电磁感应复习
电磁感应解题技巧及练习

电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。
③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。
)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。
再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。
然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。
按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。
最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。
【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。
电磁感应复习

8、如图所示,匀强磁场中固定的金属框架ABC,导体棒DE 在框架上沿图示方向匀速平移,框架和导体棒材料相同、同 A 样粗细,接触良好.则( ) A.电路中感应电流保持一定 B.电路中磁通量的变化率一定 C.电路中感应电动势一定 D.棒受到的外力一定 E. 回路的电功率一定 DE棒在任意时刻t在电路中的有效切割长度L=2·vt·tanθ 与t无关
来拒去留 S N S N S N
四、法拉第电磁感应定律
1.法拉第电磁感应定律:电磁感应中感应电动势的大小,即 跟穿过这一电路的磁通量的变化率成正比,即: 2、注意:产生感应电动势的那部分导体相当于电源,该电源 的正负极由楞次定律来确定,注意电源内部电流是由负极流 向正极. 3.磁通量变化产生电动势的几种情况
②E=2BRv;
③E=BRv
公式中的L为有效切割长度:即垂直于B、垂直于v且处于磁 场中的直线部分长度
例4、材料、粗细相同,长度不同的电阻丝做成ab、 cd、ef三种形状的导线,分别放在电阻可忽略的光滑 金属导轨上,并与导轨垂直,如图所示,匀强磁场方 向垂直导轨平面向内.外力使导线水平向右做匀速运动, 且每次外力所做功的功率相同,已知三根导线在导轨 间的长度关系是Lab<Lcd<Lef,则 ( )BD (A)ab运动速度最大 Rab<Rcd<Ref BLv (B)ef运动速度最大 L 0.8 N p=FV F BIL B R (C)因三根导线切割磁感线的有效长度相同,故它们产 生的感应电动势相同 (D)忽略导体内能变化,三根导线每秒产生的热量相同 Q=Pt
D1
D2
(2) 、接通瞬间可把线圈当断路
选修3-2 第九章 电磁感应(高考物理复习)

第九章电磁感应第一单元电磁感应现象楞次定律一、高考考点,电磁感应现象Ⅰ(考纲要求)1.电磁感应现象当穿过闭合电路的磁通量时,电路中有产生的现象.2.产生感应电流的条件表述1闭合电路的一部分导体在磁场内做运动.表述2穿过闭合电路的磁通量.3.产生电磁感应现象的实质电磁感应现象的实质是产生,如果回路闭合则产生;如果回路不闭合,则只有,而无 .楞次定律Ⅱ(考纲要求)1.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要引起感应电流的的变化.(2)适用条件:所有现象.2.右手定则(如右下图所示)(1)内容:伸开右手,使拇指与垂直,并且都与手掌在同一平面内,让从掌心进入,并使拇指指向导线,这时四指所指的方向就是的方向. (2)适用情况:导体产生感应电流.2.判断感应电流方向的“三步法”:3.右手定则掌心——磁感线垂直穿入,拇指——指向导体运动的方向,四指——指向感应电流的方向.二、基础自测1.下图中能产生感应电流的是().2.如图所示,小圆圈表示处于匀强磁场中的闭合电路一部分导线的横截面,速度v在纸面内.关于感应电流的有无及方向的判断正确的是().A.甲图中有感应电流,方向向里B.乙图中有感应电流,方向向外C.丙图中无感应电流3.(2009·浙江理综)如图在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m,阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是()A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d4.某班同学在探究感应电流产生的条件时,做了如下实验:探究Ⅰ:如图甲,先将水平导轨、导体棒ab放置在磁场中,并与电流表组成一闭合回路.然后进行如下操作:①ab与磁场保持相对静止;②让导轨与ab一起平行于磁感线运动;③让ab做切割磁感线运动.探究Ⅱ:如图乙所示,将螺线管与电流表组成闭合回路.然后进行如下操作:①把条形磁铁放在螺线管内不动;②把条形磁铁插入螺线管;③把条形磁铁拔出螺线管.探究Ⅲ:如图914丙所示,螺线管A、滑动变阻器、电源、开关组成一个回路;A放在螺线管B内,B与电流表组成一个闭合回路.然后进行如下操作:①闭合和断开开关瞬间;②闭合开关,A中电流稳定后;③闭合开关,A中电流稳定后,再改变滑动变阻器的阻值.