江苏徐州中考数学试卷与答案审批稿
江苏徐州中考数学试卷与答案审批稿

江苏徐州中考数学试卷与答案YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】2015徐州市中考数学试题及参考答案一.选择题(本大题共8小题,每小题3分,共24分)1.-2的倒数是( )B.-2C. 12 D.-122.下列四个几何体中,主视图为圆的是( )A. B. C. D. 3.下列运算正确的是( )A. 3a2-2a2=1B. (a2)3=a5C. a2 ·a4=a6D. (3a)2=6a2 4.使x- 1 有意义的x的取值范围是( )A. x≠ 1B. x≥ 1C. x> 1D. x≥ 05.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A. 至少有1个球是黑球B.至少有1个球是白球C. 至少有2个球是黑球D.至少有2个球是白球6.下列图形中,是轴对称图形但不是中心对称图形的是( )A.直角三角形B.正三角形C.平行四边形D.正六边形7.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )A.y8.若函数y =kx -b 的图像如图所示,则关于x 的不等式k (x -3)-b >0的解集为( )A.x < 2B.x > 2C.x < 5D.x > 5二. 填空题(本大题共10小题,每小题3分,共30分) 9.4的算术平方根10.杨絮纤维的直径约为0.000 010 5m ,该直径用科学记数法表示为11.小丽近6个月的手机话费(单位:元)分别为:18,24,37,28,24,26,这组数据的中位数是 元。
12.若正多边形的一个内角等于140°,则该正多边形的边数是13.已知关于x 的方程x 2-23x -k =0有两个相等的实数根,则k 的值为 . 14.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C=20°15.如图,AB 是⊙O 的直径,弦CD ⊥ AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为 cm .16.如图,在△ABC 中,∠C=31°,∠ABC 的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么∠A= °.(第15题)(第14题)ACG E17.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形,再以对角线AE 为边作第三个正方形AEGH ,如此下去,第n 个正方形的边长为 .18.用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径 . 三. 解答题(本大题共10小题,共86分) 19.(本题10分)计算:(1)︱-4︱-20150+⎝ ⎛⎭⎪⎫12-1- ()32;(2) (1+1a ) ÷a 2—1a20.(本题10分)(1)解方程:x 2 - 2x - 3=0;(2)解不等式组:⎩⎨⎧x - 1 >2x +2 < 4x - 121.(本题7分)小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品。
2022年江苏省徐州市中考数学试卷及答案解析

2022年江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项符合题意,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣3的绝对值是()A.3B.﹣3C.D.﹣2.(3分)下列图案是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)若有意义,则x的取值范围是()A.x>2B.x≥2C.x<2D.x≤24.(3分)下列计算正确的是()A.a2•a6=a8B.a8÷a4=a2C.2a2+3a2=6a4D.(﹣3a)2=﹣9a25.(3分)如图,已知骰子相对两面的点数之和为7,下列图形为该骰子表面展开图的是()A.B.C.D.6.(3分)我国近十年的人口出生率及人口死亡率如图所示.已知人口自然增长率=人口出生率﹣人口死亡率,下列判断错误的是()A.与2012年相比,2021年的人口出生率下降了近一半B.近十年的人口死亡率基本稳定C.近五年的人口总数持续下降D.近五年的人口自然增长率持续下降7.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为()A.B.C.D.8.(3分)如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为()A.5B.6C.D.二、填空题(本大题共有10小题,每小题3分,共30分。
不需要写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)因式分解:x2﹣1=.10.(3分)正十二边形的一个内角的度数为.11.(3分)方程=的解为.12.(3分)我国2021年粮食产量约为13700亿斤,创历史新高,其中13700亿斤用科学记数法表示为亿斤.13.(3分)如图,A、B、C点在圆O上,若∠ACB=36°,则∠AOB=.14.(3分)如图,若圆锥的母线长为6,底面半径为2,则其侧面展开图的圆心角为.15.(3分)若一元二次方程x2+x﹣c=0没有实数根,则c的取值范围是.16.(3分)如图,将矩形纸片ABCD沿CE折叠,使点B落在边AD上的点F处.若点E 在边AB上,AB=3,BC=5,则AE=.17.(3分)若一次函数y=kx+b的图象如图所示,则关于kx+b>0的不等式的解集为.18.(3分)若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m 的值为.三、解答题(本大题共有10小题,共86分。
江苏省徐州市中考数学真题试题(含解析)

江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣22.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a63.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,104.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.12005.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,386.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是.10.(3分)使有意义的x的取值范围是.11.(3分)方程x2﹣4=0的解是.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.20.(10分)(1)解方程:+1=(2)解不等式组:21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【解答】解:A、a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.3.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200【分析】由抛掷一枚硬币正面向上的可能性为0.5求解可得.【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.【点评】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38【分析】根据众数和中位数的概念求解可得.