原子的核式结构原子核

合集下载

原子与原子核——知识介绍

原子与原子核——知识介绍

原子和原子核 ——知识介绍一.原子结构(一)原子的核式结构人们认识原子有复杂结构是从1897年汤姆生发现电子开始的。

汤姆生通过研究对阴极射线的分析发现了电子,从而知道,电子是原子的组成部分,为了保持原子的电中性,除了带负电的电子外,还必须有等量的正电荷。

因此汤姆生提出了“葡萄干面包”模型:正电荷部分连续分布于整个原子,电子镶在其中。

1909年卢瑟福在α粒子散射实验中,以α粒子轰击重金属箔发现:大多数α粒子穿过薄膜后的散射角很小,但还有八千分之一的α粒子,散射角超过了900,有些甚至被弹回来,散射角几乎达到1800。

1911年卢瑟福提出了原子核式结构模型:在原子的中心有一个很小的核称为原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核高速旋转。

从α粒子散射实验的数据可以估计出原子核的大小约为10-15——10-14米,原子半径大约为10-10米。

原子核式结构模型较好的解释了α粒子散射实验现象,也说明了汤姆生的“葡萄干面包”模型是错误的。

(二)玻尔的氢原子理论1.1.巴耳末公式1885年,瑞士物理学家巴耳末首先发现氢原子光谱中可见光区的四条谱线的波长,可用一经验公式来表示:)121(122n R -=λ n =3,4,5……式中λ为波长,R =×10 7米-1称为里德伯恒量,上式称为巴耳末公式。

2.2.里德伯公式1889年,里德伯发现氢原子光谱德所有谱线波长可用一个普通的经验公式表示出来:)11(122n m R -=λ式中n=m+1,m+2,m+3……,上式称为里德伯公式。

对于每一个m ,上式可构成一个光谱系: m=1,n=2,3,4……赖曼系(紫外区)m=2,n=3,4,5……巴尔末系(可见光区)m=3,n=4,5,6……帕邢系(红外区)m=4,n=5,6,7……布喇开系(远红外区)3.3.玻尔的氢原子理论卢瑟福的原子核式结构模型能成功地解释α粒子散射实验,但无法解释原子的稳定性和原子光谱是明线光谱等问题。

第十六章 第2讲 原子结构 原子核

第十六章 第2讲 原子结构 原子核

=0 时刻这两种元素的原子核总数为 N,在 t=2t0 时刻,尚未衰变的原子
核总数为N3,则在 t=4t0 时刻,尚未衰变的原子核总数为
N A.12
N B. 9
√C.N8
N D. 6
根据题意设半衰期为t0的元素原子核数为x,另一种元素原子核数为y, 依题意有 x+y=N,经历 2t0 后有14x+12y=N3, 联立可得 x=23N,y=13N, 在t=4t0时,原子核数为x的元素经历了4个半衰期,原子核数为y的元 素经历了2个半衰期, 则此时未衰变的原子核总数为 n=214x+212y=N8,故选 C.
2.氢原子光谱 (1)光谱:用棱镜或光栅可以把光按波长(频率)展开,获得光的 波长(频率) 和强度分布的记录,即光谱. (2)光谱分类: ①线状谱是一条条的 亮线 . ②连续谱是连在一起的 光带 .
(3)氢原子光谱的实验规律: ①巴耳末系是氢原子光谱在可见光区的谱线,其波长公式1λ=R∞212-n12(n =3,4,5,…),R∞是里德伯常量,R∞=1.10×107 m-1,n 为量子数,此公 式称为巴耳末公式. ②氢光谱在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关 系式.
D.衰变形成的两个粒子电荷量的关系为q1∶q2=r1∶r2
衰变后两个新核速度方向相反,受力方向也相反, 根据左手定则可判断出两个粒子带同种电荷, 所以衰变是α衰变,衰变后的新核由洛伦兹力提供向心力, 有 Bqv=mvr2,可得 r=mqBv, 衰变过程遵循动量守恒定律,即mv相同, 所以电荷量与半径成反比,有q1∶q2=r2∶r1, 但无法求出质量比,故A、D错误,B、C正确.
3.三种射线的比较
名称 构成 符号 电荷量
α射线 __氦__核 42H +2e

