2009年广州高三数学一模理科数学试题答案

合集下载

广州市2009届高三第二次模拟考试(数学理)

广州市2009届高三第二次模拟考试(数学理)

2009年广州市普通高中毕业班综合测试(二)数学(理科)2009.4本卷共4页,21小题,满分150分。

考试用时120分钟。

一、选择题:本大题共8小题,每小题5分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如果复数22(3)(56)m m m m i -+-+是纯虚数,则实数m 的值为( )A . 0B . 2C . 0或3D .2或32.已知函数{(4),0(4),0()x x x x x x f x +<-≥= 则函数()f x 的零点个数为( )A . 1B . 2C . 3D . 43.已知全集U R =,集合{}37A x x =≤<,{}27100B x x x =-+<, 则()R C A B =I ( )A .(,3)(5,)-∞+∞UB .(,3)[5,)-∞+∞UC .(,3][5,)-∞+∞UD .(,3](5,)-∞+∞U4.命题“2,210x R x x ∃∈-+<”的否定是( )A .2,210x R x x ∃∈-+≥B .2,210x R x x ∃∈-+>C .2,210x R x x ∀∈-+≥D .2,210x R x x ∀∈-+<5.已知点(1,0)A ,直线:24l y x =-,点R 是直线l 上的一点。

若RA AP =uu r uu u r,则点P 的轨迹方程为( )A . 2y x =-B .2y x =C .28y x =-D .24y x =+6.函数()cos f x x x =的导函数()f x '在区间[,]ππ-上的图像大致是( )ABC D .7.现有4种不同颜色要对如图1所示的四个部分进行着色, 要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A .24种B .30种C .36种D .48种8.设直线l 与球O 有且只有一个公共点P ,从直线l 出发的两个半平面,αβ截球O 的两个截面圆的半径分别为1l αβ--的平面角为150o,则球O 的表面积为( )A .4πB .16πC .28πD .112π二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2009年广东省高考数学试卷(理科)含详解-推荐下载

2009年广东省高考数学试卷(理科)含详解-推荐下载

A.①和②
B.②和③
C..③和④
6.一质点受到平面上的三个力 F1, F2 , F3 (单位:牛顿)的作用而处于平衡状态.已知 F1, F2 成 600 角,
且 F1, F2 的大小分别为2和4,则 F3 的大小为
A.6
B.2
C. 2 5
7.2010 年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、
A.在 t1 时刻,甲车在乙车前面
C.在 t0 时刻,两车的位置相同
二、填空题:本大题共 7 小题,考生作答 6 小题,每小题 5 分,满分 30 分. (一)必做题(9~12题)
9.随机抽取某产品 n 件,测得其长度分别为 a1, a2 ,, an ,则图 3 所
示的程序框图输出的 s
.(注:框图中的赋值符号“=”也可以写成“←”“:=”)

12.已知离散型随机变量 X 的分布列如右表.若 EX 0 , DX 1 ,则
a
,b

(二)选做题(13 ~ 15 题,考生只能从中选做两题)
13.(坐标系与参数方程选做题)若直线
B. t1 时刻后,甲车在乙车后面
D. t0 时刻后,乙车在甲车前面
,s 表示的样本的数字特征是
l1
:
x 1 2t,
参考公式:锥体的体积公式V 1 sh ,其中 S 是锥体的底面积, h 是锥体的高 3
一、选择题:本大题共 8 小题,每小题 5 分,满分 40 分.在每小题给出的四个选项中,只有一项是符合 题目要求的.
1.巳知全集U R ,集合 M {x 2 x 1 2} 和 N {x x 2k 1, k 1, 2,}的关系的韦恩

广东省广州市番禺区2009年高考数学理科模拟试题一2009.3.4

广东省广州市番禺区2009年高考数学理科模拟试题一2009.3.4

广东省广州市番禺区2009年高考数学(理科)模拟试题(一)2009.3.4本试卷共4页,21小题,满分150分,考试时间120分钟.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{1,2,3,4},{|22,}P Q x x x R ==-≤≤∈,则P Q 等于 ( ).A .{1,2}B .{3,4}C .{1}D .{-2,-1,0,1,2} 2.复数21ii-的虚部是( ). A .-1 B .1 C .i D .i -3.已知函数2log ,0,()2,0.x x x f x x >⎧=⎨≤⎩ 若1()2f a =,则a =( )A .1- BC .1-D .1或4.若22)4sin(2cos -=-παα,则ααcos sin +的值为( ). A.2- B.2 C .12-D . 125.一个几何体的三视图如右图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形, 那么该几何体的侧视图的面积为( ).A .12B .32C .23D .6 6.如图,在一个长为π,宽为2的矩形OABC 内,曲线sin (0)y x x π=≤≤与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( ).A .1πB .2πC.4π D. 3π7. 一正方形两顶点为双曲线C 的两焦点,若另两顶点在双曲线C 上,则双曲线C 的离心率为( ).A.B. C.D. 以上答案均有可能8. 已知点(,)P a b 与点(1,0)Q 在直线0132=+-y x 的两侧,则下列说法正确的是( ) ① 0132>+-ba② 0≠a 时,ab有最小值,无最大值 ③ ,M R M +∃∈>恒成立④ 当且0>a 1≠a ,时0>b , 则1-a b的取值范围为(-12,(,)33∞-+∞ A .①② B .②③ C .①④ D .③④二.填空题:本大题共7小题,考生做答6小题,每小题5分, 共30分.(一)必做题(9~12题)9..统计1000名学生的数学模块(一)水平测试成绩,得到 样本频率分布直方图如右图示,规定不低于60分为及格, 不低于80分为优秀,则及格人数是 ; 优秀率为 .10. 某区10000名学生参加市高中数学必修模块水平测试(满分为150分),其成绩X 服从正态分布2(95,)N σ,若成绩在70~95分的人数有3800人,则成绩在120~150分的人数为.11.如图,海平面上的甲船位于中心O 的南偏西30与O 相距15海里的C 处.现甲船以25海里/小时的速度沿直线CB 去营救位于中心O 正东方向25海里 的B 处的乙船,甲船需要 小时到达B 处.12.如右的程序框图可用来估计圆周率π的值.设(1,1)CONRND - 是产生随机数的函数,它能随机产生区间(1,1)-内的任何一个数, 如果输入1200,输出的结果为943,则运用此方法,计算π的近 似值为 (保留四位有效数字)(二)选做题:(13~15题,考生只能从中选做两题)13.在直角坐标系中圆C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为______ __.频率A14.若不等式121x a x+>-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________.15.如图,EB 、EC 是⊙O 的两条切线,B 、C 是切点, A 、D 是⊙O 上两点,如果∠E =460,∠DCF =320, 则∠A 的大小为 .三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数x x x f 2sin 21)12(cos )(2++=π. (1)求)(x f 的最小正周期;(2)已知A 是ABC ∆的内角,37()()325f A f A π+-=,求sin cos A A +的值. 17.(本小题满分12分)某射击测试规则为:每人最多有3次射击机会,射手不放过每次机会,击中目标即终止射击,第i 次击中目标得4i -(123)i =,,分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.(1)求该射手恰好射击两次的概率;(2)该射手的得分记为ξ,求随机变量ξ的分布列及数学期望.18. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA PD AD ==,若E 、F 分别为线段PC 、BD 的中点. (1) 求证:直线EF // 平面PAD ; (2) 求证:平面PDC ⊥平面PAD ; (3) 求二面角B PD C --的正切值.19.(本小题满分14分)某公司为了应对金融危机,决定适当进行裁员.已知这家公司现有职工200人,每人每年可创利润10万元.根据测算,在经营条件不变的前提下,若裁员人数不超过现有人数的20%,则每裁员1人,留岗员工每人每年就能多创利润0.1万元;若裁员人数超过现有人数的20%,则每裁员1人,留岗员工每人每年就能多创利润0.12万元.为保证公司的正常运转,留岗的员工数不得少于现有员工人数的70%.为保障被裁员工的生活,公司要付给被裁员工每人每年2万元的生活费.设公司裁员人数为x ,公司一年获得的纯收入为y 万元.(注:年纯收入=年利润—裁员员工的生活费)(1) 求出y 与x 的函数关系式;(2) 为了获得最大的经济效益,该公司应裁员多少人?20..(本小题满分14分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为552,它的一个顶点恰好是抛物线241x y =的焦点. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若AF MA 1λ=,BF MB 2λ=,求21λλ+的值.21.(本小题满分14分)设数列{}n a 对一切正整数n 均有2121n n a a +=-,且0n a > ,如果1cos2a α=,(0,]8πα∈.(1)求2a ,3a 的值;(2)求数列{}n a ()n *∈N 的通项公式; (3)设数列{}n a 前n 项之积为n T ,试比较n T 与2π的大小,并证明你的结论.番禺区2009年高考数学(理科)模拟题(一)参考答案一、选择题 ABCD CABD二、填空题 9 . 800,20% (第一空2分,第二空3分), 10. 1200 11. 1.4 12.3.14313. 4sin ρθ= 14. (1,3) , 15. 99注:第14题用集合、不等式表示均可. 三、解答题 16. (1) x x x f 2sin 21)]62cos(1[21)(+++=π ……2分 ]2sin )6sin 2sin 6cos 2(cos 1[21x x x +-+=ππ )2sin 212cos 231(21x x ++=……4分 21)32sin(21++=πx ………5分 ∴22T ππ== ∴)(x f 的最小正周期为π ……6分 (2)由37()()325f A f A π+-=得111137sin(2)sin(2)sin 2123232225A A A ππ++-+=+= 则24sin 225A =, ……8分∴249(sin cos )1sin 225A A A +=+= ……9分由于0A π<<,则022A π<<,但24sin 2025A =>,则02A π<<,即A 为锐角, 从而sin cos 0A A +> ……11分因此 7sin cos 5A A +=. ……12分17.(1)设该射手第i 次击中目标的事件为(123)i A i =,,, 则()0.8()0.2i i P A P A ==,,…1分该射手恰好射击2次,则第1次没击中目标,第2次击中目标, 表示的事件为12A A , ……2分由于1A ,2A 相互独立,则 1212()()()0.20.80.16P A A P A P A ==⨯=. ……4分BA即该射手恰好射击两次的概率为0.16; ……5分 (2)ξ可能取的值为0,1,2,3. ……6分由于(0)P ξ==3121233()()()()(0.2)0.08P A A A P A P A P A === ……7分(1)P ξ==2121233()()()()(0.2)0.80.032P A A A P A P A P A ==⨯=; ……8分 (2)P ξ==1212()()()0.20.80.16P A A P A P A ==⨯=; ……9分1(3)()0.8P P A ξ=== ……10分则ξ的分布列为……11分故ξ的数学期望为00.00810.03220.1630.8 2.752E ξ=⨯+⨯+⨯+⨯=. ……12分18.(1)证明:连结AC ,在CPA ∆中EF //PA ……2分且PA ⊆平面PAD ,EF ⊄平面PAD ∴PAD EF 平面//………………………………………………………………………………………….4分 (2)证明:因为面PAD ⊥面ABCD 平面PAD面ABCD AD =CD AD ⊥所以,CD ⊥平面PAD CD PA ∴⊥………………………………………………………………………6分又2PA PD AD ==,所以PAD ∆是等腰直角三角形,且2π=∠APD即PA PD ⊥…………………………………………………………………………………………………………………….8分C DP D D =,且CD 、PD ⊆面ABCD ∴PA ⊥面PDC又PA ⊆面PAD 面PAD ⊥面PDC ……………………………………………………………..10分 (3)解:设PD 的中点为M ,连结EM ,MF ,则EM PD ⊥ 由(Ⅱ)知EF ⊥面PDC , EF PD ⊥ PD ⊥面EFM PDMF ⊥EMF ∠是二面角B PD C --的平面角……………………….12分Rt FEM ∆中,12EF PA == 1122EM CD a ==4tan 122EF EMF EM a ∠===故所求二面角的正切为2 ……14分另解:如图,取AD 的中点O , 连结OP ,OF . ∵PA PD =, ∴PO AD ⊥.∵侧面PAD ⊥底面ABCD ,PAD ABCD⋂=平面平面∴PO ABCD ∴⊥平面,而,O F 分别为,AD BD 的中点,∴//OF AB ,又ABCD 是正方形,故OF AD ⊥. ∵PA PD AD ==,∴PA PD ⊥,2a OP OA ==.以O 为原点,直线,,OA OF OP 为,,x y z 轴建立空间直线坐标系,则有(,0,0)2a A ,(0,,0)2a F ,(,0,0)2a D -,(0,0,)2a P ,(,,0)2a B a ,(,,0)2aC a -. ∵E 为PC 的中点, ∴(,,)424a a aE -.(1)易知平面PAD 的法向量为(0,,0)2a OF =而(,0,)44a aEF =-,且(0,,0)(,0,)0244a a aOF EF ⋅=⋅-=, ∴EF //平面PAD .(2)∵(,0,)22a a PA =-,(0,,0)CD a = ∴(,0,)(0,,0)022a aPA CD a ⋅=-⋅=,∴PA CD ⊥,从而PA CD ⊥,又PA PD ⊥,PDCD D =,∴PA PDC ⊥平面,而PA PAD ⊂平面, ∴平面PDC ⊥平面PAD(3)由(2)知平面PDC 的法向量为(,0,)22aa PA =-.设平面PBD 的法向量为(,,)n x y z =.∵(,0,),(,,0)22a aDP BD a a ==-,∴由0,0n DP n BD ⋅=⋅=可得002200aa x y z a x a y z ⎧⋅+⋅+⋅=⎪⎨⎪-⋅+⋅+⋅=⎩,令1x =,则1,1y z ==-, 故(1,1,1)n =-,∴cos ,2n PA n PA n PA⋅<>===即二面角B PD C --的余弦值为3二面角B PD C --的正切值为2. 本题还有其他解法,讲评时注意挖掘.19. 解:(1)当020020%x <≤⨯,(200)(100.1)2y x x x =-+-, 即20.182000y x x =-++, 3分 当20020%200(170%)x ⨯<≤⨯-时,2(200)(100.12)20.12122000y x x x x x =-+-=-++ 6分所以y 与x 的函数关系式为220.182000,040,N0.12122000,4060,N x x x x y x x x x ⎧-++<≤∈⎪=⎨-++<≤∈⎪⎩, 8分 (2)由220.1820000.1(40)2160y x x x =-++=--+,而040,N x x <≤∈,则40x =时,2160max y =; 10分 由220.121220000.12(50)2300y x x x =-++=--+而4060,N x x <≤∈,则50x =时,2300max y =; 12分 由于21602300<,则当50x =时,公司获利最大, 13分答:裁员50人时,公司获得最大的经济效益. 14分20..解:(1)设椭圆C 的方程为)0(12222>>=+b a by a x , ………1分抛物线方程化为y x 42=,其焦点为)1,0(,椭圆C 的一个顶点为)1,0(,即1=b , ………3分由55222=-==a b a a c e ,得52=a , ………5分 ∴椭圆C 的方程为1522=+y x . ……………6分 (2)由(1)得)0,2(F , …………………7分设),(11y x A ),(22y x B ,),0(0y M ,显然直线l 的斜率存在, 设直线l 的方程为)2(-=x k y , …………………8分代入1522=+y x ,并整理得 052020)51(2222=-+-+k x k x k , ………………9分 ∴2221222151520,5120k k x x k k x x +-=+=+. …………………10分又),(,),(022011y y x y y x -=-=,),2(,),2(2211y x BF y x AF --=--=, 由AF MA 1λ=,BF MB 2λ=,得),2(),(111011y x y y x --=-λ,),2(),(222022y x y y x --=-λ,∴2221112,2x x x x -=-=λλ, ……………………12分 ∴121212121212122()2102242()x x x x x x x x x x x x λλ+-+=+==----++. ………………14分21.(1)依题意:22cos221a α=-,则222cos 1a α=+=,222cos a α= 而(0,]8πα∈,又0n a >,所以2cos a α=, ………………1分同样可求得3cos 2a α=, ………………2分 (2)猜测2cos2n n a α-=,(n ∈N*) ………………4分①用数学归纳法证明:显然1n =时猜想正确, ………………5分 ②假设(n k k =∈N*)时猜想成立,即2cos2k k a α-=,则1n k =+时,∵2121k k a a +=-,∴212cos212k k a α+-=-,即22112cos22k k a α+-=,而0n a >故11(1)2coscos22k k k a αα+-+-==, ………………6分这就是说1n k =+猜想也成立,故对任意正整数n 都有2cos 2n n a α-=.…………7分(3)2n T π>………………9分证明: (0,]8πα∈,则321cos 2cos,cos cos,,cos cos04222n n ππαπαα-+≥≥⋅⋅⋅≥>, ………10分则n T 341cos cos cos cos 4222n ππππ+≥⋅⋅⋅∴23411112coscos cos cos sin 1222222sin 2sin 2sin 222n n n n n n n n n T ππππππππ++++⋅⋅⋅≥== ………11分设()sin g x x x =-,(0,)2x π∈,则()cos 10g x x '=-<,即()g x 为(0,)2π上的减函数,∴()(0)g x g <,故(0,)2x π∈时,sin x x <,………12分而1(0,)24n ππ+∈,∴110sin 22n n ππ++<<, ∴1102sin 222n nn n ππ++<<⨯ ………13分∴102sin 22nn ππ+<<,,则1122sin 2n n ππ+>,即2n T π>. ………14分。

