振动与波动

合集下载

物理学中的波动与振动现象

物理学中的波动与振动现象

物理学中的波动与振动现象波动和振动是物理学中两个常见而重要的概念。

它们广泛应用于各个领域,包括声学、光学、电磁学和力学等。

本文将介绍波动和振动的基本概念、特性以及实际应用。

一、波动在物理学中,波动是指能够在介质中传播的能量或者信息的传递方式。

波动可以分为机械波和电磁波两类。

1. 机械波机械波是由介质的振动引起的波动。

在机械波中,能量由介质的粒子传递,而粒子本身并不迁移。

常见的机械波包括水波、声波和地震波等。

水波是由水面的振动引起的波动。

当我们在水池中投入一个石子,水面上就会产生波纹,并向四周扩散。

声波是空气分子的振动引起的机械波。

当我们敲打物体或者说话时,声音就会以波动的形式向外传播。

地震波是地壳内岩石的振动引起的波动。

地震波的传播会引发地震,并对建筑物和环境造成破坏。

2. 电磁波电磁波是由电场和磁场相互作用引起的波动。

电磁波是一种不需要介质即可传播的波动,它可以在真空中传播。

电磁波包括了从无线电波到γ射线的整个波长范围。

无线电波是由变化的电场和磁场引起的电磁波。

我们平常所使用的无线电、电视和手机信号都是通过无线电波传输的。

可见光是固定波长范围内的电磁波,它使我们能够看到周围的物体。

此外,紫外线、X射线和γ射线等电磁波在医学、通信和科学研究中起着至关重要的作用。

二、振动振动是物体相对于其平衡位置的周期性运动。

振动可以分为简谐振动和非简谐振动两种。

1. 简谐振动简谐振动是指物体在恢复力作用下以正弦或余弦函数形式运动的振动。

振动物体会围绕平衡位置往返运动,其周期是恒定的。

简谐振动的典型例子是弹簧振子。

当我们拉伸或压缩弹簧时,弹簧就会产生振荡。

简谐振动的特点包括振幅、频率和周期。

振幅是指物体运动离开平衡位置的最大距离,频率是振动的周期数在单位时间内的次数,周期是振动一次所需的时间。

2. 非简谐振动非简谐振动是指物体在恢复力作用下无法用正弦或余弦函数准确描述的振动。

非简谐振动的振动形式多样,与振动物体的特性相关。

《振动和波动的关系》课件

《振动和波动的关系》课件

波长公式
波长与振动的速度和频率有 关: λ=v/f
单位
振动的单位是赫兹(Hz), 波动的单位是米(m)。
振动和波动的应用领域
1 医学
超声波用于医学成像和治 疗。
2 通信
无线电波和光纤传输用于 信息传输。
3 工程
振动传感器和结构动力学 用于工程设计。
振动和波动的实验和观测方法
1
实验
利用弹簧和质量系统进行振动实验。
2
观测方法
使用光学或电子仪器进行波动的观测。
3
数据分析
通过记录数据并应用相关分析方法来研究振动和波动现象。
振动和波动的未来发展趋势
技术创新
新技术的发展将推动振动和波动在各个领域的应用。
科学研究
对振动和波动现象的深入研究将带来新的发现和理 解。
振动和波动的关系
振动和波动是物理学中重要的概念,它们描述了物体或系统中的能量传播和 振动的特性。本课件将探讨振动和波动的定义、特点、公式和应用领域。
振动和波动的定义
1 振动
物体在时间内往复运动的过程。
2 波动
能量在介质中传输的过程,通常以波的形式呈现。Biblioteka 振动和波动的特点频率
振动的周期或波动的频率是描 述其快慢的特征。
振幅
振动或波动过程中的最大偏离 或变化。
波长
波动中相邻两个相位相同点之 间的距离。
振动和波动的相同点和不同点
相同点
都是描述物体或系统中能量传播和振动的过程。
不同点
振动是指物体自身的周期或往复运动,而波动是能 量在介质中传输的过程。
振动和波动的公式和单位
振动公式
振动的周期和频率可以用以 下公式描述: T=1/f

