Framework for IPTV QoS

合集下载

IPTV-中国电信IPTV平台承载网络技术规范

IPTV-中国电信IPTV平台承载网络技术规范
在用户侧端口上启用/禁用组播服务功能。 在用户侧端口上对用户加入的组播地址范围进行控制。 监控用户侧端口上用户加入组播组的信息
网络设备要求(5) • ADSL MODEM
– ADSL MODEM设备必须满足《中国电信ADSL MODEM设备技术要求》,同时必须满足以下 技术要求:
同时支持两个以上PVC配置,并能把不同的以太网接 入端口业务映射到不同的PVC封装。 网络侧ADSL端口(RJ-11)同时支持双PVC上联配置 支持IGMP协议 用户侧两个以上以太网接入端口(可选项)
根据国内外的研究成果,业界对以上几种 业务的Qos经验值如下:
QOS 业务种类 视频直播 视频点播 游 戏 1s 10s 200ms 1s 1s N/A 1/1000 1/1000 N/A 1/10000 1/10000 N/A 网络时延上 限 延时抖动上 限 丢包率 上限 包误差率 上限
IPTV承载网要求(4)
网络设备要求(3)
• BRAS
– 接入服务器(BRAS)设备必须满足《中国电信接入服 务器设备技术要求》,同时必须以下技术要求: 支持虚拟路由器(VR)功能。 支持IGMP协议。 支持组播路由技术: PIM-SM 、PIM-DM 支持IGMP Proxy(IGMP代理)协议 支持组播业务控制 ,如下:
IPTV承载网要求 (2)
• 网络带宽要求
关于中国电信IP TV视频编码技术的选取还在进一步讨 论当中,目前初步倾向于在业务初期使用MPEG4,然后 过渡到H.264。 综合以上两种编码的分析,IP TV用户在接收视频流数 据时,一般要1Mbps的带宽需求,再加上20-30%的协 议封装开销,共需1.3Mbps带宽。另外,信令控制信道 也要占用一定的带宽,保守估计,每个用户的最低带 宽需求应为1.5Mbps。考虑到IP网络的统计复用特性, 网络流量的波动较大,为了保证IP TV的播放质量,建 议为每个IP TV用户规划2Mbps以上带宽。

IPTV技术质量指标体系v1.1

IPTV技术质量指标体系v1.1

1.1.2 点播业务
点播业务质量及业务体验要求主要分为三类:请求成功率、响应时间、视音频质量。
序 质量要求

要求值
说明
请求成功率
1 点播业务请求成功率 ≥99%
用户通过 STB 进行 IPTV 点播业务 请求成功的统计概率
响应时间
1 点播业务响应时间
<2s
从遥控器按钮点击 EPG 点播频道中 某部节目到开始播放
在及时时移业务中按快捷键追回(切换)到直播 业务界面响应时间
选)
即时时移“暂停”、 4 “快进”、“快退” <1s
操作响应时间
用户在收看具备时移功能的直播频道时,按“暂 停”、“快退”进入时移状态,及在该状态下按“暂 停”、“快进”、“快退”等遥控器键,系统响应操 作要求的时间
视音频质量
图像质量主观
响应时间
信息服务页面切换响应
1 时间
<1s
一键切换回信息服务的
2 响应时间
<2s
信息服务页面间切换时间
非信息服务业务中,按信息服务快捷键切换到信息 服务页面响应时间
信息准确率
1
信息服务内容准确率
信息服务页面中标题与实际内容对应关系准确程 >99.9% 度的统计概率
1.2 IPTV 平台输出质量指标
定义:分别从文广信号源输出质量指标包括:直播编码、点播编码、 平台网络质量指标等情况来反映主观感受指标。
1.2.1 文广信号输出质量指标:
1.2.1.1 节目源质量客观指标
参数 质量等级 节目总码率 编码方式
传输协议 视频码率
视频参数 分辨率 编码帧率 主观评价分
音频参数 音频码率 主观评价分