2009年广州市普通高中毕业班综合测试(一)数学(理科)

2009年广州市普通高中毕业班综合测试(一)数学(理科)

2009年广州市普通高中毕业班综合测试(一)数 学(理 科) 2009.3一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数()x x f 2sin =的最小正周期为 A .πB.π2C. π3D. π42.已知z =i (1+i )(i 为虚数单位),则复数z 在复平面上所对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.某商场在国庆黄金周的促销活动中,对10月2号9时至14时 的销售额进行统计,其频率分布直方图如图1所示.已知9时 至10时的销售额为2.5万元,则11时至12时的销售额为 A . 6万元 B . 8万元C . 10万元D .12万元4.已知过()a A ,1-、()8,a B 两点的直线与直线012=+-y x 平行,则a 的值为A. 10-B. 17C. 5D. 25.阅读图2的程序框图(框图中的赋值符号“=”也可以写成“←”或“:=”),若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是A .5>i ? B. 6>i ?C. 7>i ?D. 8>i ?6.已知p :关于x 的不等式022>-+a ax x 的解集是R ,q :01<<-a ,则p 是q 的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件7.在()nn nx a x a x a x a a x +⋅⋅⋅++++=-3322101中,若0252=+-n a a ,则自然数n 的值是A .7B .8C .9D .108.在区间[]1,0上任意取两个实数,则函数在区间[]1,1-上有且仅 一个零点的概率为 A .81 B .41C .43D .87二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~12题)9. 若()22log 2=+a ,则=a 3 . 10.若⎰ax 0d x =1, 则实数a 的值是 .11.一个几何体的三视图及其尺寸(单位:cm )如图3所示, 则该几何体的侧面积为 cm 2.12.已知数列{}n a 的前n 项和为n S ,对任意∈n N *都有3132-=n n a S , 且91<<k S (∈k N *),则1a 的值为 ,k 的值为 .(二)选做题(13~15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)在极坐标系中,直线24sin =⎪⎭⎫⎝⎛+πθρ被圆4=ρ截得的弦长为__ .14.(几何证明选讲选做题)已知PA 是圆O (O 为圆心)的切线,切点为A ,PO 交圆O 于C B , 两点,︒=∠=30,3PAB AC ,则线段PB 的长为 .15.(不等式选讲选做题)已知∈c b a ,,R ,且432,2222=++=++c b a c b a ,则实数a 的取值范围为_____________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 的内角C B A ,,所对的边分别为,,,c b a 且53cos ,2==B a . (1)若4=b , 求A sin 的值;(2) 若△ABC 的面积,4=∆ABC S 求c b ,的值.b a ,()b ax x x f -+=321甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分. 若甲、乙两名同学射击的命中率分别为53和p , 且甲、乙两人各射击一次所得分数之和为2的概率为209.假设甲、乙两人射击互不影响. (1)求p 的值;(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.18. (本小题满分14分)如图4, 在三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,F E D ,,分别是棱PC PB PA ,,的中点,连接EF DF DE ,,.(1) 求证: 平面//DEF 平面ABC ;(2) 若2==BC PA , 当三棱锥ABC P -的体积最大时, 求二面角D EF A --的平面角的余弦值.图419.(本小题满分12分)某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A 型零件和1个B 型零件配套组成.每个工人每小时能加工5个A 型零件或者3个B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一种型号的零件.设加工A 型零件的工人人数为x 名(∈x N *). (1)设完成A 型零件加工所需时间为()x f 小时,写出()x f 的解析式; (2)为了在最短时间内完成全部生产任务,x 应取何值?20.(本小题满分14分)已知动圆C 过点()0,2-A ,且与圆()642:22=+-y x M 相内切.(1)求动圆C 的圆心的轨迹方程;(2)设直线:l y kx m =+(其中,)k m Z ∈与(1)中所求轨迹交于不同两点B ,D ,与双曲线112422=-y x 交于不同两点,E F ,问是否存在直线l ,使得向量DF BE +=0,若存在,指出这样的直线有多少条?若不存在,请说明理由.已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且.(1) 求数列{}n a 和{}n b 的通项公式;(2) 设n S 是数列{}n a 的前n 项和, 问是否存在常数λ,使得0>-n n S b λ对任意∈n N *都成立,若存在,求出λ的取值范围; 若不存在, 请说明理由.2009年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,每小题5分,满分30分.其中13~15是选做题,考生只能选做两题. 第12题第一个空2分,第二个空3分.9.9 10.2 11.80 12.-1;4 13.34 14.1 15. ⎥⎦⎤⎢⎣⎡2,112三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力) 解: (1)∵053cos >=B , 且π<<B 0, ∴ 54cos 1sin 2=-=B B . 由正弦定理得B b A a sin sin =. ∴524542sin sin =⨯==b B a A . (2)∵,4sin 21==∆B ac S ABC ∴454221=⨯⨯⨯c . ∴ .由余弦定理得B ac c a b cos 2222-+=,∴175352252cos 22222=⨯⨯⨯-+=-+=B ac c a b . 17.(本小题满分14分)(本小题主要考查概率、随机变量的分布列及其数学期望等基础知识,考查运算求解能力)11=a 5=cFEDCBAP 解:(1)记“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则()()52,53==A P A P ,()()p B P p B P -==1,. 依题意得()209531153=⎪⎭⎫ ⎝⎛-+-p p , 解得43=p . 故p 的值为43. (2)ξ的取值分别为,4,2,0.()()()()10141520=⨯=⋅===B P A P B A P P ξ, ()2092==ξP , ()()()()20943534=⨯=⋅===B P A P AB P P ξ, ξ∴的分布列为∴E .1027209420921010=⨯+⨯+⨯=ξ 18.(本小题满分14分)(本小题主要考查空间中线面的位置关系、空间的角、几何体体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力) (1) 证明: ∵E D ,分别是棱PB PA ,的中点,∴DE 是△PAB 的中位线.∴AB DE //. ∵⊄DE 平面⊂AB ABC ,平面,ABC∴//DE 平面ABC . 同理可证 //DF 平面ABC .∵⊂=DE D DF DE , 平面DEF ,⊂DF 平面DEF ,∴平面DEF // 平面ABC .(2) 求三棱锥ABC P -的体积的最大值, 给出如下两种解法:解法1: 由已知⊥PA 平面ABC , AB AC ⊥,2==BC PA ∴4222==+BC AC AB .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=2131 AC AB ⨯⨯⨯=261 23122AC AB +⨯≤ 2312BC ⨯= 32=.GFED CBAP 当且仅当AC AB =时等号成立,V 取得最大值,其值为32, 此时AC AB =2=.解法2:设x AB =,在R t △ABC 中,2224x AB BC AC -=-=()20<<x .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31 AC AB PA ⨯⨯⨯⨯=2131 2431x x -=42431x x -= ()423122+--=x . ∵40,202<<<<x x , ∴ 当22=x ,即2=x 时,V 取得最大值,其值为32,此时2==AC AB .求二面角D EF A --的平面角的余弦值, 给出如下两种解法: 解法1:作EF DG ⊥,垂足为G , 连接AG . ∵ ⊥PA 平面ABC ,平面//ABC 平面DEF ,∴ ⊥PA 平面DEF . ∵ ⊂EF 平面DEF , ∴ ⊥PA EF . ∵ D PA DG = , ∴ ⊥EF 平面PAG .∵⊂AG 平面PAG ,∴⊥EF AG . ∴ AGD ∠是二面角D EF A --的平面角.在R t △EDF 中,121,2221=====BC EF AB DF DE , ∴21=DG . 在R t △ADG 中,2541122=+=+=DG AD AG ,552521cos ===∠AG DG AGD . ∴二面角D EF A --的平面角的余弦值为55. 解法2:分别以AP AC AB ,,所在直线为x 轴, y 轴, z 轴, 建立如图的空间直角坐标系xyz A -,则()()⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛1,22,0,1,0,22,1,0,0,0,0,0F E D A .∴⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=0,22,22,1,0,22. 设n ()z y x ,,=为平面AEF 的法向量,∴⎪⎩⎪⎨⎧=⋅=⋅.0,0n AE n 即⎪⎪⎩⎪⎪⎨⎧=+-=+.02222,022y x z x 令2=x , 则1,2-==z y .∴n ()1,2,2-=为平面AEF 的一个法向量. ∵平面DEF 的一个法向量为()100-=,,,∴()()()5511221222=⨯-++==n cos . ∴二面角D EF A --的平面角的余弦值为55. 19.(本小题满分12分)(本小题主要考查函数最值、不等式、导数及其应用等基础知识,考查分类与整合的数学思想方法,以及运算求解能力和应用意识)解:(1)生产150件产品,需加工A 型零件450个,则完成A 型零件加工所需时间()x f ∈==x xx (905450N *,且)491≤≤x . (2)生产150件产品,需加工B 型零件150个,则完成B 型零件加工所需时间()x g ()∈-=-=x xx (5050503150N *,且)491≤≤x .设完成全部生产任务所需时间为()x h 小时,则()x h 为()x f 与()x g 的较大者. 令()()x g x f ≥,即x x -≥505090,解得71321≤≤x . 所以,当321≤≤x 时,()()x g x f >;当4933≤≤x 时,()()x g x f <.故()()()⎪⎩⎪⎨⎧≤≤∈-≤≤∈=4933,,5050321,,90**x N x xx N x x x h .当321≤≤x 时,()0902'<-=xx h ,故()x h 在[]32,1上单调递减, 则()x h 在[]32,1上的最小值为()1645329032==h (小时); 当4933≤≤x 时,()()050502'>-=x x h ,故()x h 在[]49,33上单调递增,则()x h 在[]49,33上的最小值为()175033505033=-=h (小时);()()3233h h > ,∴()x h 在[]49,1上的最小值为()32h .32=∴x .答:为了在最短时间内完成生产任务,x 应取32.20.(本小题满分14分)(本小题主要考查圆、椭圆、直线等基础知识和数学探究,考查数形结合、分类与整合的数学思想方法,以及推理论证能力、运算求解能力和创新意识) 解:(1)圆()642:22=+-y x M , 圆心M 的坐标为()0,2,半径8=R .∵R AM <=4,∴点()0,2-A 在圆M 内. 设动圆C 的半径为r ,圆心为C ,依题意得CA r =,且r R CM -=, 即AM CA CM >=+8. ∴圆心C 的轨迹是中心在原点,以M A ,两点为焦点,长轴长为8的椭圆,设其方程为()012222>>=+b a by a x , 则2,4==c a .∴12222=-=c a b . ∴所求动圆C 的圆心的轨迹方程为1121622=+y x . (2)由⎪⎩⎪⎨⎧=++=.11216,22y x m kx y 消去y 化简整理得:()0484843222=-+++m kmx x k . 设11(,)B x y ,22(,)D x y ,则122834kmx x k+=-+. △1()()()04844348222>-+-=m k km . ①由⎪⎩⎪⎨⎧=-+=.1124,22y x m kx y 消去y 化简整理得:()01223222=----m kmx x k . 设()()4433,,,y x F y x E ,则24332kkmx x -=+,△2()()()012342222>+-+-=m k km . ②∵DF BE +=0,∴4231()()0x x x x -+-=,即1234x x x x +=+,∴2232438kkmk km -=+-. ∴02=km 或2231434k k -=+-.解得0k =或0m =.当0k =时,由①、②得 3232<<-m ,∵∈m Z ,∴m 的值为2,3-- 1-,0,13,2,;当0m =,由①、②得 33<<-k ,∵∈k Z ,∴1,0,1-=k .∴满足条件的直线共有9条. 21.(本小题满分14分)(本小题主要考查数列的通项公式、数列前n 项和、不等式等基础知识,考查化归与转化、分类与整合、特殊与一般的数学思想方法,以及推理论证能力、运算求解能力和抽象概括能力) 解: (1) ∵1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,∴⎩⎨⎧==+++.,211n n n n n n a a b a a 求数列{}n a 的通项公式, 给出如下四种解法:解法1: 由n n n a a 21=++,得⎪⎭⎫⎝⎛⨯--=⨯-++n n n n a a 23123111, 故数列⎭⎬⎫⎩⎨⎧⨯-n n a 231是首项为31321=-a ,公比为1-的等比数列.∴()1131231--⨯=⨯-n n n a , 即()[]nn n a 1231--=. 解法2: 由n n n a a 21=++,两边同除以()11+-n , 得()()()nnnn n a a 21111--=---++,令()nnn a c 1-=, 则()nn n c c 21--=-+.故()()()123121--++-+-+=n n n c c c c c c c c()()()()13222221-----------=n ()()[]()2121211----⋅---=-n()[]1231--=n ()2≥n .且1111-=-=a c 也适合上式, ∴()nna 1-()[]1231--=n , 即()[]n n n a 1231--=. 解法3: 由n n n a a 21=++,得1212+++=+n n n a a , 两式相减得n n n n n a a 22212=-=-++. 当n 为正奇数时,()()()235131--++-+-+=n n n a a a a a a a a25322221-+++++=n 41412121-⎪⎪⎭⎫ ⎝⎛-+=-n 312+=n ()3≥n . 且11=a 也适合上式. 当n 为正偶数时,()()()246242--++-+-+=n n n a a a a a a a a264222221-+++++=n 41414122-⎪⎪⎭⎫ ⎝⎛-+=-n312-=n ()4≥n . 且12112=-=a a 也适合上式. ∴ 当∈n N *时,n a ()[]nn 1231--=.解法4:由nn n a a 21=++,11=a ,得122-=a ()()()1231212122-=---+-=, ()()()123121211222332223+=----=+-=-=a a . 猜想n a ()[]nn 1231--=.下面用数学归纳法证明猜想正确. ① 当1=n 时,易知猜想成立;② 假设当k n =∈k (N *)时,猜想成立,即()[]kk k a 1231--=, 由k k k a a 21=++,得()[]()[]1111231123122+++--=---=-=k k k k k k k k a a ,故当1+=k n 时,猜想也成立. 由①、②得,对任意∈n N *,n a ()[]nn 1231--=.∴()[]()[]111121291+++--⨯--==n n n n n n n a a b ()[]1229112---=+nn . (2)n n a a a a S ++++= 321 ()()()()[]{}nn 111222231232-++-+--++++=()⎥⎦⎤⎢⎣⎡----=+21122311nn .要使0>-n n S b λ对任意∈n N *都成立,即()[]1229112---+n n ()02112231>⎥⎦⎤⎢⎣⎡-----+nn λ(*)对任意∈n N *都成立.① 当n 为正奇数时, 由(*)式得[]1229112-++n n ()01231>--+n λ, 即()()1212911+-+n n ()01231>--+n λ,∵0121>-+n , ∴()1231+<n λ对任意正奇数n 都成立.当且仅当1=n 时, ()1231+n有最小值1.∴1<λ.② 当n 为正偶数时, 由(*)式得[]1229112--+n n ()02231>--+n λ, 即()()1212911-++nn ()01232>--n λ, ∵012>-n,∴()12611+<+n λ对任意正偶数n 都成立.当且仅当2=n 时, ()12611++n 有最小值23.∴<λ23.综上所述, 存在常数λ,使得0>-n n S b λ对任意∈n N *都成立, λ的取值范围是()1,∞-.。

