江苏徐州市中考数学试卷解析版
江苏省徐州市中考数学真题试题(含解析)

江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣22.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a63.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,104.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.12005.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,386.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是.10.(3分)使有意义的x的取值范围是.11.(3分)方程x2﹣4=0的解是.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.20.(10分)(1)解方程:+1=(2)解不等式组:21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【解答】解:A、a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.3.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200【分析】由抛掷一枚硬币正面向上的可能性为0.5求解可得.【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.【点评】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38【分析】根据众数和中位数的概念求解可得.【解答】解:将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2【分析】根据题意和反比例函数的性质可以解答本题.【解答】解:∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.8.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108【分析】先化简2.5×106=0.25×107,再从选项中分析即可;【解答】解:2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.【点评】本题考查数轴,科学记数法;能够将数进行适当的表示,结合数轴解题是关键.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)使有意义的x的取值范围是x≥﹣1 .【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.(3分)方程x2﹣4=0的解是±2 .【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为 4 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解答】解:∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:4【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16 .【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点评】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出多边形的边数,再根据多边形的内角和公式计算即可.【解答】解:多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°【点评】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 6 cm.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262 m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【分析】作AE⊥BC于E,根据正切的定义求出AE,根据等腰直角三角形的性质求出BE,结合图形计算即可.【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.【分析】设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.【解答】解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.【点评】考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有 3 个.【分析】三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;【解答】解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;【点评】本题考查一次函数的图象上点的特征,等腰三角形的性质;掌握利用两圆一线找等腰三角形的方法是解题的关键.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.【分析】(1)先计算零指数幂、算术平方根、负整数指数幂和绝对值,再计算加减可得;(2)先化简各分式,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式的乘除运算顺序和运算法则.20.(10分)(1)解方程:+1=(2)解不等式组:【分析】(1)两边同时乘以x﹣3,整理后可得x =;(2)不等式组的每个不等式解集为;【解答】解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x =;经检验x =是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;【点评】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.【分析】(1)计算所取两数的乘积即可得;(2)找到符合条件的结果数,再根据概率公式计算可得;(3)利用概率公式计算可得.【解答】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.【分析】(1)从条形统计图中可得3﹣4月份电费240元,从扇形统计图中可知3﹣4月份电费占全年的10%,可求全年的电费,进而求出9﹣10月份电费所占的百分比,然后就能求出9﹣10月份对应扇形的圆心角的度数;(2)全年的总电费减去其它月份的电费可求出7﹣8月份的电费金额,确定直条画多高,再进行补全统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:【点评】考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD =CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.【分析】(1)连接OC,由D为的中点,得到=,根据圆周角定理即可得到结论;(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,于是得到结论.【解答】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点评】本题考查了直线与圆的位置关系,圆心角、弧、弦的关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【分析】设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,根据长方体盒子的侧面积为200cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.【分析】根据已知条件作图可知40cm时,所有图案个数4个;猜想得到结论;【解答】解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;【点评】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;(2)设甲、乙之间距离为d,由勾股定理可得d2=(1200﹣240x)2+(80x)2 =64000(x﹣)2+144000,根据二次函数最值即可得出结论.【解答】解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.【点评】本题考查了函数图象的读图识图能力,正确理解图象交点的含义,从图象中发现和获取有用信息,提高分析问题、解决问题的能力.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB =6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.【点评】本题属于反比例函数综合题,考查了反比例函数的应用,全等三角形的判定和性质,勾股定理,平行线分线段成比例定理,基本不等式等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
最新江苏省徐州市中考数学真题试卷附解析