【解答】解:将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2【分析】根据题意和反比例函数的性质可以解答本题.【解答】解:∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.8.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108【分析】先化简2.5×106=0.25×107,再从选项中分析即可;【解答】解:2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.【点评】本题考查数轴,科学记数法;能够将数进行适当的表示,结合数轴解题是关键.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)使有意义的x的取值范围是x≥﹣1 .【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.(3分)方程x2﹣4=0的解是±2 .【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为 4 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解答】解:∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:4【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16 .【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点评】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出多边形的边数,再根据多边形的内角和公式计算即可.【解答】解:多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°【点评】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 6 cm.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262 m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【分析】作AE⊥BC于E,根据正切的定义求出AE,根据等腰直角三角形的性质求出BE,结合图形计算即可.【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.【分析】设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.【解答】解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.【点评】考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有 3 个.【分析】三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;【解答】解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;【点评】本题考查一次函数的图象上点的特征,等腰三角形的性质;掌握利用两圆一线找等腰三角形的方法是解题的关键.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.【分析】(1)先计算零指数幂、算术平方根、负整数指数幂和绝对值,再计算加减可得;(2)先化简各分式,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式的乘除运算顺序和运算法则.20.(10分)(1)解方程:+1=(2)解不等式组:【分析】(1)两边同时乘以x﹣3,整理后可得x =;(2)不等式组的每个不等式解集为;【解答】解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x =;经检验x =是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;【点评】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.【分析】(1)计算所取两数的乘积即可得;(2)找到符合条件的结果数,再根据概率公式计算可得;(3)利用概率公式计算可得.【解答】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.【分析】(1)从条形统计图中可得3﹣4月份电费240元,从扇形统计图中可知3﹣4月份电费占全年的10%,可求全年的电费,进而求出9﹣10月份电费所占的百分比,然后就能求出9﹣10月份对应扇形的圆心角的度数;(2)全年的总电费减去其它月份的电费可求出7﹣8月份的电费金额,确定直条画多高,再进行补全统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:【点评】考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD =CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.【分析】(1)连接OC,由D为的中点,得到=,根据圆周角定理即可得到结论;(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,于是得到结论.【解答】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点评】本题考查了直线与圆的位置关系,圆心角、弧、弦的关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【分析】设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,根据长方体盒子的侧面积为200cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.【分析】根据已知条件作图可知40cm时,所有图案个数4个;猜想得到结论;【解答】解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;【点评】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;(2)设甲、乙之间距离为d,由勾股定理可得d2=(1200﹣240x)2+(80x)2 =64000(x﹣)2+144000,根据二次函数最值即可得出结论.【解答】解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.【点评】本题考查了函数图象的读图识图能力,正确理解图象交点的含义,从图象中发现和获取有用信息,提高分析问题、解决问题的能力.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB =6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.【点评】本题属于反比例函数综合题,考查了反比例函数的应用,全等三角形的判定和性质,勾股定理,平行线分线段成比例定理,基本不等式等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
