振动、波动部分答案(新)

合集下载

大学物理复习题答案(振动与波动)

大学物理复习题答案(振动与波动)

大学物理1复习题答案一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内)1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为'T 1和'T 2。

则有 ( B )A .'T T >11且 'T T >22B .'T T =11且 'T T >22C .'T T <11且 'T T <22D .'T T =11且 'T T =222.一物体作简谐振动,振动方程为cos 4x A t ⎛⎫=+⎪⎝⎭πω,在4Tt =(T 为周期)时刻,物体的加速度为 ( B )A. 2ω B 。

2ω C 。

2ω D2ω3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D )AAAAAAC)AxxAAxA B C D4。

两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为)cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 ( B )A. )π21cos(2++=αωt A x B. )π21cos(2-+=αωt A x . C 。

)π23cos(2-+=αωt A x D. )cos(2π++=αωt A x . 5.波源作简谐运动,其运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A )A .m 25.0B .m 60.0C .m 50.0D .m 32.06.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: ( B )A .cos x t ππ⎛⎫=+ ⎪⎝⎭22233B .cos x t ππ⎛⎫=+ ⎪⎝⎭42233C .cos x t ππ⎛⎫=- ⎪⎝⎭22233D .cos x t ππ⎛⎫=- ⎪⎝⎭42233二. 填空题(每空2分)1. 简谐运动方程为)420cos(1.0ππ+=t y (t 以s 计,y 以m 计),则其振幅为 0.1 m ,周期为 0。

大学物理知识总结习题答案(第八章)振动与波动

大学物理知识总结习题答案(第八章)振动与波动

第八章 振动与波动本章提要1. 简谐振动· 物体在一定位置附近所作的周期性往复运动称为机械振动。

· 简谐振动运动方程()cos x A t ωϕ=+其中A 为振幅,为角频率,(t+)称为谐振动的相位,t =0时的相位称为初相位。

· 简谐振动速度方程d ()d sin xv A t tωωϕ==-+ · 简谐振动加速度方程222d ()d cos xa A t tωωϕ==-+· 简谐振动可用旋转矢量法表示。

2. 简谐振动的能量· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为212k E mv =· 弹簧的势能为212p E kx =· 振子总能量为P22222211()+()221=2sin cos k E E E m A t kA t kA ωωϕωϕ=+=++3. 阻尼振动· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。

· 阻尼振动的动力学方程为222d d 20d d x xx t tβω++= 其中,γ是阻尼系数,2mγβ=。

(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。

(2) 当22ωβ=时,不再出现振荡,称临界阻尼。

(3) 当22ωβ<时,不出现振荡,称过阻尼。

4. 受迫振动· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力· 受迫振动的运动方程为22P 2d d 2d d cos x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。

· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。

第5章 振动和波动课后答案

第5章 振动和波动课后答案

第5章振动和波动5-1一个弹簧振子0.5kg m =,50N m k =,振幅0.04m A =,求 (1)振动的角频率、最大速度和最大加速度;(2)振子对平衡位置的位移为x =0.02m 时的瞬时速度、加速度和回复力; (3)以速度具有正的最大值的时刻为计时起点,写出振动方程。

解:(1))s rad (105.050===m kω(2) 设当(3) 5-2解:ν=5-3式中1,k10x ,弹簧2所受的合外力为由牛顿第二定律得2122d ()d xm k k x t =-+即有2122()d 0d k k x x t m++= 上式表明此振动系统的振动为简谐振动,且振动的圆频率为振动的频率为2πων==5-4如图所示,U 形管直径为d ,管内水银质量为m ,密度为ρ,现使水银面作无阻尼自由振动,求振动周期。

振动周期5-55-6如图所示,轻弹簧的劲度系数为k ,定滑轮的半径为R 、转动惯量为J ,物体质量为m ,将物体托起后突然放手,整个系统将进入振动状态,用能量法求其固有周期。

习题解:设任意时刻t ,物体m 离平衡位置的位移为x ,速率为v ,则振动系统的总机械能 式中于是5-7已知5-8平衡位置距O '点为:000l x l k+=+以平衡位置为坐标原点,如图建立坐标轴Ox ,当物体运动到离开平衡位置的位移为x 处时,弹簧的伸长量就是x x +0,所以物体所受的合外力为物体受力与位移成正比而反向,即可知物体做简谐振动国,此简谐振动的周期为5-9两质点分别作简谐振动,其频率、振幅均相等,振动方向平行。

