不等式证明(一)
不等式的证明方法

不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。
证明不等式的方法有很多,下面介绍几种常见的方法。
1.数学归纳法数学归纳法是一种常用的证明不等式的方法。
当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。
具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。
2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。
例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。
3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。
例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。
4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。
具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。
5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。
它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。
基本不等式证明

所以,ab a b 成立 2
当且仅当a b时取“”
分析法——执果索因
证法3:
对于正数 a,b,有
( a b)2 0 a b 2 ab 0
a b 2 ab
a b ab 2
综合法——由因索果
如果 a,b 是正数,那么 ab a b
2
当且仅当a b时取" " 号
问题 3、当a 0, b 0时 ,这个不等式仍然成立吗?
把不等式 ab a b (a 0,b 0) 称为基本不等式。 2
注意 (1)不等式成立条件(2)等号成立条件
问题4: 你能给出基本不等式几何解释吗?
ab
a
b
“半径不小于半弦”
回顾反思
1、今天这节课学了哪些主要知识? 2、在解决问题时用了哪些方法?
问题1、如何合理的表示物体的质量?Βιβλιοθήκη b两个正数a、b ,我们把
称为a、b
2
的算术平均数, ab 称为几何平均数。
问题2、两个正数a、b的算术平均数与几何平均数 之间具有怎样的大小关系呢?
猜想:ab a b(a 0,b 0) 2
问题3:如何证明 ab a b(a 0,b 0) 2
不等式证明的基本方法 比较法(作差、作商法)
基本不等式的证明(一)
一、创设问题情景:
❖ 把一个物体放在天平的一个盘子上,在另一个盘子 上放砝码使天平平衡,称得物体的质量为a。如果 天平制造得不精确,天平的两臂长略有不同(其他 因素不计),那么a并非物体的实际质量。不过, 我们可以作第二次测量:把物体调换到天平的另一 个盘上,此时称得物体的质量为b。
拓展延伸
这个基本不等式可否推广到“n个非负数”的情 形,有兴趣的同学可作进一步的研究,也可 查阅有关资料。
第二讲证明不等式的基本方法 (1)

一、选择题1.若a>b>0,则下列不等式中一定成立的是( )A.a+>b+B.>C.a->b-D.>解析 ∵a>b>0,∴>>0,∴a+>b+.答案 A2.已知x>y>z,且x+y+z=1,则下列不等式中恒成立的是( )A.xy>yzB.xz>yzC.x|y|>z|y|D.xy>xz解析 令x=2,y=0,z=-1,可排除选项A,B,C,故选D.答案 D3.已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是( )A.c≥b>aB.a>c≥bC.c>b>aD.a>c>b解析 ∵c-b=(a-2)2≥0,∴c≥b.由题中两式相减,得b=a2+1,∴b-a=a2-a+1=+>0.∴b>a,∴c≥b>a.答案 A4.已知b>a>0,且a+b=1,那么( )A.2ab<<<bB.2ab<<<bC.<2ab<<bD.2ab<<b<解析 取特殊值法.令a=,b=,则2ab=,=,=,故选B.答案 B5.若实数a,b满足a+b=2,则3a+3b的最小值是( )A.18B.6C.2D.2解析 3a+3b≥2=2=2×3=6(当且仅当a=b=1时,等号成立).答案 B6.对于任意的x∈[0,1],不等式ax+2b>0恒成立,则代数式a+3b的值( )A.恒为正值B.恒为非负值C.恒为负值D.不确定解析 令f(x)=ax+2b,则在[0,1]上,若a>0,则f min(x)=f(0)=2b>0;若a<0,则f min(x)=f(1)=a+2b>0,∴a+3b=b+a+2b>0.答案 A7.设a、b、c是互不相等的正数,则下列等式中不恒成立的是( )A.|a-b|≤|a-c|+|b-c|B.a2+≥a+C.|a-b|+≥2D.-≤-解析 因为a-b的符号不确定,所以|a-b|+≥2不一定正确,所以应选C.