江苏省徐州市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( ) A .32 B .21 C .31 D .412.如图,用一个平面去截长方体,则截面形状为( )3.如图,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA=6,PB=4,则⊙O 的半径是( ) A .52B .56C .2D .54.如图,ABCD 是平行四边形,则图中与DEF △相似的三角形共有( )A .1个B .2个C .3个D .4个5.S 型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x ,则下列方程中正确的是( ) A .1500 (1+x )2=980 B .980(1+x )2=1500 C .1500 (1-x )2=980 D .980(1-x )2=1500 6.下列一次函数中,y 随x 的增大而减小的有( ) ①21y x =-+;②6y x =-;③13xy +=-;④(12)y x = . A .1个 B .2个 C .3个D . 4个7.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A .向右平移了3个单位B .向左平移了3个单位C .向上平移了3个单位D .向下平移了3个单位 8.下列函数中,是二次函数的有( )(1)25y x =-;(2)23y x =--;(3)(1)(3)y x x =-+;(4)23y x x =-;(5)22(1)y x x =--;(6)2y x π= A .5 个B .4 个C .3 个D .2 个9.为了考察甲、乙两种小麦,分别从中抽取5株苗,测得苗高(单位:cm )如下: 甲:2 4 6 8 10 乙:l 3 5 7 9用2S 甲和2S 乙分别表示这两个样本的方差,那么 ( )A .2S 甲>2S 乙B .2S 甲 <2S 乙C .2S 甲=2S 乙D .2S 甲与2S 乙的关系不能确定10.一个几何体的主视图,左视图和俯视图都是正方形,那么这个几何体可以是( ) A .圆锥B .立方体C .圆柱D .直六棱柱11.同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数. 下 列事件中,属于不可能事件的是( ) A 点数之和为 12 B .点数之和小于 3 C .点数之和大于4且小于 8 D .点数之和为 1312.如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A .12a b =⎧⎨=⎩B .02a b =⎧⎨=⎩C .21a b =⎧⎨=⎩D .11a b =⎧⎨=⎩13.下列方程中,是一元一次方程的为( ) A .x+y=1B .2210x x -+=C .21x= D .x=014.用计算器求78+35的按键顺序正确的是( ) ①按数字键 ②按 ③按数字键④按键 A .①②③④B .①④②③C .①③②④D .①③④②15.如图,M N P R ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1MN NP PR ===.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3a b +=,则原点是( )A .M 或RB .N 或PC .M 或ND .P 或R二、填空题16. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .17.在Rt △ABC 中,∠C=90°,已知a 边及∠A ,则b= . 18.已知一组比例线段的长度分别是x ,2,5,8,则x= .19.在⊙O 中,弦 AB ∥CD ,AB=24,CD=10,弦 AB 的弦心距为 5,则 AB 和 CD 之间的距离是 .20.请选择一组你喜欢的c b a 、、的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小.这样的二次函数的解析式可以是 . y=-x 2+4x-4(答案不唯一)21.在相同条件下,对30辆同一型号的汽车进行耗油1 L 所行驶路程的试验,根据测得的数据画出频数分布直方图如图所示.本次试验中,耗油1 L 所行驶路程在13.8~14.3 km 范围内的汽车共有 辆.30辆汽车耗油1 L 所行驶路程的频数分布直方图22.如图,是几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 .三、解答题23.圆锥的侧面积为6π,侧面展开图的圆心角为270°,求圆锥的底面积. 4.5π24.如图,水管内原有积水的水面宽 CD=4 cm ,水深 GH= 1 cm ,因几天连续下雨水面上升 1 cm (即 EG= 1 cm). 求此时水面 AB 的宽是多少?25.画—个正方体的表面展开图.26.在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,有①△ADC ≌△CEB ;②DE=AD +BE ,请说明理由.(2)当直线MN 绕点C 旋转到图2的位置时, DE=AD -BE ,请说明理由;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,不必说明理由.27.如图,(1)在方格纸上作下列相似变换:把△ABC 的每条边扩大到原来的2倍; (2)放大后的图形的周长是原图形周长的多少倍? (3)放大后的图形的面积是原图形面积的多少倍?CBA E D图1N MABC DEMN图2ACBEDN M 图328.在数轴上表示下列各数:0,-2.5,213,-2,+5,311,并按从大到小的顺序排列.29.受强冷空气的影响,某地某日上午11时的气温为4℃,下午4时的气温已降为-2.5℃,平均每小时气温下降多少摄氏度?30.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.A4.B5.C6.D7.D8.B9.C10.B11.D12.A13.D14.A15.A二、填空题 16.(2+17.Aatan 18. 20 或165或54 19.7 或 1720.21. 1222.5个三、解答题 23. 4.5π24.连结 CO 、AO ,∴.OG ⊥AB ,∴.CG=GD=2.在 Rt △OCG 中,222CO GG OG =+,∴CO=2. 5cm ,同理222E AO A OE =+∴cm ,∴此时水面 AB 的宽是25.答案不唯一,如26.(1)略;(2)略;(3)DE=BE-AD.27.(1)略,(2)2,(3)428.略29.1.3℃30.4,15,26。
最新江苏省徐州市中考数学测试试题附解析

江苏省徐州市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )A.5 B.5C .12D .2 2. 抛物线y=x 2+6x+8与y 轴交点坐标( ) A .(0,8)B .(0,-8)C .(0,6)D .(-2,0)(-4,0) 3.函数223y x x k =++的图象与x 轴有交点,则k 的取值应为( )A .98k >B .98k ≥C .98k <D .98k ≤ 4.下列关于菱形的对角线的说法中错误..的是( ) A .互相平分 B .互相垂直 C .相等 D .每一条对角线平分一组对角5. 一元二次方程22(1)1x x -=-的根是( )A .32-B .1C .32-或 1D . 无解6.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A .112k -<<-B .102k <<C .01k <<D .112k << 7.下列不等式组无解的是( ) A .1020x x -<⎧⎨+<⎩ B .1020x x -<⎧⎨+>⎩ C .1020x x ->⎧⎨+<⎩ D .1020x x ->⎧⎨+>⎩ 8.今年某市有800名八年级学生参加了省数学竞赛,为了了解这800名学生的成绩,从中抽取了100名学生的考试成绩进行分析,以下说法中,正确的是( )A .800名学生是总体B .每个学生是个体C .100名学生的数学成绩是一个样本D .800名学生是样本容量9.如图,在 Rt △ABC 中,∠ACB = 90°,DE 过点C 且平行于AB. 若∠BCE = 35°,则∠A 等于( )A . 35°B .45°C . 55°D . 65°10.如图,若∠l=∠2,则在结论:①∠3=∠4;②AB ∥DC ;③AD ∥BC 中,正确的个数是( )A .0个B .1个C .2个D .3个11.从1~9这9个自然数中任取一个,是2的倍数或3的倍数的概率为( )A .79B .29C . 23D . 5912.下列计算正确的是( )A .23(31)3a a a a --=--B .222()a b a b -=-C .2(23)(23)94a a a ---=-D .235()a a = 13.已如图是L 型钢条截面,它的面积是( ) A .ct lt + B .2()c t t lt ct lt t -+=+-C . 2()()2c t t l t t ct lt t -+-=+-D .2()()22l c t c t l t l c +++-+-=+14.下列判断正确的是 ( )①在数轴上,原点两旁的两个点所表示的数都是互为相反数; ②任何正数必定大于它的倒数;③5ab ,12x +,4a 都是整式;④x 2-xy+y 2是二次多项式 A .①② B .②③ C .③④ D .①④15. 如图,用火柴棒按如图的方式搭三角形,搭一个三角形需 3根火柴棒,如图甲;搭两个三角形需 5根火柴棒,如图乙;搭三个三角形需 7根火柴棒,如图丙. 那么按此规律搭下去,搭10 个三角形需要多少根火柴棒( )A .21B .30C .111D .119二、填空题16.小华与父母一同从重庆乘火车到广安邓小平故居参观. 火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是 . 17.若α为等腰直角三角形的锐角,则cos α= .18.命题“若a 2=b 2,则a =b ”是 命题.(填“真”或“假”)19.若矩形的对角线等于较长边a 的一半与较短边b 的和,则a :b 等于 .20.