可以观察到:(请在(1)(2)(3)中填写探究中的序号)(1)在探究Ⅰ中,________闭合回路会产生感应电流;(2)在探究Ⅱ中,________闭合回路会产生感应电流;(3)在探究Ⅲ中,________闭合回路会产生感应电流;(4)从以上探究中可以得到的结论是:当________时,闭合回路中就会产生感应电流.5.(2010·上海卷)如图,金属环A用轻线悬挂,与长直螺线管共轴,并位于其左侧.若变阻器滑片P向左移动,则金属环A将向___ ____(填“左”或“右”)运动,并有_____ ___(填“收缩”或“扩张”)趋势.二、高考体验1.(2009·海南高考)一长直铁芯上绕有一固定线圈M,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N,N可在木质圆柱上无摩擦移动.M连接在如图的电路中,其中R为滑动变阻器,E1和E2为直流电源,S为单刀双掷开关.下列情况中,可观测到N向左运动的是()A.在S断开的情况下,S向a闭合的瞬间B.在S断开的情况下,S向b闭合的瞬间C.在S已向a闭合的情况下,将R的滑动头向c端移动时D.在S已向a闭合的情况下,将R的滑动头向d端移动时2.(2009·重庆理综)如图所示为一种早期发电机原理示意图,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称.在磁极绕转轴匀速转动过程中,磁极中心在线圈平面上的投影沿圆弧XOY运动(O是线圈中心),则().A.从X到O,电流由E经○G流向F,先增大再减小B.从X到O,电流由F经○G流向E,先减小再增大C.从O到Y,电流由F经○G流向E,先减小再增大D.从O到Y,电流由E经○G流向F,先增大再减小3.(2010·海南高考)金属环水平固定放置,现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环().A.始终相互吸引B.始终相互排斥C.先相互吸引,后相互排斥D.先相互排斥,后相互吸引4.(2010·课标全国理综,21)如图所示,两个端面半径同为R 的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为E 1,下落距离为0.8R 时电动势大小为E 2.忽略涡流损耗和边缘效应.关于E 1、E 2的大小和铜棒离开磁场前两端的极性,下列判断正确的是( ).A .E 1>E 2,a 端为正B .E 1>E 2,b 端为正C .E 1<E 2,a 端为正D .E 1<E 2,b 端为正5.(2011·上海单科,13)如图所示,均匀带正电的绝缘圆环a 与金属圆环b 同心共面放置,当a 绕O 点在其所在平面内旋转时,b 中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a ( ).A .顺时针加速旋转B .顺时针减速旋转C .逆时针加速旋转D .逆时针减速旋转6.(2011·上海单科,20)如图所示,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布,一铜制圆环用丝线悬挂于O 点,将圆环拉至位置a 后无初速释放,在圆环从a 摆向b 的过程中( ).A .感应电流方向先逆时针后顺时针再逆时针B .感应电流方向一直是逆时针C .安培力方向始终与速度方向相反D .安培力方向始终沿水平方向第二单元 法拉第电磁感应定律 自感 涡流一、高考考点法拉第电磁感应定律 Ⅱ(考纲要求)1.感应电动势(1)概念:在 中产生的电动势;(2)产生条件:穿过回路的 发生改变,与电路是否闭合 .(3)方向判断:感应电动势的方向用 或 判断.2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的 成正比.(2)公式:E =n ΔΦΔt ,其中n 为线圈匝数. (3)感应电流与感应电动势的关系:遵守 定律,即I = .3.导体切割磁感线时的感应电动势(1)导体垂直切割磁感线时.感应电动势可用E = 求出,式中l 为导体切割磁感线的有效长度.(2)导体棒在磁场中转动时.导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势 E = = (平均速度等于中点位置线速度12l ω).自感、涡流 Ⅰ (考纲要求)1.自感现象(1)概念:由于导体本身的 变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做 .(2)表达式:E = .(3)自感系数L①相关因素:与线圈的 、形状、 以及是否有铁芯有关.2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生 ,这种电流像水的漩涡所以叫涡流. 电磁感应的重要应用(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到 ,安培力的方向总是 导体的相对运动(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生 使导体受到安培力的作用,安培力使导体运动起来.交流感应电动机就是利用 的原理工作的.(3)电磁阻尼和电磁驱动的原理体现了 的推广应用1.对公式E =n ΔΦΔt的理解:2.公式E =BL v 与公式E =nΔΦΔt 的比较二、基础自测1.(2012·安徽六校联考)图中a ~d 所示分别为穿过某一闭合回路的磁通量Φ随时间t 变化的图象,关于回路中产生的感应电动势下列论述正确的是( ).A.