答案 C8.若x,y∈R+,且x≠y,下列四个数中最小的一个是( )A. B.C. D.解析 >·2=,>>.由<⇒>⇒>⇒>,故选D.答案 D9.要使-<成立,a,b应满足的条件是( )A.ab<0,且a>bB.ab>0,且a>bC.ab<0,且a<bD.ab>0,且a>b或ab<0,且a<b解析 -<⇔a-b+3-3<a-b⇔<,∴当ab>0时,有<,即b<a.当ab<0时.有>,即b>a.答案 D10.在△ABC中,A,B,C分别为边a,b,c所对的角,且a,b,c成等差数列,则角B适合的条件是( )A.0<B≤B.0<B≤C.0<B≤D.<B<π解析 ∵2b=a+c,∴cos B====-≥-=.当且仅当a=b=c时等号成立.∵余弦函数在上为减函数,∴0<B≤.答案 B二、填空题11.lg 9·lg 11与1的大小关系是________.解析 ∵lg 9>0,lg 11>0,∴<<<=1.∴lg 9·lg 11<1.答案 lg 9·lg 11<112.已知a,b>0,则x=a b b a,y=a a b b的大小关系是________.解析 ==a b-a·b a-b=,若a≥b>0,则≥1,而b-a≤0,∴≤1.若0<a≤b,则≤1,而b-a≥0,∴≤1.综上,y≥x.答案 y≥x13.设a=-,b=-,c=-,则a,b,c的大小顺序是________.解析 a-b=--+=+-(+),而(+)2=8+2,(+)2=8+2,∴+>+.∴a-b>0,即a>b.同理可知b>c.∴a>b>c.答案 a>b>c14.已知a,b,c,d都为正数,且S=+++,则S的取值范围是________.解析 由放缩法,得<<;<<;<<;<<.以上四个不等式相加,得1<S<2.答案 (1,2)三、解答题15.设a>0,b>0,且a+b=+.证明:①a+b≥2;②a2+a<2与b2+b<2不可能同时成立.证明 由a+b=+=,a>0,b>0,得ab=1.①由基本不等式及ab=1,有a+b≥2=2,即a+b≥2.②假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a2+a<2与b2+b<2不可能同时成立.16.已知a,b,c为三角形的三边,求证:,,也可以构成一个三角形.证明 设f(x)=,x∈(0,+∞),0<x1<x2,则f(x2)-f(x1)=-=>0,f(x2)>f(x1),∴f(x)在(0,+∞)上为增函数.∵a,b,c为三角形的三边,∴a+b>c,∴<=+<+,即<+,同理可证<+,<+,∴以,,为边可构成一个三角形.17.已知数列{a n}满足a1=且a n+1=a n-a(n∈N*).(1)证明:1≤≤2(n∈N*);(2)设数列{a}的前n项和为S n,证明:≤≤(n∈N*).(1)证明 由题意得a n+1-a n=-a≤0,即a n+1≤a n,故a n≤.由a n=(1-a n-1)a n-1得a n=(1-a n-1)(1-a n-2)…(1-a1)a1>0.由0<a n≤得==∈(1,2],所以1≤≤2.(2)解 由题意得a=a n-a n+1,所以S n=a1-a n+1,①由-=和1≤≤2得1≤-≤2,所以n≤-≤2n,因此≤a n+1≤(n∈N*).②由①②得≤≤(n∈N*).18.设各项均为正数的数列{a n}的前n项和为S n,且S n满足S-(n2+n-3)S n-3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有++…+<.(1)解 令n=1代入得a1=2(负值舍去).(2)解 由S-(n2+n-3)S n-3(n2+n)=0,n∈N*得[S n-(n2+n)](S n+3)=0,又已知各项均为正数,故S n=n2+n,当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n,当n=1时,a1=2也满足上式,所以a n=2n(n∈N*).(3)证明 k∈N*,4k2+2k-(3k2+3k)=k2-k=k(k-1)≥0,∴4k2+2k≥3k2+3k,∴==≤=.∴++…+≤=<.∴原不等式成立.。
不等式的四个公式证明

不等式的四个公式证明不等式在数学中可是个很重要的家伙,咱们今天就来好好唠唠不等式的四个公式证明。
先来说说什么是不等式。
想象一下,你有一堆糖果,小明也有一堆糖果,你俩谁的糖果多呢?这比较的过程其实就是在研究不等式。
咱先瞅瞅第一个公式,叫加法法则。
简单说,如果 a > b,那么 a +c > b + c。
这就好比你本来就比小明的零花钱多,然后你俩都得到了同样多的额外零花钱,那你还是比他多嘛。
比如说,你有 10 块钱,小明有 5 块钱,老师又给了你俩每人 3 块,那你就有 13 块,小明 8 块,你还是比他多。
再讲讲乘法法则。
当 a > b 且 c > 0 时,ac > bc。
这个也好理解,就像你跑步速度比小明快,然后在同样的时间里跑,时间越长,你跑的距离就比小明跑的更远。