IPTV系统

IPTV系统

IPTV系统1IPTV含义IPTV是利用网络方式传输电视节目,也称为网络电视,与传统电视最大的区别就是能够进行个性化与实时性的交互操作,不仅能够应用于电视终端,电脑、手机等能够接入互联网的终端也可实现。

2IPTV实现方式IPTV是将音视频信号通过数据包的方式,在不同物理网络中传输或分发到用户端。

系统组成主要有:节目提供系统、管理系统、流媒体传送系统、接入系统、终端、运营支撑系统。

3系统层次结构IPTV平台在总体结构上分为四层:运营支撑层、业务层、网络承载层和终端层。

IPTV平台总体结构示意图如图:1、支撑层为IPTV平台提供运营支撑,是IPTV平台的运营支撑系统。

运营支撑层包括:用户管理、SP管理、认证授权、帐务管理、系统设备管理和数字版权管理等模块。

可以实现统一平台管理用户终端(STB)、统一的EPG/Portal、统一平台整合多种业务和统一平台实现业务计费2、业务层业务层为IPTV平台提供业务应用服务。

IPTV系统可以提供基本业务,如VOD点播、直播节目等,也可以提供各种扩展业务,如可视电话、网络游戏和网络邮件等。

不同的业务有不同的业务管理逻辑,业务层为这些业务的开展提供了相关支持环境。

对于基于流的相关业务,需要提供节目编码处理、节目加密、媒体存储和分发等相关的支持。

3、网络承载层网络承载层包括宽带IP骨干网络,城域网络和宽带接入网络等,它是承载IPTV业务的物理介质。

网络承载层也可以分为接入网,汇聚网和核心网三部分。

IPTV业务对于承载网络的要求主要有:带宽方面的要求;对于可视电话、游戏等双向交互式业务,要求网络的抖动和延时要小;对于经过压缩编码后的视频码流,其比特的前后相关性较高,因此需要网络的丢包率要低;对于直播节目,因为接收的用户会比较多,这就要求承载网络最好能支持组播。

此外,为了防止对系统的恶意攻击,造成系统业务不能正常工作,网络需要有较高的安全性,和统一的IP地址规划方案等。

网络的安全性可以通过防火墙、VLAN、路由器的ACL和VPN等方式实现。

IPTV监测系统的技术指标及应用特点探讨

IPTV监测系统的技术指标及应用特点探讨

IPTV监测系统的技术指标及应用特点探讨发布时间:2022-08-29T09:55:59.963Z 来源:《科技新时代》2022年第2期1月作者:陈柄锜[导读] 宽带技术发展迅速,与此同时陈柄锜海南省广播电视互联网监察监测中心单位邮编:570100摘要:宽带技术发展迅速,与此同时,IPTV监测系统技术水平也显著提升,并逐渐得到推广和应用。

IPTV监测系统的操作方式便捷,逐渐替代传统的通讯方式,对此,本文首先对IPTV监测系统进行介绍,然后对IPTV监测系统的技术指标、应用特征进行详细探究。

关键词:IPTV监测系统;技术指标;应用在信息化时代,互联网技术、信息技术已逐渐渗透至人们日常生产生活的各个方面,同时,IPTV也发展成为十分重要的网络多媒体业务。

在IPTV监测系统中,可将互联网技术、数据通信技术、多媒体技术等进行有效结合,通过应用接收终端,即可为用户提供多种服务类型以及多媒体业务,IPTV监测系统的接收端为计算机、数字电视,可为广大用户提供便利以及丰富体验。

因此,对IPTV监测系统的应用进行深入探究意义重大。

一、IPTV简介对于IPTV,又被称为交互式网络电视,在IPTV的实际应用中,需将宽带网作为基础,终端设备一般为电视机或者计算机,IPTV融合多种高新技术,根据互联网协议(IP),即可为用户提供交互式数字媒体服务。