在每次振动过程中,它们在经过振幅的一半的地方时相遇,而运动方向相反。

求它们相差,并用旋转矢量图表示出来。

习题5-6图解:根据题意,两质点分别在2A x =和2Ax -=处相向通过,由此可以画出相应的旋转矢量图,从旋转矢量图可得两个简谐振动的相位差为π34π或32==ϕϕ∆∆5-10一简谐振动的振幅A =24c m、周期T =3s ,以振子位移x =12cm 、并向负方向运动时为计时起点,作出振5-11(1)x (2)x当以(1)x 轴正向向上时:πϕ=-=)(01.00m x振动方程为))(1010cos(01.0m t x π+= (2)x 轴正向向下时:0)(01.00==ϕm x振动方程为))(1010cos(01.0m t x =5-12劲度系数为k 的轻弹簧,上端与质量为m 的平板相联,下端与地面相联。

振动、波动部分答案(新)

振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。

*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。

练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。

若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。

2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。

3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。

已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。

大学物理学振动与波动习题答案

大学物理学振动与波动习题答案

大学物理学(上)第四,第五章习题答案第4章振动P174.4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x= 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式;(2)t = T/4时物体的位置、速度和加速度;(3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m,角频率ω = 2π/T = π.当t = 0时,x = 0.06m,所以cosφ = 0.5,因此φ = ±π/3.物体的速度为v = d x/d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sinφ,由于v > 0,所以sinφ < 0,因此φ = -π/3.简谐振动的表达式为x = 0.12cos(πt –π/3).(2)当t = T/4时物体的位置为x = 0.12cos(π/2–π/3)= 0.12cosπ/6 = 0.104(m).速度为v = -πA sin(π/2–π/3)= -0.12πsinπ/6 = -0.188(m·s-1).加速度为a = d v/d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s-2).(3)方法一:求时间差.当x= -0.06m 时,可得cos(πt1 - π/3) = -0.5,因此πt1 - π/3 = ±2π/3.由于物体向x轴负方向运动,即v < 0,所以sin(πt1 - π/3) > 0,因此πt1 - π/3 = 2π/3,得t1 = 1s.当物体从x = -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt2 - π/3) = 0,可得πt2 - π/3 = -π/2或3π/2等.由于t2 > 0,所以πt2 - π/3 = 3π/2,可得t2 = 11/6 = 1.83(s).所需要的时间为Δt = t2 - t1 = 0.83(s).方法二:反向运动.物体从x= -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x0/A),(-π < φ≦π),初位相的取值由速度决定.由于v = d x/d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sinφ,当v > 0时,sinφ < 0,因此φ = -arccos(x0/A);当v < 0时,sinφ > 0,因此φ = arccos(x0/A).可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ = 0;当初位置x0 = -A时,φ = π.4.2 已知一简谐振子的振动曲线如图所示,试由图求:(1)a,b,c,d,e各点的位相,及到达这些状态的时刻t各是多少?已知周期为T;(2)振动表达式;(3)画出旋转矢量图.[解答]方法一:由位相求时间.(1)设曲线方程为x = A cosΦ,其中A表示振幅,Φ = ωt + φ表示相位.由于x a = A,所以cosΦa = 1,因此Φa = 0.由于x b = A/2,所以cosΦb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t增加,b点位相就应该大于a点的位相,因此Φb = π/3.由于x c = 0,所以cosΦc = 0,又由于c点位相大于b位相,因此Φc = π/2.同理可得其他两点位相为Φd = 2π/3,Φe = π.c点和a点的相位之差为π/2,时间之差为T/4,而b点和a点的相位之差为π/3,时间之差应该为T/6.因为b点的位移值与O时刻的位移值相同,所以到达a点的时刻为t a = T/6.到达b点的时刻为t b = 2t a = T/3.到达c点的时刻为t c = t a + T/4 = 5T/12.到达d点的时刻为t d = t c + T/12 = T/2.到达e点的时刻为t e = t a + T/2 = 2T/3.(2)设振动表达式为x = A cos(ωt + φ),当t = 0时,x = A/2时,所以cosφ = 0.5,因此φ =±π/3;由于零时刻的位相小于a点的位相,所以φ = -π/3,因此振动表达式为cos(2)3tx ATπ=π-.另外,在O时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t轴相交于f点,由于x f = 0,根据运动方程,可得cos(2)03tTππ-=所以232ftTπππ-=±.图6.2显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为t a = T /4 + t f = T /6,其位相为203a a t T Φπ=π-=.由图可以确定其他点的时刻,同理可得各点的位相.4.3如图所示,质量为10g 的子弹以速度v = 103m ·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N ·m -1,木块的质量为 4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0.解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m ·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m + M ) v 02/2 = kA 2/2,所以振幅为A v =×10-2(m). (2)振动的圆频率为ω=·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为x = 5×10-2cos(40t - π/2)(m). 4.4 如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+这也是它们振动的初速度. 设振动方程为x = A cos(ωt + φ),其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘碰撞之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k . 因此振幅为A ==图4.3图4.4= 初位相为00arctanv x ϕω-==4.5重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)可以证明:当两根弹簧串联时,总倔强系数为k = k 1k 2/(k 1 + k 2),因此固有频率为2πων===.(2)因为当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为2πων===4.6 一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]方法一:用转动定理.通过质心垂直环面有一个轴,环绕此轴的转动惯量为 I c = mR 2. 根据平行轴定理,环绕过O点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为M = -mgR sin θ,方向与角度θ增加的方向相反.根据转动定理得I β = M ,即 22d sin 0d I mgR tθθ+=,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程22d 0d mgRt Iθθ+=. 摆动的圆频率为ω=周期为2πT ω=22==方法二:用机械能守恒定律.取环的质心在最底点为重力势能零点,当环心转过角度θ时,重力势能为E p = mg (R - R cos θ), 绕O 点的转动动能为212k E I =ω, 总机械能为21(cos )2E I mg R R =+-ωθ. 环在转动时机械能守恒,即E 为常量,将上式对时间求导,利用ω = d θ/d t ,β = d ω/d t ,得0 = I ωβ + mgR (sin θ) ω,由于ω ≠ 0,当θ很小有sin θ≈θ,可得振动的微分方程22d 0d mgRt Iθθ+=, 从而可求角频率和周期.[注意]角速度和圆频率使用同一字母ω,不要将两者混淆.(b)图4.54.7 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的频率。

