算术平均_几何平均不等式的经典证明
2. 三个正数的算术——几何平均不等式

∴E2=1k62 ·sin2θ·cos4θ=3k22 (2sin2θ)·cos2θ·cos2θ ≤3k22 ·(2sin2θ+co3s2θ+cos2θ)3=1k028, 当且仅当 2sin2θ=cos2θ 时取等号, 即 tan2θ=12,tan θ= 22时,等号成立. ∴h=2tan θ= 2,即 h= 2时,E 最大. 因此选择灯的高度为 2米时,才能使桌子边缘处最亮.
∵2x2+(1-x2)+(1-x2)=2,
∴y2≤12(2x2+1-3x2+1-x2)3=247.
当且仅当 2x2=1-x2,
即 x= 33时等号成立.
∴y≤2
9
3,∴y
的最大值为2 9
3 .
1.解答本题时,有的同学会做出如下拼凑: y=x(1-x2)=x(1-x)(1+x)=12·x(2-2x)·(1+x)≤12 (x+2-23x+1+x)3=12. 虽然其中的拼凑过程保证了三个数的和为定值,但忽略了取 “=”号的条件,显然 x=2-2x=1+x 无解,即无法取“=”号,也 就是说,这种拼凑法是不正确的. 2.解决此类问题时,要注意多积累一些拼凑方法的题型及数 学结构,同时也要注意算术-几何平均不等式的使用条件,三个 缺一不可.
用平均不等式求解实际问题 例 3 如图所示,在一张半径是 2 米的 圆桌的正中央上空挂一盏电灯.大家知道, 灯挂得太高了,桌子边缘处的亮度就小; 挂得太低,桌子的边缘处仍然是不亮的.
由物理学知识,桌子边缘一点处的照亮度 E 和电灯射到 桌子边缘的光线与桌子的夹角 θ 的正弦成正比,而和这一点 到光源的距离 r 的平方成反比.
变式训练
若 2a>b>0,试求 a+
4
的最小值.
(2a-b)·b
【解】 a+2a-4b·b=2a-2b+b+2a-4b·b =2a- 2 b+b2+2a-4b·b
三项均值不等式公式

三项均值不等式公式三项均值不等式公式是初中数学学习中比较重要的一个概念,也是比较常用的一个公式。
它是一种基于数学统计学原理的不等式,可以用来描述一组数字的大小关系。
三项均值不等式公式的应用非常广泛,可以用来证明各种数学问题,也可以应用到经济学、物理学等其他领域。
三项均值不等式公式的原理非常简单,它是基于算术平均数、几何平均数和谐平均数的大小关系推导而来的。
其中,算术平均数是指一组数字的和除以数字的个数,几何平均数是指一组数字的乘积开根号,谐平均数是指一组数字的倒数的平均数的倒数。
三项均值不等式公式的表达式为:(a+b+c)/3 ≥ (abc)^(1/3) ≥ 3/(1/a+1/b+1/c)。
三项均值不等式公式的应用非常广泛,可以用来解决各种数学问题。
例如,在三角形中,三角形的三条边的长度分别为a、b、c,那么根据三项均值不等式公式可得:a+b+c/3 ≥ (a bc)^(1/3),即(a+b+c)^3 ≥ 27abc,这个不等式被称为三角形的海涅不等式。
这个不等式可以用来证明很多与三角形相关的问题。
三项均值不等式公式还可以应用到经济学中。
例如,在投资组合中,如果一笔投资的收益率为r1,另外一笔投资的收益率为r2,那么这两笔投资的平均收益率为(r1+r2)/2。
如果这两笔投资的风险分别为s1和s2,那么这两笔投资的平均风险为(1/s1+1/s2)/2的倒数。
根据三项均值不等式公式可得:(r1+r2)/2 ≥ (r1r2)^(1/2) ≥ 2/(1/s1+1/s2),即(r1+r2)^2 ≥ 4r1r2,这个不等式可以用来指导投资组合的选择。
三项均值不等式公式还可以应用到物理学中。
例如,在电路中,电阻的并联和串联是两种常见的电路连接方式。
根据三项均值不等式公式可得,对于两个电阻值分别为r1和r2的电阻,它们并联后的电阻值为(r1r2)/(r1+r2),它们串联后的电阻值为r1+r2。
因此,如果要使得并联电路的电阻最小或者串联电路的电阻最小,就需要根据三项均值不等式公式来进行计算。
关于混合算术──几何平均值不等式的一个简洁证明

