpress

合集下载

病理实验大体大体标本(完整)

病理实验大体大体标本(完整)

1-G-1 肾肾压迫性萎缩atrophy of kidnal parenchyma病变:肾体积增大,切面见肾盂、肾盏高度扩张,肾实质见皮质与髓质分界不清,明显变薄。

1-G-2 肾脂肪变fatty change of kidney病变:肾体积增大,切面变黄,包膜紧张,有叩击痛。

1-G-3 肝肝脂肪变fatty change of liver病变:肝表面、切面土黄色,有油腻感,质软而轻。

由感染、中毒、缺氧引起。

1-G-4 脾脾血肿大呈玻璃样变hyaline degeneration of spleen capsule病变:脾因淤血肿大,切面紫红色,中间是纤维结缔组织,包膜增厚且呈灰白色,半透明状,质地均一。

缺氧1-G-5 脾脾凝固性坏死coagulation necrosis of spleen病变:体积增大、包膜紧张光滑,一处略隆起呈不规则灰白色。

质地干燥,与周围分界清楚,在交界处有的呈暗红色。

2-G-1 肝肝淤血congestion of liver病变:体积增大、边缘圆钝,包膜紧张,表面油腻,切面黄黑相间似槟榔,故称槟榔肝(nutmeg liver)。

缺氧2-G-2 肾肾出血hemorrahge病变:黑色,体积变大2-G-3 大脑高血压病hypertension症状:瘫痪、昏迷、偏瘫2-G-4 脾脾梗死infarction of spleen病变:切面被膜下见三角形梗死区,尖端朝向脾门,底部朝向表面,梗死区呈灰白色,质地与周围正常组织界限分明。

2-G-5 小肠小肠梗死infaction of small intestine病变:小肠变黑,肠壁增厚,与正常的界限清楚。

2-G-6 肾贫血性坏死2-G-8 脾肿大淤血肝硬化——门静脉高压——脾淤血3-G-1 大脑化脓性脑炎suppurative encephalitis病变:大脑表面血管扩张充血,蛛网膜下腔充满血脓性分泌物,使其结构不清。

3-G-3 阑尾阑尾炎appendicitis病变:急性单纯性阑尾炎:不同程度肿胀,浆膜充血,失去光泽。

法匹拉韦治疗新型冠状病毒的应用评价与药学监护

法匹拉韦治疗新型冠状病毒的应用评价与药学监护

法匹拉韦治疗新型冠状病毒的应用评价与药学监护洪晓冰卜,杨琛儿〃,杜佳虹2,余泽林、符红波\陈杰3(1.汕头大学第二附属医院药学部,广东汕头515041;2.汕头大学医学院,广东汕头515041 ;3.中山大学第一附属医院药学部,广东广州510080)摘要:法匹拉韦是一种新型广谱抗病毒药物,本文从法匹拉韦的药理作用与药代动力学特征、临床应用、治疗新型冠状病毒肺 炎的理论依据进行分析和总结,为临床上应用法匹拉韦治疗新型冠状病毒肺炎的安全性及有效性提供参考,提出对不同人群 给予合理用药和监护建议。

法匹拉韦治疗新型冠状病毒肺炎有一定作用,其适应证、最佳使用剂量、特殊人群用药及联合用 药上还需要更多的研究和探索。

关键词:新型冠状病毒肺炎;法匹拉韦;抗病毒药物;合理用药;药学监护中图分类号:R969 文献标志码:A 文章编号:1674-229X( 2020) 12-0837-04D oi: 10.12048/j.issn.l674-229X.2020.12.010Application Evaluation and Pharmaceutical Care of Favipiravir in COVD)-19HONG Xiaobing1*,YANG Chener2*,DU Jiahong2,YU Zelin1,FU Hongbo1,CHEN J ie3 ({.Department o f Pharmacy, The Second Affiliated Hospital o f Shantou University o f Medical College y Shantou y Guangdong515041, China;2. Shantou University Medical College,Shantou, Guangdong515041, China;3. Department o f Pharmacy, The First Affiliated Hospital, Sun Yat-sen Universityy Guangzhou, Guangdong 510080, China)A B S T R A C T:F av ip irav ir is a new broad spectrum antiviral drug. T his article illu strates th eo retical foundation for the treatm en t of C O V ID-19 from pharm acological activ ity, pharm acokinetic c h a ra c te ristic s, an d c lin ical a p p lic a tio n.lt provides referen ce for the safety and availability m edication in clinical application of favipiravir to C O V ID-19 an d sum m aries reaso n ab le recom m endation of favipiravir in therapy for different p eo p le.F av ip irav ir show ed significantly treatm en t effects on C O V ID-19, b ut th e in d icatio n s, optim al d o sa g e, drugs usage with special in dividuals and drug com bination need m ore explorations.K E Y W O R D S:C O V ID-19;fav ip irav ir;antiviral d ru g;rational d rug u s e;p h arm aceu tical care法匹拉韦(又称“法维拉韦”)是一种新型广谱 抗RNA病毒药物,原研药物AVIGAN®由富士胶片 集团富山化学工业株式会社开发,作为日本的国家 战略储备药物,并被纳入《日本新型冠状病毒疾病治 疗方案》[1]。