2009年高考全国卷1数学真题(理科数学)(附答案)

2009年高考全国卷1数学真题(理科数学)(附答案)

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B •=•球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB 中的元素共有()(A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ+=2+i,则复数z=() (A )-1+3i (B)1-3i (C)3+i (D)3-i (3) 不等式11X X +-<1的解集为( )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于()(A (B )2 (C (D(5) 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )(A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最小值为 ( )(A )2- (B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A )4 (B )4 (C )4 (D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为(A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )(A)1 (B)2 (C) -1 (D)-2(10)已知二面角l αβ--为60,动点P 、Q 分别在面α、β内,PQ 到α的距离为P 、Q 两点之间距离的最小值为( )(A) (B)2 (C) (11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =( )23第II 卷二、填空题:13. ()10x y -的展开式中,73x y 的系数与37x y 的系数之和等于 。

2009年广州高三数学一模理科数学试题

2009年广州高三数学一模理科数学试题

2009年广州市普通高中毕业班综合测试(一)数 学(理 科) 2009.3本试卷共4页,21小题, 满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V 31=, 其中S 是锥体的底面积, h 是锥体的高.如果事件A 、B 互斥,那么()()()P A B P A P B +=+.如果事件A 、B 相互独立,那么()()()B P A P AB P ⋅=.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数()x x f 2sin =的最小正周期为A .πB.π2C. π3D. π42.已知z =i (1+i )(i 为虚数单位),则复数z 在复平面上所对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.某商场在国庆黄金周的促销活动中,对10月2号9时至14时 的销售额进行统计,其频率分布直方图如图1所示.已知9时 至10时的销售额为2.5万元,则11时至12时的销售额为 A . 6万元 B . 8万元C . 10万元D .12万元4.已知过()a A ,1-、()8,a B 两点的直线与直线012=+-y x 平行,则a 的值为A. 10-B. 17C. 5D. 25.阅读图2的程序框图(框图中的赋值符号“=”也可以写成“←”或“:=”),若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是A .5>i ? B. 6>i ?C. 7>i ?D. 8>i ?6.已知p :关于x 的不等式022>-+a ax x 的解集是R ,q :01<<-a ,则p 是q 的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件7.在()n n nx a x a x a x a a x +⋅⋅⋅++++=-3322101中,若0252=+-n a a ,则自然数n 的值是A .7B .8C .9D .108.在区间[]1,0上任意取两个实数b a ,,则函数()b ax x x f -+=321在区间[]1,1-上有且仅一个零点的概率为 A .81 B .41 C .43 D .87二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~12题)9. 若()22log2=+a ,则=a3 .10.若⎰ax 0d x =1, 则实数a 的值是 .11.一个几何体的三视图及其尺寸(单位:cm )如图3所示, 则该几何体的侧面积为 cm 2.12.已知数列{}n a 的前n 项和为n S ,对任意∈n N *都有3132-=n n a S ,且91<<k S (∈k N *),则1a 的值为 ,k 的值为 .(二)选做题(13~15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)在极坐标系中,直线24sin =⎪⎭⎫ ⎝⎛+πθρ被圆4=ρ截得的弦长为__ .14.(几何证明选讲选做题)已知PA 是圆O (O 为圆心)的切线,切点为A ,PO 交圆O 于C B , 两点,︒=∠=30,3PAB AC ,则线段PB 的长为 .15.(不等式选讲选做题)已知∈c b a ,,R ,且432,2222=++=++c b a c b a ,则实数a 的取值范围为_____________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 的内角C B A ,,所对的边分别为,,,c b a 且53cos ,2==B a .(1)若4=b , 求A sin 的值;(2) 若△ABC 的面积,4=∆ABC S 求c b ,的值.17.(本小题满分14分)甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分. 若甲、乙两名同学射击的命中率分别为53和p , 且甲、乙两人各射击一次所得分数之和为2的概率为209.假设甲、乙两人射击互不影响.(1)求p 的值;(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.18. (本小题满分14分)如图4, 在三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,F E D ,,分别是棱PC PB PA ,,的中点,连接EF DF DE ,,.(1) 求证: 平面//DEF 平面ABC ;(2) 若2==BC PA , 当三棱锥ABC P -的体积最大时, 求二面角D EF A --的平面角的余弦值.图419.(本小题满分12分)某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A 型零件和1个B 型零件配套组成.每个工人每小时能加工5个A 型零件或者3个B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一种型号的零件.设加工A 型零件的工人人数为x 名(∈x N *).(1)设完成A 型零件加工所需时间为()x f 小时,写出()x f 的解析式; (2)为了在最短时间内完成全部生产任务,x 应取何值?20.(本小题满分14分)已知动圆C 过点()0,2-A ,且与圆()642:22=+-y x M 相内切.(1)求动圆C 的圆心的轨迹方程;(2)设直线:l y kx m =+(其中,)k m Z ∈与(1)中所求轨迹交于不同两点B ,D ,与双曲线112422=-yx交于不同两点,E F ,问是否存在直线l ,使得向量DF BE +=0,若存在,指出这样的直线有多少条?若不存在,请说明理由.21. (本小题满分14分)已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n nb x x ∈n (N )*的两根,且11=a .(1) 求数列{}n a 和{}n b 的通项公式;(2) 设n S 是数列{}n a 的前n 项和, 问是否存在常数λ,使得0>-n n S b λ对任意∈n N *都成立,若存在, 求出λ的取值范围; 若不存在, 请说明理由.。