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为____________.21.某市某学校初中八年级有4个绿化小组,在植树节这天种下杨树的棵数如下:l0,10,x ,8.若这组数据的众数和平均数相等,那么它们的中位数是 棵.解答题22.当98m =-时,244m m -+的值为 .三、解答题23.如图,已知反比例函数8y x=-和一次函数2y x =-+的图象交于A 、B 两点,求: (1)A 、B 两点的坐标;(2)若O 为坐标原点,求△AOB 的面积.24.如图所示是某班学生一次数学考试成绩的统计图,其中纵轴表示学生数,横轴表示分数,观察图形并填空.(1)全班共有学生人;(2)若该班学生此次数学考试成绩组中值不低于70分的组为合格,则合格率为;(3)如果组中值为90的一组成绩为优良,那么该班学生此次数学考试成绩的优良率为;(4)该班此次考试的平均成绩大概是.25.如图所示,是两个正五边形,如果想密铺,还需要怎么样的多边形?26.方程0+++xmxm m.-)31()1(1||=-(1)m取何值时,方程是一元二次方程,并求出此方程的解;(2)m取何值时,方程是一元一次方程.27.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数.方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.28.如图①所示,长方形通过剪切可以拼成直角三角形,方法如下:仿照上图,用图示的方法,解答下列问题:(1)如图②所示,已知直角三角形,设计一种方案,将它分成若干块,再拼成一个与之等面积的长方形;(2)如图③所示,对任意一个三角形,设计一种方案,把它分成若干块,再拼成一个与它等面积的长方形.29.出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:5,4,12,10,1,5,2,15-+++-+-+(1)人民大街总长不小于__________千米;(2)将最后一名乘客送往目的地时,小李距离下午出车时的出发点多远?(3)若出租车耗油量为每千米a 升,这天下午小李共耗油多少升?30.如图,某市有一块长为(3a b +)m ,宽为(2a b +)m 的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少m 2?并求出当3a =,2b =时的绿化面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.C5.C6.D7.C8.C9.C10.B11.CC13.B14.C15.A二、填空题16.1317. 22 18. 假19.4:320.0.521.1022.10000三、解答题23.(1)由28y x y x =-+⎧⎪⎨=-⎪⎩得2280x x --=,解得:x 1 = 4,x 2 =-2 x 1 = 4时,y 1 =-2;x 2 =-2 时,y 2 =4,∴A 、B 坐标分别是(4,一2)和(—2,4).(2)设直线 AB 与 x 轴交于C ,则点 C 的坐标为(2,0).112422622AOB AOC OBC S S S ∆∆∆=+=⨯⨯+⨯⨯=. 24.(1)40;(2)85%;(3)40%;(4)70分正十边形26.⑴1=m ,解为231±=x ;⑵1-=m ,解为41-=x 或0=m ,解为21-=x . 27.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710+++⨯+⨯+=; 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=;方案3最后得分:8; 方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.28.(1)(2)29.(1)人民大街总长不小于43千米;(2)向东38千米;(3)54a 升30.(253a ab +)m 2;当3a =,2b =时,25363a ab +=m 2。
中考徐州市数学试题及答案

中考徐州市数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. √2C. 0.33333…D. √9答案:B2. 如果一个数的相反数是-3,那么这个数是:A. 3B. -3C. 6D. -6答案:A3. 以下哪个表达式等于x^2 - 4x + 4?A. (x - 2)^2B. (x + 2)^2C. (x - 4)^2D. (x + 4)^2答案:A4. 一个三角形的两边长分别为3和5,第三边长x的范围是:A. 2 < x < 8B. 1 < x < 7C. 2 < x < 6D. 3 < x < 8答案:D5. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 一个圆的半径为2,那么它的面积是:A. 4πB. 8πC. 12πD. 16π答案:B7. 如果一个多边形的内角和是900度,那么这个多边形的边数是:A. 5B. 6C. 7D. 8答案:C8. 一个等腰三角形的底角为45度,那么它的顶角是:B. 60度C. 90度D. 135度答案:C9. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 1C. y = 1/xD. y = x^3答案:B10. 一个数的立方根是2,那么这个数是:A. 6B. 8C. 2^3D. 3^3答案:C二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可以是______。
答案:±512. 一个角的补角是120度,那么这个角的度数是______。
答案:60度13. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是______。
14. 一个二次函数的顶点坐标是(1, -4),且开口向上,那么它的解析式可以是______。
答案:y = a(x - 1)^2 - 4(a > 0)15. 一个扇形的圆心角是60度,半径是4,那么它的面积是______。
2023年江苏省徐州市中考数学精选真题试卷附解析

2023年江苏省徐州市中考数学精选真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是()A.4 个B.5 个C.6 个D.7 个2.如图①表示正六棱柱形状的高大建筑物,图②中的阴影部分表示该建筑物的俯视图,P、Q、M、N表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在()A.P 区域B.Q 区域C.区域D.区域3.一个扇形的弧长是20πcm,面积是240πcm2,那么扇形的圆心角是()A.120°B.150°C.210°D.240°4.如图,扇形的半径 OA=20cm,∠AOB =135°,用它做成一个圆锥的侧面,则此圆锥的底面的半径为()A.3.75 cm B.7.5 cm C.15 cm D.30 cm5.下列各式中,正确的是()A.16 =±4 B.±16 =4 C.(-5 )2=-5 D.-(-5)2=-5 6.对角线互相垂直平分的四边形是()A.矩形B.菱形C.平行四边形D.梯形7.下列英文字母中是轴对称图形的是()A .SB .HC .PD .Q 8.计算 18÷6÷2 时,下列各式中错误的是( ) A .111862⨯⨯ B . 18÷ (6÷2) C .18÷(6×2) D .(l8÷6)÷2二、填空题9.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的机会是 .10.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有_________张. 11.如图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,则蚂蚁停留在黑色瓷砖上的概率是 .12.已知等边三角形的边长为2,那么这个三角形的内切圆的半径为 ,外接圆的半径为 .13.已知斜坡AB=12m,AB 的坡度i=1:3,则斜坡AB 的高为_______ m.14.如图,△ABC 的角平分线 BD 、CE 交于点0,∠A=36°,AB=AC ,则与△ABC 相似的三角形有 .15.小明身上有 100 元. 若他每天用x 元,则可用y 天,因此y 与x 之间的函数关系式为 ,是 函数.16.已知a 是方程210x x --=的一个根,则代数式3222a a --的值为 .17.地面气温是20℃,若每升高100 m ,气温下降6℃,则气温t(℃)与高度h(m)的函数解析式是 .18.如图,为实现城市建设大发展. 杭州市先后对文一路、文二路、学院路、教工路进行了改造、假设有一路段(呈直线),从西头测得公路的走向是北偏东72°,如果东、西两头同时 开工,在东头应按 的走向进行施工,才能使公路准确对接.19.如图,已知 ∠1 = 70°,∠2 = 70°,∠3 = 60°,则∠4= .20.写出一个解为⎩⎨⎧==21y x 的二元一次方程组 . 21.( )2= 16, ( )3 = 64.三、解答题22.如图,正方形的边长为 20,菱形的边长为5,它们相似吗?请说明理由.23.解下列不等式组:(1)1212x --≤< (2)2x 151132513(1)x x x -+⎧-≤⎪⎨⎪-<+⎩24.如图,请画出该几何体的三视图.25.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,试问:这张桌子上共有多少个碟子?26.你喜欢玩游戏吗?现在请你玩一个转盘游戏,如图所示的两个转盘中,指针落在每个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针指向一个数字,用所指的两个数字作乘积,请你:(1)列举(用列表或画树状图法)所有可能得到的数字之积;(2)求出数字之积为奇数的概率.27.图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.28.下图是某省近年来全省港口吞吐量的统计图.(1)根据统计图中的数据制作折线统计图;(2)从上面条形统计图和你绘制的折线统计图中,你可以得到哪些信息?29.在数轴上表示下列各数:0,-2.5,213,-2,+5,311,并按从大到小的顺序排列.30. 某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在 小组;(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.B5.D6.B7.B8.B二、填空题9.110.3911.112.23313.614.△COD,△BOE,△BCE,△BCD. 15.l00=,反比例yx16.-317.=-18.t h200.06南偏西72°19.60°20.略21.4±,4三、解答题22.不相似,因为对应角不相等.23.(1)-1<x≤5;(2)-1≤x<224.略25.1226.(1)所有可能得到的数字之积列表如下:或用树状图法(略);(2)P(数字之积为奇数)=61 24427.略28.略29.略30.⑴10, 0.100;(2)第三小组 1400~1600;⑶ 180.。