抗艾滋病新药--度鲁特韦(dolutegravir)

抗艾滋病新药--度鲁特韦(dolutegravir)

抗艾滋病新药--度鲁特韦(dolutegravir)李艳玲;刘红淼;王彩霞;张阳;张明【摘要】度鲁特韦(dolutegravir)是一种人类免疫缺陷病毒类型1(HIV-1)整合酶链转移抑制药(INSTI),与其他抗逆转录病毒药联用治疗HIV-1感染。

临床前研究结果显示其毒性小,没有基因毒性和致癌毒性,在大于临床剂量27倍时没有出现明显的生育毒性和致畸毒性。

临床研究显示DTG对初次治疗的HIV感染者、当前疗法治疗失败但未使用整合酶抑制药治疗的患者的治疗效果均优于对照药;对抗病毒治疗失败、且对雷特格韦( raltegravir )和(或)埃替格韦( elvitegravir)耐药的成人患者也显示出良好的疗效。

体内外试验研究均显示较强的抗HIV-1病毒活性,安全性及耐受性良好,现将其药效学、安全性、药动学及临床研究等作一综述,为临床应用提供参考。

【期刊名称】《医药导报》【年(卷),期】2015(000)008【总页数】3页(P1064-1066)【关键词】度鲁特韦;整合酶链转移抑制药;人类免疫缺陷病毒1【作者】李艳玲;刘红淼;王彩霞;张阳;张明【作者单位】新型药物制剂与辅料国家重点实验室,石家庄 050035; 石药集团中奇制药技术石家庄有限公司,石家庄 050035;河北医科大学第一医院,石家庄050031;新型药物制剂与辅料国家重点实验室,石家庄 050035; 石药集团中奇制药技术石家庄有限公司,石家庄 050035;新型药物制剂与辅料国家重点实验室,石家庄 050035; 石药集团中奇制药技术石家庄有限公司,石家庄 050035;新型药物制剂与辅料国家重点实验室,石家庄 050035; 石药集团中奇制药技术石家庄有限公司,石家庄 050035【正文语种】中文【中图分类】R978;R512.91人类免疫缺陷病毒(human immunodeficiency virus,HIV)于1981年在美国首次发现,是一种感染人类免疫系统细胞的慢病毒(lentivirus),属逆转录病毒的一种。