广东省2009届高三数学一模试题分类汇编——立体几何理科

广东省2009届高三数学一模试题分类汇编——立体几何理科

广东省2009届高三数学一模试题分类汇编——立体几何一、选择题填空题 1、(2009广州一模).一个几何体的三视图及其尺寸(单位:cm)如图3所示,则该几何体的侧面积为_______cm 2.802(2009广东三校一模)如图,设平面ααβα⊥⊥=CD AB EF ,, ,垂足分别为D B ,,若增加一个条件,就能推出EF BD ⊥.现有①;β⊥AC ②AC 与βα,所成的角相等;③AC 与CD 在β内的射影在同一条直线上;④AC ∥EF .那么上述几个条件中能成为增加条件的个数是 1.A 个 2.B 个 3.C 个 4.D 个. C 3、(2009东莞一模)如右图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为 A . 12πB.2C. 4D.4πA4、(2009番禺一模)一个几何体的三视图如右图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为( ).A .12B .32 C .23D .6 C5、(2009汕头一模)在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;②若平面α∥平面β,则平面α内任意一条直线m ∥平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β; ④若平面α内的三点A, B, C 到平面β的距离相等,则α∥β.βαAEF B DC图3俯视图其中正确命题的个数为( )个。

A .0B .1C .2D .3 B 6、(2009湛江一模)用单位立方块搭一个几何体,使它的主视图和俯视图 如下图所示,则它的体积的最小值为 ,最大 值为 .10(2分),16(3分).二、解答题 1、(2009广州一模)如图4,在三棱锥P-ABC 中,PA ⊥平面ABC , AB ⊥AC ,D 、E 、F 分别是棱PA 、PB 、PC 的中点,连接DE ,DF ,EF. (1)求证: 平面DEF ∥平面ABC ;(2)若PA=BC=2,当三棱锥P-ABC 的体积的最大值时,求二面角A-EF-D 的平面角的余弦值..(本题主要考查空间中的线面的位置关系、空间的角、几何体体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力)证明:∵D 、E 分别是棱PA 、PB 的中点,∴DE 是△PAB 的中位线,∴DE ∥AB ,∵DE ⊄平面PAB ,AB ⊂平面PAB ,∴DE ∥平面PAB , ……2分∵DE ∩DF=D ,DE ⊂平面DEF ,DF ⊂平面DEF ,∴平面DEF ∥平面ABC. ……4分(2)求三棱锥P-ABC 的体积的最大值,给出如下两种解法: 解法1:由已知PA ⊥平面ABC , AC ⊥AB ,PA=BC=2,∴AB 2 +AC 2 =BC 2=4,∴三棱锥P-ABC 的体积为ABC111V =PA S PA AB AC 332⨯⨯=⨯⨯⨯⨯ ……6分22211AB AC 1BC 22AB AC 632323+=⨯⨯⨯≤⨯=⨯=. 当且仅当AB=AC 时等号成立,V 取得最大值,其值为23,此时解法2:设AB=x ,在△ABC 中,AC (0<x<2), ∴三棱锥P-ABC 的体积为ABC111V =PA S PA AB AC 332⨯⨯=⨯⨯⨯⨯ 13= ……6分 ABCPDEF主视图==∵0<x<2,0<x2<4,∴当x2=2,即x时,V取得最大值,其值为23,此时……8分求二面角A-EF-D的平面角的余弦值..,给出如下两种解法:解法1:作DG⊥EF,垂足为G,连接AG,∵PA⊥平面ABC,平面ABC∥平面DEF,∴P A⊥平面DEF,∵EF⊂平面DEF,∴ P A⊥EF.∵DG∩PA=D,∴EF⊥平面PAG,AG⊂平面PAG,∴EF⊥AG,∴∠AGD是二面角A-EF-D的平面角. ……10分在Rt△EDF中,DE=DF=1AB=22,1EF BC=12=,∴1DG2=.在Rt△ADG中,AG=2==,∴1DGAGD=AG52∠==∴二面角A-EF-D……14分解法2:分别以AB、AC、AP所在直线为x轴,y轴,z轴,建立如图的空间直角坐标系A-xyz,则A(0,0,0),D(0,0,1),E(2,0,1),F(0,2,1). ∴22AE(01)EF(22==-,,,,设n(x y z)=,,为平面AEF的法向量,则n AE0n EF0⎧⋅=⎪⎨⋅=⎪⎩,A CPDEFG即x +z 00=⎨⎪=⎪⎩,令x,则y ,z=-1, ∴n (221)=-,为平面AEF 的一个法向量. ……11分 ∵平面DEF 的一个法向量为DA (001)=-,,,∴n DA cos n DA |n ||DA |(<>===,,,……13分 而n 与DA 所成角的大小等于二面角A-EF-D 的平面角的大小.∴二面角A-EF-D 的平面角的余弦值为5……14分 2、(2009广东三校一模)如图,在梯形ABCD 中,AB ∥CD ,a CB DC AD ===,60=∠ABC ,平面⊥ACFE 平面ABCD ,四边形ACFE 是矩形,a AE =,点M 在线段EF 上.(1)求证:⊥BC 平面ACFE ;(2)当EM 为何值时,AM ∥平面BDF ?证明你的结论; (3)求二面角D EF B --的平面角的余弦值. (Ⅰ)在梯形ABCD 中,CD AB // ,︒=∠===60,ABC a CB DC AD ∴四边形ABCD 是等腰梯形, 且︒︒=∠=∠=∠120,30DCB DAC DCA︒=∠-∠=∠∴90DCA DCB ACB BC AC ⊥∴ 2分又 平面⊥ACFE 平面ABCD ,交线为AC , ⊥∴BC 平面ACFE 4分 (Ⅱ)解法一、当a EM 33=时,//AM 平面BDF ,5分在梯形ABCD 中,设N BD AC =⋂,连接FN ,则2:1:=NA CN 6分a EM 33=,而a AC EF 3==2:1:=∴MF EM , 7分 AN MF //∴,∴四边形ANFM 是平行四边形,NF AM //∴ 8分又⊂NF 平面BDF ,⊄AM 平面BDF //AM ∴平面BDF 9分M FECDBB解法二:当a EM 33=时,//AM 平面BDF ,由(Ⅰ)知,以点C 为原点,CF CB CA ,,所在直线为坐标轴,建立空间直角坐标系, 5分则)0,0,0(C ,)0,,0(a B ,)0,0,3(a A ,21,23(a D -),0,0(a F ,),0,3(a a E ⊄AM 平面BDF ,∴//AM 平面BDF ⇔→AM 与→FB 、→FD 共面,也等价于存在实数m 、n ,使→→→+=FD n FB m AM ,设→→=EF t EM .)0,0,3(a EF -=→,)0,0,3(at EM -=→),0,3(a at EM AE AM -=+=∴→→→又),21,23(a a a FD --=→,),,0(a a FB -=→, 6分从而要使得:),21,23(),,0(),0,3(a a a n a a m a at --+-=-成立, 需⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-==-an am a an m a an at 210233,解得31=t 8分∴当a EM 33=时,//AM 平面BDF 9分 (Ⅲ)解法一、取EF 中点G ,EB 中点H ,连结DG ,GH ,DHEF DG DF DE ⊥∴=, ⊥BC 平面ACFE EF BC ⊥∴又FC EF ⊥ ,FB EF ⊥∴,又FB GH // ,GH EF ⊥∴222DB DE BE +=∴DGH ∠∴是二面角D EF B --的平面角. 6分在BDE ∆中,a AB AE BE a DB a DE 5,3,222=+===︒=∠∴90EDB ,a DH 25=∴. 7分 又a GH a DG 22,25==. 8分 ∴在DGH ∆中,由余弦定理得1010cos =∠DGH , 9分 即二面角D EF B --的平面角的余弦值为1010.解法二:由(Ⅰ)知,以点C 为原点,CF CB CA ,,建立空间直角坐标系,则)0,0,0(C ,)0,,0(a B ,)0,0,3(a A )0,21,23(a a D -,),0,0(a F ,),0,3(a a E 过D 作DG ⊥垂足为G . 令)0,0,3()0,0,3(a a FE FG λλλ===→→,),0,3(a a FG CF CG λ=+=→→→, ),21,233(a a a a CD CG DG -=-=→→→λ 由→→⊥EF DG 得,0=⋅→→EF DG ,21=∴λ),21,0(a a DG =∴→,即),21,0(a a GD --=→ 11分,//,EF AC AC BC ⊥ EF BC ⊥∴,EF BF ⊥∴∴二面角D EF B --的大小就是向量→GD 与向量→FB 所夹的角. 12分),,0(a a FB -=→13分→→→→→→⋅⋅>=<FBGD FB GD FB GD ,cos 1010=即二面角D EF B --的平面角的余弦值为1010. 14分 3、(2009东莞一模)如图,在长方体1,1,11111>==-AB AA AD D C B A ABCD 中,点E 在棱AB 上移动,小蚂蚁从点A 沿长方体的表面爬到点C 1,所爬的最短路程为22.(1)求证:D 1E ⊥A 1D ; (2)求AB 的长度;(3)在线段AB 上是否存在点E ,使得二面角BA41π的大小为D EC D --。