最新江苏省徐州市中考数学测试试题附解析

江苏省徐州市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )A.5 B.5C .12D .2 2. 抛物线y=x 2+6x+8与y 轴交点坐标( ) A .(0,8)B .(0,-8)C .(0,6)D .(-2,0)(-4,0) 3.函数223y x x k =++的图象与x 轴有交点,则k 的取值应为( )A .98k >B .98k ≥C .98k <D .98k ≤ 4.下列关于菱形的对角线的说法中错误..的是( ) A .互相平分 B .互相垂直 C .相等 D .每一条对角线平分一组对角5. 一元二次方程22(1)1x x -=-的根是( )A .32-B .1C .32-或 1D . 无解6.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A .112k -<<-B .102k <<C .01k <<D .112k << 7.下列不等式组无解的是( ) A .1020x x -<⎧⎨+<⎩ B .1020x x -<⎧⎨+>⎩ C .1020x x ->⎧⎨+<⎩ D .1020x x ->⎧⎨+>⎩ 8.今年某市有800名八年级学生参加了省数学竞赛,为了了解这800名学生的成绩,从中抽取了100名学生的考试成绩进行分析,以下说法中,正确的是( )A .800名学生是总体B .每个学生是个体C .100名学生的数学成绩是一个样本D .800名学生是样本容量9.如图,在 Rt △ABC 中,∠ACB = 90°,DE 过点C 且平行于AB. 若∠BCE = 35°,则∠A 等于( )A . 35°B .45°C . 55°D . 65°10.如图,若∠l=∠2,则在结论:①∠3=∠4;②AB ∥DC ;③AD ∥BC 中,正确的个数是( )A .0个B .1个C .2个D .3个11.从1~9这9个自然数中任取一个,是2的倍数或3的倍数的概率为( )A .79B .29C . 23D . 5912.下列计算正确的是( )A .23(31)3a a a a --=--B .222()a b a b -=-C .2(23)(23)94a a a ---=-D .235()a a = 13.已如图是L 型钢条截面,它的面积是( ) A .ct lt + B .2()c t t lt ct lt t -+=+-C . 2()()2c t t l t t ct lt t -+-=+-D .2()()22l c t c t l t l c +++-+-=+14.下列判断正确的是 ( )①在数轴上,原点两旁的两个点所表示的数都是互为相反数; ②任何正数必定大于它的倒数;③5ab ,12x +,4a 都是整式;④x 2-xy+y 2是二次多项式 A .①② B .②③ C .③④ D .①④15. 如图,用火柴棒按如图的方式搭三角形,搭一个三角形需 3根火柴棒,如图甲;搭两个三角形需 5根火柴棒,如图乙;搭三个三角形需 7根火柴棒,如图丙. 那么按此规律搭下去,搭10 个三角形需要多少根火柴棒( )A .21B .30C .111D .119二、填空题16.小华与父母一同从重庆乘火车到广安邓小平故居参观. 火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是 . 17.若α为等腰直角三角形的锐角,则cos α= .18.命题“若a 2=b 2,则a =b ”是 命题.(填“真”或“假”)19.若矩形的对角线等于较长边a 的一半与较短边b 的和,则a :b 等于 .20.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为____________.21.某市某学校初中八年级有4个绿化小组,在植树节这天种下杨树的棵数如下:l0,10,x ,8.若这组数据的众数和平均数相等,那么它们的中位数是 棵.解答题22.当98m =-时,244m m -+的值为 .三、解答题23.如图,已知反比例函数8y x=-和一次函数2y x =-+的图象交于A 、B 两点,求: (1)A 、B 两点的坐标;(2)若O 为坐标原点,求△AOB 的面积.24.如图所示是某班学生一次数学考试成绩的统计图,其中纵轴表示学生数,横轴表示分数,观察图形并填空.(1)全班共有学生人;(2)若该班学生此次数学考试成绩组中值不低于70分的组为合格,则合格率为;(3)如果组中值为90的一组成绩为优良,那么该班学生此次数学考试成绩的优良率为;(4)该班此次考试的平均成绩大概是.25.如图所示,是两个正五边形,如果想密铺,还需要怎么样的多边形?26.方程0+++xmxm m.-)31()1(1||=-(1)m取何值时,方程是一元二次方程,并求出此方程的解;(2)m取何值时,方程是一元一次方程.27.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数.方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.28.如图①所示,长方形通过剪切可以拼成直角三角形,方法如下:仿照上图,用图示的方法,解答下列问题:(1)如图②所示,已知直角三角形,设计一种方案,将它分成若干块,再拼成一个与之等面积的长方形;(2)如图③所示,对任意一个三角形,设计一种方案,把它分成若干块,再拼成一个与它等面积的长方形.29.出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:5,4,12,10,1,5,2,15-+++-+-+(1)人民大街总长不小于__________千米;(2)将最后一名乘客送往目的地时,小李距离下午出车时的出发点多远?(3)若出租车耗油量为每千米a 升,这天下午小李共耗油多少升?30.如图,某市有一块长为(3a b +)m ,宽为(2a b +)m 的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少m 2?并求出当3a =,2b =时的绿化面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.C5.C6.D7.C8.C9.C10.B11.CC13.B14.C15.A二、填空题16.1317. 22 18. 假19.4:320.0.521.1022.10000三、解答题23.(1)由28y x y x =-+⎧⎪⎨=-⎪⎩得2280x x --=,解得:x 1 = 4,x 2 =-2 x 1 = 4时,y 1 =-2;x 2 =-2 时,y 2 =4,∴A 、B 坐标分别是(4,一2)和(—2,4).(2)设直线 AB 与 x 轴交于C ,则点 C 的坐标为(2,0).112422622AOB AOC OBC S S S ∆∆∆=+=⨯⨯+⨯⨯=. 24.(1)40;(2)85%;(3)40%;(4)70分正十边形26.⑴1=m ,解为231±=x ;⑵1-=m ,解为41-=x 或0=m ,解为21-=x . 27.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710+++⨯+⨯+=; 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=;方案3最后得分:8; 方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.28.(1)(2)29.(1)人民大街总长不小于43千米;(2)向东38千米;(3)54a 升30.(253a ab +)m 2;当3a =,2b =时,25363a ab +=m 2。
2022年江苏省徐州市中考数学经典试题附解析