marked manuscript

marked manuscript

Quality evaluation of Flos Lonicerae through a simultaneous determination of seven saponins by HPLC with ELSDXing-Yun Chai1, Song-Lin Li2, Ping Li1*1Key Laboratory of Modern Chinese Medicines and Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China2Institute of Nanjing Military Command for Drug Control, Nanjing, 210002, People’s Republic of China*Corresponding author: Ping LiKey Laboratory of Modern Chinese Medicines and Department of Pharmacognosy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China.E-mail address: lipingli@Tel.: +86-25-8324-2299; 8539-1244; 135********Fax: +86-25-8532-2747AbstractA new HPLC coupled with evaporative light scattering detection (ELSD) method has been developed for the simultaneous quantitative determination of seven major saponins, namely macranthoidinB (1), macranthoidin A (2), dipsacoside B (3), hederagenin-28-O-β-D-glucopyranosyl(6→1)-O-β-D- glucopyranosyl ester (4), macranthoside B (5), macranthoside A (6), and hederagenin-3-O-α-L-arabinopyranosyl(2→1)-O-α-L-rhamnopyranoside (7)in Flos Lonicerae, a commonly used traditional Chinese medicine (TCM) herb.Simultaneous separation of these seven saponins was achieved on a C18 analytical column with a mixed mobile phase consisting of acetonitrile(A)-water(B)(29:71 v/v) acidified with 0.5% acetic acid. The elution was operated from keeping 29%A for 10min, then gradually to 54%B from 10 to 25 min on linear gradient, and then keep isocratic elution with 54%B from 25 to 30min.The drift tube temperature of ELSD was set at 106℃, and with the nitrogen flow-rate of 2.6 l/min. All calibration curves showed good linear regression (r2 0.9922) within test ranges. This method showed good reproducibility for the quantification of these seven saponins in Flos Lonicerae with intra- and inter-day variations of less than 3.0% and 6.0% respectively. The validated method was successfully applied to quantify seven saponins in five sources of Flos Lonicerae, which provides a new basis of overall assessment on quality of Flos Lonicerae.Keywords: HPLC-ELSD; Flos Lonicerae; Saponins; Quantification1. IntroductionFlos Lonicerae (Jinyinhua in Chinese), the dried buds of several species of the genus Lonicera (Caprifoliaceae), is a commonly used traditional Chinese medicine (TCM) herb. It has been used for centuries in TCM practice for the treatment of sores, carbuncles, furuncles, swelling and affections caused by exopathogenic wind-heat or epidemic febrile diseases at the early stage [1]. Though four species of Lonicera are documented as the sources of Flos Lonicerae in China Pharmacopeia (2000 edition), i.e. L. japonica, L. hypoglauca,L. daystyla and L. confusa, other species such as L. similes and L. macranthoides have also been used on the same purpose in some local areas in China [2]. So it is an important issue to comprehensively evaluate the different sources of Flos Lonicerae, so as to ensure the clinical efficacy of this Chinese herbal drug.Chemical and pharmacological investigations on Flos Lonicerae resulted in discovering several kinds of bioactive components, i.e. chlorogenic acid and its analogues, flavonoids, iridoid glucosides and triterpenoid saponins [3]. Previously, chlorogenic acid has been used as the chemical marker for the quality evaluation of Flos Lonicerae,owing to its antipyretic and antibiotic property as well as its high content in the herb. But this compound is not a characteristic component of Flos Lonicerae, as it has also been used as the chemical marker for other Chinese herbal drugs such as Flos Chrysanthemi and so on[4-5]. Moreover, chlorogenic acid alone could not be responsible for the overall pharmacological activities of Flos Lonicerae[6].On the other hand, many studies revealed that triterpenoidal saponins of Flos Lonicerae possess protection effects on hepatic injury caused by Acetaminophen, Cd, and CCl4, and conspicuous depressant effects on swelling of ear croton oil [7-11]. Therefore, saponins should also be considered as one of the markers for quality control of Flos Lonicerae. Consequently, determinations of all types of components such as chlorogenic acid, flavonoids, iridoid glucosides and triterpenoidal saponins in Flos Lonicerae could be a better strategy for the comprehensive quality evaluation of Flos Lonicerae.Recently an HPLC-ELSD method has been established in our laboratory for qualitative and quantitative determination of iridoid glucosides in Flos Lonicerae [12]. But no method was reported for the determination of triterpenoidal saponins in Flos Lonicera. As a series studies on the comprehensive evaluation of Flos Lonicera, we report here, for the first time, the development of an HPLC-ELSD method for simultaneous determination of seven triterpenoidal saponins