2009年广州市高三理科数学调研测试、一模、二模试题分类整理

2009年广州市高三理科数学调研测试、一模、二模试题分类整理

2009年广州市高三理科数学调研测试、一模、二模试题分类整理1.集合与常用逻辑用语GZ-T 6. 命题“,11a b a b >->-若则”的否命题...是 A .,11a b a b >-≤-若则 B .,11a b a b >-<-若则 C .,11a b a b ≤-≤-若则 D .,11a b a b <-<-若则GZ-1 6.已知p :关于x 的不等式022>-+a ax x 的解集是R ,q :01<<-a ,则p 是q 的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件GZ-2 3.已知全集U =R ,集合{3A x =≤}7x <,{}27100B x x x =-+<,则() A B R = ðA .()(),35,-∞+∞B .()[),35,-∞+∞C .(][),35,-∞+∞D .(](),35,-∞+∞GZ-2 4.命题“x ∃∈R ,2210x x -+<”的否定是 A .x ∃∈R ,221x x -+≥0 B .x ∃∈R ,2210x x -+> C .x ∀∈R ,221x x -+≥0 D .x ∀∈R ,2210x x -+<2.函数、导数与定积分GZ-T 9. 函数22()log (1)f x x =-的定义域为 .GZ-T 21. (本小题满分14分) 已知函数()a ax x x x f -+-=2331 (a ∈R). (1)当3-=a 时,求函数()x f 的极值;(2)若函数()x f 的图象与x 轴有且只有一个交点,求a 的取值范围.GZ-1 8.在区间[]1,0上任意取两个实数b a ,,则函数()b ax x x f -+=321在区间[]1,1-上有且仅一个零点的概率为 A .81 B .41C .43D .87GZ-1 9. 若()22log 2=+a ,则=a3 .GZ-1 10.若⎰ax 0d x =1, 则实数a 的值是 .GZ-1 19.(本小题满分12分)某车间有50名工人,要完成150件产品的生产任务, 每件产品由3个A 型零件和1个B 型零件配套组成. 每个工人每小时能加工5个A 型零件或者3个B 型零件, 现在把这些工人分成两组同时工作(分组后人数不再进行调整), 每组加工同一种型号的零件.设加工A 型零件的工人人数为x 名(∈x N *).(1)设完成A 型零件加工所需时间为()x f 小时,写出()x f 的解析式; (2)为了在最短时间内完成全部生产任务,x 应取何值?GZ-2 2.已知函数()()()4040.x x x f x x x x ⎧+<⎪=⎨-⎪⎩≥,,, 则函数()f x 的零点个数为A .1B .2C .3D .4GZ-2 6.函数()cos f x x x =的导函数()f x '在区间[],ππ-上的图像大致是A. B. C. D.GZ-2 20.(本小题满分14分)已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.GZ-T 2.在等比数列{a n }中,已知,11=a 84=a ,则=5aA .16B .16或-16C .32D .32或-32GZ-T 20.(本小题满分14分)把正整数按上小下大、左小右大的原则排成如图6所示的数表: 设ij a (i 、j ∈N*)是位于这个数表中从上往下数第i 行、 从左往右数第j 个数. 数表中第i 行共有12-i 个正整数.(1)若ij a =2010,求i 、j 的值;(2)记nn n a a a a A ++++= 332211∈n (N*), 试比较n A 与2n n +的大小, 并说明理由.GZ-1 12.已知数列{}n a 的前n 项和为n S ,对任意∈n N *都有3132-=n n a S , 且91<<k S (∈k N *),则1a 的值为 ,k 的值为 .GZ-1 21. (本小题满分14分)已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且11=a .(1) 求数列{}n a 和{}n b 的通项公式; (2) 设n S 是数列{}n a 的前n 项和,问是否存在常数λ,使得0>-n n S b λ对任意∈n N *都成立, 若存在, 求出λ的取值范围; 若不存在, 请说明理由.1 2 3 4 56 789 10 11 12 13 14 15…………………………图65.平面向量与三角GZ-T 3.已知向量a =(x ,1),b =(3,6),a ⊥b ,则实数x 的值为A .12 B .2- C .2 D .21-GZ-T 16. (本小题满分12分)已知()sin f x x x =∈x (R ).(1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.GZ-1 1.函数()x x f 2sin =的最小正周期为 A .πB.π2C. π3D. π4GZ-1 16.(本小题满分12分)已知△ABC 的内角C B A ,,所对的边分别为,,,c b a 且53c o s ,2==B a . (1)若4=b , 求A sin 的值; (2) 若△ABC 的面积,4=∆ABC S 求c b ,的值.GZ-2 16.(本小题满分12分)已知向量2cos 12x ⎛⎫= ⎪⎝⎭,m ,sin 12x ⎛⎫= ⎪⎝⎭,n ()x ∈R ,设函数()1f x =- m n .(1)求函数()f x 的值域;(2) 已知锐角ABC ∆的三个内角分别为A ,B ,C ,若()513f A =,()35f B =, 求()f C 的值.图2俯视图侧视图正视图GZ-T 7.图2则该几何体的侧面积为A .6B .123C .24D .32GZ-T 18.(本小题满分14分)如图5,已知等腰直角三角形RBC ,其中∠RBC =90º,2==BC RB . 点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置, 使PA ⊥AB ,连结PB 、PC . (1)求证:BC ⊥PB ;(2)求二面角P CD A --GZ-1 11.则该几何体的侧面积为 cm 2.GZ-1 18. (本小题满分14分)如图4, 在三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,F E D ,,分别是棱PC PB PA ,,的中点,连接EF DF DE ,,.(1)求证: 平面//DEF 平面ABC ;(2)若2==BC PA , 当三棱锥ABC P -的体积最大时, 求二面角D EF A --的平面角的余弦值.图4GZ-2 8.设直线l 与球O 有且只有一个公共点P ,从直线l 出发的两个半平面α、β截球O 的两个截面圆的半径分别为1 二面角l αβ--的平面角为150,则球O 的表面积为 A .4πB .16πC .28πD .112πGZ-T 9.在空间直角坐标系中,以点()4 1 9A ,,,()101 6B -,,,() 4 3C x ,,为顶点的ABC ∆是 以BC 为斜边的等腰直角三角形,则实数x 的值为 .GZ-2 17.(本小题满分12分) 在长方体1111ABCD A BC D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如图4所示的几何体111ABCD ACD -,且这个几何体的体积为403. (1)求棱1A A 的长;(2)在线段1BC 上是否存在点P ,使直线1A P 与1C D 垂直,如果存在,求线段1A P 的长,如果不存在,请说明理由.7.平面解析几何GZ-T 4.经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为A .30x y -+=B .30x y --= C.10x y +-= D .30x y ++=GZ-T 8. 已知抛物线C 的方程为212x y =, 过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点, 则实数t 的取值范围是A. ()()+∞-∞-,11,B. ⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C. ()()+∞-∞-,,2222 D. ()()+∞-∞-,,22GZ-T 12. 已知变量x y ,满足约束条件2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,若目标函数ax y z -=仅在点()3,5处取得最小值, 则实数a 的取值范围为 .GZ-T 19. (本小题满分14分)设椭圆:C )0(12222>>=+b a by a x 的离心率为e =22,点A 是椭圆上的一点,且点A 到椭圆C 两焦点的距离之和为4. (1)求椭圆C 的方程;(2)椭圆C 上一动点P ()00,y x 关于直线x y 2=的对称点为()111,y x P ,求1143y x -的取值范围.GZ-1 4.已知过()a A ,1-、()8,a B 两点的直线与直线012=+-y x 平行,则a 的值为A. 10-B. 17C. 5D. 2GZ-1 20.(本小题满分14分)已知动圆C 过点()0,2-A ,且与圆()642:22=+-y x M 相内切.(1)求动圆C 的圆心的轨迹方程;(2)设直线:l y kx m =+(其中,)k m Z ∈与(1)中所求轨迹交于不同两点B ,D ,与双曲线112422=-y x 交于不同两点,E F ,问是否存在直线l ,使得向量DF BE +=0 , 若存在,指出这样的直线有多少条?若不存在,请说明理由.GZ-2 5.已知点()1,0A ,直线l :24y x =-,点R 是直线l 上的一点,若RA AP =,则点P 的轨迹方程为A .2y x =-B .2y x =C .28y x =-D .24y x =+GZ-2 21.(本小题满分14分)已知双曲线C :22221x y a b -=00(,)a b >>,左、右焦点分别为1F 、2F ,在双曲线C 上有一点M ,使12MF MF ⊥, 且12MF F ∆的面积为1.(1)求双曲线C 的方程;(2)过点()3,1P 的动直线l 与双曲线C 的左、右两支分别相交于两点A 、B ,在线段AB 上取异于A 、B 的点Q ,满足AP QB AQ PB = . 证明:点Q 总在某定直线上.8.算法、统计与概率GZ-T 5. 图1A .65 B .64 C .63 D .62GZ-T 11.在如图3所示的算法流程图中,输出SGZ-T 17.(本小题满分12分) 一厂家向用户提供的一箱产品共10件,其中有2用户先对产品进行抽检以决定是否接收.若前三次没有抽查到次品,则用户接收这箱产品;(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为ξ,求ξGZ-1 3.某商场在国庆黄金周的促销活动中,对10月2号9时至14时的销售额进行统计,其频率分布直 方图如图1所示.已知9时至10时的销售额为2.5万元, 则11时至12时的销售额为A . 6万元B . 8万元C . 10万元D .12万元GZ-1 5.阅读图2的程序框图(框图中的赋值符号“=”也可以 写成“←”或“:=”),若输出的S 的值等于16,那么在程序 框图中的判断框内应填写的条件是A .5>i ? B. 6>i ? C. 7>i ? D. 8>i ?图2GZ-1 17.(本小题满分14分) 甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分. 若甲、乙两名同学射击的命中率分别为53和p , 且甲、乙两人各射击一次所得分数之和为2的概率为209. 假设甲、乙两人射击互不影响. (1)求p 的值;(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望. GZ-210.在某项才艺竞赛中,有9位评委,主办单位规定计算参赛者比赛成绩的规则如下: 剔除评委中的一个最高分和一个最低分后,再计算其他7位评委的平均分作为此参赛者的比赛成绩.现有一位参赛者所获9位评委一个最高分为86分、一个最低分为45分, 若未剔除最高分与最低分时9位评委的平均分为76分, 则这位参赛者的比赛成绩为 分.GZ-2 11.阅读如图2所示的程序框图,若输出y 的值为0,则输入x 的值为 .9.复数GZ-T 1.已知i 为虚数单位,则(+1i )(-1 i )=A .0B .1C .2D .2iGZ-1 2.已知z =i (1+i )(i 为虚数单位),则复数z 在复平面上所对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限GZ-2 1.如果复数()()22356i m m m m -+-+是纯虚数,则实数m 的值为A .0B .2C .0或3D .2或310.计数原理GZ-T 10. 在52⎪⎭⎫ ⎝⎛-x x 的二项展开式中,x 3的系数是_______________.(用数字作答)GZ-1 7.在()n n nx a x a x a x a a x +⋅⋅⋅++++=-3322101中,若0252=+-n a a ,则自然数n 的值是A .7B .8C .9D .10GZ-2 7.现有4种不同颜色要对如图1所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有 A .24种B .30种C .36种D .48种图111.推理与证明 GZ-212.在平面内有n (*,n n N ∈≥)3条直线,其中任何两条不平行,任何三条不过同一点,若这n 条直线把平面分成()f n 个平面区域,则()5f 的值是 ,()f n 的表达式是 .GZ-2 18.(本小题满分14分)已知等比数列{}n a 的前n 项和为n S ,若m a ,2m a +,1m a +()*m ∈N 成等差数列,试判断m S ,2m S +,1m S +是否成等差数列,并证明你的结论.GZ-2 19.(本小题满分14分) 一个口袋中装有2个白球和n 个红球(n ≥2且*n ∈N ), 每次从袋中摸出两个球(每次摸球后把这两个球放回袋中), 若摸出的两个球颜色相同为中奖,否则为不中奖. (1)试用含n 的代数式表示一次摸球中奖的概率p ; (2)若3n =,求三次摸球恰有一次中奖的概率;(3)记三次摸球恰有一次中奖的概率为()f p ,当n 为何值时,()f p 最大?12.坐标系与参数方程GZ-T 14.(坐标系与参数方程选讲选做题) 在直角坐标系中圆C 的参数方程为⎩⎨⎧+==θθsin 22cos 2y x (θ为参数),以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的圆心极坐标为_________.GZ-1 13.(坐标系与参数方程选做题)在极坐标系中,直线24sin =⎪⎭⎫⎝⎛+πθρ被圆4=ρ截得的弦长为__ . 15.(坐标系与参数方程选做题) 直线()24,13x t t y t=-+⎧⎨=--⎩为参数被圆25cos ,15sin x y θθ=+⎧⎨=+⎩(θ为参数) 所截得的弦长为 .图4PGZ-T 15.(几何证明选讲选做题)如图4,P 是圆O 外一点,过P 引圆O 的两条割线PAB 、PCD , PA = AB =5,CD = 3,则PC =____________.GZ-1 14.(几何证明选讲选做题)已知PA 是圆O (O 为圆心)的切线,切点为A ,PO 交圆O 于C B ,两点,︒=∠=30,3PAB AC ,则线段PB 的长为 .GZ-2 13.(几何证明选讲选做题)如图3所示,在四边形ABCD 中,EF BC ,FG AD ,则EF FGBC AD+的值为 .图GZ-T 13.(不等式选讲选做题)不等式212<-+x x 的解集是______________.GZ-1 15.(不等式选讲选做题)已知∈c b a ,,R ,且432,2222=++=++c b a c b a , 则实数a 的取值范围为_____________.GZ-2 14.