2022年江苏省徐州市中考数学经典试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.线段 a=6,b=8,c=15,则第四比例项d 为( )A .10B .20C .30D .48 2.已知圆锥的母线长为5,底面半径为3,则圆锥的表面积...为( ) A .15πB .24πC .30πD .39π 3. 在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k >3B .k >0C .k <3D .k <0 4.下列各数中,可以用来证明“奇数是素数”是假命题的反例是( ) A .9B .7C .5D .3 5.如果菱形的周长是8cm ,高是1cm ,那么这个菱形两邻角的度数比为( )A .1:2B .1:4C .1:5D .1:6 6.如图,一张矩形纸片沿BC 折叠,顶点A 落在A ′处,第二次过A ′再折叠,使折痕DE ∥BC ,若AB=2,AC=3,则梯形BDEC 的面积为( )A .8B .9C .10D .117.关于x 的一元二次方程22(3)60a x x a a -++--=的一个根是 0,则a 的值为( )A .2-B .3C .-2 或 3D .-1或 6 8.16a 4b 3c 除以一个单项式得8ab ,则这个单项式为( ) A .2a 2b 2B .21a 3b 2cC .2a 3b 2cD .2a 3b 2 9.若1044m x x x--=--无解,则m 的值是( ) A .-2B .2C .3D .-310.以12x y =-⎧⎨=⎩为解的二元一次方程组( ) A . 有且只有一个 B . 有且只有两个 C . 有且只有三个 D . 有无数个11.下列各个变形正确的是()A.由 7x=4x-3,移项,得 7x-4x=3B.由 3(2x-1)=1+ 2(x-3),去括号,得6x-1 =1+2x-3C.由 2(2x-1)-3(x-3)= 1,去括号,得4x-2-3x-9= 1D.由 2(x+1)=x+8,去括号,移项,合并,得x=6二、填空题12.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为 cm2.13.列举两个既是轴对称,又是中心对称的几何图形:.14.某中学举行广播操比赛,六名评委对某班打分如下:7.5 ,7.8分,9.0分,8.1分,7.9分,去掉一个最高分和一个最低分后的平均分是.15.如图中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为 .16.若分式||4()(4)xx l x-+-的值为零,则x的值是.17.( )2= 16, ( )3 = 64.18.123-的绝对值是 , 绝对值等于123的数是,它们是一对.19.某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱.则该学生第二次购书实际付款元.三、解答题20.如图,在学校的操场上,有一株大树和一根旗杆.(1)请根据树在阳光照射下的影子,画出旗杆的影子(用线段表示);(2)若此时大树的影长 6m,旗杆高 4m,影5m,求大树的高度.21.如图,已知 Rt△ABC中,∠B = 90°,AC =13,AB=5,0 是AB 上的点,以 0为圆心,OB 为半径的 0,设OB 长为 r ,问:r 长分别满足多少时,00 与AC 的位置关系为:(1)相离;(2)相切;(3)相交.22.(体验过程题)补充解题过程:牧民居住的蒙古包的形状是一个圆柱与圆锥的组合体,尺寸如图所示,•请你算出要搭建这样一个蒙古包至少需要多少平方米的篷布?(π取3.14,•结果保留一位小数).解答:圆锥的底面半径为_______,高为1.2m ,•则据勾股定理可求圆锥的母线a=________(结果精确到0.1)圆锥的侧面积:S 扇形=12LR=______ 圆柱的底面周长为_______. 圆柱的侧面积是一个长方形的面积,则S 长方形=_______.搭建一个这样的蒙古包至少需要________平方米的篷布.23.老师在同一直角坐标系中画了一个反比例函数的图象以及一个正比例函数y=-x 的图象,请同学们观察. 同学甲、乙对反比例函数图象的描述如下:同学甲:与直线y= 一x 有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为 5请根据以上信息,写出反比例函数的解析式.24.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹).25.计算11(318504)52+3226.你画一个等腰三角形,使它的腰长为 3cm.27.代数式24a +加上一个单项式后,可构成一个完全平方式,请写出这个单项式(要求写出 5个).28.下列各式: (1) 21()x x+;(2)22(2)(2)a b a b ++-;(3)2(23)(23)(23)x y x y x y --+-29.一件工作,甲单独做要8天过完成,乙单独做需l2天完成,丙单独做需24天完成.甲 乙合作了3天后,甲因事离去,由乙、丙合作,问乙、丙还要几天才能完成这项工作?30.一种被污染的液体每升含有2.4×1013个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死4×1010个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少毫升?(注:15滴=1毫升)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.A5.C6.B7.A8.C9.C10.D11.D二、填空题12.813.圆,线段等14.8.0分15.-3116.-417.4±,418. 123,123±,相反数 19.204三、解答题20.(1)AB 为旗杆的影子;(2)设大树高 x(m).则465x =,x=4.8 答:大树的高度是4.8 m21.如图,当⊙O 与 AC 相切时,过0作OD ⊥AC 于 D ,则 OB=OD= r ,AO=5—r 由勾股定理知:222213512BC AC AB =-=-=,∴∠ADO= ∠ABC= 90° , ∠A= ∠A,∴△ADO ∽△ABC,∴AO DO AC BC =,∴51312r r -=,解得r=2.4由上可知,(1)0<r<2. 4 时,AC 与⊙O 相离;(2)r=2. 4 时,AC 与⊙O 相切;(3)r>2. 4 时,AC 与⊙O 相交.22.2.5m 、 2.8m 、7π、5π、9π、50.223.∵反比例函数的图象与直线 y=一x 有两个交点,∴此图象必须经过四象限; ∵图象上任意一点到两坐标轴的距离的积都为5,∴||5k =,∴k.=一5 (+5舍去). ∴5y x=-. 24.连结AB ,EF 相交于点O ,OC 就是∠AOB 的平分线,图略. 25. 解:原式=(92222)÷2=2÷2 226.略27.如4a ,4a -,4116a ,2a - 28. (1)2212x x++;(2)2228a b +; (3)21218xy y -+ 29.3天30.40毫升.。
2023年江苏省徐州市中考数学试卷原卷附解析

