(竞赛)级数-新

合集下载

大学数学竞赛讲义(全套)

大学数学竞赛讲义(全套)

大学数学竞赛讲义(全套)目录1. 引言2. 基础知识3. 解题技巧4. 常用公式和定理5. 典型例题分析6. 高级题目解析7. 经典题目选编8. 复与总结9. 参考资料引言本讲义旨在为大学数学竞赛的参与者提供全面且系统的资料,帮助他们更好地理解和应用数学知识,提高解题能力。

针对大学数学竞赛的特点,本讲义注重理论与实践相结合,从基础知识到高级题目的解析,包括了大量的典型例题和经典题目的选编。

基础知识这一部分主要介绍大学数学竞赛中常用的基础知识,包括数列与级数、函数与极限、微积分与微分方程等内容。

通过对基础知识的系统梳理和深入讲解,帮助读者打下扎实的数学基础。

解题技巧解题技巧是参加竞赛的重要因素之一。

本部分将介绍一些解题技巧和策略,包括快速推理、巧妙变形、逆向思维等手段,以帮助读者在竞赛中找到解题的突破口。

常用公式和定理在竞赛中,熟练掌握一些常用的公式和定理可以提高解题速度和准确性。

本部分将列举一些常用公式和定理,并给出简洁的证明,供读者参考和应用。

典型例题分析通过对一些典型例题的分析和解答,帮助读者更好地理解和掌握数学竞赛中的解题思路和技巧。

每个例题分析都将包括题目的背景、解题思路和详细的解答过程。

高级题目解析本部分将涉及一些较为复杂和难度较高的数学题目的解析。

这些题目通常考察更深入的数学理论和技巧,通过对高级题目的解析,读者可以提升自己的数学水平和解题能力。

经典题目选编在这一部分,我们将挑选一些经典的数学竞赛题目进行选编,并给出详细的解答和解题思路。

这些题目可以帮助读者更全面地了解和掌握数学竞赛中常见的题型和解题方法。

复与总结复和总结是巩固和提高知识的关键环节。

本部分将提供一些复和总结的方法和技巧,帮助读者全面回顾已学知识,并进行有效的复和巩固。

参考资料本讲义涵盖了大量的数学知识和解题技巧,但仍然无法穷尽数学竞赛的广度和深度。

推荐一些经典的参考资料,供读者进一步深入研究和研究。

以上为《大学数学竞赛讲义(全套)》的大致目录和简介。

级数知识点总结竞赛

级数知识点总结竞赛

级数知识点总结竞赛1. 级数的概念级数是一种特殊的数列,它由无穷个项的和组成。

级数的一般形式如下所示:\[ a_1 + a_2 + a_3 + \cdots + a_n + \cdots \]其中\(a_1, a_2, a_3, \cdots\)为级数的各项。

级数的前n项和为\(S_n\),表示为:\[ S_n = a_1 + a_2 + a_3 + \cdots + a_n \]级数之和为级数的全体项之和,当级数的和存在并有限时,称级数收敛;当级数的和不存在或为无穷大时,称级数发散。

2. 级数的性质级数具有一些重要的性质,包括线性性质、级数和的比较性质、级数的绝对收敛性等。

(1) 线性性质:级数之和和级数之差仍然是级数,级数的和等于各项和的和。

(2) 级数和的比较性质:如果级数a和级数b满足某种关系,则它们的和也满足相同的关系。

(3) 级数的绝对收敛性:如果级数的各项的绝对值组成的级数收敛,那么级数原来的级数也收敛。

3. 级数收敛性的判定方法级数收敛性的判定方法有很多种,主要包括比较判别法、比值判别法、根值判别法、积分判别法和审敛变换等。

接下来我们分别介绍这些方法。

(1) 比较判别法:比较判别法是通过比较级数的每一项与已知级数的每一项大小关系来判断级数的收敛性。

如果级数的每一项小于已知级数的对应项,并且已知级数收敛,则原级数也收敛。

如果级数的每一项大于已知级数的对应项,并且已知级数发散,则原级数也发散。

(2) 比值判别法:比值判别法是通过求级数的各项之比的极限来判定级数的收敛性。

具体判定条件为:如果级数\(\frac{a_{n+1}}{a_n}\)的极限存在并小于1,则级数收敛;如果\(\frac{a_{n+1}}{a_n}\)的极限存在且大于1或无穷大,则级数发散。