高二上物理原子核知识点总结

高二上物理原子核知识点总结

高二上物理原子核知识点总结导读:高二物理原子核知识点一、原子的核式结构:1、α粒子的散射实验:(1)绝大多数α粒子穿过金箔后几乎沿原方向前进;(2)少数α粒子穿过金箔后发生了较大偏转;(3)极少数α粒子击中金箔后几乎沿原方向反回;二、原子的核式结构模型:原子中心有个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,带负电的电子绕核做高速的圆周运动;1、原子核又可分为质子和中子;(原子核的全部正电荷都集中在质子内)质子的质量约等于中子的质量;2、质子数等于原子的核电荷数(Z);质子数加中子数等于质量数(A)三、波尔理论:1、原子处于一系列不连续的能量状态中,每个状态原子的能量都是确定的,这些能量值叫做能级;2、原子从一能级向另一能级跃迁时要吸收或放出光子;(1)从高能级向低能级跃迁放出光子;(2)从低能级向高能级跃迁要吸收光子;(3)吸收或放出光子的能量等于两个能级的能量差;hγ=E2-E1;四、天然放射现象衰变1、α射线:高速的氦核流,符号:42He;2、β射线:高速的电子流,符号:0-1e;3、γ射线:高速的光子流;符号:γ4、衰变:原子核向外放出α射线、β射线后生成新的原子核,这种现象叫衰变;(衰变前后原子的核电荷数和质量数守恒)(1)α衰变:放出α射线的衰变:ZX=Z-2Y+2He;(2)β衰变:放出β射线的'衰变:AZX=AZ+1Y+0-1e;五、核反应、核能、裂变、聚变:1、所有核反应前后都遵守:核电荷数、质量数分别守恒;(1)卢瑟福发现质子:147N+42He→178 O+11H;(2)查德威克发现中子:94Be+42He→126C+10n;2、核反应放出的能量较核能;(1)核能与质量间的关系:E=mc2(2)爱因斯坦的质能亏损方程:△E=△mc2;3、重核的裂变:质量较大和分裂成两个质量较小的核的反应;(原子弹、核反应堆)4、轻核的聚变:两个质量较小的核变成质量较大的核的反应;(氢弹)高二物理选修3-5知识点1.黑体能全部吸收各种波长的电磁波而不发生反射的物体称为绝对黑体,简称黑体.不透明的材料制成带小孔空腔,可近似地看作黑体,研究黑体辐射的规律是了解一般物体热辐射性质的基础。

原子的核式结构模型

原子的核式结构模型

原子的核式结构模型20世纪20年代,科学家们开始采取一种叫做原子核式结构模型的概念,以研究原子的形态与特性。

自此以后,原子的核式结构模型的发展与改进一直是原子理论的中心所在。

原子核式结构模型源于二十世纪初丹麦物理学家斯提威尔预言的原子模型,以及由罗伯茨橹和法国物理学家卢克提出的确定原子结构的结构模型。

该模型假设原子是一个由原子核中心外围由电子组成的球形均匀结构。

原子核模型表明,电子存在于原子核周围以布朗电子球结构排列,形成了一个空间结构,这种空间结构是原子构型的基本动力。

因此,原子的结构在不同的元素中可以有不同的形态。

原子核模型同时提出了电子层次结构的概念,表明电子在原子核周围也按照层次结构排列。

在每一层次中,电子能限的数量也不同。

例如,一些元素有七个电子层次,而另一些元素可能只有三层电子层次。

同样,在不同的电子层次中,电子具有不同的能量。

随着进一步发展,原子核式结构模型也发展出一系列新的理论,包括量子电子理论、费米能级理论、空间结构理论、电子能级理论、电子轨道理论等。

量子电子理论可以解释原子的可见光谱线,费米能级理论可以解释原子核内电子的序列,而空间结构理论可以描述原子核内电子的周期性结构,电子能级理论可以解释复杂的元素结构,而电子轨道理论则可以解释电子结构中不同能级之间的转变。