大学物理习题解答8第八章振动与波动 (2)

大学物理习题解答8第八章振动与波动 (2)

第七章 电磁感应本章提要1. 法拉第电磁感应定律· 当穿过闭合导体回路所包围面积的磁通量发生变化时,导体回路中就将产生电流,这种现象称为电磁感应现象,此时产生的电流称为感应电流。

· 法拉第电磁感应定律表述为:通过导体回路所包围面积的磁通量发生变化石,回路中产生地感应电动势i e 与磁通量m Φ变化率的关系为d d t=-F e其中Φ为磁链,负号表示感应电动势的方向。

对螺线管有N 匝线圈,可以有m N Φ=Φ。

2. 楞次定律· 楞次定律可直接判断感应电流方向,其表述为:闭合回路中感应电流的方向总是要用自己激发的磁场来阻碍引起感应电流的磁通量的变化。

3. 动生电动势· 磁感应强度不变,回路或回路的一部分相对于磁场运动,这样产生的电动势称为动生电动势。

动生电动势可以看成是洛仑兹力引起的。

· 由动生电动势的定义可得:()d bab ae 醋ò=v B l· 洛伦兹力不做功,但起能量转换的作用。

4. 感生电动势·当导体回路静止,而通过导体回路磁通量的变化仅由磁场的变化引起时,导体中产生的电动势称为感生电动势。

d dd d d d L S t te F =??蝌Ñ-=-i E r B S 其中E i 为感生电场强度。

5. 自感· 当回路中的电流发生变化,它所激发的磁场产生的通过自身回路的磁通量也会发生变化,此变化将在自身回路中产生感应电动势,这种现象称为自感现象,产生的电动势为自感电动势,其表达式为:d d L iL te =-(L 一定时)负号表明自感电动势阻碍回路中电流的变化,比例系数L 称为电感或自感系数。