05137_大学物理学振动与波动

05137_大学物理学振动与波动

2024/1/26
11
波速、波长和频率关系
波速(v)
单位时间内波动传播的距离,单位是m/s。波速 与介质性质有关。
频率(f)
单位时间内质点振动的次数,单位是Hz。频率 与波源性质有关。
ABCD
2024/1/26
波长(λ)
波动中相邻两个同相位点之间的距离,单位是m 。波长与波动形式和介质性质有关。
波速、波长和频率之间的关系为
物理意义解释
解释波动方程中各项的物理意义,如 波的传播方向、波的叠加原理等。
05
2024/1/26
04
求解波动方程
通过求解波动方程,得到波动中各点 的位移、速度、加速度等物理量与时 间和空间的关系。
16
振动图像和波动图像分析
振动图像分析
通过振动图像可以直观地了解振动的周期、振幅、相位等特 征。同时,可以通过比较不同振动图像的异同点,分析不同 振动系统的特性。
v = λf。这个公式表示在给定介质中,波速与波 长和频率的乘积成正比。
12
波动在生活中的应用
01
声学
声音是一种典型的波动现象, 人们利用声音进行通信、音乐 演奏等。此外,在建筑设计中 ,需要考虑声音的传播和隔音
效果。
2024/1/26
02
光学
光也是一种波动现象,人们利 用光的波动性质发明了各种光 学仪器,如显微镜、望远镜等 。同时,在通信领域,光纤通 信利用光的全反射原理实现高
利用超声波在介质中的传 播、反射、折射等特性, 进行无损检测、医学成像 、清洗等应用。
25
光学领域中振动和波动应用
2024/1/26
光的干涉
01
光波在叠加区域产生加强或减弱的现象,应用于光学测量、表

医用物理学第三章振动和波

医用物理学第三章振动和波
04
相关法规和标准解读
国际标准
国际电信联盟(ITU)制定的电磁辐射安全标准,为各国提供参考。
国家标准
各国根据自身情况制定的电磁辐射安全标准,通常比国际标准更严格。
法规监管
政府对电磁辐射设备实行严格的监管,确保其符合相关法规和标准要求。
公众宣传与教育
政府和社会组织应加强电磁辐射安全知识的宣传和教育,提高公众的安全意识。
施。
《劳动防护用品配备标准》
03
规定了不同工种和作业环境下劳动防护用品的配备标
准,包括防振用品的选用和佩戴要求。
05 波动对人体影响及安全防 护策略
电磁波对人体危害表现
热效应
电磁波能量被人体吸收后转化为 热能,可能导致体温升高、组织 损伤等。
非热效应
电磁波对人体产生的非热作用, 如影响神经系统、免疫系统、生 殖系统等。
包括振动的物理量、时间等
数据处理
02 对原始数据进行预处理,如滤
波、去噪等,以提取有用的信 息
1. 时域分析
03 观察振动信号随时间的变化规
律,计算振动的周期、频率等 参数
2. 频域分析
04 通过傅里叶变换等方法将时域
信号转换为频域信号,分析振 动的频谱特性
3. 波形分析
05 观察振动的波形特征,了解振
06 实验:观察和分析振动和 波动现象
实验目的和要求
掌握振动和波动的基本测量和分 析方法
了解波动的基本特性和传播规律
观察和分析不同振动源产生的振 动现象
01
03 02
实验器材和步骤介绍
01
振动源(如音叉、振荡器等)
02
传感器(如加速度计、位移传感器等)
数据采集和分析系统(如示波器、计算机等)