比如你一分钟能跑 200 米,小明一分钟跑 150 米,要是跑 5 分钟,你能跑 1000 米,小明 750 米,差距就更大啦。
还有个除法法则。
当 a > b 且 c > 0 时,a/c > b/c。
这就好比分苹果,本来你的苹果比小明多,然后平均分给同样多的人,你分给每个人的苹果还是比小明多。
最后说一下传递性。
如果 a > b 且 b > c,那么 a > c。
这就像接力赛,你跑在前面,小明在中间,小李在后面,那你肯定也在小李前面。
我记得之前有一次给学生们讲这个知识点的时候,有个小家伙特别可爱。
我刚讲完加法法则,让大家做几道练习题巩固一下。
结果这小家伙举着手说:“老师,我懂啦,这就像我吃的巧克力比同桌多,我俩又都吃了同样多的棒棒糖,那我还是巧克力多。
”当时全班都笑了,不过通过这个例子,大家对加法法则的理解更深刻了。
总之,不等式的这四个公式在数学里用处可大啦,咱们解题的时候经常能用到。
大家可得把它们牢牢掌握,这样在数学的海洋里就能游得更顺畅啦!。
高中不等式证明例题(一题多解)

多种方法证明高中不等式例1证明不等式n n2131211<++++(n ∈N *)证法一:(1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立; (2)假设n =k (k ≥1)时,不等式成立,即1+k13121+++ <2k ,,1211)1(11)1(21121131211+=++++<+++=++<+++++k k k k k k k k k k 则∴当n =k +1时,不等式成立.综合(1)、(2)得:当n ∈N *时,都有1+n13121+++ <2n .另从k 到k +1时的证明还有下列证法:,1111212212:.12112,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=+++>++=-++<++∴>++<++∴>+-=+++-=+--+k k k kk k k k k k k k k k k k k k k k k k k 又如.12112+<++∴k k k证法二:对任意k ∈N *,都有:.2)1(2)23(2)12(22131211),1(21221n n n n k k k k k k k =--++-+-+<++++--=-+<+=因此证法三:设f (n )=),131211(2nn ++++-那么对任意k ∈N*都有:1)1(])1(2)1[(11]1)1(2)1(2[1111)1(2)()1(2>+-+=++-+⋅+=-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f∴f (k +1)>f (k )因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0, ∴.2131211n n <++++例2求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值. 解法一:由于a 的值为正数,将已知不等式两边平方,得: x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ),①∴x ,y >0,∴x +y ≥2xy ,②当且仅当x =y 时,②中有等号成立. 比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2. 解法二:设yx xyy x xy y x y x y x yx yx u ++=+++=++=++=212)(2. ∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立), ∴y x xy +2≤1,yx xy+2的最大值是1. 从而可知,u 的最大值为211=+, 又由已知,得a ≥u ,∴a 的最小值为2. 解法三:∵y >0, ∴原不等式可化为yx+1≤a 1+yx, 设y x =tan θ,θ∈(0,2π). ∴tan θ+1≤a 1tan 2+θ;即tan θ+1≤a se c θ ∴a ≥sin θ+cos θ=2sin(θ+4π),③又∵sin(θ+4π)的最大值为1(此时θ=4π). 由③式可知a 的最小值为2.例3 已知a >0,b >0,且a +b =1.求证:(a +a 1)(b +b 1)≥425证法一:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立 ∵1=a +b ≥2ab ,∴ab ≤41,从而得证. 证法二:(均值代换法) 设a =21+t 1,b =21+t 2.∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a 显然当且仅当t =0,即a =b =21时,等号成立.证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++b b a a 即 证法五:(三角代换法)∵a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π) .425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααααααααααααα例4.