原子核式结构模型改变了人们对原子结构的认知,也改变了物质特性的认识,特别是特定元素的化学性质等的理解。

它的发展也为物理学、化学等其他学科的发展作出了重大贡献,也极大地拓展了物理世界的认知范围。

总的来说,原子核式结构模型为研究原子的结构和性质奠定了基础,在今天仍然是原子理论研究的基础。

随着科学技术的发展,原子核式结构模型也发生了很大的变化,以更好地满足研究的需要。

因此,原子核式结构模型仍然是科学研究原子结构和性质的重要参考模型。

原子的核式结构范文

原子的核式结构范文

原子的核式结构范文原子是构成物质的最基本单位,由原子核和电子云组成。

原子核是原子的中心部分,其核式结构是指核内的粒子组织和排列方式。

下面将详细介绍原子核的结构和特点。

原子核由质子和中子组成。

质子带有正电荷,具有质量,中子不带电荷,也具有质量。

质子和中子称为核子。

质子和中子合称为核子是因为它们都存在于原子核内,与电子相比,核子具有更大的质量。

质子和中子以一种特定的方式排列在原子核内部。

质子和中子的数量决定了元素的原子核质量。

原子核的质量数等于质子数加上中子数。

不同元素的原子核可以有不同的质量数和质子数,从而形成不同的元素。

原子核的直径通常约为10^-15米,相比于整个原子的大小,原子核的体积非常小。

这也意味着原子核非常致密,其中包含了绝大部分原子的质量。

原子核的稳定性与核子的排列方式和核力有关。

核力是一种相对于电磁力和重力的短程力,它保持质子和中子在原子核内部的结合。

核力是一种非常强大的力量,能够克服质子之间的排斥力,使得原子核保持稳定。

当核子的排列方式和核力达到一定的平衡时,原子核就是稳定的。

然而,当核子的排列方式不稳定时,原子核就会发生衰变,放出粒子或辐射以保持稳定。

原子核的稳定性还与核子的质量数有关。

在相同的质子数下,中子数的增加会增加原子核的稳定性。

这是因为中子的加入会增加核力的作用范围,从而增加质子之间的吸引力。

然而,在质子数超过一定范围后,增加中子数将不再增加原子核的稳定性,甚至会减弱稳定性。

这将导致核子之间的斥力增加,使原子核变得不稳定。

核式结构还可以用核壳模型来解释。

核壳模型是描述原子核内部核子排列方式的模型。

它类似于原子外部的电子壳层结构。

核壳模型认为原子核由能级较低的核壳层和能级较高的核壳层组成,类似于电子的能级结构。

核壳模型解释了为什么一些特定核子的数目更稳定。

例如,在一些原子核中,质子或中子的数目正好达到一些特定值时,原子核更稳定。

这被称为“魔数”现象。

魔数对应着核壳层的填充情况,类似于电子壳层填充到满壳时的稳定性。

原子核式结构模型

原子核式结构模型

原子核式结构模型原子核是原子的核心部分,由质子和中子组成。

原子核的结构可以使用原子核式结构模型来描述。

该模型最早由曼谷教授鲁特福德于1911年提出,通过实验验证得到了广泛认可。

本文将详细介绍原子核式结构模型及其主要特点。

原子核式结构模型的核心概念是原子核的存在和构成方式。

根据实验结果,鲁特福德提出了原子核中心存在着正电荷和质量集中的核,质子和中子是核的基本组成部分。