in the Chinese herbal drug Flos Lonicerae, i.e.macranthoidin B (1), macranthoidin A (2), dipsacoside B (3), hederagenin-28-O-β-D-glucopyranosyl(6→1)-O-β-D- glucopyranosyl ester (4), macranthoside B (5), macranthoside A (6), and hederagenin-3-O-α-L-arabinopyranosyl(2→1)-O-α-L-rhamnopyranoside (7) (Fig. 1).2. Experimental2.1. Samples, chemicals and reagentsFive samples of Lonicera species,L. japonica from Mi county, HeNan province (LJ1999-07), L. hypoglauca from Jiujang county, JiangXi province (LH2001-06), L. similes from Fei county, ShanDong province (LS2001-07), L. confuse from Xupu county, HuNan province (LC2001-07), and L. macranthoides from Longhu county, HuNan province (LM2000-06) respectively, were collected in China. All samples were authenticated by Dr. Ping Li, professor of department of Pharmacognosy, China Pharmaceutical University, Nanjing, China. The voucher specimens were deposited in the department of Pharmacognosy, China Pharmaceutical University, Nanjing, China. Seven saponin reference compounds: macranthoidin B (1), macranthoidin A (2), dipsacoside B (3), hederagenin-28-O-β-D-glucopyranosyl(6→1)-O-β-D- glucopyranosyl ester (4), macranthoside B (5), macranthoside A (6), and hederagenin-3-O-α-L-arabinopyranosyl(2→1)-O-α-L-rhamnopyranoside (7) were isolated previously from the dried buds of L. confusa by repeated silica gel, sephadex LH-20 and Rp-18 silica gel column chromatography, their structures were elucidated by comparison of their spectral data (UV, IR, MS, 1H- NMR and 13C-NMR) with references [13-15]. The purity of these saponins were determined to be more than 98% by normalization of the peak areas detected by HPLC with ELSD, and showed very stable in methanol solution.HPLC-grade acetonitrile from Merck (Darmstadt, Germany), the deionized water from Robust (Guangzhou, China), were purchased. The other solvents, purchased from Nanjing Chemical Factory (Nanjing, China) were of analytical grade.2.2. Apparatus and chromatographic conditionsAglient1100 series HPLC apparatus was used. Chromatography was carried out on an Aglient Zorbax SB-C18 column(250 4.6mm, 5.0µm)at a column temperature of 25℃.A Rheodyne 7125i sampling valve (Cotati, USA) equipped with a sample loop of 20µl was used for sample injection. The analog signal from Alltech ELSD 2000 (Alltech, Deerfield, IL, USA)was transmitted to a HP Chemstation for processing through an Agilent 35900E (Agilent Technologies, USA).The optimum resolution was obtained by using a linear gradient elution. The mobile phase was composed of acetonitrile(A) and water(B) which acidified with 0.5% acetic acid. The elution was operated from keeping 29%A for 10min, then gradually to 54%B from 10 to 25 min in linear gradient, and back to the isocratic elution of 54%B from 25 to 30 min.The drift tube temperature for ELSD was set at 106℃and the nitrogen flow-rate was of 2.6 l/min. The chromatographic peaks were identified by comparing their retention time with that of each reference compound tried under the same chromatographic conditions with a series of mobile phases. In addition, spiking samples with the reference compounds further confirmed the identities of the peaks.2.3. Calibration curvesMethanol stock solutions containing seven analytes were prepared and diluted to appropriate concentration for the construction of calibration curves. Six concentrationof the seven analytes’ solution were injected in triplicate, and then the calibration curves were constructed by plotting the peak areas versus the concentration of each analyte. The results were demonstrated in Table1.2.4. Limits of detection and quantificationMethanol stock solution containing seven reference compounds were diluted to a series of appropriate concentrations with methanol, and an aliquot of the diluted solutions were injected into HPLC for analysis.The limits of detection (LOD) and quantification (LOQ) under the present chromatographic conditions were determined at a signal-to-noise ratio (S/N) of 3 and 10, respectively. LOD and LOQ for each compound were shown in Table1.2.5. Precision and accuracyIntra- and inter-day variations were chosen to determine the precision of the developed assay. Approximate 2.0g of the pulverized samples of L. macranthoides were weighted, extracted and analyzed as described in 2.6 Sample preparation section. For intra-day variability test, the samples were analyzed in triplicate for three times within one day, while for inter-day variability test, the samples were examined in triplicate for consecutive three days. Variations were expressed by the relative standard deviations. The results were given in Table 2.Recovery test was used to evaluate the accuracy of this method. Accurate amounts of seven saponins were added to approximate 1.0g of L. macranthoides,and then