(3) 根值判别法:根值判别法是通过求级数的各项绝对值的n次方根的极限来判定级数的收敛性。

具体判定条件为:如果级数\((a_n)^\frac{1}{n}\)的极限存在并小于1,则级数收敛;如果\((a_n)^\frac{1}{n}\)的极限存在且大于1或无穷大,则级数发散。

大学生数学竞赛考试大纲

大学生数学竞赛考试大纲

中国大学生数学竞赛大纲(初稿)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。

一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。

“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。

二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。

(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下:I、数学分析部分一、集合与函数1.实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理.2. 口2上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、口2上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在口〃上的推广.3.函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质.二、极限与连续1.数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).2.数列收敛的条件々@皿卜丫准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限lim(1 + i)n = e及其应用.n3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限lim.=1, lim(1 + :)% = e 及其应用,计算一元函数极限的各种方法,无穷小量与无穷大置0阶的比较7°记号O与。

的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.4.函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性)有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).三、一元函数微分学1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.2.微分学基本定理:Fermat定理,Rolle定理,Lagrange定理,Cauchy定理,Taylor 公式(Peano余项与Lagrange余项).3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital)法则、近似计算.四、多元函数微分学1.偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor公式.2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).4.极值问题(必要条件与充分条件),条件极值与Lagrange乘数法.五、一元函数积分学1.原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分:1R(cos x,sin x)dx型,J R(x, 7ax2 + bx + c)dx型.2.定积分及其几何意义、可积条件(必要条件、充要条件:Z 3A x <£)、可积函数i i 类.3.定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理.4.无限区间上的广义积分、Canchy收敛准则、绝对收敛与条件收敛、f(x)非负时』.f (x)dx的收敛性判别法(比较原则、柯西判别法)、Abel判别法、Dirichlet判别法、无界函数广义积分概念及其收敛性判别法.5.微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.六、多元函数积分学1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换).2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).3.重积分的应用(体积、曲面面积、重心、转动惯量等).4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.5.第一型曲线积分、曲面积分的概念、基本性质、计算6.第二型曲线积分概念、性质、计算;Green公式,平面曲线积分与路径无关的条件.7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke公式,两类线积分、两类面积分之间的关系.七、无穷级数1.数项级数级数及其敛散性,级数的和,Cauchy准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz判别法;一般项级数的绝对收敛、条件收敛性、Abel判别法、Dirichlet判别法.2. 函数项级数函数列与函数项级数的一致收敛性、Cauchy准则、一致收敛性判别法(M-判别法、Abel判别法、Dirichlet判别法)、一致收敛函数列、函数项级数的性质及其应用.——2——3.幕级数幕级数概念、Abel定理、收敛半径与区间,幕级数的一致收敛性,幕级数的逐项可积性、可微性及其应用,幕级数各项系数与其和函数的关系、函数的幕级数展开、Taylor级数、Maclaurin 级数.4.Fourier 级数三角级数、三角函数系的正交性、2及21周期函数的Fourier级数展开、Beseel不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理.11、高等代数部分一、多项式1.数域与一元多项式的概念2.多项式整除、带余除法、最大公因式、辗转相除法3.互素、不可约多项式、重因式与重根.4.多项式函数、余数定理、多项式的根及性质.5.代数基本定理、复系数与实系数多项式的因式分解.6.本原多项式、Gauss引理、有理系数多项式的因式分解、Eisenstein判别法、有理数域上多项式的有理根.7.多元多项式及对称多项式、韦达(Vieta)定理.二、行列式1. n级行列式的定义.2. n级行列式的性质.3.行列式的计算.4.行列式按一行(列)展开.5.拉普拉斯(Laplace)展开定理.6.克拉默(Cramer)法则.三、线性方程组1.高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解.2. n维向量的运算与向量组.3.向量的线性组合、线性相关与线性无关、两个向量组的等价4.向量组的极大无关组、向量组的秩.5.矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.6.线性方程组有解判别定理、线性方程组解的结构.7.齐次线性方程组的基础解系、解空间及其维数四、矩阵1.矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.2.矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系3.矩阵的逆、伴随矩阵、矩阵可逆的条件.4.分块矩阵及其运算与性质.5.初等矩阵、初等变换、矩阵的等价标准形.6. 分块初等矩阵、分块初等变换.五、双线性函数与二次型1.双线性函数、对偶空间2.二次型及其矩阵表示.3.二次型的标准形、化二次型为标准形的配方法、初等变换法、正交变换法4.复数域和实数域上二次型的规范形的唯一性、惯性定理.5.正定、半正定、负定二次型及正定、半正定矩阵六、线性空间1.线性空间的定义与简单性质.2.维数,基与坐标.3.基变换与坐标变换.4.线性子空间.5.子空间的交与和、维数公式、子空间的直和.七、线性变换1.线性变换的定义、线性变换的运算、线性变换的矩阵2.特征值与特征向量、可对角化的线性变换.3.相似矩阵、相似不变量、哈密尔顿-凯莱定理.4.线性变换的值域与核、不变子空间.八、若当标准形1.九一矩阵.2.行列式因子、不变因子、初等因子、矩阵相似的条件.3.若当标准形.九、欧氏空间1.内积和欧氏空间、向量的长度、夹角与正交、度量矩阵.2.标准正交基、正交矩阵、施密特(Schmidt)正交化方法.3.欧氏空间的同构.4.正交变换、子空间的正交补.5.对称变换、实对称矩阵的标准形.6.主轴定理、用正交变换化实二次型或实对称矩阵为标准形7.酉空间.HI、解析几何部分一、向量与坐标1.向量的定义、表示、向量的线性运算、向量的分解、几何运算2.坐标系的概念、向量与点的坐标及向量的代数运算3.向量在轴上的射影及其性质、方向余弦、向量的夹角.4.向量的数量积、向量积和混合积的定义、几何意义、运算性质、计算方法及应用.5.应用向量求解一些几何、三角问题.二、轨迹与方程1.曲面方程的定义:普通方程、参数方程(向量式与坐标式之间的互化)及其关系.2.空间曲线方程的普通形式和参数方程形式及其关系 .3.建立空间曲面和曲线方程的一般方法、应用向量建立简单曲面、曲线的方程.4.球面的标准方程和一般方程、母线平行于坐标轴的柱面方程 .三、平面与空间直线1.平面方程、直线方程的各种形式,方程中各有关字母的意义.2.从决定平面和直线的几何条件出发,选用适当方法建立平面、直线方程.3.根据平面和直线的方程,判定平面与平面、直线与直线、平面与直线间的位置关系.4.根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程.四、二次曲面1.柱面、锥面、旋转曲面的定义,求柱面、锥面、旋转曲面的方程^2.椭球面、双曲面与抛物面的标准方程和主要性质,根据不同条件建立二次曲面的标准方程 .3.单叶双曲面、双曲抛物面的直纹性及求单叶双曲面、双曲抛物面的直母线的方法.4.根据给定直线族求出它表示的直纹面方程,求动直线和动曲线的轨迹问题.五、二次曲线的一般理论1.二次曲线的渐进方向、中心、渐近线.2.二次曲线的切线、二次曲线的正常点与奇异点 .3.二次曲线的直径、共轭方向与共轭直径 .4.二次曲线的主轴、主方向,特征方程、特征根 .5.化简二次曲线方程并画出曲线在坐标系的位置草图.(二)中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1.导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2.基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性3.复合函数、反函数、隐函数以及参数方程所确定的函数的微分法4.高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5.微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理6.洛必达(L’ Hospital)法则与求未定式极限.7.函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8.函数最大值和最小值及其简单应用.9 .弧微分、曲率、曲率半径.三、一元函数积分学1 .原函数和不定积分的概念.2 .不定积分的基本性质、基本积分公式.3 .定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz )公式.4 .不定积分和定积分的换元积分法与分部积分法.5 .有理函数、三角函数的有理式和简单无理函数的积分.6 .广义积分.7 .定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1 .常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等2 .变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli )方程、全微分方程.3 .可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:y (n )= f (x ), y 〃= f (x , y '), y 〃 = f (y , y ').4 .线性微分方程解的性质及解的结构定理.5 .二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程6 .简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7 .欧拉(Euler )方程.8 . 微分方程的简单应用五、向量代数和空间解析几何1 .向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积2 .两向量垂直、平行的条件、两向量的夹角.3 .向量的坐标表达式及其运算、单位向量、方向数与方向余弦4 .曲面方程和空间曲线方程的概念、平面方程、直线方程.5 .平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和 点到直线的距离.6 .球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次 曲面方程及其图形.7 .空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程六、多元函数微分学1 .多元函数的概念、二元函数的几何意义.2 .二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质3 .多元函数偏导数和全微分、全微分存在的必要条件和充分条件4 .多元复合函数、隐函数的求导法.5 .二阶偏导数、方向导数和梯度.6 .空间曲线的切线和法平面、曲面的切平面和法线.7 .二元函数的二阶泰勒公式.8 .多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幕级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幕级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幕级数的和函数的求法.7.初等函数的幕级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-1,1]上的傅里叶级数、函数在[0,1]上的正弦级数和余弦级数。