质子带有正电荷,中子没有电荷,两者的质量几乎相等。

原子核的直径约为10^-15米,而整个原子的直径约为10^-10米,原子核占据原子体积只有极小的比例。

在原子核式结构模型中,原子核由质子和中子组成。

质子和中子存在于核的特定位置,形成一个紧密排列的结构。

质子和中子通过强相互作用力紧紧地束缚在一起,使得原子核保持了相对稳定的结构。

质子和中子的数量决定了原子核的质量数,在同位素中,质子数相同而质量数不同的原子核被称为同位素。

原子核的正电荷主要来自于质子,而质子数量决定了原子核的电荷数。

原子核的电荷数和质量数不同构成了不同元素的原子核,以及同位素的不同核。

原子的核电荷数决定了原子的化学性质,是元素之间发生化学反应的重要因素。

由于原子核的直径极小,通过实验观察原子核结构是非常困难的。

鲁特福德利用了阿尔法粒子散射实验,发现阿尔法粒子在经过薄金属膜时会被散射。

根据散射角的测量结果,鲁特福德得出了原子核式结构模型。

通过计算散射粒子的运动和能量,他得出了原子核的直径和正电荷的分布情况。

原子核式结构模型的主要特点是原子核中心存在着具有正电荷和质量集中的核,质子和中子是原子核的基本组成部分。

原子核质量数通过质子和中子的数量决定,而电荷数通过质子的数量决定。

原子核的直径约为10^-15米,是原子体积的一小部分。

原子核通过强相互作用力将质子和中子紧密地束缚在一起,保持着相对稳定的结构。

总结起来,原子核式结构模型是对原子核的结构和构成方式的描述。

它通过实验证据得到了广泛认可,成为了解释原子核性质和行为的重要模型。

原子的核式结构、原子核

原子的核式结构、原子核
带负电的电子在核外空间绕着核旋转
原 子 的 核 式 结 构 模 型
体育场 原子
原子核
原 子 的 核 式 结 构 模 型
α 粒子散射实验
第十八章:原子结构
汤 姆 生 枣 糕 式 模 型
原子是一个球体;正电荷均匀 分布在整个球内,而电子都象 枣核那样镶嵌在原子里面
原 子 的 核 式 结 构 模 型
所有α粒子都不 会有很大的偏转
原 子 的 核 式 结 构 模 型
α粒子穿过原子给我们的感觉就像是高 速运行的子弹穿透果冻一样容易。
粒 子 散 射 实 验
α
原 子 的 核 式 结 构 模 型

绝大多数α粒子穿过金箔后仍 沿原来方向前进 实 验 现 象
少数α粒子发生了较大的偏转 极少数α粒子的偏转超过90°
有的甚至几乎达到180°
“这是我一生中从未有的最难以置信的事,它 好比你对一张纸发射出一发炮弹,结果被反 弹回来而打到自己身上……” —卢瑟福
原 子 的 核 式 结 构 模 型
极个别α粒子 的偏转几乎 达到180° 少数α粒子发生 了较大的偏转
极少数α粒子的 偏转超过90° 绝大多数α粒子穿 过金箔后仍沿原来 方向前进
α粒子在原子中 碰到了比它质量 大的多的东西
α粒子受到较 大的库仑力作 用
原子中绝大 部分是空的
原 在原子的中心有一个很小的核,叫做原子核 子 的 核 式 原子的全部正 结 电荷和几乎全 构 部质量都集中 模 在原子核里 型