extracted and analyzed as described in 2.6 Sample preparation section. The average recoveries were counted by the formula: recovery (%) = (amount found –original amount)/ amount spiked ×100%, and RSD (%) = (SD/mean) ×100%. The results were given in Table 3.2.6. Sample preparationSamples of Flos Lonicerae were dried at 50℃until constant weight. Approximate 2.0g of the pulverized samples, accurately weighed, was extracted with 60% ethanol in a flask for 4h. The ethanol was evaporated to dryness with a rotary evaporator. Residue was dissolved in water, followed by defatting with 60ml of petroleum ether for 2 times, and then the water solution was evaporated, residue was dissolved with methanol into a 25ml flask. One ml of the methanol solution was drawn and transferred to a 5ml flask, diluted to the mark with methanol. The resultant solution was at last filtrated through a 0.45µm syringe filter (Type Millex-HA, Millipore, USA) and 20µl of the filtrate was injected to HPLC system. The contents of the analytes were determined from the corresponding calibration curves.3. Results and discussionsThe temperature of drift tube and the gas flow-rate are two most important adjustable parameters for ELSD, they play a prominent role to an analyte response. In ourprevious work [12], the temperature of drift tube was optimized at 90°C for the determination of iridoids. As the polarity of saponins are higher than that of iridoids, more water was used in the mobile phase for the separation of saponins, therefore the temperature for saponins determination was optimized systematically from 95°C to 110°C, the flow-rate from 2.2 to 3.0 l/min. Dipsacoside B was selected as the testing saponin for optimizing ELSD conditions, as it was contained in all samples. Eventually, the drift tube temperature of 106℃and a gas flow of 2.6 l/min were optimized to detect the analytes. And these two exact experimental parameters should be strictly controlled in the analytical procedure [16].All calibration curves showed good linear regression (r2 0.9922) within test ranges. Validation studies of this method proved that this assay has good reproducibility. As shown in Table 2, the overall intra- and inter-day variations are less than 6% for all seven analytes. As demonstrated in Table 3, the developed analytical method has good accuracy with the overall recovery of high than 96% for the analytes concerned. The limit of detection (S/N=3) and the limit of quantification (S/N=10) are less than 0.26μg and 0.88μg respectively (Table1), indicating that this HPLC-ELSD method is precise, accurate and se nsitive enough for the quantitative evaluation of major non- chromaphoric saponins in Flos Lonicerae.It has been reported that there are two major types of saponins in Flos Lonicerae, i.e. saponins with hederagenin as aglycone and saponins with oleanolic acid as the aglycone [17]. But hederagenin type saponins of the herb were reported to have distinct activities of liver protection and anti-inflammatory [7-11]. So we adoptedseven hederagenin type saponins as representative markers to establish a quality control method.The newly established HPLC-ELSD method was applied to analyze seven analytes in five plant sources of Flos Lonicerae, i.e. L. japonica,L. hypoglauca,L. confusa,L. similes and L. macranthoides(Table 4). It was found that there were remarkable differences of seven saponins contents between different plant sources of Flos Lonicerae. All seven saponins analyzed could be detected in L. confusa and L. hypoglauca, while only dipsacoside B was detected in L. japonica. Among all seven saponins interested, only dipsacoside B was found in all five plant species of Flos Lonicerae analyzed, and this compound was determined as the major saponin with content of 53.7 mg/g in L. hypoglauca. On the other hand, macranthoidin B was found to be the major saponin with the content higher than 41.0mg/g in L. macranthoides,L. confusa, and L. similis, while the contents of other analytes were much lower.In our previous study [12], overall HPLC profiles of iridoid glucosides was used to qualitatively and quantitatively distinguish different origins of Flos Lonicerae. As shown in Fig.2, the chromatogram profiles of L. confusa, L. japonica and L. similes seem to be similar, resulting in the difficulty of clarifying the origins of Flos Lonicerae solely by HPLC profiles of saponins, in addition to the clear difference of the HPLC profiles of saponins from L. macranthoides and L. hypoglauca.Therefore, in addition to the conventional morphological and histological identification methods, the contents and the HPLC profiles of saponins and iridoids could also be used as accessory chemical evidence toclarify the botanical origin and comprehensive quality evaluation of Flos