IPTV具体指的是IP机顶盒的终端设备,可通过电视机显示画面,而输入设备则为遥控器。

通过对IPTV的形式和内容进行分析,其与传统的有线电视以及数字电视均有所不同。

IPTV用户所享受的数字媒体服务质量比较高,同时,用户可选择范围广泛,可根据实际需要选择宽带IP网中各个网站所提供的多种视频节目,另外,在媒体提供者和消费者之间,可通过IPTV进行互动。

IPTV的应用优势显著,具有互动性特征,能够直接接收广播信号,同时还可与用户之间进行互动交流。

另外,在IPTV的实际应用中,需使用TCP/IP协议,可将电视服务、电子邮件收发、商务功能、娱乐功能等进行有效结合,因此,IPTV是由传统的电视业务和新兴电信业务所组成的,因此具备二者的优势特性。

湖南省内IPTV客户端安装重点

湖南省内IPTV客户端安装重点

IPTV客户端安装重点
1、modem配置:
(1)使用E8-B/Cmodem,需具备多网口,支持多通道;
(2)Modem上ITV机顶盒所连接网口的配置:对该网口需采用桥接方式,VPI/VCI配置为8/45。

按全省网络优化规范规定,应为IPTV业务设置专用通道,完成QOS 保障。

故如未按要求进行配置,实际用户端QOS是并未生效的。

为防止出现用户家庭内部局域网可能造成视频流NAT穿越问题导致收看异常,同时IPTV宽带接入账号与普通接入账号是不一样的,故要求IPTV机顶盒采用桥接方式进行接入。

2、机顶盒配置:
(1)确定机顶盒上以下3个地址配置无误:
更新服务器地址:http://124.232.131.133:8080/b600v2/
网管服务器地址:http://124.232.131.134:9090/web/tr069
主用认证服务器地址:http://222.246.132.231:8298/auth 以上3个地址如配置错误会直接影响用户使用,导致出错,故务必检查无误。

(2)IPTV宽带接入账号必须带@VOD后缀。

按全省网络优化规范规定,带域接入账号应获得各地市的私网地址,在此基础上进一步进行用户端组播的逐步开放部署。

故在装机时如未按要求进行配置,机顶盒将仍占用公网IP地址资源,同时不利于对组播的开展。

IPTV组成架构及业务原理

IPTV组成架构及业务原理

IPTV中的QoS技术
带宽管理
通过带宽管理,IPTV可以提供高质量的音视频传输。
延迟控制
延迟控制可优化媒体内容的传输速度,减少卡顿和加载时间。
媒体加密
媒体加密可以保护内容的安全性,防止盗版和非授权的观看。
IPTV中的频段分配技术
1 频道号分配
频道号分配是一种频段分 配技术,用于将不同的频 道传输到用户设备上。
EPG是一种电子节目指南,提供了电视节目的详细信息和播放时间。
IPTV中的数字版权保护技术
DRM技术
DRM技术用于保护数字媒体 内容的版权,防止非授权的 复制和传播。
水印技术
水印技术可将数字签名嵌入 到媒体内容中,以识别和追 踪非授权的使用。
订阅认证
订阅认证要求用户进行身份 验证,以访问受保护的内容 和服务。
IPTV组成架构及业务原理
随着数字化时代的到来,IPTV成为了一种新兴的流媒体传输技术。本次演示 将介绍IPTV的组成架构和业务原理。
IPTV基础知识介绍
IPTV是指通过互联网传输数字媒体内容到电视机上的技术。本节将介绍IPTV的基本概念和应用场景。
IPTV组成架构
1
客户端设备
电视机、机顶盒和智能手机是IPTV的常
用户使用客户端设备(电视机、机顶盒等)显示和观看媒体内容。
IPTV中的数字电视传送技术
DVB标准
DVB标准是一种数字电视传送技 术,用于传输和接收IPTV信号。
流媒体传输协议
流媒体传输协议确保媒体内容以 高质量传输到用户设备上。
IGMP协议
IGMP协议用于实现IP网络上的 组播服务,确保多个用户可以同 时观看相同的内容。
中心服务器
2
见客户端设备。