江苏省徐州市2022年中考数学真题试题(含解析)

2022年江苏省徐州中考数学试题试卷第一卷〔共60分〕一、选择题:本大题共8个小题,每题3分,共24分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.5-的倒数是〔 〕A .5-B .5C .15D .15- 【答案】D .【解析】试题解析:-5的倒数是-15; 应选D .考点:倒数2. 以下图形中,既是轴对称图形,又是中心对称图形的是〔 〕A .B .C .D .【答案】C .考点:1.中心对称图形;2.轴对称图形.3.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为〔 〕A .77.110⨯B .60.7110-⨯C .77.110-⨯D .87110-⨯【答案】C .【解析】试题解析:数字0.00000071用科学记数法表示为7.1×10-7,应选C .考点:科学记数法—表示较小的数.4. 以下运算正确的选项是〔 〕A .()a b c a b c -+=-+B .235236a a a ⋅= C. 5302a a a += D .()2211x x +=+ 【答案】B .【解析】试题解析:A 、原式=a-b-c ,故本选项错误;B 、原式=6a 5,故本选项正确;C 、原式=2a 3,故本选项错误;D 、原式=x 2+2x+1,故本选项错误;应选B .考点:1.单项式乘单项式;2.整式的加减;3.完全平方公式.5.在“朗读者〞节目的影响下,某中学开展了“好书伴我成长〞读书话动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,以下说法正确的选项是〔 〕A .中位数是2B .众数是17 C. 平均数是2 D .方差是2【答案】A .∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,应选A .考点:1.方差;2.加权平均数;3.中位数;4.众数.6.如图,点,,A B C ,在⊙O 上,72AOB ∠=,那么ACB ∠= 〔 〕A .28B .54 C.18 D .36【答案】D .考点:圆周角定理.7.如图,在平面直角坐标系xOy 中,函数()0y kx b k =+≠与()0m y m x=≠的图象相交于点()()2,3,6,1A B --,那么不等式m kx b x+>的解集为 〔 〕A .6x <-B .60x -<<或2x >C. 2x > D .6x <-或02x <<【答案】B .【解析】试题解析:不等式kx+b >m x的解集为:-6<x <0或x >2, 应选B .考点:反比例函数与一次函数的交点问题.8.假设函数22y x x b =-+的图象与坐标轴有三个交点,那么b 的取值范围是〔 〕A .1b <且0b ≠B .1b > C.01b << D .1b <【答案】A .考点:抛物线与x 轴的交点.第二卷〔共90分〕二、填空题〔本大题有10小题,每题3分,总分值30分,将答案填在答题纸上〕9.4的算术平方根是 .【答案】2【解析】试题解析:∵22=4,∴4的算术平方根是2.考点:算术平方根.10.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为 .【答案】23. 【解析】试题解析:∵共6个数,小于5的有4个,∴P 〔小于5〕=42=63. 考点:概率公式.11.使6x -有意义的x 的取值范围是 . 【答案】x≥6.考点:二次根式有意义的条件.12.反比倒函数k y x =的图象经过点()2,1M -,那么k = . 【答案】-2.【解析】试题解析:∵反比例函数y=k x的图象经过点M 〔-2,1〕, ∴1=-2k ,解得k=-2. 考点:反比例函数图象上点的坐标特征.13.ABC ∆中,点,D E 分别是,AB AC 的中点,7DE =,那么BC = .【答案】14.【解析】试题解析:∵D ,E 分别是△ABC 的边AC 和AC 的中点,∴DE 是△ABC 的中位线,∵DE=7,∴BC=2DE=14.考点:三角形中位线定理.14.10,8a b a b +=-=,那么22a b -= .【答案】80.【解析】试题解析:∵〔a+b 〕〔a-b 〕=a 2-b 2,∴a 2-b 2=10×8=80.考点:平方差公式.15.正六边形的每个内角等于 .【答案】120°.考点:多边形的内角与外角.16.如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为,2D AB BC ==,那么AOB ∠= .【答案】60°.【解析】试题解析:∵OA ⊥BC ,BC=2,∴根据垂径定理得:BD=12BC=1. 在Rt △ABD 中,sin ∠A=12BD AB =. ∴∠A=30°. ∵AB 与⊙O 相切于点B ,∴∠ABO=90°.∴∠AOB=60°.考点:切线的性质.17.如图,矩形ABCD 中,4,3AB AD ==,点Q 在对角线AC 上,且AQ AD =,连接DQ 并延长,与边BC 交于点P ,那么线段AP = .【答案】17考点:1.相似三角形的判定与性质;2.勾股定理;3.矩形的性质.18.如图,1OB =,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21A AO ,如此下去,那么线段n OA 的长度为 .【答案】2n .∴A 2A 3=OA 2=2,OA 3222∵△OA 3A 4为等腰直角三角形,∴A 3A 4=OA 32OA 423=4.∵△OA 4A 5为等腰直角三角形,∴A 4A 5=OA 4=4,OA 5242∵△OA 5A 6为等腰直角三角形,∴A 5A 6=OA 52OA 625=8.∴OA n 2n .考点:等腰直角三角形.三、解答题 〔本大题共10小题,共86分.解容许写出文字说明、证明过程或演算步骤.〕19.〔1〕1201(2)20172-⎛⎫--+ ⎪⎝⎭; 〔2〕2421244x x x x +⎛⎫+÷ ⎪--+⎝⎭. 【答案】〔1〕3;〔2〕x-2.〔2〕〔1+4-2x〕÷2244xx x+-+=()2224•22xxx x--+-+=()222•22xxx x-+-+=x-2.考点:1.分式的混合运算;2.实数的运算;3.零指数幂;4.负整数指数幂.20.〔1〕解方程:231 x x=+;〔2〕解不等式组:2012123xx x>⎧⎪+-⎨>⎪⎩.【答案:〔1〕x=2;〔2〕0<x<5.【解析】试题分析:〔1〕分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;〔2〕分别求出不等式组中两不等式的解集,找出解集的公共局部即可.试题解析:〔1〕231 x x=+,去分母得:2〔x+1〕=3x,解得:x=2,经检验x=2是分式方程的解,故原方程的解为x=2;〔2〕2012123x >①x x >②+-⎧⎪⎨⎪⎩, 由①得:x >0;由②得:x <5,故不等式组的解集为0<x <5.考点:1.解分式方程;2.解一元一次不等式组.21.某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽取局部学生做了一次问卷调查,要求学生选出自己喜欢的一个版面,将调查数据进行了整理、绘制成局部统计图如下:各版面选择人数的扇形统计图 各版面选择人数的条形统计图请根据图中信息,解答以下问题: 〔1〕该调查的样本容量为 ,a = 00,“第一版〞对应扇形的圆心角为 ; 〔2〕请你补全条形统计图;〔3〕假设该校有1000名学生,请你估计全校学生中最喜欢“第一版〞的人数.【答案】〔1〕50,36,108.〔2〕补图见解析;〔3〕240人.试题解析:〔1〕设样本容量为x .由题意5x=10%,解得x=50,a=1850×100%=36%,第一版〞对应扇形的圆心角为360°×1550=108°〔2〕“第三版〞的人数为50-15-5-18=12,考点:1.条形统计图;2.总体、个体、样本、样本容量;.用样本估计总体;4.扇形统计图.22.一个不透明的口袋中装有4张卡片,卡片上分別标有数字1,3,5,7--,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张.请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.【答案】13.【解析】试题分析:画树状图展示所有12种等可能的结果数,再找出两人抽到的数字符号相同的结果数,然后根据概率公式求解.试题解析:画树状图为:共有12种等可能的结果数,其中两人抽到的数字符号相同的结果数为4,所以两人抽到的数字符号相同的概率=41=123. 考点:列表法与树状图法.23.