2023年江苏省徐州市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.用长为5cm,6cm,7cm的三条线段围成三角形的事件是()A.随机事件B.必然事件C.不可能事件D.以上都不是2.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2008的值为()A.2006 B.2007 C.2008 D.20093.某种商品的进价为 800 元,出售时标价为1200 元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打()A.6 折B.7 折C.8 折D.9 折4.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a5.如图,CD是等腰直角三角形斜边AB上的中线,DE⊥BC于E,则图中等腰直角三角形的个数是()A.3个B.4个C.5个D.6个6.用加减法解方程组2333211x yx y+=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A.4639611x yx y+=⎧⎨-=⎩B.6396222x yx y+=⎧⎨-=⎩C.4669633x yx y+=⎧⎨-=⎩D.6936411x yx y+=⎧⎨-=⎩7.如图所示,已知AD⊥BC,BD=CD,则①△ABD≌△ACD,②△ABD和△ACD不全等,③AB=AC,④∠BAD=∠CAD,以上判断正确的是()A.①B.②C.①③④D.①②③8.已知直线AB 上有一点0,射线OC 和射线OD 在射线OB 同侧,∠BOC=50°,∠COD=100°,则∠BOC 与∠AOD 的平分线的夹角的度数是( )A .130°B .135°C .140°D .145°9.已知3x =,2y =,0x y ⋅<,则x y +的值为( )A .5或-5B .1或-1C .5或1D .-5或-1 10.绝对值等于本身的数是( )A .正数B .0C .负数或0D . 正数或 0 二、填空题11.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 内切,那么⊙A 由图示位置需向右平移个单位长.12.如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是 .13.一斜坡的坡比为 1:2,斜面长为 l5m ,则斜面上最高点离地面的高度为 m .14.等腰直角三角形一条直角边的长为1cm ,那么它斜边上的高长是________cm .15.已知三角形的两边分别是 1 和2,第三边的数值是方程22530x x -+=的根,则这个三角形的周长为 .解答题16.代数式84x -的值不小于代数式35x +的值,则x 的取值范围是 . 17.如图,已知D 为等边三角形内一点,DB=DA ,BF=AB ,∠1=∠2,则∠BFD= .18.已知二元一次方程x=35y+4,用含x 的代数式表示y________. 5203x - 19.判断正误,在括号内打“√”或“×”.(1)三角形的一条角平分线把三角形分成面积相等的两部分. ( )(2)若一个三角形的两条高在这个三角形外部,则这个三角形是钝角三角形. ( )(3)直角三角形的三条高的交点恰为直角顶点. ( )(4)三角形的中线可能在三角形的外部. ( )20.为了解人们喜欢某种动物的情况,随机调查了100人,数据统计的部分信息如图所示,其中喜欢狗的人数为_________.解答题-,则向北走3m记作m.21.若向南走2m记作2m三、解答题22..将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率.23.画出下列几何体的三种视图.24.如图,已知 AB 是⊙O的直径,CD⊥AB,垂足为 D,CE 切⊙O于点 F,交 AB 的延长线于点 E. 求证:EF EC EO ED⋅=⋅25.已知一抛物线与x 轴的交点是)0,2( A 、B (1,0),且经过点C (2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.26.如图,矩形ABCD 中,M 是CD 的中点.求证:(1)△ADM ≌△BCM ;(2)∠MAB=∠MBA27.已知:如图,矩形ABCD 的对角线BD ,AC 相交于点0,EF ⊥BD 于0,交AD 于点E ,交BC 于点F ,且EF=BF .求证:OF=CF .28.试一试:(1)你能把一个梯形纸片裁剪拼成一个三角形、一个平行四边形、一个矩形吗(分别在图①、②、③中画出)?(2)请你用不同的方法把一个上底等于2,下底等于4的等腰梯形纸片裁成面积相等的三块(在图④中画出).29.如图,用同样大小的四个等边三角形,可以拼成一个轴对称图形,你能再拼出一种轴对称图形吗?30.(1)某公司有4个通话员,其中把每两人之间的通话看做一条线段,那么共有多少条线段?(2)若该公司有5个通话员,其中把每两人之间的通话看做一条线段,那么共有多少条线段?(3)某地区有n个通话员,其中把每两人之间的通话看做一条线段,那么共有多少条线段(用订表示)?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.A5.C6.C7.C8.C9.B10.D二、填空题11.4或612.15π413.3514.15.14216.1213x<17.30°18.19.(1)× (2)√ (3)√ (4)×20.3021.3三、解答题22.解:(1)P(抽到奇数)=34.(2)树状图:开始1 1 23 123 1 2 3 1 1 3 1 1 2所以组成的两位数是13的概率为21126P==.23.24.连结 OF.由CD⊥AB,CE 切⊙O于点F 可得∠CDE=∠OFE=Rt∠,又∵∠E=∠E ,∴△DEC ∽△OFE ,EC ED EO EF=,即EF EC EO ED ⋅=⋅ 25.(1)4222-+=x x y (2))29,21(--. 26.略.27.证△AE0≌△CFO ,OF=12BF ,∠FCO=30° 28.略29.略30.(1)6 (2)10 (3) (1)2n n -。
2022年江苏省徐州市中考数学试卷及参考答案

2022年江苏省徐州市中考数学试卷及参考答案注意事项:1.本试卷满分l20分,考试时间为I20分钟.2.答题前前将自己的姓名、准考证号用0.5毫米黑色墨水签字笔写在本试卷和答题卡上,3.考生答题全部涂、写在答题卡上,写在本试卷上无效,考试结束,将本试卷和答题卡一并交回。
一、选择题(本大题共有10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1,2的相反数是A.2B.2C.12D.12考点:相反数.分析:根据相反数的定义:只有符号不同的两个数就是相反数,进行判断.解答:解:根据相反数的定义,-2的相反数是2.故选A.点评:本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断.2.2022年我国总人口约为l370000000人,该人口数用科学记数法表示为A.0.1371011B.1.37109C.13.7108D.137107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a某10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:用科学记数法表示数1370000000为1.37某109.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a某10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.估计11的值A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间考点:估算无理数的大小.分析:先确定的平方的范围,进而估算的值的范围.解答:解:9<=11<16,故3<<4;故选B.点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题,属于基础题.4.下列计算正确的是师库网——教师自己的家园23622224A.某某某B.(某y)某yC.(某)某D.某某某22考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂乘法、积的乘方、幂的乘方的性质计算后利用排除法求解.