关于混合算术──几何平均值不等式的一个简洁证明混合算术平均值不等式是一个关于几何平均值和算术平均值的不等式,下面是其简洁证明:设 $a_1, a_2, dots, a_n$ 是正数,则有几何平均数$sqrt[n]{a_1a_2dots a_n}$ 和算术平均数$frac{a_1+a_2+dots+a_n}{n}$ 之间的不等式:$$sqrt[n]{a_1a_2dots a_n}leqfrac{a_1+a_2+dots+a_n}{n}$$ 证明:$$sqrt[n]{a_1a_2dots a_n}leqfrac{a_1+a_2+dots+a_n}{n}$$ 化简得:$$sqrt[n]{a_1a_2dots a_n}cdot nleq a_1+a_2+dots+a_n$$ 化简得:$$left(sqrt[n]{a_1a_2dots a_n}right)^nleq a_1+a_2+dots+a_n$$ 又因为了继续上面的证明,我们需要用到另一个结论:对于任意正数$x$ 和 $y$,都有 $x^n+y^ngeq(x+y)^n$。
因此,我们可以把 $a_1, a_2, dots, a_n$ 分别设为 $x, y, dots,z$,则有:$$left(sqrt[n]{a_1a_2dots a_n}right)^nleq a_1+a_2+dots+a_n$$$$left(sqrt[n]{xydots z}right)^nleq x+y+dots+z$$此时,我们就可以用刚才的结论证明这个不等式了:$$left(sqrt[n]{xydots z}right)^nleq x+y+dots+z$$$$x^n+y^n+dots+z^ngeq(x+y+dots+z)^n$$因此,混合算术平均值不等式得到了证明。
请注意,这个证明是在上一条回复中,我提到了对于任意正数 $x$ 和 $y$,都有$x^n+y^ngeq(x+y)^n$ 这个结论。
算术几何平均不等式与其应用

算术几何平均不等式与其应用算术几何平均不等式是数学中的一种重要的不等式关系,它在数学推导和实际问题中具有广泛的应用。
本文将介绍算术几何平均不等式的概念、证明以及一些常见的应用。
一、算术平均与几何平均的定义与性质在介绍算术几何平均不等式之前,我们先来了解一下算术平均和几何平均的定义与性质。
1. 算术平均:对于一组数a₁,a₂,...,aₙ,它们的算术平均记为A,即A=(a₁+a₂+...+aₙ)/n。
算术平均是指将一组数的和除以这组数的个数所得到的值。
2. 几何平均:对于一组正数a₁,a₂,...,aₙ,它们的几何平均记为G,即G=(a₁a₂...aₙ)^(1/n)。
几何平均是指将一组数的乘积开n次方所得到的值。
算术平均和几何平均都是常见的求平均值的方法,它们有以下性质:性质1:对于任意一组正数a₁,a₂,...,aₙ,有G≤A。
性质2:当且仅当a₁=a₂=...=aₙ时,有G=A。
二、算术几何平均不等式的概念与证明算术几何平均不等式是指对于一组正数a₁,a₂,...,aₙ,有G≤A,即几何平均不大于算术平均。
下面我们将给出算术几何平均不等式的证明。
假设a₁,a₂,...,aₙ是一组正数,我们来证明G≤A。
首先,我们考虑当n=2的情况。
此时,算术平均和几何平均分别为A=(a₁+a₂)/2,G=(a₁a₂)^(1/2)。
我们可以通过平方的方式来证明G≤A。
由(a₁-a₂)²≥0可得a₁²-2a₁a₂+a₂²≥0,进一步变形得到a₁²+a₂²≥2a₁a₂。
再对不等式两边同时开2次方,即得到(a₁²+a₂²)^(1/2)≥(2a₁a₂)^(1/2)。
即G≥(2a₁a₂)^(1/2),进一步化简得到G≥(a₁+a₂)/2=A。
所以,当n=2时,算术几何平均不等式成立。
接下来,我们假设当n=k时,算术几何平均不等式成立。
即对于一组正数a₁,a₂,...,aₙ,有G≤A。
算术平均数与几何平均数

关于“平均数”的概念:
如果a1, a a 2,....... n R , n 1且n N , a1 a2 .......an 叫做n个正数的算术平均数;
n n a1a2......an 叫做这n个正数的几何平均数。
基本不等式:
a1 a2......an n
n
a1a2......an
定理1:如果a,b R, 那么a2 b2 2ab
(当且仅当a b时取“=”号)
定理2:如果 a,b是正数,那么 a b ab 2
(当且仅当a b时取“=”号)
1.语言表述:两个正数的算术平均数不小于 它们的几何平均数。 2.代数意义:正数a,b的等差中项不小于a,b 的等比中项。 3.几何意义:直角三角形中斜边上的中线不 小于斜边上的高。(半弦不大于半径) 注意1:两个定理一个要求a,b大于零,另一 个a,b取任意实数;
(n N*, ai R ,1 i n)
语言表述:n个正数的算术平均数不小于它们 的几何平均数。
例1.已知a,b,c,d都是正数,求证:
ab cd (ac bd) 4abcd
例2.已知a,b,c>0,求证:
1a2 b2 c2 ab bc ca 2 a2 b2 c2 a b c
bca
3 1 1 1 1 1 1
2a 2b 2c a b b c c a (4) a2 b2 b2 c2 c2 a2
2(a b c)
作业: P11练习——1,2;习题6.2—— 1,2,3
例1.若a, b
0,
注意2:等号取到的条件。
推广: 定理:如果
算术平均数与几何平均数