(不等式选讲选做题) 函数()f x =12x x -++的最小值为 .2009年广州市高三年级调研测试数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.(,1)(1,)-∞-+∞ 10.10- 11.52 12. ()∞+,1 13. ⎪⎭⎫ ⎝⎛-1,3114.⎪⎭⎫⎝⎛2,2π 15.2 说明:第14题答案可以有多种形式,如可答⎪⎭⎫ ⎝⎛25,2π或∈⎪⎭⎫⎝⎛+k k (22,2ππZ )等, 均给满分. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)解:(1)∵()x x x f cos 3sin +=⎪⎪⎭⎫⎝⎛+=x x cos 23sin 212 …… 2分⎪⎭⎫⎝⎛+=3sincos 3cossin 2ππx x …… 4分 ⎪⎭⎫⎝⎛+=3sin 2πx . …… 6分 ∴2T π=. …… 8分 (2) 当13sin =⎪⎭⎫⎝⎛+πx 时, )(x f 取得最大值, 其值为2 . ……10分 此时232x k πππ+=+,即26x k ππ=+∈k (Z ). ……12分17.(本小题满分12分)解:(1)设“这箱产品被用户接收”为事件A ,8767()109815P A ⨯⨯==⨯⨯. ……3分FR ADB CP即这箱产品被用户接收的概率为715. ……4分 (2)ξ的可能取值为1,2,3. ……5分()1=ξP =51102=, ()2=ξP =45892108=⨯, ()3=ξP =452897108=⨯, ……8分 ∴ξ的概率分布列为:∴ξE =4534524515=⨯+⨯+⨯. ……12分 18.(本小题满分14分)解:(1)∵点A 、D 分别是RB 、RC 的中点,∴BC AD BC AD 21,//=. …… 2分 ∴∠RBC RAD PAD ∠=∠==90º.∴AD PA ⊥.∴ BC PA ⊥,∵A AB PA AB BC =⊥ ,,∴BC ⊥平面PAB . …… 4分 ∵⊂PB 平面PAB ,∴PB BC ⊥. …… 6分(2)法1:取RD 的中点F ,连结AF 、PF .∵1==AD RA ,∴RC AF ⊥.∵AD AP AR AP ⊥⊥,,∴⊥AP 平面RBC .∵⊂RC 平面RBC ,∴AP RC ⊥. …… 8分 ∵,A AP AF =∴⊥RC 平面PAF .∵⊂PF 平面PAF ,∴PF RC ⊥.∴∠AFP 是二面角P CD A --的平面角. ……10分 在R t △RAD 中, 22212122=+==AD RA RD AF ,R 在R t △PAF 中, 2622=+=AF PA PF ,332622cos ===∠PF AF AFP . ……12分∴ 二面角P CD A --的平面角的余弦值是33. ……14分 法2:建立如图所示的空间直角坐标系xyz A -.则D (-1,0,0),C (-2,1,0),P (0,0,1). ∴=(-1,1,0),=(1,0,1), ……8分 设平面PCD 的法向量为n=(x ,y ,z ),则:⎪⎩⎪⎨⎧=+=⋅=+-=⋅0z x DP n y x n, ……10分 令1=x ,得1,1-==z y ,∴n=(1,1,-1).显然,是平面ACD 的一个法向量,=(,0,01-). ……12分∴cos<n ,33131=⨯=. ∴二面角P CD A --的平面角的余弦值是33. ……14分19. (本小题满分14分)解:(1)依题意知,24, 2.a a =∴= …… 2分 ∵22==a c e , ∴2,222=-==c a b c . …… 4分∴所求椭圆C 的方程为12422=+y x . …… 6分 (2)∵ 点P ()00,y x 关于直线x y 2=的对称点为()111,y x P ,∴ ⎪⎪⎩⎪⎪⎨⎧+⨯=+-=⨯--.222,1210101010x x y y x x y y ……8分解得:001435y x x -=,001345y x y +=. ……10分 ∴011543x y x -=-. ……12分∵ 点P ()00,y x 在椭圆C :12422=+y x 上, ∴220≤≤-x , 则105100≤-≤-x .∴1143y x -的取值范围为[]10,10-. ……14分 20.(本小题满分14分)解:(1)数表中前n 行共有12222112-=++++-n n 个数,即第i 行的第一个数是12-i , …… 2分∴ij a =121-+-j i .∵1110220102<<,ij a =2010,∴ i =11. …… 4分令20101210=-+j ,解得98712201010=+-=j . …… 6分(2)∵nn n a a a a A ++++= 332211()()[]1210222112-+++++++++=-n n()2112-+-=n n n . …… 7分∴()2232)(2112)(222++-=+--+-=+-n n n n n n n n A nnn . 当1=n 时, 22322++<n n n, 则n n A n +<2;当2=n 时, 22322++<n n n, 则n n A n +<2;当3=n 时, 22322++<n n n, 则n n A n +<2;当4≥n 时, 猜想: 22322++>n n n. …… 11分下面用数学归纳法证明猜想正确.① 当4=n 时,2243416224+⨯+>=, 即22322++>n n n成立;② 假设当()4≥=k k n 时, 猜想成立, 即22322++>k k k,则232232222221++=++⨯>⨯=+k k k k kk ,∵()()()()021226546222131232222>-+=---++=++++-++k k k k k k k k k k,∴()()22131221++++>+k k k . 即当1+=k n 时,猜想也正确.由①、②得当4≥n 时, 22322++>n n n成立.当4≥n 时,2n A n >n +. …… 13分 综上所述, 当3,2,1=n 时, n n A n +<2; 当4≥n 时,2n A n >n +. …… 14分另法( 证明当4≥n 时, 22322++>n n n可用下面的方法):当4≥n 时, ()>+=nn 112C 0n + C 1n + C 2n + C 3n()()()621211--+-++=n n n n n n()623211⨯⨯+-++≥n n n n 2232++=n n . 21. (本小题满分14分) 解:(1)当3-=a 时,()333123+--=x x x x f , ∴()x f '()()13322+-=--=x x x x .令()x f '=0, 得 121,3x x =-=. …… 2分当1-<x 时,()0'>x f , 则()x f 在()1,-∞-上单调递增; 当31<<-x 时,()0'<x f , 则()x f 在()3,1-上单调递减;当3>x 时,()0'>x f , ()x f 在()+∞,3上单调递增. …… 4分 ∴ 当1-=x 时, ()x f 取得极大值为()=-1f 31433131=++--; 当3=x 时, ()x f 取得极小值为()39927313+--⨯=f 6-=. …… 6分 (2) ∵ ()x f '= a x x +-22,∴△= a 44-= ()a -14 .① 若a ≥1,则△≤0, …… 7分∴()x f '≥0在R 上恒成立,∴ f (x )在R 上单调递增 . ∵f (0)0<-=a ,()023>=a f ,∴当a ≥1时,函数f (x )的图象与x 轴有且只有一个交点. …… 9分 ② 若a <1,则△>0,∴()x f '= 0有两个不相等的实数根,不妨设为x 1,x 2,(x 1<x 2). ∴x 1+x 2 = 2,x 1x 2 = a . 当x 变化时,()()x f ,x f '的取值情况如下表:…… 11分∵02121=+-a x x , ∴1212x x a +-=.∴()a ax x x x f -+-=12131131=12112131231x x ax x x -++-()131231x a x -+= ()[]2331211-+=a x x .同理()2x f ()[]2331222-+=a x x .∴()()()[]()[]23239122212121-+⋅-+=⋅a x a x x x x f x f()()()()()[]2222122121292391-++-+=a x x a x x x x ()()[](){}22122122922391-+-+-+=a x x x x a a a ()33942+-=a a a . 令f (x 1)·f (x 2)>0, 解得a >0. 而当10<<a 时,()()023,00>=<-=a f a f ,故当10<<a 时, 函数f (x )的图象与x 轴有且只有一个交点. …… 13分综上所述,a 的取值范围是()+∞,0. …… 14分2009年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,每小题5分,满分30分.其中13~15是选做题,考生只能选做两题. 第12题第一个空2分,第二个空3分.9.9 10.2 11.80 12.-1;4 13.34 14.1 15. ⎥⎦⎤⎢⎣⎡2,112三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力)解: (1)∵053cos >=B , 且π<<B 0, ∴ 54cos 1sin 2=-=B B .由正弦定理得BbA a sin sin =. ∴524542sin sin =⨯==b B a A . (2)∵,4sin 21==∆B ac S ABC∴454221=⨯⨯⨯c .∴ 5=c .由余弦定理得B ac c a b cos 2222-+=,FEDCBAP ∴175352252cos 22222=⨯⨯⨯-+=-+=B ac c a b . 17.(本小题满分14分)(本小题主要考查概率、随机变量的分布列及其数学期望等基础知识,考查运算求解能力) 解:(1)记“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则()()52,53==A P A P ,()()p B P p B P -==1,. 依题意得()209531153=⎪⎭⎫ ⎝⎛-+-p p , 解得43=p . 故p 的值为43.(2)ξ的取值分别为,4,2,0.()()()()10141520=⨯=⋅===B P A P B A P P ξ, ()2092==ξP , ()()()()20943534=⨯=⋅===B P A P AB P P ξ, ξ∴的分布列为∴E .1027209420921010=⨯+⨯+⨯=ξ18.(本小题满分14分)(本小题主要考查空间中线面的位置关系、空间的角、几何体体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力) (1) 证明: ∵E D ,分别是棱PB PA ,的中点,∴DE 是△PAB 的中位线.∴AB DE //. ∵⊄DE 平面⊂AB ABC ,平面,ABC∴//DE 平面ABC . 同理可证 //DF 平面ABC .∵⊂=DE D DF DE , 平面DEF ,⊂DF 平面DEF ,∴平面DEF // 平面ABC .(2) 求三棱锥ABC P -的体积的最大值, 给出如下两种解法: 解法1: 由已知⊥PA 平面ABC , AB AC ⊥,2==BC PA ∴4222==+BC AC AB .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=2131 AC AB ⨯⨯⨯=26123122AC AB +⨯≤2312BC ⨯=32=. 当且仅当AC AB =时等号成立,V 取得最大值,其值为32, 此时AC AB =2=.解法2:设x AB =,在R t △ABC 中,2224x AB BC AC -=-=()20<<x .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=2131 2431x x -= 42431x x -=()423122+--=x . ∵40,202<<<<x x ,GFEDCBAP∴ 当22=x ,即2=x 时,V 取得最大值,其值为32,此时2==AC AB .求二面角D EF A --的平面角的余弦值, 给出如下两种解法: 解法1:作EF DG ⊥,垂足为G , 连接AG .∵ ⊥PA 平面ABC ,平面//ABC 平面DEF , ∴ ⊥PA 平面DEF .∵ ⊂EF 平面DEF ,∴ ⊥PA EF .∵ D PA DG = ,∴ ⊥EF 平面PAG . ∵⊂AG 平面PAG , ∴⊥EF AG .∴ AGD ∠是二面角D EF A --的平面角. 在R t △EDF 中,121,2221=====BC EF AB DF DE , ∴21=DG . 在R t △ADG 中,2541122=+=+=DG AD AG , 552521cos ===∠AG DG AGD . ∴二面角D EF A --的平面角的余弦值为55. 解法2:分别以AP AC AB ,,所在直线为x 轴, y 轴, z 轴,建立如图的空间直角坐标系xyz A -,则()()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1,22,0,1,0,22,1,0,0,0,0,0F E D A . ∴⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=0,22,22,1,0,22.设n ()z y x ,,=为平面AEF 的法向量,∴⎪⎩⎪⎨⎧=⋅=⋅.0,0EF n n即⎪⎪⎩⎪⎪⎨⎧=+-=+.02222,022y x z x令2=x , 则1,2-==z y .∴n ()1,2,2-=为平面AEF 的一个法向量.∵平面DEF 的一个法向量为()100-=,,DA ,∴()()()5511221222=⨯-++==n cos . ∴二面角D EF A --的平面角的余弦值为55. 19.(本小题满分12分)(本小题主要考查函数最值、不等式、导数及其应用等基础知识,考查分类与整合的数学思想方法,以及运算求解能力和应用意识)解:(1)生产150件产品,需加工A 型零件450个,则完成A 型零件加工所需时间()x f ∈==x xx (905450N *,且)491≤≤x . (2)生产150件产品,需加工B 型零件150个,则完成B 型零件加工所需时间()x g ()∈-=-=x xx (5050503150N *,且)491≤≤x .设完成全部生产任务所需时间为()x h 小时,则()x h 为()x f 与()x g 的较大者. 令()()x g x f ≥,即xx -≥505090, 解得71321≤≤x . 所以,当321≤≤x 时,()()x g x f >;当4933≤≤x 时,()()x g x f <.故()()()⎪⎩⎪⎨⎧≤≤∈-≤≤∈=4933,,5050321,,90**x N x xx N x x x h .当321≤≤x 时,()0902'<-=x x h ,故()x h 在[]32,1上单调递减, 则()x h 在[]32,1上的最小值为()1645329032==h (小时);当4933≤≤x 时,()()050502'>-=x x h ,故()x h 在[]49,33上单调递增,则()x h 在[]49,33上的最小值为()175033505033=-=h (小时);()()3233h h > ,∴()x h 在[]49,1上的最小值为()32h .32=∴x .答:为了在最短时间内完成生产任务,x 应取32.20.(本小题满分14分)(本小题主要考查圆、椭圆、直线等基础知识和数学探究,考查数形结合、分类与整合的数学思想方法,以及推理论证能力、运算求解能力和创新意识)解:(1)圆()642:22=+-y x M , 圆心M 的坐标为()0,2,半径8=R .∵R AM <=4,∴点()0,2-A 在圆M 内. 设动圆C 的半径为r ,圆心为C ,依题意得CA r =,且r R CM -=, 即AM CA CM >=+8. ∴圆心C 的轨迹是中心在原点,以M A ,两点为焦点,长轴长为8的椭圆,设其方程为()012222>>=+b a b y a x , 则2,4==c a . ∴12222=-=c a b .