Lonicerae.4. ConclusionsThis is the first report on validation of an analytical method for qualification and quantification of saponins in Flos Lonicerae. This newly established HPLC-ELSD method can be used to simultaneously quantify seven saponins, i.e. macranthoidin B, macranthoidin A, dipsacoside B, hederagenin-28-O-β-D-glucopyranosyl(6→1)-O-β-D- glucopyranosyl ester, macranthoside B, macranthoside A, and hederagenin-3-O-α-L-arabinopyranosyl(2→1)-O-α-L-rhamnopyranoside in Flos Lonicerae. Together with the HPLC profiles of iridoids, the HPLC-ELSD profiles of saponins could also be used as an accessory chemical evidence to clarify the botanical origin and comprehensive quality evaluation of Flos Lonicerae.AcknowledgementsThis project is financially supported by Fund for Distinguished Chinese Young Scholars of the National Science Foundation of China (30325046) and the National High Tech Program(2003AA2Z2010).[1]Ministry of Public Health of the People’s Republic of China, Pharmacopoeia ofthe People’s Republic of China, V ol.1, 2000, p. 177.[2]W. Shi, R.B. Shi, Y.R. Lu, Chin. Pharm. J., 34(1999) 724.[3]J.B. Xing, P. Li, D.L. Wen, Chin. Med. Mater., 26(2001) 457.[4]Y.Q. Zhang, L.C. Xu, L.P. Wang, J. Chin. Med. Mater., 21(1996) 204.[5] D. Zhang, Z.W. Li, Y. Jiang, J. Pharm. Anal., 16(1996) 83.[6]T.Z. Wang, Y.M. Li, Huaxiyaoxue Zazhi, 15(2000) 292.[7]J.ZH. Shi, G.T. Liu. Acta Pharm. Sin., 30(1995) 311.[8]Y. P. Liu, J. Liu, X.SH. Jia, et al. Acta Pharmacol. Sin., 13 (1992) 209.[9]Y. P. Liu, J. Liu, X.SH. Jia, et al. Acta Pharmacol. Sin., 13 (1992) 213.[10]J.ZH. Shi, L. Wan, X.F. Chen.ZhongYao YaoLi Yu LinChuang, 6 (1990) 33.[11]J. Liu, L. Xia, X.F. Chen. Acta Pharmacol. Sin., 9 (1988) 395[12]H.J. Li, P. Li, W.C. Ye, J. Chromatogr. A 1008(2003) 167-72.[13]Q. Mao, D. Cao, X.SH. Jia. Acta Pharm. Sin., 28(1993) 273.[14]H. Kizu, S. Hirabayashi, M. Suzuki, et al. Chem. Pharm. Bull., 33(1985) 3473.[15]S. Saito, S. Sumita, N. Tamura, et al. Chem Pharm Bull., 38(1990) 411.[16]Alltech ELSD 2000 Operating Manual, Alltech, 2001, p. 16. In Chinese.[17]J.B. Xing, P. Li, Chin. Med. Mater., 22(1999) 366.Fig. 1 Chemical structures of seven saponins from Lonicera confusa macranthoidin B (1), macranthoidin A (2), dipsacoside B (3), hederagenin-28-O-β-D-glucopyranosyl(6→1)-O-β-D- glucopyranosyl ester (4), macranthoside B (5), macranthoside A (6), and hederagenin-3-O-α-L-arabinopyranosyl(2→1)-O-α-L-rhamnopyranoside (7)Fig. 2Representative HPLC chromatograms of mixed standards and methanol extracts of Flos Lonicerae.Column: Agilent Zorbax SB-C18 column(250 4.6mm, 5.0µm), temperature of 25℃; Detector: ELSD, drift tube temperature 106℃, nitrogen flow-rate 2.6 l/min.A: Mixed standards, B: L. confusa, C: L. japonica, D: L. macranthoides, E: L. hypoglauca, F: L. similes.Table 1 Calibration curves for seven saponinsAnalytes Calibration curve ar2Test range(μg)LOD(μg)LOQ(μg)1 y=6711.9x-377.6 0.9940 0.56–22.01 0.26 0.882 y=7812.6x-411.9 0.9922 0.54–21.63 0.26 0.843 y=6798.5x-299.0 0.9958 0.46–18.42 0.22 0.724 y=12805x-487.9 0.9961 0.38–15.66 0.10 0.345 y=4143.8x-88.62 0.9989 0.42–16.82 0.18 0.246 y=3946.8x-94.4 0.9977 0.40–16.02 0.16 0.207 y=4287.8x-95.2 0.9982 0.42–16.46 0.12 0.22a y: Peak area; x: concentration (mg/ml)Table 2 Reproducibility of the assayAnalyteIntra-day variability Inter-day variability Content (mg/g) Mean RSD (%) Content (mg/g) Mean RSD (%)1 46.1646.2846.2246.22 0.1346.2245.3647.4226.33 2.232 5.385.385.165.31 2.405.285.345.045.22 3.043 4.374.304.184.28 2.244.284.464.024.255.204 nd1)-- -- nd -- --5 1.761.801.821.79 1.701.801.681.841.77 4.706 1.281.241.221.252.451.241.341.201.26 5.727 tr2)-- -- tr -- -- 1): not detected; 2): trace. RSD (%) = (SD/Mean) ×100%Table 3 Recovery of the seven analytesAnalyteOriginal(mg) Spiked(mg)Found(mg)Recovery(%)Mean(%)RSD(%)1 23.0823.1423.1119.7122.8628.1042.7346.1351.0199.7100.699.399.8 0.722.692.672.582.082.913.164.735.515.7698.197.6100.698.8 1.632.172.152.091.732.182.623.884.404.6598.8103.297.799.9 2.94nd1)1.011.050.980.981.101.0297.0104.8104.1102.0 4.250.880.900.910.700.871.081.561.752.0197.197.7101.898.9 2.660.640.620.610.450.610.751.081.211.3397.796.796.096.8 0.97tr2)1.021.101.081.031.111.07100.9102.799.1100.9 1.81): not detected; 2): trace.a Recovery (%) = (Amount found –Original amount)/ Amount spiked ×100%, RSD (%) = (SD/Mean) ×100%Table 4 Contents of seven saponins in Lonicera spp.Content (mg/g)1 2 3 4 5 6 7 L. confusa45.65±0.32 5.13±0.08 4.45±0.11tr1) 2.04±0.04tr 1.81±0.03 L. japonica nd2)nd 3.44±0.09nd nd nd nd L. macranthoides46.22±0.06 5.31±0.13 4.28±0.10 tr 1.79±0.03 1.25±0.03 tr L. hypoglauca11.17±0.07 nq3)53.78±1.18nd 1.72±0.02 2.23±0.06 2.52±0.04 L. similes41.22±0.25 4.57±0.07 3.79±0.09nd 1.75±0.02tr nd 1): trace; 2): not detected.. 3) not quantified owing to the suspicious purity of the peak.。