解答:解:A、应为某某2=某1+2=某3,故本选项错误;B、应为(某y)2=某2y2,故本选项错误;C、(某2)3=某2某3=某6,故本选项正确;D、应为某2+某2=2某2,故本选项错误.故选C.点评:本题主要考查幂的运算性质,熟练掌握相关知识点是解题的关键.5.若式子某1在实数范围内有意义,则某的取值范围是A.某1B.某1C.某1D.某1考点:二次根式有意义的条件.分析:根据二次根式有意义的条件判断即可.解答:解:根据二次根式有意义的条件得:某-1≥0,∴某≥1,故选A点评:本题考查了二次根式有意义的条件:(1)二次根式的概念.形如(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.(a≥0)是一个非负数.6.若三角形的两边长分别为6㎝,9cm,则其第三边的长可能为A.2㎝B.3cmC.7㎝D.16cm考点:三角形三边关系.分析:已知三角形的两边长分别为6cm和9cm,根据在三角形中任意两边之和>第三边,或者任意两边之差<第三边,即可求出第三边长的范围.解答:解:设第三边长为某cm.由三角形三边关系定理得9-6<某<9+6,解得3<某<15.故选C.点评:本题考查了三角形三边关系定理的应用.关键是根据三角形三边关系定理列出不等式组,然后解不等式组即可.7.以下各图均由彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是..ABCD考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.能组成正方体的“一,四,一”“三,三”师库网——教师自己的家园“二,二,二”“一,三,二”的基本形态要记牢.解答:解:选项A、B、C都可以折叠成一个正方体;选项D,有“田”字格,所以不能折叠成一个正方体.故选D.点评:考查了展开图折叠成几何体,只要有“田”字格的展开图都不是正方体的表面展开图.8.下列事件中,属于随机事件的是A.抛出的篮球会下落B.从装有黑球、白球的袋中摸出红球C.367人中有2人是同月同日出生D.买一张彩票,中500万大奖考点:随机事件.专题:应用题.分析:随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.解答:解:A、抛出的篮球会落下是必然事件,故本选项错误;B、从装有黑球,白球的袋里摸出红球,是不可能事件,故本选项错误;C、367人中有2人是同月同日出生,是必然事件,故本选项错误;D、买一张彩票,中500万大奖是随机事件,故本选正确.故选D.点评:本题主要考查的是对随机事件概念的理解,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,比较简单.9.如图,将边长为2的正方形ABCD沿对角线平移,使点A移至线段AC的中点A’处,得新正方形A’B’C’D’,新正方形与原正方形重叠部分(图中阴影部分)的面积是A.21B.C.121D.4DD'C'考点:平移的性质;正方形的性质.AA'C分析:根据题意可得,阴影部分的图形是正方形,正方形ABCD 的边长为2,则AC=2,可得出A′C=1,可得出其面积.解答:解:∵正方形ABCD的边长为2,BB'∴AC=2,又∵点A′是线段AC的中点,∴A′C=1,(第9题)∴S阴影=12某1某1=12.故选B.点评:本题考查了正方形的性质及平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.平面直角坐标系中,已知点O(0,o)、A(0,2)、B(1,0),点P 是反比例函数y1图某象上的一个动点,过点P作PQ⊥某轴,垂足为点Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有A.1个B.2个C.3个D.4个【答案】D。
2020年江苏省徐州市中考数学试卷附解析

2020年江苏省徐州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列运算中正确的是( )A .(5)5L -=-B .2(5)5-=-C .2(5)5--=D .2(5)5-=2.已知正比例函数y=ax (a 为常数,且a≠0),y 随x 的增大而减小,则一次函数y ax a =-+的图象不经过( )A .第一象限B .第二象限C .第三象限D . 第四象限3.已知关于x 的不式组200x x a +>⎧⎨-≤⎩的整数解共有4个,则a 的最小值为( ) A .2 B . 2.1 C .3 D .14.将一个立方体沿某些棱展开后,能够得到的平面图形是( )A .B .C .D .5.如图,两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北、向东驶去.如果自行车的速度为2.5 m /s ,摩托车的速度为10 m /s ,那么10 s 后,两车大约相距 ( )A .55 mB .l03 mC .125 mD .153 m6.5()10()a x y b y x ---在分解因式时,提取的公因式应当为( )A . 510a b -B .510a b +C .5()x y -D .y x -7.若二元一次方程21y x =-,3y kx =-,5y x =-+只有一组公共解,则k 的值等于( )A .1B .2C .3D .4 8.梯形的面积为 S ,上底为 a ,下底为 b ,那么高h 等于( ) A .1()2S a b + B .2S a b + C .2S()a b + D .2()a b S + 9.小明测得一周的体温并登记如下表:(单位:℃ )其中星期四的体温被墨汁污染,根据表中数据,可得此目的体温是( )A .36.7℃B .36.8℃C .36.9℃D .37.0℃二、填空题10.如果130sin sin 22=+ α,那么锐角α的度数是 . 11.弦AB 分圆为1:5两部分,则劣弧AB 所对的圆心角等于______.12.在□ABCD 中,∠A 比∠B 大20°,则∠C 为 度.13.若方程组21,23x y m x y +=+⎧⎨+=⎩中未知数x 、y 满足2x y +>,则 m 的取值范围是 . 14.正三角形是轴对称图形,对称轴有 条.15.如图,直线1a ∥2a ,点A 在直线1a 上,点B 、C 在直线2a 上,BC=5,△ABC 的面积为10,则直线1a 与直线2a 之间的距离是 .16.如图,请写出能判定 CE ∥AB 的一个条件: .17.用x 、y 分别表示 2辆三轮车和3辆卡车一次运货的吨数,那么5辆三轮车和4辆卡车共能运货24吨所表示的数量关系式是 .18.在ABC △中,BC 边不动,点A 竖直向上运动,A ∠越来越小,BC ∠∠,越来越大.若A ∠减少α度,B ∠增加β度,C ∠增加γ度,则αβγ,,三者之间的等量关系是 .19.如图,图①经过 变为图②,再经过 变为图③.20.直角三角形作相似变换,各条边放大到原来的3倍,则放大后所得图形面积是原图形面积的 倍.21.要锻造一个直径为12 cm ,高10 cm 的圆柱形零件,需要直径为16 cm 的圆柱形钢条 .cm22.计算:()()4622-÷-=___________. 23.如果一个立体图形的主视图为长方形,则这个立体图形可能是 (只需填上一个立图形)三、解答题24. 如图,它是实物与其三种视图,在三视枧图中缺少一些线(包括实线和虚线),请将它 们补齐,让其成为一个完整的三种视图.25.先确定图中路灯灯泡的位置,再根据小浩的影子画出表示小洁身高的线段.26.近年来某市政府不断加大对城市绿化的经济投入,使全市绿地面积不断增加,从2004年底到2006年底城市绿地面积变化如图所示,那么绿地面积的年平均增长率是 .27.计算:(1)(10x 2y -5xy 2)÷5xy (2)x x -1·x 2-1x 228.