∴所求动圆C 的圆心的轨迹方程为1121622=+y x .(2)由⎪⎩⎪⎨⎧=++=.11216,22y x m kx y 消去y 化简整理得:()0484843222=-+++m kmx x k . 设11(,)B x y ,22(,)D x y ,则122834kmx x k+=-+.△1()()()04844348222>-+-=m k km . ①由⎪⎩⎪⎨⎧=-+=.1124,22y x m kx y 消去y 化简整理得:()01223222=----m kmx x k . 设()()4433,,,y x F y x E ,则24332kkmx x -=+,△2()()()012342222>+-+-=m k km . ②∵DF BE +=0,∴4231()()0x x x x -+-=,即1234x x x x +=+,∴2232438kkmk km -=+-. ∴02=km 或2231434kk -=+-. 解得0k =或0m =. 当0k =时,由①、②得 3232<<-m , ∵∈m Z ,∴m 的值为2,3-- 1-,0,13,2,;当0m =,由①、②得 33<<-k , ∵∈k Z ,∴1,0,1-=k .∴满足条件的直线共有9条. 21.(本小题满分14分)(本小题主要考查数列的通项公式、数列前n 项和、不等式等基础知识,考查化归与转化、分类与整合、特殊与一般的数学思想方法,以及推理论证能力、运算求解能力和抽象概括能力) 解: (1) ∵1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,∴⎩⎨⎧==+++.,211n n n n n n a a b a a求数列{}n a 的通项公式, 给出如下四种解法: 解法1: 由n n n a a 21=++,得⎪⎭⎫⎝⎛⨯--=⨯-++n n n n a a 23123111, 故数列⎭⎬⎫⎩⎨⎧⨯-n n a 231是首项为31321=-a ,公比为1-的等比数列.∴()1131231--⨯=⨯-n n n a , 即()[]nn n a 1231--=. 解法2: 由n n n a a 21=++,两边同除以()11+-n , 得()()()nnnn n a a 21111--=---++,令()nnn a c 1-=, 则()nn n c c 21--=-+.故()()()123121--++-+-+=n n n c c c c c c c c ()()()()13222221-----------=n()()[]()2121211----⋅---=-n()[]1231--=n ()2≥n . 且1111-=-=a c 也适合上式, ∴()nna 1-()[]1231--=n , 即()[]n n n a 1231--=. 解法3: 由n n n a a 21=++,得1212+++=+n n n a a , 两式相减得n n n n n a a 22212=-=-++.当n 为正奇数时,()()()235131--++-+-+=n n n a a a a a a a a 25322221-+++++=n41412121-⎪⎪⎭⎫ ⎝⎛-+=-n312+=n ()3≥n . 且11=a 也适合上式.当n 为正偶数时,()()()246242--++-+-+=n n n a a a a a a a a 264222221-+++++=n41414122-⎪⎪⎭⎫ ⎝⎛-+=-n312-=n ()4≥n . 且12112=-=a a 也适合上式.∴ 当∈n N *时,n a ()[]nn 1231--=. 解法4:由nn n a a 21=++,11=a ,得122-=a ()()()1231212122-=---+-=,()()()123121211222332223+=----=+-=-=a a .猜想n a ()[]nn 1231--=. 下面用数学归纳法证明猜想正确. ① 当1=n 时,易知猜想成立;② 假设当k n =∈k (N *)时,猜想成立,即()[]kk k a 1231--=, 由k k k a a 21=++,得()[]()[]1111231123122+++--=---=-=k k k k k k k k a a ,故当1+=k n 时,猜想也成立.由①、②得,对任意∈n N *,n a ()[]nn 1231--=.∴()[]()[]111121291+++--⨯--==n n n n n n n a a b ()[]1229112---=+nn . (2)n n a a a a S ++++= 321 ()()()()[]{}nn 111222231232-++-+--++++=()⎥⎦⎤⎢⎣⎡----=+21122311n n .要使0>-n n S b λ对任意∈n N *都成立,即()[]1229112---+n n ()02112231>⎥⎦⎤⎢⎣⎡-----+nn λ(*)对任意∈n N *都成立.① 当n 为正奇数时, 由(*)式得[]1229112-++n n ()01231>--+n λ, 即()()1212911+-+n n ()01231>--+n λ, ∵0121>-+n ,∴()1231+<nλ对任意正奇数n 都成立. 当且仅当1=n 时, ()1231+n有最小值1.∴1<λ.② 当n 为正偶数时, 由(*)式得[]1229112--+n n ()02231>--+n λ, 即()()1212911-++n n ()01232>--nλ, ∵012>-n,∴()12611+<+n λ对任意正偶数n 都成立. 当且仅当2=n 时, ()12611++n 有最小值23.∴<λ23.综上所述, 存在常数λ,使得0>-n n S b λ对任意∈n N *都成立, λ的取值范围是()1,∞-.2009年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前二题得分.第12题第1个空3分,第2个空2分.9.2 10.79 11.0 或 2 12.16,222n n ++13.1 14.3 15.6三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)()12cos 1sin 1122x x f x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,,m n 2cos sin 11sin 22x xx =+-=.∵x ∈R ,∴函数()f x 的值域为[]1 1-,.(2)∵()513f A =,()35f B =,∴5sin 13A =,3sin 5B =.∵,A B 都为锐角,∴12cos 13A ==,4cos 5B ==.∴()()()sin sin sin f C C A B A B π==-+=+⎡⎤⎣⎦sin cos cos sin A B A B =+541235613513565=⨯+⨯=.∴()f C 的值为5665.17.(本小题主要考查空间线面关系、几何体的表面积与体积等基本知识,考查数形结合的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 解:(1)设1A A h =,∵几何体111ABCD AC D -的体积为403, ∴1111111111403ABCD A C D ABCD A B C D B A B C V V V ---=-=, 即11114033ABCD A B C S h S h ∆⨯-⨯⨯=, 即11402222323h h ⨯⨯-⨯⨯⨯⨯=,解得4h =. ∴1A A 的长为4. (2)在线段1BC 上存在点P ,使直线1A P 与1C D 垂直. 以下给出两种证明方法:方法1:过点1D 作1C D 的垂线交1C C 于点Q ,过点Q 作PQ BC 交1BC 于点P .∵11C D DQ ⊥,111C D A D ⊥,1111DQ A D D = , ∴1C D ⊥平面11A D Q .∵1AQ ⊂平面11A D Q ,∴11C D AQ ⊥. ∵1C D PQ ⊥,∴1C D ⊥平面1A PQ . ∵1A P ⊂平面1A PQ ,∴11C D A P ⊥. 在矩形11CDD C 中,∵11Rt D C Q ∆∽1Rt C CD ∆,∴1111C Q D CCD C C=,即1224C Q =,∴11C Q =.∵1C PQ∆∽1C BC ∆,∴1111C P C Q C B C C=14=,∴1C P =. 在11A PC ∆中,∵11AC =1111112cos 10A C A C P CB ∠==. 由余弦定理,得1A P===. ∴在线段1BC 上存在点P ,使直线1A P 与1C D 垂直,且线段1A P 的长为2. 方法2:以点D 为坐标原点,分别以DA ,DC ,1DD 所在的直线为x 轴,y 轴,z 轴建立如图的空间直角坐标系,由已知条件与(1)可知,()10,2,4C ,()12,0,4A ,()0,0,0D , 假设在线段1BC 上存在点()P x y z ,,(0≤x ≤2,2y =,0≤z ≤)4使直线1A P 与1C D 垂直,过点P 作PQ BC ⊥交BC 于点Q .由BPQ ∆∽1BC C ∆,得1PQ BQC C BC=, ∴124422BQ xPQ C C x BC -=⨯=⨯=-. ∴42z x =-. ∴()12 2 2A P x x =-- ,,,()10 2 4C D =-- ,,.∵11A P C D⊥,∴110A P C D =, 即()()2 2 20 2 40x x ----= ,,,,,∴12x =. 此时点P 的坐标为1 2 32⎛⎫⎪⎝⎭,,,在线段1BC 上.∵13 2 12A P ⎛⎫=-- ⎪⎝⎭,,,∴12A P ==. ∴在线段1BC 上存在点P ,使直线1A P 与1C D 垂直,且线段1AP . 18.(本小题主要考查等差数列、等比数列的通项公式与前n 项和公式等基础知识,考查化归与转化、分类与整合的数学思想方法,以及推理论证能力和运算求解能力)解:设等比数列{}n a 的首项为1a ,公比为q ()10,0a q ≠≠, 若m a ,2m a +,1m a +成等差数列, 则22m a +=m a +1m a +. ∴111112m m m a q a q a q +-=+.∵10a ≠,0q ≠,∴2210q q --=. 解得1q =或12q =-. 当1q =时,∵1m S ma =,()111m S m a +=+,()212m S m a +=+,∴212m m m S S S ++≠+.∴当1q =时,m S ,2m S +,1m S +不成等差数列.当12q =-时,m S ,2m S +,1m S +成等差数列.下面给出两种证明方法. 证法1:∵()()()1211222m m m m m m m m m S S S S S a S a a ++++++-=++-++122m m a a ++=-- 112m m a a q ++=-- 11122m m a a ++⎛⎫=--- ⎪⎝⎭0=, ∴212m m m S S S++=+.∴当12q =-时,m S ,2m S +,1m S +成等差数列. 证法2:∵212211212412113212m m m a S a +++⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+,又1111111111222112113221122m m m m m m a a S S a +++⎡⎤⎡⎤⎛⎫⎛⎫----⎢⎥⎢⎥ ⎪ ⎪⎡⎤⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫⎣⎦⎣⎦+=+=----⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦++ 221211242322m m a ++⎡⎤⎛⎫⎛⎫=-⨯-+⨯-⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦2141132m a +⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, ∴212m m m S S S ++=+.∴当12q =-时,m S ,2m S +,1m S +成等差数列.19.(本小题主要考查等可能事件、互斥事件和独立重复试验等基础知识,考查化归与转化的数学思想方法,以及推理论证能力和运算求解能力)解:(1)∵一次摸球从2n +个球中任选两个,有22C n +种选法,任何一个球被选出都是等可能的,其中两球颜色相同有222C C n +种选法, ∴一次摸球中奖的概率2222222C C 2C 32n n n n p n n ++-+==++. (2)若3n =,则一次摸球中奖的概率25p =, 三次摸球是独立重复试验,三次摸球恰有一次中奖的概率是123354(1)C (1)125P p p =⋅⋅-=. (3)设一次摸球中奖的概率为p ,则三次摸球恰有一次中奖的概率为()()213233(1)C 1363f p P p p p p p ==⋅⋅-=-+,01p <<,∵()()()291233131f p p p p p '=-+=--,∴()f p 在10 3⎛⎫ ⎪⎝⎭,上为增函数,在1 13⎛⎫ ⎪⎝⎭,上为减函数.∴当13p =时,()f p 取得最大值. ∵2221323n n p n n -+==++(n ≥)*2,n ∈N 且, 解得2n =.故当2n =时,三次摸球恰有一次中奖的概率最大.20.(本小题主要考查函数的性质、函数与导数等知识,考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解法1:∵()22ln a h x x x x=++,其定义域为()0 +∞,, ∴()2212a h x x x'=-+.∵1x =是函数()h x 的极值点,∴()10h '=,即230a -=.∵0a >,∴a =经检验当a =1x =是函数()h x 的极值点,∴a =解法2:∵()22ln a h x x x x=++,其定义域为()0+∞,, ∴()2212a h x x x'=-+.令()0h x '=,即22120a x x-+=,整理,得2220x x a +-=.∵2180a ∆=+>,∴()0h x '=的两个实根114x -=(舍去),214x -+=,当x 变化时,()h x ,()h x '的变化情况如下表:1=,即23a =,∵0a >,∴a = (2)解:对任意的[]12,1x x e ∈,都有()1f x ≥()2g x 成立等价于对任意的[]12,1x x e ∈,都有()min f x ⎡⎤⎣⎦≥()max g x ⎡⎤⎣⎦.当x ∈[1,e ]时,()110g x x'=+>.∴函数()ln g x x x =+在[]1e ,上是增函数.∴()()max 1g x g e e ==+⎡⎤⎣⎦.∵()()()2221x a x a a f x x x+-'=-=,且[]1,x e ∈,0a >. ①当01a <<且x ∈[1,e ]时,()()()20x a x a f x x +-'=>,∴函数()2a f x x x=+在[1,e ]上是增函数,∴()()2min 11f x f a ==+⎡⎤⎣⎦.由21a +≥1e +,得a又01a <<,∴a 不合题意.②当1≤a ≤e 时, 若1≤x <a ,则()()()20x a x a f x x +-'=<,若a <x ≤e ,则()()()20x a x a f x x +-'=>.∴函数()2a f x x x=+在[)1,a 上是减函数,在(]a e ,上是增函数.∴()()min 2f x f a a ==⎡⎤⎣⎦.由2a ≥1e +,得a ≥12e +, 又1≤a ≤e ,∴12e +≤a ≤e . ③当a e >且x ∈[1,e ]时,()()()20x a x a f x x +-'=<,∴函数()2a f x x x=+在[]1e ,上是减函数.∴()()2min a f x f e e e ==+⎡⎤⎣⎦.由2a e e+≥1e +,得a又a e >,∴a e >.综上所述,a 的取值范围为1,2e +⎡⎫+∞⎪⎢⎣⎭.21.