数学竞赛必考知识点总结

数学竞赛必考知识点总结

数学竞赛必考知识点总结一、基本概念与基本操作1. 整数2. 质数3. 最大公约数和最小公倍数4. 分数5. 百分数6. 有理数7. 实数8. 绝对值9. 分解质因数10. 基本运算11. 去分母12. 乘法公式、分配律、结合律、交换律13. 化简14.幂15.开方16.约分17. 合并同类项18. 海伦公式19. 二次根式20. 对数二、代数与方程式1. 代数式2. 一元一次方程3. 一元一次方程组4. 二元一次方程5. 一元二次方程6. 二元二次方程7. 一元一次不等式8. 解方程组的方法9. 分式方程10. 绝对值方程11. 方程的根与系数的关系12. 各类方程应用题13. 根据方程求解对应的函数表达式三、函数1. 函数的概念2. 函数的性质3. 一次函数4. 二次函数5. 幂函数6. 对数函数7. 指数函数8. 函数的求解9. 函数的图像和性质10. 函数的变化规律11. 函数的定义域和值域12. 函数的图像与特性13. 函数关系的应用题14. 不等式的解法四、三角函数1. 角的概念2. 三角函数的概念3. 正弦、余弦、正切、余切函数的性质4. 三角函数的图象及性质5. 角度制和弧度制的互换6. 锐角三角函数的定义7. 三角函数的基本关系8. 三角函数的图像与性质9. 三角函数的定积分10. 三角函数的方程11. 三角函数的不等式12. 三角函数的应用题五、平面向量与空间向量1. 向量的概念2. 向量的性质3. 向量的线性运算4. 向量的数量积5. 向量的夹角与垂直6. 向量的叉乘7. 平面向量的运算8. 空间向量的坐标表示9. 空间向量的数量积10. 空间向量的叉乘11. 平面与立体几何相关题目六、集合与函数1. 集合的概念2. 集合间的关系3. 集合的基本运算4. 集合的应用题5. 映射的概念6. 映射的类型7. 函数的概念8. 函数的性质9. 函数的图像与性质10. 函数的应用题七、数列与级数1. 递推数列2. 常数列3. 等差数列4. 等比数列5. 数列的性质6. 等差数列的和7. 等比数列的和8. 求和公式的应用9. 数列应用题10. 级数的性质11. 级数的求和八、概率与统计1. 随机事件与概率的概念2. 事件的概率3. 条件概率与事件的独立性4. 随机变量与概率分布5. 二项分布6. 正态分布7. 统计图表的绘制与分析8. 样本调查与结果的推论九、解析几何1. 点、直线、平面2. 直线与平面的位置关系3. 球面、圆柱面、圆锥面4. 圆锥曲线的方程与性质5. 空间曲线与曲面6. 几何方程应用题总结:数学竞赛知识点包括基本概念与基本操作、代数与方程式、函数、三角函数、平面向量与空间向量、集合与函数、数列与级数、概率与统计、解析几何等内容。

数学竞赛无穷级数(习题)

数学竞赛无穷级数(习题)

58. 设 f .x/ 是以 2 为周期的连续函数,其傅立叶系数为 an、bn(n D 0; 1; 2; : : :). 又

1 ∫ xCh
gh.x/ D 2h
f .t/ dt :
xh
试证明:(1) gh.x/ 也是以 2 为周期的周期函数,并且 gh.x/ 具有连续的导数;
(2) 求 gh.x/ 的以 2 为周期的傅立叶级数并说明此傅立叶级数在 . 1; C1/ 上收敛于
44.