如图所示,已知△ABC≌△DCB,其中AB=DC,试说明∠ABD=∠ACD的理由.29.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.30.杭州世博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计..为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的解析式;(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.A4.C5.B6.C7.C8.B9.A二、填空题10.60°11.60度12.10013.m>214.315.4cm16.答案不唯一.如∠A=∠DCE17. 542423x y +=18. αβγ=+19.平移变换,轴对称变换20.921.5.62522.-423.答案不唯一,如长方体三、解答题24.25.如上图所示.P 为路灯灯泡,AB 即为小浩的身高.26.10%27.(1)y x -2;(2)xx 1+. 28.略29.设原来的两位数是10a+b ,则调换位置后的新数是10b+a .(10a+b)- (10b+a)=9a-9b=9(a-b),∴这个数一定能被9整除30.(1)由题意,x=1时,y=2;x=2时,y=2+4=6.代入y=ax 2+bx ,解得a=b=1,所以y=x 2+x ;(2)纯收益g=33x-150-(x 2+x )=-x 2+32x-150;(3)g=-(x-16)2+106,即设施开放16个月后,游乐场的纯收益达到最大; 又在0<x ≤16时,g 随着x 的增大而增大,当x ≤5时,g<0;而x=6时,g>0. 所以6个月后能收回投资.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏徐州中考数学试卷与答案YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】2015徐州市中考数学试题及参考答案一.选择题(本大题共8小题,每小题3分,共24分)1.-2的倒数是( )B.-2C. 12 D.-122.下列四个几何体中,主视图为圆的是( )A. B. C. D. 3.下列运算正确的是( )A. 3a2-2a2=1B. (a2)3=a5C. a2 ·a4=a6D. (3a)2=6a2 4.使x- 1 有意义的x的取值范围是( )A. x≠ 1B. x≥ 1C. x> 1D. x≥ 05.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A. 至少有1个球是黑球B.至少有1个球是白球C. 至少有2个球是黑球D.至少有2个球是白球6.下列图形中,是轴对称图形但不是中心对称图形的是( )A.直角三角形B.正三角形C.平行四边形D.正六边形7.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )A.y8.若函数y =kx -b 的图像如图所示,则关于x 的不等式k (x -3)-b >0的解集为( )A.x < 2B.x > 2C.x < 5D.x > 5二. 填空题(本大题共10小题,每小题3分,共30分) 9.4的算术平方根10.杨絮纤维的直径约为0.000 010 5m ,该直径用科学记数法表示为11.小丽近6个月的手机话费(单位:元)分别为:18,24,37,28,24,26,这组数据的中位数是 元。
12.若正多边形的一个内角等于140°,则该正多边形的边数是13.已知关于x 的方程x 2-23x -k =0有两个相等的实数根,则k 的值为 . 14.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C=20°15.如图,AB 是⊙O 的直径,弦CD ⊥ AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为 cm .16.如图,在△ABC 中,∠C=31°,∠ABC 的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么∠A= °.(第15题)(第14题)ACG E17.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形,再以对角线AE 为边作第三个正方形AEGH ,如此下去,第n 个正方形的边长为 .18.用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径 . 三. 解答题(本大题共10小题,共86分) 19.(本题10分)计算:(1)︱-4︱-20150+⎝ ⎛⎭⎪⎫12-1- ()32;(2) (1+1a ) ÷a 2—1a20.(本题10分)(1)解方程:x 2 - 2x - 3=0;(2)解不等式组:⎩⎨⎧x - 1 >2x +2 < 4x - 121.(本题7分)小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品。
(1) 如果随机翻1张牌,那么抽中20元奖品的概率为(2) 如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于...30元的概率为多少?(3)22.(本题7分)某校分别于2012年、2014年随机调查相同数量的学生,对数学课开展小组合作学习的情况进行调查(开展情况分为较少、有时、常常、总是四种),绘制成部分统计图如下,请根据图中信息,解答下列问题:(1)a = %,b = %,“总是”对应阴影的圆心角为 °; (2)请你补全条形统计图;(3)若该校2014年共有1200名学生,请你统计其中认为数学课“总是”开展小组合作学习的学生有多少名?(4)相比2012年,2014年数学课开展小组合作学习的情况有何变化?23.(本题8分)如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AE=DF ,∠A=∠D ,AB=DC . (1) 求证:四边形DFCE 是平行四边形;(2) 若AD=10,DC=3,∠ABD=60°,则AB= 时,四边形BFCE 是菱形.24.(本题8分)某超市为促销,决定对A ,B 两种商品进行打折出售.打折前,买6件A 商品和3件B 商品需要54元,买3件A 商品和4件B 商品需要32元;打折后,买50件A 商品和40件B 商品仅需364元,打折前需要多少钱?25.(本题8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C 落在第二象限。
其斜边两端点A 、B 分别落在x 轴、y 轴上,且AB=12cm (1) 若OB=6cm .① 求点C 的坐标;(第23题)AD② 若点A 向右滑动的距离与点B 向上滑动的距离相等,求滑动的距离; (2) 点C 与点O 的距离的最大值= cm .26.(本题8分)如图,在矩形OABC 中,OA=3,OC=5,分别以OA 、OC 所在直线为x 轴、y 轴,建立平面直角坐标系,D 是边CB 上的一个动点(不与C 、B 重合),反比例函数y =kx (k > 0)的图像经过点D 且与边BA 交于点E ,连接DE. (1) 连接OE ,若△EOA 的面积为2,则k = ; (2) 连接CA 、DE 与CA 是否平行?请说明理由;(3) 是否存在点D ,使得点B 关于DE 的对称点在OC 上?若存在,求出点D 的坐标;若不存在,请说明理由。
27.(本题8分)为加强公民的节水意识,合理利用水资源。
某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于 1︰︰2。
下图折线表示实行阶梯水价后每月水费y (元)与用水量xm 3之间的函数关系。