· 自感系数表达式为:L iY =· 自感磁能212m W LI =6. 互感· 对于两个临近的载流回路,当其中一回路中的电流变化时,电流所激发的变化磁场在另一回路中产生感应电动势。

大学物理活页答案(振动和波)

大学物理活页答案(振动和波)

大学物理活页答案(振动和波部分)第一节 简谐振动1. D2.D3.B4.B5.B6.A7. X=0.02cos (52π−π2) 8. 2:1 9. 0.05m -37° 10. π or 3π 11. 012.解: 周期 3/2/2=ω=πT s , 振幅 A = 0.1 m , 初相 φ= 2π/3, v max = A = 0.3π m/s ,a max = 2A = 0.9π2 m/s 2 .13.提示:旋转矢量法(1)x =0.1cos (πt −π2)(2)x =0.1cos (πt +π3) (3)x =0.1cos (πt +π)14. (1)x =0.08cos (π2t +π3)t=1 x=-0.069m F=-kx=−m ω2x =2.7×10−4(2)π3=π2t t=0.67s第二节 振动能量和振动的合成1. D2.D3.D4.B5.B6. )(212121k k m k k +=νπ 提示:弹簧串联公式等效于电阻并联 7. 0.02m 8. π 0 提示:两个旋转矢量反向9. 402hz10. A=0.1m 位相等于113° 提示:两个旋转矢量垂直。

11. mv 0=(m +M)v ′ 12kA 2=1(m+M)v ′22 A=0.025m ω=√k m+M =40 x=0.025cos (40t −π/2)12. x=0.02cos (4t +π/3)x (m) ω π/3 π/3 t = 0 0.04 0.08 -0.04 -0.08 O A A机械波第一节 简谐波1. B2. A3.D4.C5.A (注意图缺:振幅A=0.01m )6.B7. 503.2 8. a 向下 b 向上 c 向上 d 向下 (追赶前方质元)9. π 10. 4π 或011.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 12.λ=0.4m u =0.05 k =ωu =2πλ=5π ω=π4 ϕ0=π2−2πT ∙T 2=−π2 y (x,t )=0.06cos (π4t −5πx −π2) y (0.2,t )=0.06cos (π4t −3π2)13. 210)cos sin 3(21-⨯-=t t y P ωω 210)]cos()21cos(3(21-⨯π++π-=t t ωω )3/4cos(1012π+⨯=-t ω (SI). 波的表达式为:]2/234cos[1012λλω-π-π+⨯=-x t y )312cos(1012π+π-⨯=-λωx t (SI) 第二节 波的干涉 驻波 电磁波1.D2.C3. D4.B5.B6.A7.C8. y =−2Acos (ωt ) ðy ðt =2Aωsin (ωt)9. 2A (提示:两振动同相)10. 0.5m 11. Acos2π(t T −x λ) A12. > 70.8hz 13. 7.96×10-2 W/m 214.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置: π=π+πn x 21/2λ, λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ λn x 21= , n = 1, 2, 3, 4,…15.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …。

《振动与波动》讲义笔记习题答案

《振动与波动》讲义笔记习题答案

课时一振动学方程考点重要程度占分常见题型1.认识简谐运动★★★★3~5选择、填空2.振动学方程必考5~10大题1.认识简谐运动初相、速度最大值和加速度最大值。

解:振幅0.1A m=角频率228===0.258T s ππωπωπ=⇒初相02=3πϕ速度最大值:max 0.18 2.5v A m sωπ==⨯=加速度最大值:()222max 0.1863.1a A m s ωπ==⨯=ϕAωxtxAOT余弦图像表示旋转矢量表示. sin A A ωϕ-. sin B A ωϕ. cos C A ωϕ-. cos D A ωϕ.0E 答案:B .当2T t =时,()2sin sin 2T t T v A t A =⎛⎫=-+=-⋅+ ⎪⎝⎭ωωϕωωϕ2sin 2A ⎛⎫⎪=-⋅+ ⎪ ⎪⎝⎭πωωωϕ()sin A =-+ωπϕsin A =ωϕ题3.将倔强系数为k 的轻质弹簧截去一半,然后一端固定,另一端下挂质量为m得小球,组成振动系统。