当且仅当3x 8 3x, x 4 时等号成立. 3
当x 4 时函数f (x)的最大值是4. 3
练习: 求证 : 在直径为 d的圆的内接矩形中 ,面积最
大的为正方形 ,这个正方形的面积等于 1 d 2.
证明一 如图,设矩形的一边长为x,
x2
x2
当且仅当x2
81 x2
,
x
3时,
x2 8x12 的最小值为18.
(4)已知a,b, x, y R且 a b 1,求x y的最小值. xy
解:
x y (x y) 1 (x y)( a b ) a b ay bx
xy
xy
a b 2 ay xb ( a b)2 xy
我们称 a b 为a,b的算术平均数. 2
(2) ab可以看作是两个正数a,b的等比中项, 我们称 ab为a,b的几何平均数.
两个正数的算术平均数 不小于它们的几何平均数
可以用几何方法证明: a b ab 2
如图,以a b长的线段为直径作圆,在直径AB上
取点C,使AC a,CB b,过点C作弦DD' AB,
abc ( a b c)3 3
当且仅当a b c时,等号成立.
(5)将一块边长为a的正方形铁皮,剪去四个角(四
个全等的正方形),作成一个无盖的铁盒,要使
其容积最大,剪去的小正方形的边长为多少?最
大容积是多少?
x
解:设剪去的小正方形的边长为 x
则其容积为 : V x(a 2x)2 , (0 x
2x2 lx 2(x l )2 1 l 2.
48
当x l 时,矩形的最大面积是1 l2.
4
8
算术平均数与几何平均数

2
b 2ab
2
(当且仅当a b时取“=”号)
ab 定理2:如果 a, b是正数,那么 ab 2 (当且仅当a b时取“=”号)
1.语言表述:两个正数的算术平均数不小于 它们的几何平均数。 2.代数意义:正数a,b的等差中项不小于a,b 的等比中项。 3.几何意义:直角三角形中斜边上的中线不 小于斜边上的高。(半弦不大于半径) 注意1:两个定理一个要求a,b大于零,另一 个a,b取任意实数; 注意2:等号取到的条件。
2 2 2 2 2 2
2 (a b c)
作业: P11练习——1,2;习题6.2—— 1,2,3
ab a 2 b2 ab 例1. 若a, b 0, 证明: 1 1 2 2 a b 2
2 1 1 a b
: 调和平均数;
ab :几何平均数; ab : 算术平均数; 2 a b : 平方平均数。 2
ab cd (ac bd) 4abcd
例2.已知a,b,c>0,求证:
1a
2
b c ab bc ca
2 2 2 2 2
a b c 2 a b c b c a
1 1 1 1 1 1 3 2a 2b 2c a b b c c a ( 4) a b b c c a
n
a1a2 ......an
叫做这n个正数的几何平均数。
基本不等式:
a1 a2 ......an n a1a2 ......an n * (n N , ai R ,1 i n)
语言表述:n个正数的算术平均数不小于它们 的几何平均数。
算术几何平均间不等式的证明

算术几何平均间不等式的证明在数学中,算术平均和几何平均是两个常用的概念。
算术平均是一组数的总和除以数的个数,而几何平均是一组数的乘积的n次方根。
算术几何平均间不等式是一种基本的不等式,它提供了一种关于算术平均和几何平均之间的关系。
本文将对算术几何平均间不等式进行证明。
设有正数x₁,x₂,x₃,...,xₙ,它们的算术平均为A,几何平均为G。
那么我们可以得到以下关系:x₁+x₂+x₃+...+xₙ ≥ n√(x₁·x₂·x₃·...·xₙ) ——(1)首先,我们通过归纳法证明这个不等式对于n=2时成立。
当n=2时,不等式可以变为:x₁+x₂ ≥ 2√(x₁·x₂) ——(2)我们可以将不等式(2)两边平方,得到:x₁²+x₂²+2x₁x₂ ≥ 4x₁x₂接着,我们可以重写上式为:(x₁-x₂)² ≥ 0这是显然成立的,所以当n=2时,算术几何平均间不等式成立。
接下来,我们假设当n=k时,不等式成立。
即对于k个正数的情况下,算术几何平均间不等式成立。
我们需要证明当n=k+1时,不等式也成立。
对于k+1个正数的情况,我们可以将这些数分成两组:前k个数和最后一个数。
我们假设前k个数的算术平均为A,几何平均为G₁;最后一个数的值为xₙ₊₁。
根据归纳法的假设,我们知道不等式对于前k个数成立:x₁+x₂+x₃+...+xₙ ≥ k√(x₁·x₂·x₃·...·xₙ) ——(3)现在,我们考虑最后一个数与前k个数的几何平均的关系。
即:G₂ = (x₁·x₂·x₃·...·xₙ·xₙ₊₁)^(1/(k+1))我们可以将G₂重写为:G₂ = (G₁^k ·xₙ₊₁)^(1/(k+1))根据虚根定理,不等式√G₁^k·xₙ₊₁ ≥ (G₁+xₙ₊₁)/2 成立。