宽带通信网QOS机制

宽带通信网QOS机制

宽带通信网QoS机制一、概述:当前,随着市场和技术的变化使得固网运营商正在寻求新的业务战略转型,传统的通信业务正向信息娱乐、数字化生活领域扩展,IPTV、VoIP以及P2P应用等业务种类不断丰富。

这使得宽带网络所承载的业务将从以传统互联网业务为主逐步向多业务承载方向发展。

这就要求宽带网络实施网络转型,以适应业务需求的变化和业务发展的要求。

能否成功实施网络转型涉及多个方面的因素,包括网络的物理架构、网络的业务提供及QoS能力、网络的运营支撑体系等。

其中,网络的业务提供及QoS能力是最基本的因素。

本文将主要从宽带接入的角度探讨固网运营商实施QoS技术的相关问题。

二、什么是QoS:在数据包交换网络和计算机网络领域中,流量工程术语服务质量(英语:Quality of Service,QoS)指的是网络满足给定业务合同的概率,或在许多情况下,非正式地用来指分组在网络中两点间通过的概率。

QoS是一种控制机制,它提供了针对不同用户或者不同数据流采用相应不同的优先级,或者是根据应用程序的要求,保证数据流的性能达到一定的水准。

QoS的保证对于容量有限的网络来说是十分重要的,特别是对于流多媒体应用,例如VoIP和IPTV等,因为这些应用常常需要固定的传输率,对延时也比较敏感。

QoS(Quality of Service)服务质量,是网络的一种安全机制,是用来解决网络延迟和阻塞等问题的一种技术。

在正常情况下,如果网络只用于特定的无时间限制的应用系统,并不需要QoS,比如Web 应用,或E-mail设置等。

但是对关键应用和多媒体应用就十分必要。

当网络过载或拥塞时,QoS能确保重要业务量不受延迟或丢弃,同时保证网络的高效运行。

在因特网创建初期,没有意识到QoS应用的需要。

因此,整个因特网运作如一个“竭尽全力”的系统。

每段信息都有4个“服务类别”位和3个“优先级”位,但是他们完全没有派上用场。

依发送和接收者看来,数据包从起点到终点的传输过程中会发生许多事情,并产生如下有问题的结果:·丢失数据包- 当数据包到达一个缓冲器(buffer)已满的路由器时,则代表此次的发送失败,路由器会依网络的状况决定要丢弃、不丢弃一部份或者是所有的数据包,而且这不可能在预先就知道,接收端的应用程序在这时必须请求重新传送,而这同时可能造成总体传输严重的延迟。