(本小题主要考查双曲线、解方程和直线与圆锥曲线的位置关系等知识,考查化归与转化、数形结合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)(1)解:∵双曲线22221x y a b -=()0,0a b >>=.即223a b =. ① ∵12MF MF ⊥,且12MFF ∆的面积为1. ∴1212112MF F S MF MF ∆==,即122MF MF =.∵122MF MF a -=,∴222112224MF MF MF MF a -+=.∴221244F F a -=.∴()222444a b a +-=,∴21b =. ②将②代入①,得23a =.∴双曲线C 的方程为2213x y -=. (2)解法1:设点Q A B ,,的坐标分别为(x y ,),(11x y ,),(22x y ,),且1x <2x <3,又设直线l 的倾斜角为θ2πθ⎛⎫≠⎪⎝⎭,分别过点P Q AB ,,,作x 轴的垂线,垂足分别为1111P Q A B ,,,, 则 1113cos cos A P x AP θθ-==,112cos cos PB x PB θθ-3== , 112cos cos Q B x x QB θθ-==,111-cos cos AQ x x AQ θθ==, ∵AP QB AQ PB =,∴(3-1x )(2x x -)=123x x x --()(), 即[]1212126()3()2x x x x x x x -+=+-. ③ 设直线l 的方程为1(3)y k x -=-, ④将④代入223x y -=1中整理,得 (1-3222)6133(13)10k x k k x k ⎡⎤----+=⎣⎦().依题意1x ,2x 是上述方程的两个根,且2130k -≠,∴()()1222122613133131.13k k x x k k x x k -⎧+=⎪-⎪⎨⎡⎤-+⎪⎣⎦=-⎪-⎩, ⑤将⑤代入③整理,得2(3)x k x -=-. ⑥ 由④、⑥消去k 得21x y -=-,这就是点Q 所在的直线方程.∴点Q (x y ,)总在定直线 10x y --=上.解法2:设点Q ,A B ,的坐标分别为,(x )y ,11,()x y ,22(,)x y ,且1x <2x <3, ∵AP QB AQ PB =, ∴AP AQPB QB =-,即112233x x x x x x--=---, 即[]1212126()3()2x x x x x x x -+=+-.以下同解法1.解法3:设点Q A B ,,的坐标分别为1122() () ()x y x y x y ,,,,,, 由题设知 AP PB AQ QB ,,,均不为零,记。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(理科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.题号 1 2 3 4 5 6 7 8 答案 A B C D A C B D二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,每小题5分,满分30分.其中13~15是选做题,考生只能选做两题. 第12题第一个空2分,第二个空3分.9.9 10.2 11.80 12.-1;4 13.3414.1 15. ⎥⎦⎤⎢⎣⎡2,112 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分) (本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力) 解: (1)∵053cos >=B , 且π<<B 0,∴ 54cos 1sin 2=-=B B .由正弦定理得Bb Aa sin sin =. ∴524542sin sin =⨯==b Ba A . (2)∵,4sin 21==∆B ac S ABC ∴454221=⨯⨯⨯c .∴ .由余弦定理得B ac c a b cos 2222-+=,∴175352252cos 22222=⨯⨯⨯-+=-+=B ac c a b .17.(本小题满分14分) (本小题主要考查概率、随机变量的分布列及其数学期望等基础知识,考查运算求解能力)解:(1)记“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B ,则()()52,53==A P A P ,()()p B P p B P -==1,.依题意得()209531153=⎪⎭⎫ ⎝⎛-+-p p , 解得43=p .故p 的值为43.(2)ξ的取值分别为,4,2,0.()()()()10141520=⨯=⋅===B P A P B A P P ξ,()2092==ξP ,()()()()20943534=⨯=⋅===B P A P AB P P ξ,ξ∴的分布列为ξ24p 101 209 209∴E .1027209420921010=⨯+⨯+⨯=ξ 18.(本小题满分14分) (本小题主要考查空间中线面的位置关系、空间的角、几何体体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力)(1) 证明: ∵E D ,分别是棱PB PA ,的中点,∴DE 是△PAB 的中位线.∴AB DE //. ∵⊄DE 平面⊂AB ABC ,平面,ABC∴//DE 平面ABC . 同理可证 //DF 平面ABC .5=c∵⊂=DE D DF DE , 平面DEF ,⊂DF 平面DEF , ∴平面DEF // 平面ABC . (2) 求三棱锥ABC P -的体积的最大值, 给出如下两种解法: 解法1: 由已知⊥PA 平面ABC , AB AC ⊥,2==BC PA ∴4222==+BCACAB .∴三棱锥ABC P -的体积为ABCS PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=2131AC AB ⨯⨯⨯=26123122AC AB+⨯≤2312BC ⨯=32=.当且仅当AC AB =时等号成立,V 取得最大值,其值为解法2:设x AB =,在R t △ABC 中,2224xABBCAC -=-=()20<<x .∴三棱锥ABC P -的体积为ABC S PA V ∆⨯⨯=31AC AB PA ⨯⨯⨯⨯=21312431x x -=42431x x -=()423122+--=x .∵40,202<<<<x x , ∴ 当22=x ,即2=x 时,V 取得最大值,其值为32,此时2==AC AB .求二面角D EF A --的平面角的余弦值, 给出如下两种解法: 解法1:作EF DG ⊥,垂足为G , 连接AG .∵ ⊥PA 平面ABC ,平面//ABC 平面DEF , ∴ ⊥PA 平面DEF .∵ ⊂EF 平面DEF ,∴ ⊥PA EF .∵ D PA DG = ,∴ ⊥EF 平面PAG .∵⊂AG 平面PAG ,∴⊥EF AG .∴ AGD ∠是二面角D EF A --的平面角. 在R t △EDF 中,121,2221=====BC EF AB DF DE ,∴21=DG .在R t △ADG 中,2541122=+=+=DGADAG ,552521cos ===∠AG DG AGD .∴二面角D EF A --的平面角的余弦值为55.解法2:分别以AP AC AB ,,所在直线为x 轴, y 轴, z轴,建立如图的空间直角坐标系xyz A -,则()()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1,22,0,1,0,22,1,0,0,0,0,0F E D A . ∴⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=0,22,22,1,0,22EF AE .设n ()z y x ,,=为平面AEF 的法向量,∴⎪⎩⎪⎨⎧=⋅=⋅.0,0EF n AE n 即⎪⎪⎩⎪⎪⎨⎧=+-=+.02222,022y x z x令2=x , 则1,2-==z y .∴n ()1,2,2-=为平面AEF 的一个法向量.∵平面DEF 的一个法向量为()100-=,,DA ,∴()()()5511221222=⨯-++==n cos .∴二面角D EF A --的平面角的余弦值为55. 19.(本小题满分12分)(本小题主要考查函数最值、不等式、导数及其应用等基础知识,考查分类与整合的数学思想方法,以及运算求解能力和应用意识)解:(1)生产150件产品,需加工A 型零件450个,则完成A 型零件加工所需时间()x f ∈==x xx(905450N *,且)491≤≤x .(2)生产150件产品,需加工B 型零件150个,则完成B 型零件加工所需时间()x g ()∈-=-=x xx (5050503150N *,且)491≤≤x .设完成全部生产任务所需时间为()x h 小时,则()x h 为()x f 与()x g 的较大者.令()()x g x f ≥,即xx -≥505090,解得71321≤≤x .所以,当321≤≤x 时,()()x g x f >;当4933≤≤x 时,()()x g x f <.故()()()⎪⎩⎪⎨⎧≤≤∈-≤≤∈=4933,,5050321,,90**x Nx xx N x x x h .当321≤≤x 时,()0902'<-=xx h ,故()x h 在[]32,1上单调递减,则()x h 在[]32,1上的最小值为()1645329032==h (小时);当4933≤≤x 时,()()050502'>-=x x h ,故()x h 在[]49,33上单调递增,则()x h 在[]49,33上的最小值为()175033505033=-=h (小时);()()3233h h > ,∴()x h 在[]49,1上的最小值为()32h . 32=∴x .答:为了在最短时间内完成生产任务,x 应取32.20.(本小题满分14分) (本小题主要考查圆、椭圆、直线等基础知识和数学探究,考查数形结合、分类与整合的数学思想方法,以及推理论证能力、运算求解能力和创新意识)解:(1)圆()642:22=+-y x M , 圆心M 的坐标为()0,2,半径8=R .∵R AM <=4,∴点()0,2-A 在圆M 内.设动圆C 的半径为r ,圆心为C ,依题意得CA r =,且r R CM -=,即AM CA CM >=+8.∴圆心C 的轨迹是中心在原点,以M A ,两点为焦点,长轴长为8的椭圆,设其方程为()012222>>=+b a by ax , 则2,4==c a .∴12222=-=c a b .∴所求动圆C 的圆心的轨迹方程为1121622=+yx.(2)由⎪⎩⎪⎨⎧=++=.11216,22yx m kx y 消去y 化简整理得:()0484843222=-+++m kmx xk .设11(,)B x y ,22(,)D x y ,则122834km x x k+=-+.△1()()()04844348222>-+-=mkkm . ① 由⎪⎩⎪⎨⎧=-+=.1124,22y x m kx y 消去y 化简整理得:()01223222=----m kmx xk .设()()4433,,,y x F y x E ,则24332kkm x x -=+,△2()()()012342222>+-+-=m k km . ② ∵DF BE +=0, ∴4231()()0x x x x -+-=,即1234x x x x +=+,∴2232438kkm kkm -=+-.∴02=km 或2231434kk -=+-.解得0k =或0m =.当0k =时,由①、②得 3232<<-m ,∵∈m Z ,∴m 的值为2,3-- 1-,0,13,2,; 当0m =,由①、②得 33<<-k ,∵∈k Z ,∴1,0,1-=k .∴满足条件的直线共有9条.21.(本小题满分14分)(本小题主要考查数列的通项公式、数列前n 项和、不等式等基础知识,考查化归与转化、分类与整合、特殊与一般的数学思想方法,以及推理论证能力、运算求解能力和抽象概括能力)解: (1) ∵1,+n n a a 是关于x 的方程022=+-n nb x x ∈n (N )*的两根, ∴⎩⎨⎧==+++.,211n n n n n n a a b a a求数列{}n a 的通项公式, 给出如下四种解法:解法1: 由nn n a a 21=++,得⎪⎭⎫⎝⎛⨯--=⨯-++n n n n a a 23123111,故数列⎭⎬⎫⎩⎨⎧⨯-n n a 231是首项为31321=-a ,公比为1-的等比数列.∴()1131231--⨯=⨯-n n n a ,即()[]n n n a 1231--=. 解法2: 由nn n a a 21=++,两边同除以()11+-n , 得()()()nnnn n a a 21111--=---++,令()nn n a c 1-=, 则()nn n c c 21--=-+. 故()()()123121--++-+-+=n n n c c c c c c c c ()()()()13222221-----------=n()()[]()2121211----⋅---=-n()[]1231--=n()2≥n .且1111-=-=ac 也适合上式,∴()nn a 1-()[]1231--=n , 即()[]n n n a 1231--=.解法3: 由n n n a a 21=++,得1212+++=+n n n a a , 两式相减得nnn n n a a 22212=-=-++.当n为正奇数时,()()()235131--++-+-+=n n n a a a a a a a a25322221-+++++=n41412121-⎪⎪⎭⎫ ⎝⎛-+=-n312+=n()3≥n .且11=a 也适合上式. 当n 为正偶数时,()()()246242--++-+-+=n n n a a a a a a a a264222221-+++++=n 41414122-⎪⎪⎭⎫ ⎝⎛-+=-n312-=n()4≥n .且12112=-=a a 也适合上式. ∴ 当∈n N *时,n a ()[]nn1231--=. 解法4:由nn n a a 21=++,11=a ,得122-=a ()()()1231212122-=---+-=,()()()123121211222332223+=----=+-=-=a a .猜想n a ()[]nn1231--=.下面用数学归纳法证明猜想正确. ① 当1=n 时,易知猜想成立;② 假设当k n =∈k (N*)时,猜想成立,即()[]kkk a 1231--=,由kk k a a 21=++,得()[]()[]1111231123122+++--=---=-=k k kkkk kk a a ,故当1+=k n 时,猜想也成立.由①、②得,对任意∈n N *,n a ()[]nn1231--=.∴()[]()[]111121291+++--⨯--==n n nnn n n a a b()[]1229112---=+nn .(2)n n a a a a S ++++= 321()()()()[]{}nn111222231232-++-+--++++=()⎥⎦⎤⎢⎣⎡----=+21122311n n .要使0>-n n S b λ对任意∈n N *都成立, 即()[]1229112---+nn ()02112231>⎥⎦⎤⎢⎣⎡-----+nn λ(*)对任意∈n N *都成立. ① 当n 为正奇数时, 由(*)式得[]1229112-++nn ()01231>--+n λ, 即()()1212911+-+nn ()01231>--+n λ,∵0121>-+n ,∴()1231+<nλ对任意正奇数n 都成立.当且仅当1=n 时,()1231+n有最小值1.∴1<λ.FEDCBAPG FEDCBAP② 当n 为正偶数时, 由(*)式得[]1229112--+nn ()02231>--+n λ,即()()1212911-++nn ()01232>--nλ,∵012>-n, ∴()12611+<+n λ对任意正偶数n 都成立.当且仅当2=n 时, ()12611++n 有最小值23.∴<λ23.综上所述, 存在常数λ,使得0>-n n S b λ对任意∈n N *都成立, λ的取值范围是()1,∞-.。

相关文档
最新文档