大学物理知识点总结:振动及波动

大学物理知识点总结:振动及波动
超声治疗
利用超声波的能量作用于人体组织,产生热效应、机械效应等,达到治疗目的,如超声碎石、超声刀 等。
地震监测和预测中振动分析
地震波监测
通过监测地震波在地球内部的传播情况和变化特征,研究地震的发生机制和震源性质。
振动传感器应用
在地震易发区域布置振动传感器,实时监测地面振动情况,为地震预警和应急救援提供 数据支持。
图像
简谐振动的图像是正弦或余弦曲线,表示了物体的位移随时间的变化关系。
能量守恒原理在简谐振动中应用
能量守恒
在简谐振动中,系统的机械能(动能 和势能之和)保持不变。
应用
利用能量守恒原理可以求解简谐振动 的振幅、角频率等物理量。
阻尼振动、受迫振动和共振现象
阻尼振动
当物体受到阻力作用时,其振动会逐渐减弱,直至停止。 这种振动称为阻尼振动。
惠更斯原理在波动传播中应用
01
惠更斯原理指出,波在传播过程中,每一点都可以看作是新的 波源,发出子波。
02
惠更斯原理可以解释波的反射、折射等现象,并推导出斯涅尔
定律等波动传播规律。
在实际应用中,惠更斯原理被为波动现象的研究提供了重要的理论基础。
04
干涉、衍射和偏振现象
误差分析
分析实验过程中可能出现的误差来源,如仪 器误差、操作误差等;对误差进行定量评估 ,了解误差对实验结果的影响程度;提出减 小误差的方法和措施,提高实验精度和可靠
性。
感谢您的观看
THANKS
实例
钟摆的摆动、琴弦的振动、地震波的传播等 。
振动量描述参数
振幅
描述振动大小的物理量,表示物体离开平衡 位置的最大距离。
频率
描述振动快慢的物理量,表示单位时间内振 动的次数。

高中物理第七讲---振动与波动

高中物理第七讲---振动与波动

第七讲 振动与波动湖南郴州市湘南中学 陈礼生一、知识点击1.简谐运动的描述和基本模型⑴简谐振动的描述:当一质点,或一物体的质心偏离其平衡位置x ,且其所受合力F 满足(0)F kx k =->,故得2ka x x m ω=-=-,ω=则该物体将在其平衡位置附近作简谐振动。

⑵简谐运动的能量:一个弹簧振子的能量由振子的动能和弹簧的弹性势能构成,即222111222E m kx kA υ=+=∑ ⑶简谐运动的周期:如果能证明一个物体受的合外力F k x =-∑,那么这个物体一定做简谐运动,而且振动的周期22T πω==m 是振动物体的质量。

⑷弹簧振子:恒力对弹簧振子的作用:只要m 和k 都相同,则弹簧振子的振动周期T 就是相同的,这就是说,一个振动方向上的恒力一般不会改变振动的周期。

多振子系统:如果在一个振动系统中有不止一个振子,那么我们一般要找振动系统的等效质量。

悬点不固定的弹簧振子:如果弹簧振子是有加速度的,那么在研究振子的运动时应加上惯性力.⑸单摆及等效摆:单摆的运动在摆角小于50时可近似地看做是一个简谐运动,振动的周期为2T =,在一些“异型单摆”中,l g 和的含义及值会发生变化。

〔6〕同方向、同频率简谐振动的合成:假设有两个同方向的简谐振动,它们的圆频率都是ω,振幅分别为A 1和A 2,初相分别为1ϕ和2ϕ,则它们的运动学方程分别为111cos()x A t ωϕ=+ 222cos()x A t ωϕ=+因振动是同方向的,所以这两个简谐振动在任一时刻的合位移x 仍应在同一直线上,而且等于这两个分振动位移的代数和,即12x x x =+由旋转矢量法,可求得合振动的运动学方程为cos()x A t ωϕ=+这说明,合振动仍是简谐振动,它的圆频率与分振动的圆频率相同,而其合振幅为A =合振动的初相满足11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+2.机械波:〔1〕机械波的描述:如果有一列波沿x 方向传播,振源的振动方程为y=Acos ωt ,波的传播速度为υ,那么在离振源x 远处一个质点的振动方程便是cos ()x y A t ωυ⎡⎤=-⎢⎥⎣⎦,在此方程中有两个自变量:t 和x ,当t 不变时,这个方程描写某一时刻波上各点相对平衡位置的位移;当x 不变时,这个方程就是波中某一点的振动方程.〔2〕简谐波的波动方程:简谐振动在均匀、无吸收的弹性介质中传播所形成的波叫做平面简谐波。