IPTV运维探讨

IPTV运维探讨
关键词:IPTV;用户体验;网络优化;运维效率 中图分类号:TN949.2 文献标识码:A 文章编号:1003-9767(2021)07-044-04
Discussion on IPTV Operation and Maintenance
CHANG Haitao, ZHANG Guanghui, XU Xuewei
2.2 体验提升期关键举措
1.2.2 多种容灾方案确保异常场景用户业务体验
2.2.1 组播改造
1.2.2.1 深挖平台隐患和风险来制定应对方案
关键设备分别采用双机备份、服务器集群以及服务器负 载均衡等方式部署,通过容灾方案部署保障在异常场景下的 用户接入,当通信异常时不影响用户接入观看。通过冗余备 份和负荷分担等技术以及远程监控等方式来保证系统可靠运 行 [1-3]。IPTV 中心节点所有核心部件采用双机部署和集群部 署。通过 RRS 分级调度,实现 HMS 节点间和节点内的业务 平均分发,通过 EDS 调度策略,实现 EPG 组内业务均衡。 全网内容源实现中心节点全量备份,域区和边缘内容丢失 可以从中心节点重新获取。EDS,RRS 是 IPTV 平台中两个 重要的业务入口,通过双机 / 集群和辅助的机顶盒容灾以及 RRS 上下级主备实现双重的业务容灾保障。
笔者从平台运维的视角记录运营商 A IPTV 运维部门在 业务初创、体验提升以及运维创新等时期的关键举措,构建 以用户体验为核心提升产品质量和市场竞争力,打造 IPTV 精品运维之路的历程。
1 稳扎稳打奠定 IPTV 业务基础
1.1 业务初创期 IPTV 运维面临的挑战
1.1.1 带宽瓶颈影响用户体验 运营商 A 的 IPTV 建设初期,业务均为单播方式,内容
Keywords: IPTV; user experience; network optimization; operation and maintenance efficiency
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Framework for IPTV QoSGabriel LAZAR, Tudor Mihai BLAGA, Virgil DOBROTATechnical University of Cluj-Napoca, 400020 C-tin Daicoviciu 15, Cluj-Napoca, RomaniaE-mail: {zar; tudor.blaga;virgil.dobrota}@com.utcluj.roAbstract – The paper describes a framework for IPT V, with a practical implementation of the required QoS mechanisms. A cross-layer based solution enables QoS support for H.264 video streams at Network Layer. Selective dropping of packets based on their importance within the video stream is ensured by a new DiffServ per-hop behavior (PHB), suitable for real-time traffic (IPT V). T he third element is a tool for measuring QoS parameters like: bandwidth, one-way delay, inter-packet jitter, packet loss, number of duplicated packets, out-of-order packets and corrupted packets. The implementation of this program opens the possibility of measuring the transmission parameters that influence QoS, with the purpose of offering a way to evaluate and control the services delivered by open-standards IPTV providers.Keywords - IPTV, H.264, QoS, cross-layer1. INTRODUCTIONRecent years have seen a proliferation of real-time multimedia traffic over an increasingly heterogeneous Internet. A common case is that of IPTV over hybrid wireless-wired networks. This type of traffic has very stringent delay, jitter and bandwidth requirements. These parameters cannot be guaranteed when data is handled in a best effort manner. On top of that, users expect high service quality independent to the underlying network access technologies [1].Providing an IPTV service while maintaining a high level of perceived quality for the entire duration of the transmission becomes a challenging task. It requires cooperation of all involved “actors”: all network and end nodes and each layer of the protocols stack must collaborate and optimize functionality to achieve this goal [2].The IPTV concept includes both real time television and on demand television so called VoD (Video on Demand). Other services that IPTV can offer are Beyond TV, Time Shifted TV, on demand games and music, Electronic Program Guide, PVR functions, pay-per-view functions and parental control.In order to achieve a reliable end-to-end video communication system, the best-effort network should be replaced by a QoS-enabled core network, augmented where necessary with a cross-layer solution.In this article we propose a practical implementation for IPTV that includes an end-to-end H.264 video streaming solution using a cross-layer architecture (CLA) based on application and network layers. A new DiffServ per-hop behavior (PHB) is proposed, suitable for real-time traffic packets having different drop precedence values. We developed iptv_tool to measure IPTV QoS parameters during transmissions. 2. DIFFSERV – QoS ENABLED NETWORKInside the core network, Differentiated Services architecture (DiffServ [3]) can provide class-based QoS guarantees in a simple and scalable manner. Complex decisions are made in the edge routers, and useful edge-to-edge services are built from a set of PHBs in the core routers. A PHB defines the class of traffic to which a packet belongs, i.e. the treatmentof this datagram. This class is recognized by the core routers based on the DiffServ Code Point (DSCP) value, which is stored using the first 6 bits of the old Type-of-Service (TOS) IP header field. The DSCP value is usually set by the edge routers through multi-field (MF) classification and marking, but thebits can be also configured by the source client, e.g.at the application layer. Most common PHBs implemented in existing networks are Expedited Forwarding (EF) and Assured Forwarding (AF).EF PHB is used for low loss, low delay traffic, suitable for real-time multimedia services. AF defines four classes of traffic and three possible drop precedence values; the combination yields twelve separate DSCP encodings.3. REAL-TIME