如图,在平行四边形ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E 连接,BD EC .〔1〕求证:四边形BECD 是平行四边形;〔2〕假设50A ∠=,那么当BOD ∠= 时,四边形BECD 是矩形. 【答案】〔1〕证明见解析;〔2〕100°又∵O 为BC 的中点, ∴BO=CO ,在△BOE 和△COD 中,OEB =ODC BOE =COD BO =CO ∠∠∠∠⎧⎪⎨⎪⎩, ∴△BOE ≌△COD 〔AAS 〕; ∴OE=OD ,∴四边形BECD 是平行四边形;∴四边形BECD 是矩形;考点:1.矩形的判定;2.平行四边形的判定与性质.24. 4月9日上午8时, 2022 徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄. 【答案】今年妹妹6岁,哥哥10岁. 【解析】试题分析:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据两个孩子的对话,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.试题解析:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁, 根据题意得:()()16322342x y =x y =+++++⎧⎪⎨⎪⎩, 解得:610x =y =⎧⎨⎩.答:今年妹妹6岁,哥哥10岁. 考点:二元一次方程组的应用.25.如图,AC BC ⊥,垂足为,4,33C AC BC ==,将线段AC 绕点A 按逆时针方向旋转60,得到线段AD ,连接,DC DB .〔1〕线段DC = ; 〔2〕求线段DB 的长度. 【答案】〔1〕4;〔2〕7.〔2〕作DE ⊥BC 于点E .∵△ACD 是等边三角形, ∴∠ACD=60°, 又∵AC ⊥BC ,∴∠DCE=∠ACB-∠ACD=90°-60°=30°,考点:旋转的性质.26.如图① ,菱形ABCD 中,5AB =cm ,动点P 从点B 出发,沿折线BC CD DA --运动到点A 停止,动点Q 从点A 出发,沿线段AB 运动到点B 停止,它们运动的速度相同.设点P 出发xs 时,BPQ ∆的面积为y 2cm .y 与x 之间的函数关系.如图 ②所示,其中,OM MN 为线段,曲线NK 为抛物线的一局部,请根据图中的信息,解答以下问题:〔1〕当12x <<时,BPQ ∆的面积 〔填“变〞或“不变〞〕; 〔2〕分别求出线段OM ,曲线NK 所对应的函数表达式; 〔3〕当x 为何值时,BPQ ∆的面积是52cm ?【答案】〔1〕不变;〔2〕y=10x ;y=10〔x-3〕2;〔3〕当x=12或3-22时,△BPQ 的面积是5cm 2. 【解析】试题分析:〔1〕根据函数图象即可得到结论;〔2〕设线段OM 的函数表达式为y=kx ,把〔1,10〕即可得到线段OM 的函数表达式为y=10x ;设曲线NK 所对应的函数表达式y=a 〔x-3〕2,把〔2,10〕代入得根据得到曲线NK 所对应的函数表达式y=10〔x-3〕2;〔3〕把y=5代入y=10x 或y=10〔x-3〕2即可得到结论.试题解析:〔1〕由函数图象知,当1<x <2时,△BPQ 的面积始终等于10, ∴当1<x <2时,△BPQ 的面积不变;〔3〕把y=5代入y=10x 得,x=12, 把y=5代入y=10〔x-3〕2得,5=10〔x-3〕2,∴x=3±22∵3+22>3, ∴x=3-22, ∴当x=12或3-22时,△BPQ 的面积是5cm 2. 考点:四边形综合题.27.如图,将边长为6的正三角形纸片ABC 按如下顺序进行两次折叠,展开后,得折痕,AD BE 〔如图①〕,点O 为其交点.〔1〕探求AO 与OD 的数量关系,并说明理由; 〔2〕如图②,假设,P N 分别为,BE BC 上的动点. ①当PN PD +的长度取得最小值时,求BP 的长度;②如图③,假设点Q 在线段BO 上,1BQ =,那么QN NP PD ++的最小值= .【答案】〔1〕AO=2OD,理由见解析;〔2〕①3;②10.〔3〕如图③,作Q关于BC的对称点Q′,作D关于BE的对称点D′,连接Q′D′,即为QN+NP+PD的最小值.根据轴对称的定义得到∠Q′BN=∠QBN=30°,∠QBQ′=60°,得到△BQQ′为等边三角形,△BDD′为等边三角形,解直角三角形即可得到结论.试题解析:〔1〕AO=2OD,理由:∵△ABC是等边三角形,∴∠BAO=∠ABO=∠OBD=30°,∴AO=OB,∵BD=CD,∴AD⊥BC,∴∠BDO=90°,∴OB=2OD,∴OA=2OD;〔2〕如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N交BE于P,那么此时PN+PD的长度取得最小值,∵BE垂直平分DD′,∴BD=BD′,∵∠ABC=60°,∴△BDD′是等边三角形,∴BN=12BD=32,∵∠PBN=30°,∴32 BNPB,∴PB=3;∴△BQQ′为等边三角形,△BDD′为等边三角形,∴∠D′BQ′=90°,∴在Rt △D′BQ′中, D′Q′=22301=1+. ∴QN+NP+PD 的最小值=10, 考点:28.如图,二次函数2449y x =-的图象与x 轴交于,A B 两点与y 轴交于点C ,⊙C 的半径为5,P 为⊙C 上一动点.〔1〕点,B C 的坐标分别为B 〔 〕,C 〔 〕;〔2〕是否存在点P ,使得PBC ∆为直角三角形?假设存在,求出点P 的坐标;假设不存在,请说明理由; (3)连接PB ,假设E 为PB 的中点,连接OE ,那么OE 的最大值= .【答案】〔1〕3,0;0,-4;〔2〕〔-1,-2〕或〔〔115,225〕,或〔455,-355-4〕或〔--455,355〕;〔3〕2905. CP 2=OE=x ,得到BE=3-x ,CF=2x-4,于是得到FP 2=115,EP 2=225,求得P 2〔115,-225〕,过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1〔-1,-2〕,②当BC ⊥PC 时,△PBC 为直角三角形,根据相似三角形的判定和性质即可得到结论;①当PB与⊙相切时,△PBC为直角三角形,如图〔2〕a,连接BC,∵OB=3.OC=4,∴BC=5,∵CP2⊥BP2,CP25∴BP25,过P2作P2E⊥x轴于E,P2F⊥y轴于F,那么△CP2F∽△BP2E,四边形OCP2B是矩形,∴2222=2P F CPP E BP=,设OC=P2E=2x,CP2=OE=x,∴BE=3-x,CF=2x-4,∴3224BE xCF x-==-,∴x=115,2x=225,∴FP2=115,EP2=225,∴P2〔115,225〕,过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1〔-1,-2〕,综上所述:点P的坐标为:〔-1,-2〕或〔〔115,225〕,或〔455,-355-4〕或〔--455,355〕;〔3〕如图〔3〕,当PB与⊙C相切时,PB与y 轴的距离最大,OE的值最大,∵过E作EM⊥y轴于M,过P作PF⊥y轴于F,∴OB∥EM∥PF,∵E为PB的中点,考点:二次函数综合题.。
最新江苏省徐州市中考数学附解析

江苏省徐州市中考数学学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是( )A .B .C .D .2.下列各数不能..与 1,3,2,成比例的是( ) A .32B .23C .322D .63.如图,ABCD 为正方形,边长为a ,以点B 为圆心,以BA 为半径画弧,则阴影部分的面积是( ) A . (1-л)a 2B . l-лC .244a π- D .44π- 4.从甲、乙两工人做的同一种零件中,各抽取4个,量得它们的直径(单位:mm )如下: 甲:9.98,10.02,10.00,10.00; 乙:l0.O0,10.03,10.09,9.97. 他们做零件更符合尺寸规定的是( ) A .甲 B .乙C .二人都一样D .不能确定5.在公式12111R r r =+(120r r +≠)中,用1r ,2r 表示R 的式子是( ) A .12R r r =+ B .12R r r =C .1212r r R r r +=D .1212r r R r r =+ 6.如图所示,在图①中,Rt △OAB 绕其直角顶点0每次旋转90°,旋转3次得到右边的图形,在图②中,四边形OABC 绕0点每次旋转120°,旋转2次得到右边的图形.以下四个图形中,不能通过上述方式得到的是( )7.如图是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两个家庭的教育支出占全年总支出的百分比的判断中,正确的是( ) A .甲户大于乙户 B .乙户大于甲户 C .甲、乙两户一样大 D .无法确定哪一户大8.在如图所示图形中,角的表示方法正确的个数有( ) A .1个B .3个C .4个D .5个9.若长方形的一边长等于32a b +,另一边比它小a b -,那么这个长方形的周长是( ) A .106a b +B .73a b +C .1010a b +D .128a b +二、填空题10.如图,P 是α 的边上一点,且 P 点坐标为(3,4),则tan α = .11.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 内切,那么⊙A 由图示位置需向右平移 个单位长.12.小王去参军,需要一张身份证复印件,则身份证复印件和原身份证 相似形 ( 填“是”或“不是”).13.已抛物线245y x x =+-的顶点是 ;对称轴是直线 ;当 x 时,y 随x 的增大而减小.NM QP ED CBA14.函数7y x=-的图象在第每一象限内,y 的值随x 的增大而_____________. 15.如图所示,古埃及人用带结的绳子可以拉出直角来,是根据 .16. 某种植大户计划安排10个劳动力来耕地,可以种蔬菜也可以种水稻,种这些作物所需劳动力及预计产值如下表:每亩所需劳动力(个)每亩预计产值(元) 蔬菜 12 3000 水稻14700人,这时预计产值为 元.