那么该系统的频率是()。

A B.CD 答案:D .分成相同的两段后,设倔强系数为k '则111=2k k kk k'+⇒=''则角频率ω==频率2v ωπ===2.振动学方程题1.已知一物体作简谐运动,周期为1s ,振动曲线如图所示,求简谐运动的余弦表达式。

解:振幅0.04A m=周期212 rad T s Tπωπ=⇒==由旋转矢量法得0=3πϕ-0.04cos 23x t ππ⎛⎫=- ⎪⎝⎭/xcm/t s0424-A B C D答案:B (涉及动画演示,详情见视频课程).6A π2.3B π4.3C π.3D π答案:B (涉及动画演示,详情见视频课程)题4.质点振动的x t -曲线如图所示,求:(1)质点的振动方程;(2)质点从0t =的位置到达P 点相应位置所需的最短时间。

解:(1)0.1A =由旋转矢量法知0=3πϕ-0.1cos 3x t πω⎛⎫=- ⎪⎝⎭代入()1,0点得:00.1cos 3πω⎛⎫=- ⎪⎝⎭5==326πππωω-⇒50.1cos 63x t ππ⎛⎫=- ⎪⎝⎭(2)0t =时相位:0=3πϕ-;p t t =时相位:=0p ϕ0==3p πϕϕϕ∆-3==0.456t sπϕπω∆=0.100.0501.0/t s/x m P题5.如图所示,质量为21.010kg -⨯的子弹,以1500m s -⋅的速度射入并嵌入在木块中,同时使弹簧压缩从而作简谐运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v 00πϕωϕωω++=+-==t v t A dtdx m ;a=)()(πϕωϕωω±+=+=0m0222t a t cos -dtx d A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dtd 22=+θθJ,T=2mghJ π7、简谐振动的能量:222m 21k 21A A E ω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。

*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A AA,为椭圆方程。

练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。

若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。

2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。

3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。

已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。

4.试在下图中画出谐振子的动能、振动势能和机械能随时间而变化的三条曲线(设t =0时物体经过平衡位置)。

5.图中所示为两个简谐振动曲线。

若以余弦函数表示这两个振动的合成结果,则合振动的方程为 。

二、计算题1、水面上浮沉的木块是在作简谐振动吗?如果是,其周期是多少?假设木块的边长为L ,平衡时浸入水中的高度为h 。

2、弹簧振子的运动方程为))(30.07.0cos(40.0SI t x -=,写出此谐振动的振幅、角频率、频率、周期和初相。

3、一个弹簧振子沿x 轴作简谐振动,已知弹簧的劲度系数为m N k /0.15=,物体质量为m=0.1kg ,在t=0时物体对平衡位置的位移m x 05.00=,速度s m v /82.00-=。

写出此简谐振动的表达式。

4、一质点沿x 轴作简谐振动,振幅A=0.12m ,周期T=2s ,当t=0时,质点对平衡位置的位移x 0=0.06m ,此时刻质点向x 正向运动。

求: (1)简谐振动的运动方程;(2)t=T/4时,质点的位移、速度、加速度。

5、有一个质点参与两个简谐振动,其中第一个分振动为t x ωcos 3.01=,合振动为t x ωsin 4.0=,求第二个分振动。

6、一弹簧振子,弹簧的劲度系数k=25N·m-1,当物体以初动能0.2J和初势能0.6J振动时,求:(1)振幅(2)位移是多大时,势能和动能相等?(3)位移是振幅的一半时,势能是多大?大学物理学——振动和波波动班级学号姓名成绩内容提要1、波动的描述(1)波的几何描述:波线、波面、波前;在各项同性介质中,波线总垂直于波面。

(2)描述波动的物理量波长λ、波的周期T、波速u,三者的关系为:2、波线上两点之间的波程l,两点振动的相位差为:3、平面简谐波的波动方程(式中负号对应于正行波,正号对应于反行波);;4、波的能量和能流(1)波的能量:体积元的总机械能为:)(ux-tsin)(www222pkωωρVA∆=+=(2)平均能量密度:2221vwωρεA=∆∆=(3)平均能流密度:u21u22ρωεASPI==∆=5、波的干涉(1)波的干涉条件:两列波的振动方向相同、频率相同和相位差恒定。