振动与波动的基本概念

振动与波动的基本概念

振动与波动的基本概念在自然界中,我们可以经常发现物体或者现象会周期性的发生变化,例如钟表的走时、音乐的旋律等等。

这样的周期性变化常常被称作“振动”和“波动”,它们是物理学中非常基础和重要的概念。

一、振动的基本概念振动指的是一个物体或者物体系统在固定位置周围做周期性的来回运动。

通常我们所说的振动,不仅仅指的是单一物体自身的运动,也可能指的是物体系统集体的运动。

振动的特点包括以下几个方面:1. 振幅:指物体或者物体系统运动最大偏离平衡位置的距离,也可以理解为能量的大小;2. 周期:指振动过程中完成一次完整运动所需要的所用时间,单位是秒;3. 频率:指在单位时间内振动发生的次数,单位是赫兹(Hz);4. 相位:指某一个特定的时刻,振动的状态;5. 响度:指振动产生的声响大小;6. 谐振:指当外力频率与振动频率相等时,振动呈现最大振幅的情况。

振动在生活和实践中有着广泛的应用,例如可调节灯光的调节、交替电流的产生等等。

二、波动的基本概念波动指的是一种物质或者能量的传播现象,它会在空间中形成一种波动。

波动的特点包括以下几个方面:1. 波长:指相邻波峰之间的距离;2. 振幅:指波动的最大偏离强度;3. 周期:指两个连续的相同状态之间的时间间隔;4. 速度:波传播的速度,可以是声速、光速等等;5. 频率:波动在单位时间内经过固定点的次数;6. 相速度:指定相位点在沿波传播方向上运动的速度。

波动包含很多种不同的类型,例如声波、光波、机械波、电磁波等等,在不同的领域都有着广泛应用。

例如声波被用于声音的传输、电磁波被用于电视、通讯等等。

三、振动与波动之间的关系振动和波动虽然是两种不同的物理现象,但是它们之间也存在着密切的联系。

事实上,大多数波动都可以看做是连续不断地发生振动所产生的结果。

在简单谐振的情况下,我们可以得到一个周期性运动的单个物体产生的振动波。

此外,振动对于产生波动的介质也有着重要的影响。

当一个振动波在介质中传播时,介质受到“弹性”的影响,从而产生一系列周期性的收缩和扩张,从而形成波动。

振动与波动振动

振动与波动振动
(对于 x2和 2只要求说明其相位在第几象限)
y
y
x2
x1
x3
x
1
2 3
x
例3、 图(a)、(b)分别表示t=0s和t=2s时的 某一平面简谐波的波形图。 试写出此平面简谐波波方程。
y/m
y/m
2
2
O
x/m
12
O1
2
x/m
2
2
(a)
(b)
五、波的能量和能流
波不仅是振动状态的传播,而且也是伴随着振动能量的传播。
(1)波长与周期;(2)波源的振动方程;
(3)波方程; (4)离波源0.1m 处质点的振动方程; (5)离波源0.2m和0.3m两点处质点振动的
相位差; (6)在波源振动0.0021s 时的波形方程。
波的干涉
波传播的独立性