原子核式结构

原子核式结构

原子核式结构1. 引言原子核式结构是指原子中心的原子核和围绕原子核运动的电子之间的空间排布和相互作用关系。

原子核式结构的研究对于理解原子的基本性质和化学行为具有重要意义。

本文将介绍原子核的组成、结构和特性,以及电子的排布和相互作用等相关内容。

2. 原子核的组成原子核是原子的核心部分,具有正电荷,通常由质子和中子组成。

质子具有正电荷,中子不带电荷。

根据原子的元素,原子核中质子的数量决定了原子的原子序数,即元素的周期表中的位置。

例如,氢原子核只有一个质子,因此其原子序数为1,而氦原子核有两个质子,原子序数为2。

3. 原子核的结构原子核内的质子和中子通过强相互作用力相互维持在一起。

质子之间的电磁相互作用力会导致相互排斥,但强相互作用力可以克服这种排斥力,使得原子核能够稳定存在。

原子核的稳定性取决于质子和中子的数量以及它们之间的相互作用关系。

原子核的大小通常用原子的半径来表示。

原子核的直径非常小,通常约为原子直径的10,000倍。

原子核内的质子和中子被称为核子,核子本身也是由更小的粒子构成的。

质子和中子属于重子,而重子又是由夸克组成的。

4. 原子核的特性原子核具有以下几个重要的特性:•质量数(A):原子核中质子和中子的总数。

•原子序数(Z):原子核中质子的数量,决定元素的化学性质和在周期表中的位置。

•中子数(N):原子核中中子的数量,决定原子核的稳定性。

•核电荷数(Q):原子核中的总电荷,等于质子数减去电子数。

5. 原子核式结构的调整原子核式结构可以通过核反应进行调整。

核反应是指原子核中的质子和中子发生物理变化的过程。

核反应可以导致放射性衰变、核聚变和核裂变等。

核反应可以改变原子核的质量数和原子序数,从而改变元素的性质。

核反应在核能的利用和核武器的制造中起着重要的作用。

6. 电子的排布和相互作用在原子核周围运动的电子决定了原子的化学性质。

电子的排布和相互作用关系受到量子力学的描述,并由一系列的量子数和轨道来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流与讨论
现象一、绝大多数a 粒子穿过金箔后仍沿原来方向前进. 现象二、少数α 粒子发生了较大的偏转,极少数a 粒子的偏转超过90° 现象三、有的甚至几乎达到180 °.
现象一说明,原子中绝大部分是空的; 现象二可看出,α 粒子受到较大的库仑力作用; 现象三可看出,α粒子在原子中碰到了比他质量大 的多的东西
3、(97全国)在卢瑟福的a粒子散射实验 中,有少数a粒子发生大角度偏转,其原 因是( A ) A、原子的正电荷和绝大部分质量集中在 一个很小的核上
B、正电荷在原子中是均匀分布的
C、原子中存在着带负电的电子
D、原子只能处于一系列不连续的能量状 态中
4、在α粒子散射实验中,当a粒子最接近金原子 核时,α粒子符合下列哪种情况( )AD
A.动能最小 B.势能最小 C.α粒子和金原子组成的系统的能量最小 D.所受原子核的斥力最大
5、在a粒子穿过金箔发生大角度散射的过程中, 下列说法正确的是( A ) A.α粒子一直受到金原子核的斥力作用 B.α粒子的动能不断减小 C.α粒子电势能不断减小 D.α粒子发生散射,是与电子碰撞的结果
原子的核式结构
粒子散射实验


1909~1911年,

英国物理学家卢瑟福
和他的助手们进行了
α粒子散射实验
著名的α 粒子散射实验
汤姆孙模型预言的α粒子散射实验的 结果是怎样的?
电子质量很小,对α 粒子的运动方向不会发生明显影响; 由于正电荷均匀分布,α 粒子所受库仑力也很小,故α
粒子偏转角度不会很大.
原子
体育场
原子核
课堂练习:
1、提出原子核式结构模型的科学家是( C)
A、汤姆生
B、玻尔
C、卢瑟福 D、查德威克
2、卢瑟福原子核式结构理论的主要内容有
( ACD)
A、原子的中心有个核,叫做原子核
B、原子的正负电荷都均匀分布在整个原子中
C、原子的全部正电荷和几乎全部质量都集中 在原子核里
D、带负电的电子在核外绕核旋转
卢瑟福原子模型
在原子的内部有一个很小的核,叫做原子核.
原子的全部正电荷以及几乎全部的质量都集中 在原子核里,带负电的电子在核外空间绕着核 旋转.
卢瑟福提出的 原子核式结构
(行星式模型)
核式结构模型(行星式模型)示意图
v 电子
F 库仑力
原子核
原子核的核式结构的,举一个简单的例子:
相关文档
最新文档