(2)干涉加强、减弱条件:为干涉极大点;若为干涉极小点。

6、驻波和半波损失:(1)驻波方程:txcos2cos2yyy21ωλπA=+=(2)波腹1x 2cos=λπ,πλπk 2=,2kx λ=,k=0,,,21±±波节x2cosλπ=0,λπ2=212k π)(+,x 210k 412k ±±=+=,,,)(λ(3半波损失:波从波疏介质入射到波密介质,在分界面处反射时,反射点有半波损失,即有相位π的突变,出现波节;波从波密介质入射到波疏介质,反射点没有半波损失,出现波腹。

*7、多普勒效应:若波源、观察者或两者同时相对介质运动时,观察者所接收到的频率不同于波源的频率。

若波源的频率为:λγu0=,则观察者接收到的频率为:sv -u v u γγR R +=。

其中,u 为波速,R v 为观察者相对介质的速度;sv 为波源相对介质的速度。

练习二一、选择题1.一平面简谐波表达式为))(2(sin 05.0SI x t y --=π,则该波的频率ν(Hz )、波速u )/(s m 及波线上各点的振幅A (m 〉依次为( )。

(A ) 21,21,-0.05 (B ) 21, 1,-0.05 (C) 21,21,0.05 (D) 2,2,0.052. 把一根十分长的绳子拉成水平,用手握其一端,维持拉力恒定,使绳端在垂直于绳子的方向上作简谐运动,则( )。

(A )振动频率越高,波长越长 (B )振动频率越低,波长越长 (C)振动频率越高,波速越大 (D )振动频率越低,波速越大3.一平面简谐波沿Ox 正方向传播,波动方程为)](2)42(2cos[10.0SI x t y ππ+-=,该波在t =0.5s 时刻的波形图是( )。

4.一平面谐波在弹性介质中传播,在介质元从最大位移处返回平衡位置的过程中( ) (A )它的势能转换为动能 (B )它的动能转换为势能(C )它从相邻一段介质元中获得能量,其能量逐渐增加。

(D )它把自己的能量传给相邻的一段介质元,其能量逐渐减少。

二、填空题1.已知14℃时空气中的声速为340 m /s ,人可以听到频率为20~20 00OHz 范围内的声波,可以引起听觉的声波在空气中波长的范围约为 。

2.在简谐波的一条射线上,相距0.2 m 的两点的振动相位差为6/π,又知振动周期为0.4s ,则波长为 ;波速为 。

3.一平面简谐波沿Ox 轴传播,波动方程为])/(2cos[ϕλνπ+-=x t A y ,则L x =1处介质质点振动的初相位是 ;与1x 处质点振动状态相同的其他质点的位置是 ;与1x 处质点速度大小相同,但方向相反的其他各质点的位置是 。

4.—球面波在各向同性均匀介质中传播,已知波源的功率为100 W ,若介质不吸收能量,则距波源10m 处的波的平均能流密度为 。

5.机械波在介质中传播,当某一质元振动动能相位是2π 时,它的弹性势能的相位是 。

6.一驻波中相邻两波节的距离为d=5.00cm ,质元的振动频率为HZ 3101.0⨯=γ,则形成该驻波的两个相干行波的传播速度u 和波长λ 。

三、计算题1、有平面简谐波沿x 轴正方向传播,波长为λ,见下图。

如果x 轴上坐标为x 0处质点的振动方程为)cos(00ϕω+=t A y x ,试求:(1)波动方程;(2)坐标原点处质点的振动方程;(3)原点处质点的速度和加速度。

2、一简谐波逆着x 轴传播,波速u=8.0m/s 。

设t=0时的波形曲线如图所示。

求:(1)原点处质点的振动方程;(2)简谐波的波动方程(3)t=T43时的波形曲线。

3、用聚焦超声波的方法,可以在液体中产生强度达120kW/cm 2的超声波。

设波源作简谐振动,频率为500kHz ,水的密度为103kg/m 3,声速为1500m/s ,求这时液体质点的位移振幅、速度振幅和加速度振幅。

4、在x 轴上有两个波源,S 1的位置在x 1=0处,S 2的位置在x 2=5处,它们的振幅均为a ,S 1的相位比S 2超前π/2。

假设每个波源都向x 轴的正方向和负方向发出简谐波,每列波都可以传播到无穷远处,波长为λ=4。

(1)求x<0区间的合成波的振幅;(2)求x>5区间合成波的振幅。

5、速度120-⋅=sm v s 的火车和速度115-⋅=sm v r 的火车B 相向行驶,火车A 以频率HZ 500=ν鸣汽笛,就下列情况求火车B 中乘客听到的声音频率。