其中线段AB 表示第二级阶梯时y 与x 之间的函数关系 (1) 写出点B 的实际意义;(2) 求线段AB 所在直线的表达式。
yy y(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?x/m³28.(本题12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD ⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点。
(1)∠OBA= °.(2)求抛物线的函数表达式。
(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有....3个?(4)2015年徐州市中考数学试题参考答案一. 选择题 1 2 3 4 5 6 7 8 DBCBABAC二. 填空题 9.2 10.×10-511.25 12.9 13.-314.125° 15.4 216.8717.(2)n -118.1三.解答题19.(1)︱-4︱-20150+⎝ ⎛⎭⎪⎫12-1- ()32;(2) (1+1a ) ÷a 2—1a解:(1) (2)原式=4-1+2-3原式= (1+1a ) ÷a 2—1a =3+2-3=a +1a ·a (a +1)(a -1)=5-3=1a -1=220. (1)解方程:x 2 - 2x - 3=0;(2)解不等式组:⎩⎨⎧x - 1 >2 ①x +2< 4x - 1②解:(1)(x +1)(x -3)=0 (2)由①得x > 3 x +1=0或x -3=0 由②得x > 1x 1=-1 ,x 2=3∴不等式组的解集为x> 3.21.(1)25% (2)∴总值不低于30元的概率=412 =1322.23.24.因数据不清楚,固不提供答案. 25.解:(1)① 过点C 作y 轴的垂线,垂足为D , 在R t △AOB 中,AB=12, OB=6,则BC=6, ∴∠BAO=30°,∠ABO=60°,又∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=33 .② 设点A 向右滑动的距离为x ,根据题意得点B 向动的距离也为x , AO=12×cos ∠BAO=12×cos 30°=63 . ∴A'O=63-x ,B'O=6+x ,A'B'=AB=12 在△A'O B'中,由勾股定理得,(63-x )2+(6+x )2=122 解得,x =6(3-1)∴滑动的距离为6(3-1).(2)设点C 的坐标为(x ,y ),过C 作CE ⊥ x 轴,CD ⊥ y 轴, 垂足分别为E ,D 则OE=-x ,OD=y ,∵∠ACE +∠BCE=90°,∠DCB +∠BCE=90° ∴∠ACE=∠DCB , 又∵∠AEC=∠BDC=90°,∴△ACE ∽ △BCD∴CE CD = AC BC ,即CE CD = 636 =3, ∴y =-3x ,y C'A'CABOB'OC2=x 2+y 2= x 2+(-3x )2=4x 2,∴当︱x ︱取最大值时即C 到y 轴距离最大时OC2有最 大值,即OC 取最大值,如图,即当C'B'转到与y 轴垂时 .此时OC=12. 26. (1)k =4(2)连接AC ,如右图,设D(x ,5),E(3,53x ),则BD=3-x ,BE=5-53x , BD BE = 3-x 5-53x =35,BC AB = 35∴BD BE = BC AB ∴DE ∥ AC .(3)假设存在点D 满足条件.设D(x ,5),E(3,53x ),则CD=x , BD=3-x ,BE=5-53x ,AE=53x . 作EF ⊥ OC ,垂足为F ,如下图 易证△B 'CD ∽ △EFB', ∴B 'E B 'D = B 'F CD ,即5-53x3-x = B 'F x , ∴B 'F=53x ,∴OB '= B 'F +OF= B 'F +AE=53x +53x = 103x∴CB '=OC -OB'=5-103x在R t △B 'CD 中,CB '=5-103x ,CD=x ,B 'D= B D=3-x 由勾股定理得,CB '2+CD2= B 'D2 (5-103x )2+x 2=(3-x )2解这个方程得,x 1=(舍去),x 2=∴满足条件的点D 存在,D 的坐标为D ,5). 27.解:(1)图中B 点的实际意义表示当用水25m 3时,所交水费为90元.(2)设第一阶梯用水的单价为x 元/m 3,则第二阶梯用水单价为1.5 x 元/m 3,设A(a ,45),则⎩⎪⎨⎪⎧ax =45ax +(25-a )=90解得,⎩⎨⎧a =15x =3∴A(15,45),B(25,90)设线段AB 所在直线的表达式为y =kx +b 则⎩⎨⎧45=15k +b 90=25k +b ,解得⎩⎨⎧k = 92b =- 452∴线段AB 所在直线的表达式为y =92x -452. (3) 设该户5月份用水量为xm 3(x > 90),由第(2)知第二阶梯水的单价为4.5元/m 3,第三阶梯水的单价为6元/m 3 则根据题意得90+6(x -25)=102 解得,x =27答:该用户5月份用水量为27m 3. 28.(1)∠OBA=90°(2)连接OC ,如图所示,∵由(1)知OB ⊥ AC ,又AB=BC , ∴OB 是的垂直平分线, ∴OC=OA=10,在R t △OCD 中,OC=10,CD=8,∴OD=6, ∴C(6,8),B(8,4)∴OB 所在直线的函数关系为y =12x , 又E 点的横坐标为6,∴E 点纵坐标为3 即E(6,3).抛物线过O(0,0),E(6,3) ,A(10,0)∴设此抛物线的函数关系式为y =ax (x -10),把E 点坐标代入得 3=6a (6-10),解得a =-18∴此抛物线的函数关系式为y =-18x (x -10),即y =-18x 2+54x . (4) 设点P(p ,-18p 2+54p )① 若点P 在CD 的左侧,延长OP 交CD 于Q ,如右图, OP 所在直线函数关系式为:y =(-18p +54)x∴当x =6时,y =- 34p + 152,即Q 点纵坐标为- 34p + 152, ∴QE=- 34p + 152-3=- 34p + 92, S 四边形POAE= S △OAE +S △OPE= S △OAE +S △OQE -S △PQE = 12 · OA ·DE +12 · QE · P x=12×10×3+12·(- 34p + 92)· pxQEDC AOBP=-38p 2+94p +15② 若点P 在CD 的右侧,延长AP 交CD 于Q ,如右图, P(p ,-18p 2+54p ),A(10,0)∴设AP 所在直线方程为:y =kx +b ,把P 和A 坐标代入得, ⎩⎪⎨⎪⎧10k +b =0pk +b =-18p 2+54p ,解得⎩⎪⎨⎪⎧k = -18p b = 54 p,∴AP 所在直线方程为:y =-18p x +54 p ,∴当x =6时,y =-18p · 6+54 p =12P ,即Q 点纵坐标为12P ,∴QE=12P -3, ∴S 四边形POAE = S △OAE +S △APE= S △OAE +S △AQE -S △PQE=12 ·OA ·DE +12 · Q E ·DA -12 · Q E ·(P x -6) =12×10×3+12 · QE ·(D A -P x +6)=15+12 ·(12p -3)·(10-p )=- 14p 2+4p=- 14(p -8)2+16∴当P 在CD 右侧时,四边形POAE令-38p 2+94p +15=16,解得,p =3 ± 573,∴当P 在CD 左侧时,四边形POAE 的面积等于16的对应P 的位置有两个,综上知,以P 、O 、A 、E 为顶点的四边形面积S 等于16时,相应的点P 有且只有3个.。