p
D
X 1
nD0
.4n
4n
,q C 1/Š
D
X 1
nD0
.4n
4n
,计算 C 3/Š
p q
.
45. 计算 lim .1 x/3 P1 n2xn .
x!1
nD1
ˇˇf
46. .x0/
f设.x00f/ˇˇ.x6/
满足 kjx0
条 件 : 对 于 任 意 x0 与 x00j. 对于给定的 x0,定义
51. 设 f .x/ D arcsin.sin x/,求 f .x/ 的以 2 为周期的傅立叶级数,并写出此傅立叶级 数的收敛和。
52. 设 f .x/ D x2, 6 x 6 . 试将 f .x/ 展开成以 2 为周期的傅立叶级数,并写出 它的收敛和。
53. 设 f .x/ D x2,0 6 x 6 2 . 试将 f .x/ 展开成以 2 为周期的傅立叶级数,并写出 它的收敛和。
.
X 1 .2n 1/ŠŠ 1 Án
7. 1 C
.2n/ŠŠ 2 D
.
nD1
(
8.
设 f .x/ D
x C 1; 0;
当 当

数学竞赛无穷级数(一)

数学竞赛无穷级数(一)

n!1an 1
an 1
1
lim
ˇˇf .x/ˇˇ dx D 0. 记 un
f .x/ dx. 则无穷级数 P un 的敛散性
n!1 an
an
nD1
b
与瑕积分 f .x/ dx 的敛散性相同。
f .x/ dx 的敛散性相同。
nDa
a
3. 广义积分与无穷级数的收敛性的联系
定理 5 设 a 为一整数,函数 f .x/ > 0 在 Œa; C1/ 上单调减少,un
1
C1
f .n/. 则无穷级数 P un 的敛散性与广义积分
f .x/ dx 的敛散性相同。
nDa
a
例4
当实数
p
取何值时,级数
1
P
D
lim
n!1
anC1 .n C 1/Š.an nŠ
.n C 1/nC1
nn
D
lim
n!1
ann .n C 1/n
a
a
D lim
n!1
1
C
1 n
nD e:
所以当 a < e 时,原级数收敛;当 a > e 时,发散。
例1

a
>
0
为常数,试判断级数
1
P
nD1
an nŠ nn
的敛散性。
解 注意到
D
lim
n!1
anC1 .n C 1/Š.an nŠ
.n C 1/nC1
nn
D
lim
n!1
ann .n C 1/n
a
a
D lim
n!1
1
C
1 n
nD e:

高思学校竞赛数学课本一年级

高思学校竞赛数学课本一年级

“数学就像一首诗,既有优美的旋律,又有深邃的内涵。”
这句话将数学比喻为一首诗,让学生们感受到数学的诗意和美感。数学中的公 式和定理就像诗歌中的词语和句子,它们既有简洁明了的表达方式,又有深刻 的内涵和意义。
“数学就像一座山,只有攀登到山顶,才能看到更美丽的风景。”
这句话鼓励学生不断攀登数学的巅峰,让他们明白只有通过不断的学习和努力, 才能达到更高的水平,看到更美丽的风景。
内容摘要
这本书还注重数学思维的培养。在每个章节中,都会介绍一些重要的数学思想和方法,如归纳、 演绎、类比等。这些思想和方法不仅有助于解决数学问题,还对其他学科的学习和日常生活都有 所帮助。 《高思学校竞赛数学课本一年级》是一本全面、系统、深入的小学一年级数学竞赛教材。它不仅 涵盖了小学一年级数学的主要知识点,还通过丰富的例题和练习题帮助学生巩固知识、提高技能。 这本书还注重培养学生的数学思维和解决问题的能力,为学生的未来学习和发展打下坚实的基础。
精彩摘录
《高思学校竞赛数学课本一年级》是一本深受广大学生喜爱的数学教材。这本 书的内容涵盖了小学一年级数学竞赛的所有知识点,并且通过生动有趣的故事 和实例,让学生们在轻松愉快的氛围中学习数学知识。
在这本书中,有许多精彩的摘录,它们不仅展示了数学的魅力和趣味性,还为 学生们提供了学习和思考的方向。以下是一些摘录的例子:
“数学就像一座宝藏,只有通过不断的探索和挖掘,才能找到其中的宝藏。”
这句话鼓励学生探索数学,让他们明白数学不是枯燥无味的,而是一座充满宝 藏的宝库。只有通过不断的学习和思考,才能发现数学的奥秘和美丽。
“数学就像一扇门,打开它就能看到更广阔的世界。”
这句话让学生们明白数学是一种工具,它可以帮助我们打开通向更广阔世界的 大门。通过学习数学,我们可以更好地理解和解决生活中的各种问题,从而拓 宽我们的视野和思维方式。