MULTIMEDIA STREAMINGH.264/AVC video standard offers significant improvement relative to existing standards through enhanced compression performance and provisionfor “network friendly” error resilience tools.To address the need for flexibility, H.264 specifies a video coding layer (VCL), designed foran efficient representation of the video content. Italso defines a network abstraction layer (NAL), which is responsible for the encapsulation of videodata into entities suitable for a variety of transport layers or storage media.161A NAL unit (NALU) consists of a one-byte header followed by a bit string that contains fixed sized picture partitions called macroblocks (MBs). An important field in the NALU header is the Nal_Ref_Idc (NRI) field. NRI consists of 2 bits that specify the priority of the payload: from 00 (lowest priority) to 11 (highest priority). The values are set by the encoder and they effectively specify the importance of the video information contained in each NALU payload. This is accomplished through an error resilience technique called data partitioning (DP) that groups video MBs into partitions with similar importance.Three partitions types are defined by H.264. Partition A contains important header information relevant for other partitions. Partition B contains intra coded block patterns (CBPs) and intra coefficients, and requires the A partition information. Partition C contains intra CBPs and intra coefficients, requires the A partition information and it is the least important partition type. In addition to these three partitions, VCL also generates a slice representing the instantaneous decoding refresh (IDR) pictures, which contains information that cannot be included into the A, B and C partitions. The parameter set concept (PSC) is the most important slice type created by VCL, where data is a combination of higher level parameters containing important information relevant for more than one slice (e.g. picture dimension) [4]. 4. QoS PARAMETERS FOR IPTVWhen referring to a communication channel, QoS handles a set of parameters, such as: bandwidth, one-way-delay, delay variation and packet loss [5]. Quality of Service means the capacity of a network to offer better services for a selected part of the traffic.Traffic rate: the total number of bytes sent divided by the duration of the transmission:>Bps durationon transmissi bytestotal rate Traffic ___@(1)One-way-delay is the time from the moment the first bit is sent to the moment the last bit is received. For measuring the one-way-delay parameter it is important to assure the synchronization between the server and the receiver.Jitter: the delay variation due to the fact that packets follow different paths from source to destination [6].Number of lost packets: The elimination of packets depends only on the current state of the network, and it cannot be anticipated. The algorithm used for determining this parameter identifies each packet sent by the server and searches for it in the received packet list.Number of reordered packets: Packets are sent in a certain order by an application, but at the receiver they may arrive out-of-order due to different paths in the network. A packet is considered reordered if the sequence number is smaller than the sequence number of the previous packet received.Number of duplicated packets: Counting the number of packets duplicated is a way of verifying the network configuration. Duplicated packets indicate that there are some configuration errors in the network or some devices are malfunctioning.Packet Error Rate (PER): is determined according to equation 2. To see if a packet is corrupted or not we compare the data field of every packet at the sender and at the receiver.%100____upacketsreceived number packetscorrupted number PER (2)START delay for VoD streaming is measured at the receiver and represents the duration between the moment the first TCP packet, containing signaling, is sent by the client until the moment the first RTP packet containing data is received. This parameter is relevant only for VoD transmissions.PAUSE/RESUME delay for the VoD server: VoD transmission uses RTSP that gives stream control to the receiver. This can suspend the stream and start it back later or it can move forward and backward within media stream. 5. IPTV QoS FRAMEWORKThe proposed framework includes a new PHB for multimedia traffic, a cross-layer streaming solution and a tool for monitoring IPTV QoS parameters. 