?
两不同形状的正(向上)脉冲
两脉冲一正一负, 且位置重合时互为镜象
结论:
(1)波的传播不是介质质元的传播, 是振动状态的传播,是相位的传播
(2) “上游”的质元依次带动“下游”的质元振动。 (3) 某时刻某质元的振动状态将在较晚时刻于“下游”
某处出现---波是振动状态的传播。 (4) 同相点----质元的振动状态相同。
3、波长、周期、波速、频率
三、平面简谐波的波方程
v
这就是右行波的波方程。
y
v
0
P
x
x
左行波的波方程为 y( x ,t ) Acos( t x )
v
y( x ,t ) Acos( t x )
v
y
四、波方程的物理意义
0
1. x x1 (常数)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振动与波动填空题3009.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时, (1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______.答: 1分 - /2 2分 . 2分3010.有两相同的弹簧,其劲度系数均为k .(1) 把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________;(2) 把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________________________. 答: km /22π 2分k m 2/2π 2分3015.在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为(a) ______________________________;(c)v 0v 0v = 0(b) ______________________________;(c) ______________________________. 答: )212cos(π-=T t A x π 2分 )212cos(π+=T t A x π 2分 )2cos(π+=TtA x π 1分3383.用40N的力拉一轻弹簧,可使其伸长20 cm .此弹簧下应挂__________kg 的物体,才能使弹簧振子作简谐振动的周期T = s .答: 3分3032.已知两个简谐振动的振动曲线如图所示.两简谐振动的最大速率之比为_________________.答: 1∶1 3分3036.已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.答: (2n +1) n = 0,1,2,3,… 1分 n n = 0,1,2,3,… 1分 (4n +1) n = 0,1,2,3,… 1分3039.两个简谐振动曲线如图所示,则两个简谐振动x (cm)t (s)O 124 32 -1 1 to x 1x 21 -22x 1 t o xx 2AA的频率之比1∶2=__________________,加速度最大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.答: 2∶1 1分 4∶1 1分 2∶1 1分3046.一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动的初相为____________.振动方程为______________________________.答: /4 1分 )4/cos(1022π+π⨯=-t x (SI) 2分3271.一简谐振子的振动曲线如图所示,则以余弦函数表示的振动方程为______________________________________.答: )21cos(04.0π+π=t x 3分3398.一质点作简谐振动.其振动曲线如图所示.根据此图,它的周期T =___________,用余弦函数描述时初相=_________________.ω ωπt xOt =0t = t π/4x (m)t O 0.04-0.0412xt (s)O 4 22答: s 3分 -2/3 2分3029.一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的______________.(设平衡位置处势能为零).当这物块在平衡位置时,弹簧的长度比原长长l ,这一振动系统的周期为________________________. 答: 3/4 2分 g l /2∆π 2分3268. 一系统作简谐振动, 周期为T ,以余弦函数表达振动时,初相为零.在 0≤t ≤T 21范围内,系统在t =________________时刻动能和势能相等. 答: T /8,3T /8 (只答一个的给2分) 4分3566.图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=21x x x ________________(SI)答: )21cos(04.0π-πt (其中振幅1分,角频率1分,初相1分) 3分3837.两个同方向同频率的简谐振动 )31cos(10321π+⨯=-t x ω , )61cos(10422π-⨯=-t x ω (SI)它们的合振幅是________________.答: 5×10-2m 3分5190.一质点同时参与了三个简谐振动,它们的振动方程分别为x (m)t (s)Ox 1x 2120.08-0.04)31cos(1π+=t A x ω, )35cos(2π+=t A x ω, )cos(3π+=t A x ω其合成运动的运动方程为x = ______________.答: 0 3分3421.已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.答:aE 3分3425.在简谐波的一条射线上,相距 m 两点的振动相位差为 /6.又知振动周期为 s ,则波长为_________________,波速为________________.答: m 2分 m/s 2分3442.设沿弦线传播的一入射波的表达式为 ])(2cos[1φλπ+-=xT t A y , 波在x = L 处(B 点)发生反射,反射点为固定端(如图).设波在传播和反射过程中振幅不变,则反射波的表达式为y 2 = ________________________________.答:)]22()(2cos[λφλL x T t A π-π+++π 或)]22()(2cos[λφλLx T t A π-π-++π 3分3132.一平面简谐波沿Ox 轴正向传播,波动表达式为 ]4/)/(cos[π+-=u x t A y ω,则x 1 = L 1处质点的振动方程是__________________________________;x 2 = -L 2处质点的振动和x 1 = L 1处质点的振动的相位差为2-1=__________________.