三、解答题17.在△ABC 中,AD 是高,矩形PQMN 的顶点P 、N 分别在AB 、AC 上,QM 在边BC 上.若BC=8cm ,AD=6cm ,且PN=2PQ ,求矩形PQMN 的周长.18. 如图,在正方形 ABCD 中,AB=4,E 是 BC 上一点,F 是CD 上一点. 且AE=AF ,设△AEF 的面积为 y ,EC=x.(1)求y 与x 的函数关系式,并求出自变量x 的取值范围; (2)当AEF 72S ∆=时,求 CE 的长度.19.如图所示,在梯形ABCD中,AD∥BC,AE⊥BC于E,若AE=12,BD=15,AC=20,求梯形ABCD的面积.150,提示:过点D作DF⊥BC于F.20.如图,折叠矩形的一边AD,使D落在BC边上的点F处,已知AB=8 cm,BC=10 cm,求EC的长.21.如图是某年的一张月历,在此月历上用一个正方形任意圈出2×2个数,它们组成正方形(如2、3、9、10),如果圈出的四个数中最小数与最大数的积为128,求这四个数的和.1234567891011121314151617181920212223242526272829303121 EDCBA22. 在Rt ABC ∆中,∠=C 90,AC =3,BC =4,若以C 为圆心,R 为半径的圆与斜边AB 只有一个公共点,求R 的取值范围.23.一天,爸爸叫儿子去买一盒火柴,临出门前,爸爸嘱咐儿子要买能划燃的火柴.儿子拿着钱出门了,过了很久,儿子回到了家. “火柴能划燃吗?”爸爸问. “都能划燃.” “你这么肯定?”儿子递过一盒划过的火柴,兴奋地说:“我每根都试过啦.” (1)在这则笑话中,儿子采用的是什么调查方式?这种调查方式好不好? (2)应采用什么方法调查比较合理?(3)请你谈谈什么情况下应进行抽样调查(至少讲出两点以上).24.设计三种不同方案,把AABC 的面积三等分.25. 观察下列各式:11011914531231222-=⨯-=⨯-=⨯ ,,,你能发现什么规律,请用代数式表示这一规律,并加以证明.26. 如图,已知在△ABC 中,BE 和CD 分别为∠ABC 和∠ACB 的平分线,且BD=CE ,∠1=∠2.说明BE=CD 的理由.27.2006 年世界杯足球赛德国组委会公布的四分之一决赛门票价格为:一等席 300 美元,二等席 200 美元,三等席 125 美元. 当时某服装公司在促销活动中,组织获得特等奖,一等奖的36 名乘客到德国观看 2006 年世界杯足球赛四分之一决赛. 除去其他费用后,计划买两种门票,用完 5025 美元,你能设计出最多几种购票方案. 供该服装公司选择?并说明理由.28.如图所示,在Rt△ABC中,∠A=∠B,CD是∠ACB的平分线,请判定CD与AB的位置关系,并说明理由.29.用简便方法计算:(1)12114 ()()(1)(1)(1) 23435 -⨯-⨯-⨯-⨯-(2 ) (-5.25 )×(-4.73 )-4.73 ×(-19.75)-25×(-5.27).30.已知甲数的绝对值是乙数的绝对值的 3倍,且在数轴上表示这两个数的点位于原点的两侧,相距为 8,求这两个数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.C4.A5.D6.D7.B8.B9.C二、填空题10.411.34或612.是13.(-2,-9),x=-2,≤-214.增大15.勾股定理的逆定理16.5,44000三、解答题 17. 14.4 cm..18.(1) ∵AE=AF, ∠B=∠D= 90°,AD=AB , ∴△ABE ≌△ADF.∴DF=BE= 4-x.AEF ABCD ABE EFC ADF S S s s s ∆∆∆∆=---正方形∴22211144(4)24222y x x x x =-⨯⨯-⨯-=-+ x 的取值范围:0<x<4(2)∵AEF 72S ∆=,∴217422x x -+=,解得:x 1= 1,x 2 = 7(不合题意,舍去)∴x =1,即 CE 的长度为 119.150,提示:过点D 作DF ⊥BC 于F .20.3 cm21.48.22.R =24.或34<≤R . 23.(1)普查,不合适;(2)抽样讽查;(3)不唯一,如:①当调查数量特别大或调查范围特别广时应选用抽样调查;②当调查的事件具有危险性或破坏性时应选用抽样调查24.略25.连续两个奇数的平方差等于夹在这两个奇数之间的偶数的平方与1的差,1)2()12)(12(2-=-+nnn.26.BE和CD分别为∠ABC和∠ACB的平分线,可得∠ABC=2∠1,∠ACB=2∠2, 由于∠1=∠2,∴∠ABC=∠ACB,△BCD≌△CBE(AAS),∴BE=CD.27.共有两种方案供服装公司选择:方案一:购一等席门票 3 张,三等席门票 33 张;方案二:购二等席门票 7张,三等席门票 29 张28.CD⊥AB,理由略29.(1)35(2)25030.-6 和 2 或 6 和-2。
2023年江苏省徐州市中考数学试题附解析

2023年江苏省徐州市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,⊙O的直径 AB 与弦 AC 的夹角为35°,过C点的切线 PC 与 AB 的延长线交于点P,那么∠P 等于()A.15°B.20°C.25°D.30°2.一枚均匀的正方体骰子,六个面分别标有数字 1、2、3、4、5、6,连续抛掷两次,朝上的数字分别是 m、n,若把m、n作为点A 的横纵坐标,则点 A(m,n)在函数2y x=的图象上的概率是()A.118B.112C.16D.133.样本频数分布反映了()A.样本数据的多少 B.样本数据的平均水平C.样本数据的离散程度 D.样本数据在各个小范围内数量的多少4.下列函数中是一次函数的是()A.y=kx+b B.2yx-=C.2331y x x=-++D.112y x=-+5.小明家的坐标为(1,2),小丽家的坐标为(一2,一l),则小明家在小丽家的()A.东南方向B.东北方向C.西南方向D.西北方向6.已知0a<,且不等式组x ax b>⎧⎨>⎩的解是x a>,则不等式组x ax b<⎧⎨->⎩的解是()A.b x a-<<B.x b>或x a<C.x a<D.无解7.如图,将四边形AEFG变换到四边形ABCD,其中E ,G分别是AB、AD 的中点,下列叙述不正确...的是()A.这种变换是相似变换B.对应边扩大到原来到2倍C.各对应角度数不变D.面积是原来2倍8.计算(2)(3)x x-+的结果是()A.26x-B.26x+C.26x x+-D.26x x--9.若代数式2231a a++的值是 6,则代数式2695a a++的值是()3.A .18B .16C .15D .20 10.计算-6+3等于( )A . -9B . 9C .-3D . -3 11.若有理数0a b c ++<,则( )A .三个数中至少有两个负数B .三个数中有且只有一个负数C .三个数中最少有一个负数D .三个数中有两个负数12.给出下述几种说法,其中正确的说法有( )①763万精确到万位;②1.2亿精确到0.1;③8067保留2个有效数字的近似值是8.1 ×103;④22.20精确到0.01.A .3个B .2个C .1个D .0个二、填空题13.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角60°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐地面的距离 AC 为 m .14.如图所示,D 、E 两点分别在△ABC 两条边上,且DE 与BC 不平行,请填上一个你认为适合的条件_________,使得△ADE ∽△ABC .15.半径为6 ㎝,弧长为2π2π的扇形面积为 ㎝2.16.多项式221x ny x y -+++中不含字母y ,则Q(n 2+1,2n)点关于x 轴的对称点的坐标是 .17.已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________.18.如图,∠1=75°,∠2 =75°,∠3 = 105°,那么∠4 = ,可推出的平行关系有 .19.当x =__________时,分式x 2-9x -3的值为零. 20.小王想把 20 元人民币全部兑换成 2元和 5元两种面值的人民币,她有 种不同的兑换方法(只兑换一种币值也可以).21.如图所示,已知在Rt △ABC 中,∠C=90°,AD 是△ABC 的角平分线,BC=5,CD :BD=2:3,则点D到AB的距离为.22.△ABC与△DEF全等,AB=DE,若∠A=50°,∠B=60°,则∠D= .23.如图,∠1=30°,∠2=40°,则∠EOB= ,∠AOF= .三、解答题24.张明、王成两位同学l0次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如图所示:(1)根据图中提供的数据填写下表:平均成绩/分中位数/分众数/分方差张明80王成85260的成绩视为优秀,则优秀率高的同学是;(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.25.已知△ABC中,∠C=Rt∠,BC=a,AC=b.(1)若a=1,b=2,求c;(2)若a=15,c=17,求b.26.如图,甲、乙两人蒙上眼睛投掷飞标.(1)若甲击中黄色区域,则甲胜;若击中白色区域,则乙胜,此游戏公平吗?为什么?(2)利用图中所示,请你再设计一个公平的游戏.27.如图是蝴蝶的部分示意图,请你在方格中画出另一半.28.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?29.利用计算器比较下列各数的大小,并用<”号连结:3563734π333<4576π30.A市辖区内的B、C、D、E四县市正被日益严重的水污染所困扰,居民的饮用水长期达不到较高的标准.为了人民的身体健康,该市与四个县市的领导、专家多次研究,计划从A市某水库引水,供给四县市的城市居民.