5.1. A PHB for Multimedia TrafficVideo traffic has variable data rate due to the dynamic nature of the captured scene and the encoding process. Assigning an EF behavior to video streams in the DiffServ network can pose a policy design problem: because video streams have variable rates and due to the fact that multiple video streams are placed into the same flow aggregate (FA), it is hard to design a maximum limit for traffic policing at the ingress router of a DiffServ domain. If excessive EF traffic enters into the DiffServ domain, the EF PHBs from the core routers can cause starvation of other flow aggregates, by serving continuously EF packets at the highest priority. EF PHBs do not employ large queues, because EF traffic should be served at a rate equal or higher than the incoming rate, and also because waiting in a queue increases delay, which is not desired for real-time traffic. Excessive EF traffic in the core network will therefore lead very fast to full queues and large162packet drops. In this case, there is no protection against elimination of important packets. In a similar manner, excessive EF traffic at the border of the DiffServ domain will be policed regardless of the packet importance in the video stream.Using an AF DiffServ class for multimedia traffic raises a different problem. Drop priorities for AF PHBs are usually implemented with a form of RED [7]. Due to the mechanism’s statistical approach, in some cases important multimedia packets can be discarded (with lower probability) instead of less important ones - the priority dropping is not strict. In addition, AF traffic has lower priority than EF traffic.In order to overcome these limitations, we propose a different PHB for multimedia traffic with drop priorities, called Multimedia (MM) PHB. This class of traffic uses 3 DS code points in order to recognize packets with different importance in the stream. The MM PHB is defined for high-priority, low loss, latency and jitter traffic similar to EF, but additionally employs a strict drop precedence scheme: when resources become insufficient for the MM traffic, the DiffServ core router will always eliminate a packet with highest drop precedence from its queue. In this way, important packets have better chances to survive the end-to-end journey.A MM PHB can be implemented in a straightforward manner using a FIFO queue withstrict priority drop policy (Fig. 1).Fig. 1. MM PHB: 1=lowest, 3=highest drop priority Policing ingress MM traffic at the edge router can benefit of the 3 DSCP values to selectively drop less important packets first. The same DS code points can also be used at the data layer in each node to prioritize important traffic, if the MAC protocol offers QoS support. 5.2. Cross-Layer StreamingOur cross-layer solution takes into consideration the network layer in order to propagate the video related QoS information. NRI information extracted from the NALU header is mapped to DSCP field values at the IP network layer.The CLA at the source node was implemented using a combination of open source software:x Application Layer: a modified Linux build of VideoLan Client (VLC) [8], capable of H.264 video streaming, analyses each NALU and sets the socket’s SO_PRIORITY value for the current packet according to the NRI field.x Network Layer: Part of the Linux traffic control mechanisms, DSMARK is in charge of marking packets by setting their DSCP at the IP level. A DSMARK queuing discipline was configured at the source node to translate the SO_PRIORITY value to a DS code point. In this way, the NRI value is mapped to a DSCP through the SO_PRIORITY socket parameter sent between layers.5.3. IPTV ToolA minimal network architecture, that involves a media server, an IPTV client and a router, was used to develop iptv_tool . Both the client and the server were implemented using VLC. The VideoLAN Server sends data using protocols and codecs for IPTV streaming.The tool was implemented in C++ under Linux using gcc. The program uses as arguments the XML files containing the packets captured by Wireshark on the server interface and on the client interface. The capture files were exported in XML format because it can be parsed more easily than the original .pcap format.C++ functions from the libxml2 library (defined in xmlreader.h ) were used in order to read the values of the attributes contained in the XML file. This information, for example the total size of the packet or the timestamp, is saved and it is then used for packet identification and QoS parameter computation. Note that only the packets that belong to the IPTV stream are analyzed and included in the list. These packets are identified by the IP source and destination address and by the protocols and ports used for the transmission. The value of the attribute timestamp is read for every packet and saved into the list. The size of the packet is obtained from the attribute “frame size” field. The measurement of the one way delay parameter implies clock synchronization between the server and the receiver, because the delay is