高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案高等数学竞赛试题一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 3 \)的顶点坐标是:A. (2, -1)B. (1, 0)C. (2, 1)D. (2, -1)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 3x}{3x} \)的值是:A. 1B. 0C. 3D. 无法确定3. 曲线\( y = x^3 - 2x^2 + x \)在点(1,0)处的切线斜率是:A. 0B. -1C. 1D. 24. 以下哪个级数是发散的?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{\infty} \frac{1}{n} \)C. \( \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \)D. \( \sum_{n=1}^{\infty} \frac{1}{2^n} \)5. 函数\( f(x) = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi \)6. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin x \)7. 已知\( \int_{0}^{1} x^2 dx = \frac{1}{3} \),求\( \int_{0}^{1} x^3 dx \)的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( 1 \)8. 以下哪个是二阶常系数线性微分方程?A. \( y'' + 3y' + 2y = 0 \)B. \( y' + y = x^2 \)C. \( y'' + y' = 0 \)D. \( y'' - 2y' + y = \sin x \)9. 以下哪个是二元函数的偏导数?A. \( \frac{\partial^2 f}{\partial x \partial y} \)B. \( \frac{\partial f}{\partial x} \)C. \( \frac{\partial f}{\partial y} \)D. \( \frac{d^2f}{dx^2} \)10. 已知\( \lim_{x \to \infty} \frac{f(x)}{x} = 0 \),那么\( f(x) \)是:A. 常数B. 有界函数C. 无穷小量D. 无穷大量二、填空题(每题4分,共20分)11. 函数\( f(x) = \sqrt{x} \)的定义域是_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)证明:数列
xn
1
1 2

1 n
ln(1
n)
收敛;
(3)求
lim
n
1
ln n
1 1 … 2
1 n
解:(3)
1 1 … 1 ln(1 n) = k
2
n
1 1 … 1
2
n
ln n
1 1 … 1 ln(1 n) ln(1 n)
2
n
ln n
0 + lim ln(1 n) lim ln(1 x) 1
n1
仍收敛,且其和不变.
注: (1)若加括号后所得级数收敛,原级数不一定收敛.
级数收敛
加括号后所得级数收敛
(2)若加括号后所得级数发散,则原级数一定发散。
(3)正项级数收敛
加括号后所得级数收敛
性质4. (级数收敛的必要条件)
若级数
收敛, 则必有
二、几个最常见级数的敛散性
1. 等比级数

q
1
时收敛
,和为
(2) 当 l = 0
(3) 当 l =∞
定理4 . 比值判别法 [与根值判别法]
对正项级数
,若
lim un1 n un
,或Biblioteka lim nnun
,

(1) 当 1 时, 级数收敛 ;
(2) 当 1 或 时, 级数发散 .
(3) 当=1 时,级数可能收敛也可能发散.
补充
定理5 . 正项积分判别法
an n1 sn2
的敛散性。
解:
an
n1 sn2
的前n 项之和 (注意: sn sn1 )
Tn
a1 s12
a2 s22
a3 s32

an sn2
a1 s12
s2
s1 s22
s3
s32
s2

sn
sn1 sn2
a1 s12
s2 s1 s1 s2
s3 s2 s2s3

sn sn1 sn1sn
a 1q
;
q 1 时发散 .
2. 调和级数
发散 .
3. p — 级数
1
n1 n p
, 当 p > 1 时收敛,当 p 1
发散。
例如:
n1
1 n2

1
n1 n n
都收敛; 1 , 1 都发散。 n1 n n1 n
三、正项级数敛散性的判别法
定理 1. 正项级数
收敛
部分和
定理2 (比较判别法——非极限形式)
发散。
例3 解:
lim
n
1
n2 ln 3 n
en1 3n1 2n1
en 3n 2n
en
, n1 3n 2n
,
3
n1
1 n
n 1
sin 3n
lim n
e(3n 2n ) 3n1 2n1
lim n
e(1 ( 2 )n )
3 3 2( 2 )n
e 1 3
3
en
n1 3n 2n
收敛。
例3
1
n2 ln 3 n
en
, n1 3n 2n
,
3
n1
1 n
n 1
sin 3n
解:
lim
n
3
1 n
n
sin
1 3n
lim n
3
1 n
n
1 3n
lim n
1
1 3n
n
1
e 3 0
例4
n1
n1 3n
sin2
n
解:
0
n1 3n
sin
2
n
n1 3n