已知a ,b ,c 为正实数,a +b +c =1. 求证:(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤6证明:(1)证法一:a 2+b 2+c 2-31=31(3a 2+3b 2+3c 2-1)=31[3a 2+3b 2+3c 2-(a +b +c )2]=31[3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc ]=31[(a -b )2+(b -c )2+(c -a )2]≥0 ∴a 2+b 2+c 2≥31证法二:∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c 2 ∴3(a 2+b 2+c 2)≥(a +b +c )2=1 ∴a 2+b 2+c 2≥31证法三:∵33222c b a c b a ++≥++∴a 2+b 2+c 2≥3cb a ++ ∴a 2+b 2+c 2≥31证法四:设a =31+α,b =31+β,c =31+γ. ∵a +b +c =1,∴α+β+γ=0∴a 2+b 2+c 2=(31+α)2+(31+β)2+(31+γ)2=31+32 (α+β+γ)+α2+β2+γ2=31+α2+β2+γ2≥31 ∴a 2+b 2+c 2≥31629)(323232323323,23323,21231)23(23:)2(=+++<+++++∴+<++<+++<⨯+=+c b a c b a c c b b a a a 同理证法一 ∴原不等式成立. 证法二:3)23()23()23(3232323+++++≤+++++c b a c b a336)(3=+++=c b a∴232323+++++c b a ≤33<6 ∴原不等式成立.例5.已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明:x ,y ,z ∈[0,32]证法一:由x +y +z =1,x 2+y 2+z 2=21,得x 2+y 2+(1-x -y )2=21,整理成关于y 的一元二次方程得:2y 2-2(1-x )y +2x 2-2x +21=0,∵y ∈R ,故Δ≥0∴4(1-x )2-4×2(2x 2-2x +21)≥0,得0≤x ≤32,∴x ∈[0,32] 同理可得y ,z ∈[0,32]证法二:设x =31+x ′,y =31+y ′,z =31+z ′,则x ′+y ′+z ′=0, 于是21=(31+x ′)2+(31+y ′)2+(31+z ′)2 =31+x ′2+y ′2+z ′2+32 (x ′+y ′+z ′)=31+x ′2+y ′2+z ′2≥31+x ′2+2)(2z y '+'=31+23x ′2故x ′2≤91,x ′∈[-31,31],x ∈[0,32],同理y ,z ∈[0,32]证法三:设x 、y 、z 三数中若有负数,不妨设x <0,则x 2>0,21=x 2+y 2+z 2≥x 2+21232)1(2)(2222+-=+-=+x x x x z y >21,矛盾.x 、y 、z 三数中若有最大者大于32,不妨设x >32,则21=x 2+y 2+z 2≥x 2+2)(2z y +=x 2+2)1(2x -=23x 2-x +21=23x (x -32)+21>21;矛盾. 故x 、y 、z ∈[0,32]例6 .证明下列不等式:(1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz , 则zyx y x z x z y +++++≥2(z y x 111++))()()()()()(222)(4)(2))(()(2)]()()([)(2)(:)2()(20)()()()2()2()2()(22:)1.(62222222222223333332222222222222222222222222222222222≥-+-+-+-+-+-⇔++≥+++++⇔+++++≥+++++++⇔++≥+++++⋅⇔++≥+++++++≥+++++∴≥-+-+-=-++-++-+=++-+++++y x z x z y z y x y x xy x z zx z y yz xyz z xy yz x xy y x zx x z yz z y xyz z xy yz x x z z y y x xy y x zx x z yz z y z y x zx yz xy y x xy x z zx z y yz xyz zx yz xy z yx y x z x z y z y x zx yz xy z c b a y b a c x a c b x a c z c a z c b y b c y b a x a b zx x a cz c a yz z c b y b c xy y b a x a b zx yz xy z cb a y b ac x c b 所证不等式等介于证明证明∵上式显然成立,∴原不等式得证.