奈玛特韦 利托那韦用法

奈玛特韦 利托那韦用法

奈玛特韦利托那韦用法一、背景介绍奈玛特韦利托那韦是一种常见的抗艾滋病药物,属于抗逆转录病毒药物的范畴。

它通常与其他抗病毒药物一起使用,用于治疗HIV感染和艾滋病病毒复制。

奈玛特韦利托那韦是一种处方药,在使用前需经过医生的诊断和建议。

二、药物信息1. 品牌名称:奈玛特韦利托那韦2. 化学成分:奈玛特韦(Namatavir)和利托那韦(Lopinavir)3. 剂型:片剂、胶囊、口服溶液4. 适应症:治疗HIV感染和艾滋病病毒复制5. 用法用量:常见的用法是每天两次,一次两片或一粒,建议在饭后服用。

具体用量需遵循医生的嘱咐。

三、用药前注意事项1. 咨询专业医生:在使用奈玛特韦利托那韦前,应咨询专业医生,接受全面的健康评估和诊断。

医生会根据患者的具体情况来确定是否适合使用该药物。

2. 药物相互作用:在使用奈玛特韦利托那韦前,应告知医生正在服用的其他药物,包括处方药、非处方药以及补充剂等,以避免药物相互作用。

3. 孕妇和哺乳期妇女:孕妇和哺乳期妇女在使用奈玛特韦利托那韦前应向医生咨询,因为药物可能对胎儿或婴儿产生影响。

四、用药注意事项1. 按时按量服用:在医生的指导下,患者应按时按量服用奈玛特韦利托那韦,避免漏服或超量使用。

2. 餐后服用:通常建议在饭后服用奈玛特韦利托那韦,可以减轻肠胃不适的发生。

3. 不可随意更改剂量:患者不应随意更改奈玛特韦利托那韦的剂量,如有需要,应先与医生商议。

4. 定期复诊:在用药期间,应定期前往医院或诊所复诊,接受医生的跟踪观察和治疗指导。

五、不良反应奈玛特韦利托那韦可能引起一些不良反应,包括但不限于头痛、恶心、呕吐、腹泻、皮疹、肝功能异常等。

如果患者出现不适,应及时向医生报告,遵循医生的指导处理。

六、存储和处理奈玛特韦利托那韦应存放在阴凉干燥的地方,避免阳光直射。

使用过的药物包装和药品遗留物应妥善处理,切勿随意丢弃,以免对环境造成污染。

七、结语奈玛特韦利托那韦是一种重要的抗艾滋病药物,具有较好的治疗效果。

每周只需注射一次,3个月即可轻松减掉10斤肥肉能让你管住嘴的减肥神药真的来了 临床大发现

每周只需注射一次,3个月即可轻松减掉10斤肥肉能让你管住嘴的减肥神药真的来了  临床大发现

每周只需注射一次,3个月即可轻松减掉10斤肥肉。

能让你管住嘴的减肥神药真的来了临床大发现“管住嘴,迈开腿”简简单单六个字,就道出了减肥的真谛。

然而,面对那么多的美食诱惑,光这前三个字就足以让无数人的减肥大业半途而废了。

不过,好消息来了!最近,肥胖研究领域中的著名期刊《糖尿病,肥胖和代谢》杂志刊登的一项临床研究[1]显示,诺和诺德公司开发的索马鲁肽,可以抑制食欲,让你轻松“管住嘴”。

只需一周注射1次,连续注射12周后,就可减重10斤!而且,在这减轻的体重中,主要还是体内的脂肪组织,药物对除脂肪以外的去脂体重影响很小。

不光有效,还很安全!这项研究的通讯作者,来自英国利兹大学的John Blundell 教授表示,“索马鲁肽的作用是非常令人惊讶的,我们在12周内就观察到了其他减肥药物需要6个月才能达到的效果。

它减少了饥饿感和食欲,让患者能更好地控制饮食摄入。

”[2] John Blundell教授索马鲁肽(Semaglutide)本身是一款针对2型糖尿病的降糖药,主要成分为胰高血糖素样肽-1(GLP-1)类似物。

GLP-1是一种由小肠分泌的激素,在血液中葡萄糖水平升高时促进胰岛素的合成和分泌。

GLP-1进入人体后很容易被酶降解,天然的GLP-1半衰期仅有几分钟,所以,为了让它更长久的工作,研究人员会对它进行一些结构上的改造,在保留功能的同时不那么容易被酶降解。

这样得到的GLP-1类似物药物,比如大名鼎鼎的利拉鲁肽,可以将注射频率减缓到每天1~2次。

而索马鲁肽可以说是它们的“升级版”,在经过改造后,它的半衰期可延长至大约1周,因此注射一次的效果可以维持大约一周的时间[3],对于患者来说更方便。

在不久前公布的全球大型III期临床试验中,索马鲁肽表现优秀,既能控制血糖,还可以保护心血管,这为它在上周赢得了FDA内分泌及代谢药物专家咨询委员会16:0的支持率,不出意外的话,索马鲁肽上市在即[4]。