obtained by comparing the timestamps of the sent and received packet.6. TESTING AND RESULTSIn order to test the importance of policing based on drop priorities, a DiffServ edge router was configured using Linux QoS mechanisms to police traffic according to the DSCP value of each packet. Traffic conditioning was implemented with four policy filters combined with a DSMARK queue discipline. Out-of-profile traffic from a class is re-marked and sent to the lower priority class. The fourth filter is associated with best-effort traffic and out-of-profile packets are discarded.Preliminary tests were performed using the CLA-enabled client as traffic source, a DiffServ edge163router for traffic policing and a fast receiver. A H.264 encoded Foreman sequence was sent to the destination through the ingress router. The total rate was limited to 1.1 Mbps to enforce re-classification and dropping. The edge router discarded excess packets according to their DSCP set by the video source. A second experiment was performed with similar setup but, instead of priority dropping,packets were discarded randomly (Fig. 2).Fig. 2. Tesbed with CLA client and DiffServ ER Image quality was compared using peak SNR (PSNR) for each video frame, and the average PSNR (APSNR) was computed for both video sequences received at the destination node, relative to the source Foreman sequence (Fig. 3). The APSNR value obtained for the first experiment was 48.72 dB, higher than 31.13 dB obtained in the second (random drop) case, which shows the benefic effectsof DSCP based policing.Fig. 3. Priority Drop vs. Random Drop The validation of the iptv_tool was performed using a different scenario (Fig. 4). In order to avoid synchronisation issues the server and the client run on the same computer. The router redirects the packets received from the media server to the IPTV client, located on the same interface. This is performed by switching the source IP address with the destination IP address with the aid of iptables tool (in the PREROUTING and POSTROUTING chains). Wireshark filtering according to the ip.src and ip.dst parameters differentiates the sent and the received mediastreams, which are further saved in two files [9].Fig. 4. TestbedThe tc program, which is part of the iproute2toolkit was used to introduce delay and packet loss. We can specify the queuing discipline with qdisk and with the aid of netem we can configure the delay, packet loss, packet duplication and reordering.Several test scenarios were employed to validate the correct operation of iptv_tool . In the first one the packets were redirected, without any further delay or loss. Further scenarios with delay, loss, packet duplication, packet corruption and reordering were also considered (as in Table 1), either for realtime streaming or for VoD.Table 1. Realtime streaming/VoD test scenarios1234567delay [ms] 0100 0000100jitter [ms] 010000010loss 005%0005%error 00020%000duplication 0000010 % 5%reordering 025%010%7. CONCLUSIONIn this article we introduced the concept of areliable multimedia network, based on established or emerging technologies such as DiffServ or CL design that aims to ensure robust communication for real-time video traffic over heterogeneous network segments. In the core DiffServ network, a new multimedia PHB is presented together with a simple implementation. The framework includes a tool for QoS parameters measurement.Linux experiments show that ingress video traffic conditioning achieves better results when packets are discarded based on their priorities compared with the random drop case. The correct operation of iptv_tool was also proved.The proposed cross-layer solution will be extended to the Data Link layer with the aid of the MadWifi WLAN Linux driver for Atheros chipsets that allows the use of TOS or DSCP bits to select the required MAC access class. REFERENCES[1]J.Soldatos, et al “On the Building Blocks of Quality of Service in Heterogeneous IP Networks”, IEEE Communication Surveys & Tutorials, vol. 7, 2005.[2]S.Khan, et al. , “Application-Driven Cross-Layer Optimization for Video Streaming over WirelessNetworks”, IEEE Communication Magazine, vol. 44, no.1, pp. 122-130, January 2006[3]S.Blake, et al., “An Architecture for Differentiated Services”, RFC 2475, December 1998.[4]ITU-T Recommendation H.264, “Advanced Video Coding for Generic Audiovisual Services”, H.264 Standard, 2005.[5]G.Armitage, Quality of Service in IP Networks , New Riders Publishing, 2000[6] C.Demichelis, P.Chimento, “IP Packet Delay Variation Metric for IP Performance Metrics”, RFC3393, 2002 [7]S. Floyd and V. Jacobson, “Random Early Detection gateways for Congestion Avoidance” IEEE/ACMTransactions of Networking, vol. 1, no. 4, pp. 397-413, August 1993.[8][9]Wireshark, /164。

相关文档
最新文档