五个市县间的距离如图所示(单位:km).已知铺设引水管道需费用14500元/km如果不考虑其它因素,请你设计出几种不同的引水管道铺设方案.并指出哪种铺设方案最经济.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.D5.B6.D7.D8.C9.D10.C11.C12.A二、填空题13.314.∠1=∠B (答案不唯一)15.6π 16.(2,-2)17.8,718.105°;1l ∥2l 、3l ∥4l19.3-=x 20.321.222.50°或60°23.110°,ll0°三、解答题24.(1)表中数据依次为80,80,60,80,90;(2)王成;(3)略.25.(1;(2)826.(1)不公平,因为甲击中黄色区域的成功率小于击中白色区域的成功率;(2)公平的规则:若甲击中黄色区域,则甲胜;若击中绿色区域,则乙胜 (答案不唯一) 27.图略28.解:设这个队胜了x场,依题意得:+--=,解得:5x x3(145)19x=.答:这个队胜了5场.29.333<<<<30.4576π方案一:A→B→C→D→E,W1=(30+30+45+30)×14500=1.9575×106(元)方案二:W2=(55+30+45+30)×14500=2.32×106(元)方案三:W3=(50+30+45+30)×14500=2.2475×106(元)方案四:W4=(30+50+30+45)×14500=2.24755×106(元)方案五:W5=(354-55+45+30)×14500=2.3925×106(元)方案六:W6=(30+55+50+35)×14500=2.465×106(元)方案七:A→E→D→C→B,W7=(35+30+45+30)×14500=2.03×106(元)方案八:W8=(30+30+35+30)×14500=1.8125×106(元)通过以上八个方案的比较,铺设方案八即从最经济,总费用只需181.25万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏徐州市中考数学试卷解析版TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】2017年江苏省徐州市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.﹣5的倒数是()A.﹣5 B.5 C. D.【考点】17:倒数.【分析】根据倒数的定义可直接解答.【解答】解:﹣5的倒数是﹣;故选D.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:C.3.肥皂泡的泡壁厚度大约是0.00000071米,数字用科学记数法表示为()A.×107 B.×10﹣6 C.×10﹣7 D.71×10﹣8【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数字用科学记数法表示为×10﹣7,故选:C.4.下列运算正确的是()A.a﹣(b+c)=a﹣b+c; B.2a23a3=6a5 C.a3+a3=2a6 D.(x+1)2=x2+1 【考点】49:单项式乘单项式;44:整式的加减;4C:完全平方公式.【分析】根据去括号,单项式的乘法,合并同类项以及完全平方公式进行解答.【解答】解:A、原式=a﹣b﹣c,故本选项错误;B、原式=6a5,故本选项正确;C、原式=2a3,故本选项错误;D、原式=x2+2x+1,故本选项错误;故选:B.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是2【考点】W7:方差;W2:加权平均数;W4:中位数;W5:众数.【分析】先根据表格提示的数据得出50名学生读书的册数,然后除以50即可求出平均数;在这组样本数据中,3出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2,根据方差公式即可得出答案.【解答】解:解:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.6.如图,点A,B,C在⊙O上,∠AOB=72°,则∠ACB等于()A.28° B.54° C.18° D.36°【考点】M5:圆周角定理.【分析】根据圆周角定理:同弧所对的圆周角等于同弧所对圆心角的一半即可求解.【解答】解:根据圆周角定理可知,∠AOB=2∠ACB=72°,即∠ACB=36°,故选D.7.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(2,3),B(﹣6,﹣1),则不等式kx+b>的解集为()A.x<﹣6 B.﹣6<x<0或x>2 C.x>2 D.x<﹣6或0<x<2 【考点】G8:反比例函数与一次函数的交点问题.【分析】根据函数的图象和交点坐标即可求得结果.【解答】解:不等式kx+b>的解集为:﹣6<x<0或x>2,故选B.8.若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0B.b>1 C.0<b<1 D.b<1【考点】HA:抛物线与x轴的交点.【分析】抛物线与坐标轴有三个交点,则抛物线与x轴有2个交点,与y轴有一个交点.【解答】解:∵函数y=x2﹣2x+b的图象与坐标轴有三个交点,∴,解得b<1且b≠0.故选:A.二、填空题(本大题共10小题,每小题3分,共30分)9.4的算术平方根是2.【考点】22:算术平方根.【分析】依据算术平方根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2.故答案为:2.10.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为:.11.使有意义的x的取值范围是x≥6.【考点】72:二次根式有意义的条件.【分析】直接利用二次根式的定义分析得出答案.【解答】解:∵有意义,∴x的取值范围是:x≥6.故答案为:x≥6.12.反比例函数y=的图象经过点M(﹣2,1),则k=﹣2.【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点M(﹣2,1)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点M(﹣2,1),∴1=﹣,解得k=﹣2.故答案为:﹣2.13.△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC=14.【考点】KX:三角形中位线定理.【分析】根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知,BC=2DE,进而由DE的值求得B C.【解答】解:∵D,E分别是△ABC的边AC和AC的中点,∴DE是△ABC的中位线,∵DE=7,∴BC=2DE=14.故答案是:14.14.已知a+b=10,a﹣b=8,则a2﹣b2=80.【考点】4F:平方差公式.【分析】根据平方差公式即可求出答案.【解答】解:∵(a+b)(a﹣b)=a2﹣b2,∴a2﹣b2=10×8=80,故答案为:8015.正六边形的每个内角等于120°.【考点】L3:多边形内角与外角.【分析】根据多边形内角和公式即可求出答案.【解答】解:六边形的内角和为:(6﹣2)×180°=720°,∴正六边形的每个内角为: =120°,故答案为:120°16.如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB=60°.【考点】MC:切线的性质.【分析】由垂径定理易得BD=1,通过解直角三角形ABD得到∠A=30°,然后由切线的性质和直角三角形的两个锐角互余的性质可以求得∠AOB的度数.【解答】解:∵OA⊥BC,BC=2,∴根据垂径定理得:BD=BC=1.在Rt△ABD中,sin∠A==.∴∠A=30°.∵AB与⊙O相切于点B,∴∠ABO=90°.∴∠AOB=60°.故答案是:60.17.如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=.【考点】S9:相似三角形的判定与性质;KQ:勾股定理;LB:矩形的性质.【分析】先根据勾股定理得到AC的长,再根据AQ=AD,得出CP=CQ=2,进而得到BP的长,最后在Rt△ABP中,依据勾股定理即可得到AP的长.【解答】解:∵矩形ABCD中,AB=4,AD=3=BC,∴AC=5,又∵AQ=AD=3,AD∥CP,∴CQ=5﹣3=2,∠CQP=∠AQD=∠ADQ=∠CPQ,∴CP=CQ=2,∴BP=3﹣2=1,∴Rt△ABP中,AP===,故答案为:.18.如图,已知OB=1,以OB为直角边作等腰直角三角形A1BO,再以OA1为直角边作等腰直角三角形A2A1O,如此下去,则线段OA n的长度为.【考点】KW:等腰直角三角形.【分析】利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案.【解答】解:∵△OBA1为等腰直角三角形,OB=1,∴AA1=OA=1,OA1=OB=;∵△OA1A2为等腰直角三角形,∴A1A2=OA1=,OA2=OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=OA2=2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2,OA4=OA3=4.∵△OA4A5为等腰直角三角形,∴A4A5=OA4=4,OA5=OA4=4,∵△OA5A6为等腰直角三角形,∴A5A6=OA5=4,OA6=OA5=8.∴OA n的长度为.故答案为:三、解答题(本大题共10小题,共86分)19.计算:(1)(﹣2)2﹣()﹣1+20170(2)(1+)÷.【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)根据负整数指数幂、零指数幂可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(﹣2)2﹣()﹣1+20170=4﹣2+1=3;(2)(1+)÷===x﹣2.20.