例7.已知i ,m 、n 是正整数,且1<i ≤m <n . (1)证明:n i A i m <m i A i n ; (2)证明:(1+m )n >(1+n )m7.证明:(1)对于1<i ≤m ,且A i m =m ·…·(m -i +1),n i n n n n n nm i m m m m m m i i m i i m 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅= 同理, 由于m <n ,对于整数k =1,2,…,i -1,有mkm n k n ->-, 所以i m i i n i i i mi i n n m mn A A ,A A >>即(2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C nn m n ,(1+n )m =1+C 1m n +C 2m n 2+…+C m m n m ,由(1)知m iA in>n iA i m (1<i ≤m ),而C i m=!A C ,!A i i i ni n i m =∴m i C i n >n i C i m (1<m <n )∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m ,…, m m C m n >n m C m m ,m m +1C 1+m n >0,…,m n C n n >0, ∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m ,即(1+m )n >(1+n )m 成立.例8.若a >0,b >0,a 3+b 3=2,求证:a +b ≤2,ab ≤1. 证法一:因a >0,b >0,a 3+b 3=2,所以 (a +b )3-23=a 3+b 3+3a 2b +3ab 2-8=3a 2b +3ab 2-6=3[ab (a +b )-2]=3[ab (a +b )-(a 3+b 3)]=-3(a +b )(a -b )2≤0. 即(a +b )3≤23,又a +b >0,所以a +b ≤2,因为2ab ≤a +b ≤2, 所以ab ≤1.证法二:设a 、b 为方程x 2-mx +n =0的两根,则⎩⎨⎧=+=ab n ba m ,因为a >0,b >0,所以m >0,n >0,且Δ=m 2-4n ≥0 ① 因为2=a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]=m (m 2-3n )所以n =mm 3232-② 将②代入①得m 2-4(mm 3232-)≥0, 即mm 383+-≥0,所以-m 3+8≥0,即m ≤2,所以a +b ≤2,由2≥m 得4≥m 2,又m 2≥4n ,所以4≥4n , 即n ≤1,所以ab ≤1.证法三:因a >0,b >0,a 3+b 3=2,所以2=a 3+b 3=(a +b )(a 2+b 2-ab )≥(a +b )(2ab -ab )=ab (a +b )于是有6≥3ab (a +b ),从而8≥3ab (a +b )+2=3a 2b +3ab 2+a 3+b 3=(a +b )3,所以a +b ≤2,(下略)证法四:因为333)2(2b a b a +-+8))((38]2444)[(22222b a b a ab b a ab b a b a -+=----++=≥0, 所以对任意非负实数a 、b ,有233b a +≥3)2(b a +因为a >0,b >0,a 3+b 3=2,所以1=233b a +≥3)2(b a +,∴2b a +≤1,即a +b ≤2,(以下略)证法五:假设a +b >2,则a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]>(a +b )ab >2ab ,所以ab <1, 又a 3+b 3=(a +b )[a 2-ab +b 2]=(a +b )[(a +b )2-3ab ]>2(22-3ab )因为a 3+b 3=2,所以2>2(4-3ab ),因此ab >1,前后矛盾,故a +b ≤2(以下略)。
证明不等式的基本方法

x2
例7(1)设
y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)
不等式证明几种方法

同理: ,
以上三式相乘:(1a)a•(1b)b•(1c)c≤ 与①矛盾
∴原式成立
例五、已知a+b+c> 0,ab+bc+ca> 0,abc> 0,求证:a,b,c> 0
证:设a< 0,∵abc> 0,∴bc< 0
又由a+b+c> 0,则b+c=a> 0
∴ab+bc+ca=a(b+c) +bc< 0与题设矛盾
8.若x,y> 0,且x+y>2,则 和 中至少有一个小于2
一、裂项放缩
例1.(1)求 的值; (2)求证: .