(设声速为3401-⋅s m )(1)A 、B 相遇之前(2)A 、B 相遇之后大学物理学——振动和波振动、波动自测题班级 学号 姓名 成绩一、选择题(共30分)1、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T =' 且22T T >'. [ ]2、一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是: (A) 2max 2max /v x m k =. (B) x mg k /=.(C) 22/4T m k π=. (D) x ma k /=. [ ]3、一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) 6/π . (B) 6/5π. (C) 6/5π-.(D)6/π- . (E)3/2π-. [ ]4、一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 (A) 1 s . (B) (2/3) s .(C) (4/3) s . (D) 2 s . [ ]5、图中三条曲线分别表示简谐振动中的位移x ,速度v ,和加速度a .下列说法中哪一个是正确的? (A) 曲线3,1,2分别表示x ,v ,a 曲线; (B) 曲线2,1,3分别表示x ,v ,a 曲线; (C) 曲线1,3,2分别表示x ,v ,a 曲线; (D) 曲线2,3,1分别表示x ,v ,a 曲线; (E) 曲线1,2,3分别表示x ,v ,a 曲线. [ ]x, v , a tO123v v 216、在下面几种说法中,正确的说法是: [ ](A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计). (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计)7、一简谐横波沿Ox 轴传播.若Ox 轴上P 1和P 2两点相距8/λ(其中λ为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同. (B) 方向总是相反.(C) 方向有时相同,有时相反. (D) 大小总是不相等. [ ]8、下列函数f (x, t)可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=. (C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ ]9、图中画出一平面简谐波在t = 2 s 时刻的波形图,则平衡位置在P 点的质点的振动方程是 (A)]31)2(cos[01.0ππ+-=t y P(SI). (B)]31)2(cos[01.0ππ++=t y P(SI).(C) ]31)2(2cos[01.0ππ+-=t y P (SI).(D) ]31)2(2cos[01.0ππ--=t y P (SI). [ ]10、如图所示,S 1和S 2为两相干波源,它们的振动方向均垂直于图面,发出波长为 λ的简谐波,P 点是两列波相遇区域中的一点,已知 λ21=P S ,λ2.22=P S ,两列波在P 点发生相消干涉.若S 1的振动方程为 )212cos(1π+π=t A y ,则S 2的振动方程为(A) )212cos(2π-π=t A y . (B) )2cos(2π-π=t A y .(C) )212cos(2π+π=t A y . (D) )1.02cos(22π-π=t A y . [ ]二、填空题(共30分)1、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;y (m)S 2(t = 0)(2) 振子在平衡位置向正方向运动,则初相为________________; (3) 振子在位移为A/2处,且向负方向运动,则初相为______.2、图中用旋转矢量法表示了一个简谐振动.旋转矢量的长度为0.04 m ,旋转角速度ω = 4πrad/s .此简谐振动以余弦函数表示的振动方程为x=__________________________(SI).3、一水平弹簧简谐振子的振动曲线如图所示.当振子处在位移为零、曲线上的速度为-ωA 、加速度为零和弹性力为零的状态时,应对应于________点.当振子处在位移的绝对值为A 、速度为零、加速度为-2ωA 和弹性力为-kA 的状态时,应对应于曲线上的____________点.4、一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的______________.(设平衡位置处势能为零).当这物块在平衡位置时,弹簧的长度比原长长l ∆,这一振动系统的周期为________________________.5、一平面简谐波的表达式为 )/(cos u x t A y -=ω)/cos(u x t A ωω-= 其中x / u 表示_____________________________; u x /ω表示________________________; y 表示______________________________.6、一列波由波疏介质向波密介质传播,在两介质的分界面上反射,则反射波的相位将________________________________,这个现象称为________________________________。

相关文档
最新文档