(1)解方程: =(2)解不等式组:.【考点】B3:解分式方程;CB:解一元一次不等式组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)=,去分母得:2(x+1)=3x,解得:x=2,经检验x=2是分式方程的解,故原方程的解为x=2;(2),由①得:x>0;由②得:x<5,故不等式组的解集为0<x<5.21.某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽查部分学生做了一次问卷调查,要求学生选出自己最喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:请根据图中信息,解答下列问题:(1)该调查的样本容量为50,a=36%,“第一版”对应扇形的圆心角为108°;(2)请你补全条形统计图;(3)若该校有1000名学生,请你估计全校学生中最喜欢“第三版”的人数.【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)设样本容量为x.由题意=10%,求出x即可解决问题;(2)求出第三版”的人数为50﹣15﹣5﹣18=12,画出条形图即可;(3)用样本估计总体的思想解决问题即可.【解答】解:(1)设样本容量为x.由题意=10%,解得x=50,a=×100%=36%,第一版”对应扇形的圆心角为360°×=108°故答案分别为50,36,108.(2)“第三版”的人数为50﹣15﹣5﹣18=12,条形图如图所示,(3)该校有1000名学生,估计全校学生中最喜欢“第三版”的人数约为1000××100%=240人.22.一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,﹣3,﹣5,7,这些卡片数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.【考点】X6:列表法与树状图法.【分析】画树状图展示所有12种等可能的结果数,再找出两人抽到的数字符号相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两人抽到的数字符号相同的结果数为4,所以两人抽到的数字符号相同的概率==.23.如图,在?ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,E C.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;(2)由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案为:100.24.4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.【考点】9A:二元一次方程组的应用.【分析】设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据题意得:,解得:.答:今年妹妹6岁,哥哥10岁.25.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,D B.(1)线段DC=4;(2)求线段DB的长度.【考点】R2:旋转的性质.【分析】(1)证明△ACD是等边三角形,据此求解;(2)作DE⊥BC于点E,首先在Rt△CDE中利用三角函数求得DE和CE的长,然后在Rt△BDE中利用勾股定理求解.【解答】解:(1)∵AC=AD,∠CAD=60°,∴△ACD是等边三角形,∴DC=AC=4.故答案是:4;(2)作DE⊥BC于点E.∵△ACD是等边三角形,∴∠ACD=60°,又∵AC⊥BC,∴∠DCE=∠ACB﹣∠ACD=90°﹣60°=30°,∴Rt△CDE中,DE=DC=2,CE=DCcos30°=4×=2,∴BE=BC﹣CE=3﹣2=.∴Rt△BDE中,BD===.26.如图①,菱形ABCD中,AB=5cm,动点P从点B出发,沿折线BC﹣CD﹣DA运动到点A停止,动点Q从点A出发,沿线段AB运动到点B停止,它们运动的速度相同,设点P出发xs时,△BPQ的面积为ycm2,已知y与x之间的函数关系如图②所示,其中OM,MN为线段,曲线NK为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当1<x<2时,△BPQ的面积不变(填“变”或“不变”);(2)分别求出线段OM,曲线NK所对应的函数表达式;(3)当x为何值时,△BPQ的面积是5cm2【考点】LO:四边形综合题.【分析】(1)根据函数图象即可得到结论;(2)设线段OM的函数表达式为y=kx,把(1,10)即可得到线段OM的函数表达式为y=10x;设曲线NK所对应的函数表达式y=a(x﹣3)2,把(2,10)代入得根据得到曲线NK所对应的函数表达式y=10(x﹣3)2;(3)把y=5代入y=10x或y=10(x﹣3)2即可得到结论.【解答】解:(1)由函数图象知,当1<x<2时,△BPQ的面积始终等于10,∴当1<x<2时,△BPQ的面积不变;故答案为:不变;(2)设线段OM的函数表达式为y=kx,把(1,10)代入得,k=10,∴线段OM的函数表达式为y=10x;设曲线NK所对应的函数表达式y=a(x﹣3)2,把(2,10)代入得,10=a(2﹣3)2,∴a=10,∴曲线NK所对应的函数表达式y=10(x﹣3)2;(3)把y=5代入y=10x得,x=,把y=5代入y=10(x﹣3)2得,5=10(x﹣3)2,∴x=3±,∵3+>3,∴x=3﹣,∴当x=或3﹣时,△BPQ的面积是5cm2.27.如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点.(1)探求AO到OD的数量关系,并说明理由;(2)如图②,若P,N分别为BE,BC上的动点.①当PN+PD的长度取得最小值时,求BP的长度;②如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值=.【考点】RB:几何变换综合题.【分析】(1)根据等边三角形的性质得到∠BAO=∠ABO=∠OBD=30°,得到AO=OB,根据直角三角形的性质即可得到结论;(2)如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N交BE于P,则此时PN+PD的长度取得最小值,根据线段垂直平分线的想知道的BD=BD′,推出△BDD′是等边三角形,得到BN=BD=,于是得到结论;(3)如图③,作Q关于BC的对称点Q′,作D关于BE的对称点D′,连接Q′D′,即为QN+NP+PD的最小值.根据轴对称的定义得到∠Q′BN=∠QBN=30°,∠QBQ′=60°,得到△BQQ′为等边三角形,△BDD′为等边三角形,解直角三角形即可得到结论.【解答】解:(1)AO=2OD,理由:∵△ABC是等边三角形,∴∠BAO=∠ABO=∠OBD=30°,∴AO=OB,∵BD=CD,∴AD⊥BC,∴∠BDO=90°,∴OB=2OD,∴OA=2OD;(2)如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N交BE于P,则此时PN+PD的长度取得最小值,∵BE垂直平分DD′,∴BD=BD′,∵∠ABC=60°,∴△BDD′是等边三角形,∴BN=BD=,∵∠PBN=30°,∴=,∴PB=;(3)如图③,作Q关于BC的对称点Q′,作D关于BE的对称点D′,连接Q′D′,即为QN+NP+PD的最小值.根据轴对称的定义可知:∠Q′BN=∠QBN=30°,∠QBQ′=60°,∴△BQQ′为等边三角形,△BDD′为等边三角形,∴∠D′BQ′=90°,∴在Rt△D′BQ′中,D′Q′==.∴QN+NP+PD的最小值=,故答案为:.28.如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B(3,0),C(0,﹣4);(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=.【考点】HF:二次函数综合题.【分析】(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到==2,设OC=P2E=2x,CP2=OE=x,得到BE=3﹣x,CF=2x﹣4,于是得到FP2=,EP2=,求得P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(3)如图2,当PB与⊙C相切时,OE的值最大,过E作EM⊥y轴于M,过P作PF⊥y轴于F,根据平行线等分线段定理得到ME=(OB+PF)=,OM=MF=OF=,根据勾股定理即可得到结论.【解答】解:(1)在y=x2﹣4中,令y=0,则x=±3,令x=0,则y=﹣4,∴B(3,0),C(0,﹣4);故答案为:3,0;0,﹣4;(2)存在点P,使得△PBC为直角三角形,①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=3.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴==2,设OC=P2E=2x,CP2=OE=x,∴BE=3﹣x,CF=2x﹣4,∴==2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,过P4作P4H⊥y轴于H,则△BOC∽△CHP4,∴==,∴CH=,P4H=,∴P4(,﹣﹣4);同理P3(﹣,﹣4);综上所述:点P的坐标为:(﹣1,﹣2)或(,﹣)或(,﹣﹣4)或(﹣,﹣4);(3)如图(3),当PB与⊙C相切时,PB与y轴的距离最大,OE的值最大,∵过E作EM⊥y轴于M,过P作PF⊥y轴于F,∴OB∥EM∥PF,∵E为PB的中点,∴ME=(OB+PF)=,OM=MF=OF=,∴OE==.故答案为:.。