解析:(1)因为 ,所以
(2)因为 ,所以
奇巧积累
:(1) (2)
(3)
(4)
(5) (6)
(7) (8)
(9)
(10) (11)
(11)
(12)
(13)
(14) (15)
(15)
例2.(1)求证:
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为 பைடு நூலகம்则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形为 ,截面积为 。所以本题只需证明 。
证明:设截面的周长为 ,则截面是圆的水管的截面面积为 ,截面是正方形的水管的截面面积为 。只需证明: 。
为了证明上式成立,只需证明 。
例3、已知a,b,m都是正数,并且 求证: (1)
证法一要证(1),只需证 (2)
要证(2),只需证 (3)
要证(3),只需证 (4)
已知(4)成立,所以(1)成立。
不等式的证明(一)

若x为锐角,则
sin x<x<tanx
sin x<tanx sin x>tanx
线性规划简述
1.含义:简言之,图象法解二元不等式 2.步骤:一面二线三找点 来先去后为最值
解析几何的基础
形
数
点
坐标
线
方程
面
不等式
二元不等式与平面域
1.直线对坐标平面的划分 (二元一次不等式表示平面域)
直线 Ax By C 0 ,将坐标平面划分成两个半平面 Ax By C 0和 Ax By C 0 ,位于同一半平面内的点 其坐标必适合同一个不等式 (同侧同号,异侧异号)
b
不妨设a b 0,则 a 1, a b 0 b
故
a
ab
1,当且仅当a
b时, 等号成立
b
所以,原不等式成立
作业:
1.课本P: 75 B组 Ex1①② 2.(2010年湖北)设 a>0,b>0,称a2abb 为a,b的调和平均数
(2)三角混合不等式: 若 0<x< ,则 sinx<x<tanx
2
法1:如图,易得
y=x y = tanx
y = sinx
(2)三角混合不等式: 若 0<x< ,则 sinx<x<tanx
2
法2:如图单位圆O中,角x的终边为OT,易得
S⊿APO<S扇形APO<S⊿ATO
而 S⊿APO= AO • PM sin x
注1.若2个不等式需进行减(除)运算,一般是转换成加(乘)
注2.若变量间具有约束关系时,等号没有可加(乘)性
3.重要的(经典)不等式
⑩ □2+○2≥±2□○ 当且仅当○=□时等号成立
11 均值不等式: 若□,○∈R+,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的证明(一)
整卷满分100分,时间5010±分钟
一、选择题(每题5分共50分)
1、下列不等式正确的是( )
A 、 x 2+1>-2x
B 、 x 2+1≥-2x
C 、 x 2+1>2x
D 、 x 2+1≥3x 2、设m=(x+5)(x+7) , n=(x+6)2 则m 、n 的大小关系是( )
A 、 m ≤n
B 、 m>n
C 、 m<n
D 、 m ≥n 3、下列各式中正确的是( )
A 、 a 2+3b 2≥2(ab+b 2 )
B 、 a 2+3b 2>2(ab+b 2)
C 、 a 2+3b 2≤2(ab+b 2 )
D 、 a 2+3b 2<2(ab+b 2) 4、若p=a 2+3ab , q=4ab-b 2 ,则p 、q 的大小关系是( )
A 、 p ≤q
B 、 p ≥q
C 、 p<q 或p>q
D 、p>q 5、下列不等式不一定成立的是( )
A 、 a 2+b 2≥2ab
B 、 a 2+3>2a
C 、 x+x
1
≥2
D 、 2
22
2b a b a +≤
+ 6、函数f(x)=2x +
29
x
的最小值为( ) A 、 2 B 、 3 C 、 6 D 、 9 7、若正数a 、b 满足a+b=6.则 ( )
A 、 ab ≥9
B 、ab ≤9
C 、 ab ≥36
D 、 ab ≤6
8、若a>b>1 , p=b a lg lg , Q=
21(lga+lgb) ,R=lg ⎪⎭
⎫ ⎝⎛+2b a 则 ( ) A 、 R<P<Q B 、 P<Q<R C 、 Q<P<R D 、 P<R<Q 9、设a=2 ,b=5-3 , c=6-2 则 a 、b 、c 的大小关系为( )
A 、 a>b>c
B 、 a>c>b
C 、 b>a>c
D 、 b>c>a
10、若a 、b ∈R, 则下列四个式子成立的是( )
A 、a 2+b 2 ≥2(a-b-1)
B 、lg(1+ a 2 )>0
C 、a 2+3ab>2 b 2
D 、
b a <1
1
++b a
学号 姓名
二、填空题(每题5分共20分)
11、当a ≠2时,试比较
2
44a
a
+与1的大小为 12、已知a>0且a ≠1,则x a +x a -的取值范围为 13、5+8与3+10的大小关系是 14、 不等式
x y +y
x
≥2成立的条件为 三、解答题(每题15分共30分)
15、求证: (1) (2x+1)(x-3)>(x-6)(2x+7)-45 (2) 2x +5>3x
16、求证:(1) 2a +2b +2c ≥ab+bc+ac (2)
.b a a
b b a +≥+(,0,0>>b a )。