答: ]4/)/(cos[11π+-=u L t A y ω; 1分y xLBOuL L )(21+ω 2分3291.一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J ,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能是___________. 答: 5 J 3分3292.在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16,则这两列波的振幅之比是A 1 / A 2 = ____________________.答: 4 3分3093.如图所示,波源S 1和S 2发出的波在P 点相遇,P 点距波源S 1和S 2的距离分别为 3和103 ,为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波在P点的振动频率___________,波源S 1的相位比S 2的相位领先_________________.答: 相同. 1分 2/3 . 2分3106.在固定端x = 0处反射的反射波表达式是)/(2cos 2λνx t A y -π=. 设反射波无能量损失,那么入射波的表达式是y 1 = ________________________;形成的驻波的表达式是y = ________________________________________.答: ])/(2cos[π++πλνx t A 3分)212cos()21/2cos(2π+ππ+πt x A νλ 2分PS 1S 3λ10λ/33313.设入射波的表达式为 )(2cos 1λνxt A y +π=.波在x = 0处发生反射,反射点为固定端,则形成的驻波表达式为____________________________________. 答: )212cos(]212cos[2π+ππ-π=t xA y νλ 或)212cos(]212cos[2π-ππ+π=t x A y νλ或 )2cos(]212cos[2t x A y νλππ+π=. 3分3314.设反射波的表达式是 ]21)200(100cos[15.02π+-π=x t y (SI) 波在x = 0处发生反射,反射点为自由端,则形成的驻波的表达式为_______________________________________. 答: )21100cos()21cos(30.0π+ππ=t x y (SI) 3分3417.已知14℃时的空气中声速为340 m/s .人可以听到频率为20 Hz 至20000 Hz 范围内的声波.可以引起听觉的声波在空气中波长的范围约为______________________________.答: 17 m 到×10-2m 3分3421.已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.答:aE 3分3426.一声纳装置向海水中发出超声波,其波的表达式为 )2201014.3cos(102.153x t y -⨯⨯=- (SI)则此波的频率 = _________________ ,波长 = __________________, 海水中声速u = __________________.答: ×104Hz 1分×10-2m 2分×103m/s 2分3445.沿弦线传播的一入射波在x = L 处(B 点)发生反射,反射点为自由端(如图).设波在传播和反射过程中振幅不变,且反射波的表达式为)(2cos 2λνxt A y +π=, 则入射波的表达式为y 1 = ______________________________.答:)2(2cos λλνLxt A +-π 3分3571.一平面简谐波沿x 轴正方向传播.已知x = 0处的振动方程为 )cos(0φω+=t y ,波速为u .坐标为x 1和x 2的两点的振动初相位分别记为1和2,则相位差1-2=_________________.答: u x x /)(12-ω (x 1和x 2写反了扣1分)3分3576.已知一平面简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波沿x 轴传播的速度为___________________.答: a /b 3分3580.已知一平面简谐波的表达式为 )cos(dx bt A y -=,(b 、d 为正值常量),则此波的频率 = __________,波长 = __________.答: b / 2 2分2 / d 2分3330.图示一平面简谐波在t = 2 s 时刻的波形图,波的振幅为 m ,周期为4 s ,则图中P 点处质点的振动方程为___________________________.yxLBOx (m)传播方向OA P y (m)答: )2121cos(2.0π-π=t y P 3分3343.图示一简谐波在t = 0时刻与t = T /4时刻(T 为周期)的波形图,则x 1处质点的振动方程为___________________________.答: )22cos(1π-π=t T A y x 或写成 )/2sin(1T t A y x π= 3分3588.两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y .S 1距P 点3个波长,S 2距P 点 个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.答:0 3分3316.设入射波的表达式为 ])/(2cos[1π++π=λνx t A y ,波在x = 0处发生反射,反射点为一固定端,则入射波和反射波合成的驻波的波腹位置所在处的坐标为______________________________________. 答: λ21)21(-=k x ,k = 1,2,3,… 3分3317.一弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的行波的波长为________________,频率为__________________.答: 2 m 2分 45 Hz 2分3487.一驻波表达式为 t x A y ππ=100cos 2cos (SI).位于x 1 = (1 /8) m 处的质元P 1与位于x 2 = (3 /8) m 处的质元P 2的振动相位差为_______________./4答: 3分3460.广播电台的发射频率为 = 640 kHz .已知电磁波在真空中传播的速率为c = 3×108 m/s ,则这种电磁波的波长为___________________.答: ×102m 3分3462.在真空中一平面电磁波的电场强度波的表达式为: )]103(102cos[100.6882⨯-⨯π⨯=-xt E y (SI) 则该平面电磁波的波长是____________________.答: 3 m 3分。

相关文档
最新文档