un
n1 3n
,
lim un1 n un
n
an
0
1
n 较大后,an 1
n 较大后, an2 an
例6 对参数 p,讨论级数
解:
ln n
p 1 时, lim n p n 1
ln n
n2 n p
的敛散性。
原级数发散;
np
ln n
p 1 时,取 q :
p q 1
lim
n
np 1
lim
n
ln n n pq
0
nq
原级数收敛;
补充 若
a e 原级数发散; a e 原级数收敛;
ae ?
(3)
n1
an n
n
n
!,
(a
0)
解:
un
an n
n
n
!
,un1
an1 (n 1) (n 1) n1
!
,
lim un1 n un
lim n
a (1 1 )n
a e
ae
n
(1
1 )n n
单调增加,lim(1 n
1 )n e n
un1 un
收敛 , 则称
绝对收敛 ;

收敛 , 但
发散, 则称
条件收敛。
四. 重要结论:
(1)n1
n1
1 np
p 0 时, 发散 ; 0 p 1 时, 条件收敛; p 1 时, 绝对收敛。
例1 判别敛散性;如收敛,是绝对收敛还是条件收敛 ?
(1)
sin n
n1 n4
解:
sin n
n4
1 n4
,而
(n 1)an1(an … a2 a1) a1 B
(an … a2 a1) A a1 B
第二部分、绝对收敛与条件收敛
一、任意项级数敛散性的判别法
1. 若
收敛, 则
一定收敛 ;

发散, 则
不一定发散 .
2. 如果
的发散是用比值法或根值法判断
出来的,则
一定发散。
二 .交错级数的莱布尼兹判别法
无穷级数
内容提要
第一部分、数项级数的敛散性
一、常数项级数的概念与主要性质
1. 级数收敛与发散性的定义

前 n 项的部分和为
,若
存在,则称
收敛于 S ,否则称级数发散 。
2. 主要性质
性质1.
(1) 若 un , vn 都收敛,则 ( un vn )
n1
n1
n1
一定收敛.
(2) 若 un , vn
解:(1) 1 ln(1 1 ) 0
n
n
1 ln(1 1 )
n
n
1
n2
x ln(1 x) = 1
x0
x2
2
n1
1 n
ln(1
1 n
)
收敛。
例5
(1)讨论
n1
1 n
ln(1
1 n
)
的敛散性;
(2)证明:数列
xn
1
1 2

1 n
ln(1
n)
收敛;
解:(2)
n1
1 n
ln(1
1 n
n1
n1
n1
解: xn yn zn
0 yn xn zn xn
由已知得 (zn xn ) 收敛,
n1
( yn xn ) 收敛,
n1
yn ( yn xn ) xn 收敛。
n1
n1
例4 设 an 0 (n 1,2, ……) , sn a1 a2 … an
讨论级数
n1
n1
中一个收敛一个发散 ,
则 ( un vn ) 一定发散 .
n1
性质2. 级数前面有限项不影响敛散性 ! 在级数前面改变有限项, 不改变级数的敛散性.
在级数前面去掉有限项, 不改变级数的敛散性.
在级数前面增加有限项, 不改变级数的敛散性。
性质3.
如果 un 收敛 ,则任意加括号后所得级数
n ln n
x ln x
例6 证:
已知数列 { nan } 收敛,级数
也收敛,证明级数 an 收敛.
n1

nan A
n(an an1)
n2
2(a2 a1) + 3(a3 a2 ) + … + n(an an1) + (n 1)(an1 an )
B

(n 1)an1an an-1 … a2 2a1
若交错级数 (1)n1un
或 (1)nun , 其中un 0
满足:
n1
n1
1) un un1 ( n 1, 2, L );
2)
lim
n
un
0
,
则交错级数收敛 .
注:
不满足
lim
n
u
n
0
的交错级数
一定发散;
不满足 un un1 的交错级数 不一定发散。
三. 绝对收敛与条件收敛的概念
定义: 若
n1
收敛,
得:lim n
Sn
=
S
所以 Sn (b1 b0 ) (b3 b2 ) … (bn bn1) bn b0
bn Sn b0
lim
n
bn
S
b0
| bn | M
| anbn | Man
| anbn | 收敛
n1
anbn 收敛。
n1
例4

an
n1
条件收敛,极限
条件收敛,
求 的值的范围.
解:
(1)n
n1
1 n sin n
绝对收敛,
n1
1 n sin n
相关文档
最新文档