不少分析人士预测它未来十年内的销售峰值将超百亿,成为治疗2型糖尿病中最好的降糖药。

veronal分子式

veronal分子式

veronal分子式Veronal是一种具有镇静催眠作用的化合物,其化学名称为diethylbarbituric acid。

Veronal的分子式为C8H12N2O3,其结构由一个吡咯环与两个乙醇基和一个氨基组成。

Veronal是属于巴比妥类药物的一种,用于治疗失眠和焦虑。

它通过抑制中枢神经系统的活动来产生镇静和催眠的效果。

Veronal的作用机制是增强γ-氨基丁酸(GABA)的抑制性神经递质的作用,从而减少神经细胞之间的兴奋性传导。

这种化合物还具有降低体温和抗惊厥作用。

Veronal的应用范围很广,除了用于治疗失眠和焦虑外,它还可以作为麻醉剂使用。

在过去的几十年里,Veronal在医学上被广泛使用。

然而,随着新的镇静催眠剂的问世,Veronal的使用逐渐减少。

尽管其镇静催眠作用被广为接受,但Veronal也存在一些副作用和风险。

长期使用Veronal可能会导致依赖性和药物滥用问题。

此外,过量使用Veronal可能会引起中枢神经系统的抑制,导致昏迷、呼吸抑制和心律失常等严重并发症。

为了确保安全和准确使用Veronal,医生必须根据患者的具体情况来确定剂量和使用方法。

对于那些有过敏史或存在其他健康问题的患者,Veronal可能不适合使用。

此外,与其他药物的相互作用也必须考虑。

总的来说,Veronal是一种用于治疗失眠和焦虑的药物,其分子式为C8H12N2O3。

它通过增强GABA的抑制性作用来产生镇静催眠效果。

然而,Veronal的使用必须在医生的监督下进行,以确保安全和有效性。

对于任何对Veronal感兴趣的人,最好在咨询医生之前了解该药物的详细信息。

【注】以上所提供的信息仅供参考,不代表医学建议。

如果需要使用Veronal 或其他药物,请咨询专业医生以获取准确的诊断和治疗方案。

不同分期恶性肿瘤患者外周血凝血功能指标、NLR检测及其临床意义

不同分期恶性肿瘤患者外周血凝血功能指标、NLR检测及其临床意义

病变的相关性分析[J].医学临床研究,2020,37(5):680-682.[17]Medina-Leyte DJ,Zepeda-García O,Domínguez-Pérez M,et al.En-dothelial dysfunction,inflammation and coronary artery disease:po-tential biomarkers and promising therapeutical approaches [J].Int J Mol Sci,2021,22(8):3850.[18]Kwon Y ,Kim M,Kim Y ,et al.EGR3-HDAC6-IL -27axis mediatesallergic inflammation and is necessary for tumorigenic potential of cancer cells enhanced by allergic inflammation-promoted cellular in-teractions [J].Front Immunol,2021,12(1):680441.[19]Nie F,Zhang Q,Ma J,et al.Schizophrenia risk candidate EGR3is anovel transcriptional regulator of RELN and regulates neurite out-growth via the Reelin signal pathway in vitro [J].J Neurochem,2021,157(6):1745-1758.[20]Shin SH,Kim I,Lee JE,et al.Loss of EGR3is an independent riskfactor for metastatic progression in prostate cancer [J].Oncogene,2020,39(36):5839-5854.[21]Hua Y ,Wang H,Ye Z,et al.An integrated pan-cancer analysis ofidentifying biomarkers about the EGR family genes in human carci-nomas [J].Comput Biol Med,2022,148(1):105889.(收稿日期:2023-09-18)不同分期恶性肿瘤患者外周血凝血功能指标、NLR 检测及其临床意义赵娜1,赵宁2,申晓楠1,苗雨莉11.通用环球西安西航医院检验科,陕西西安710021;2.西安医学院药学院,陕西西安710021【摘要】目的探讨不同分期恶性肿瘤患者外周血凝血功能指标、中性粒细胞/淋巴细胞比值(NLR)检测及其临床意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Product Name:
Vicriviroc maleate CAS No.:
599179-03-0
Product Data Sheet
Cat. No.:
HY-17377MWt:
649.70Formula:
C32H42F3N5O6Purity :
>98%
Solubility:Mechanisms:Biological Activity:
Pathways:GPCR/G protein; Target:CCR
Pathways:Immunology/Inflammation; Target:CCR
DMSO Ethanol
g y Vicriviroc maleate(Sch-417690) is a CCR5 antagonist with IC50 of 0.91 nM in clinical development
for the treatment of HIV-1.
IC50 value: 0.91 nM
Target: CCR5Two phase I studies were conducted to assess the safety of Vicriviroc. Vicriviroc maleate is currently in late-stage clinical development as part of a ritonavir-boosted protease inhibitor regimen for HIV-1-infected individuals. In clinical studies, Vicriviroc has demonstrated potent and durable virologic suppression, immunologic activity, and generally favorable tolerability.References:
[1]. Edward O'Mara, Claudia Kasserra, John Robert Huddlestone,et al. Effect of Vicriviroc on the QT/Corrected QT Interval and Central Nervous System in Healthy Subjects. Antimicrob Agents
Chemother. 2010; 54(6): 2448-2454.[2]. Sanjay Bhattacharya, Husam Osman. Novel targets for anti-retroviral therapy. Journal of pp g y g y y
[]j y y g py
Infection. 2009,59(6): 377-386.[3]. Maltêz, Fernandoa; Doroana, Manuelab; Branco, Teresac et al. Recent advances in
antiretroviral treatment and prevention in HIV-infected patients. Current Opinion in HIV & AIDS.
2011 ,6:S21-S30.[4]. Edward O'Mara, Claudia Kasserra, John Robert Huddlestone, et al . Expand+Effect of Vicriviroc on the QT/Corrected QT Interval and Central Nervous System in Healthy Subjects. Antimicrob.
Agents Chemother. 2010, 54 (6): 2448-2454....
Caution: Not fully tested. For research purposes only
Medchemexpress LLC
18 W i l k i n s o n W a y , P r i n c e t o n , N J 08540,U S A
E m a i l : i n f o @m e d c h e m e x p r e s s .c o m W e b : w w w .m e d c h e m e x p r e s s .c o m。

相关文档
最新文档