图a 中回路产生的感应电动势恒定不变B.图b 中回路产生的感应电动势一直在变大C.图c 中回路在0~t 1时间内产生的感应电动势小于在t 1~t 2时间内产生的感应电动势D.图d 中回路产生的感应电动势先变小再变大2.如图所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速转动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)A.由c 到d ,I =Br 2ωR B .由d 到c ,I =Br 2ωRC.由c 到d ,I =Br 2ω2R D .由d 到c ,I =Br 2ω2R3.在匀强磁场中,有一个接有电容器的单匝导线回路,如图所示,已知C =30 μF ,L 1=5 cm ,L 2=8 cm ,磁场以5×10-2 T/s 的速率增加,则( ).A.电容器上极板带正电,带电荷量为6×10-5 CB.电容器上极板带负电,带电荷量为6×10-5 CC.电容器上极板带正电,带电荷量为6×10-9 CD.电容器上极板带负电,带电荷量为6×10-9 C4.如图所示为一光滑轨道,其中MN 部分为一段对称的圆弧,两侧的直导轨与圆弧相切,在MN 部分有如图所示的匀强磁场,有一较小的金属环如图放置在P 点,金属环由静止自由释放,经很多次来回运动后,下列判断正确的有( ).A.金属环仍能上升到与P 等高处B.金属环最终将静止在最低点C.金属环上升的最大高度与MN 等高D.金属环上升的最大高度一直在变小5.闭合回路由电阻R 与导线组成,其内部磁场大小按Bt 图变化,方向如图所示,则回路中( ).A.电流方向为顺时针方向B.电流强度越来越大C.磁通量的变化率恒定不变D.产生的感应电动势越来越大二、高考体验(一)公式E =Bl v 的应用(高频考查)1.(2010·全国Ⅰ,17)某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5×10-5 T .一灵敏电压表连接在当地入海河段的两岸,河宽100 m ,该河段涨潮和落潮时有海水(视为导体)流过.设落潮时,海水自西向东流,流速为2 m/s.下列说法正确的是( ).A .电压表记录的电压为5 mVB .电压表记录的电压为9 mVC .河南岸的电势较高D .河北岸的电势较高2.(2011·山东理综,21)如图所空间存在两个磁场,磁感应强度大小均为B ,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴.一导线折成边长为l 的正方形闭合回路abcd ,回路在纸面内以恒定速度v 0向右运动,当运动到关于OO ′对称的位置是( ).A .穿过回路的磁通量为零B .回路中感应电动势大小为2Bl v 0C .回路中感应电流的方向为顺时针方向D .回路中ab 边与cd 边所受安培力方向相同3.(2010·全国卷Ⅱ,18)如图空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平.在竖直面内有一矩形金属线圈,线圈上下边的距离很短,下边水平.线圈从水平面a 开始下落.已知磁场上下边界之间的距离大于水平面a 、b 之间的距离.若线圈下边刚通过水平面b 、c (位于磁场中)和d 时,线圈所受到的磁场力的大小分别为F b 、F c 和F d ,则( ).A .F d >F c >F bB .F c <F d <F bC .F c >F b >F dD .F c <F b <F d(二)法拉第电磁感应定律E =n ΔΦΔt的应用(高频考查) 4.(2010·浙江理综,19)半径为r 带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d ,如图9216甲所示.有一变化的磁场垂直于纸面,规定向内为正,变化规律如图乙所示.在t =0时刻平板之间中心有一重力不计,电荷量为q 的静止微粒.则以下说法正确的是( ).A .第2秒内上极板为正极B .第3秒内上极板为负极C .第2秒末微粒回到了原来位置D .第2秒末两极板之间的电场强度大小为0.2πr 2d5.(2011·广东卷,15)将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( ).A .感应电动势的大小与线圈的匝数无关B .穿过线圈的磁通量越大,感应电动势越大C .穿过线圈的磁通量变化越快,感应电动势越大D .感应电流产生的磁场方向与原磁场方向始终相同6.(2011·福建卷,17)如图所示,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).A .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBL vD .受到的最大安培力大小为B 2L 2v Rsin θ 第3讲 专题 电磁感应的综合应用一、高考考点考点一 电磁感应中的力学问题1.题型特点:电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左手定则、右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动能定理、机械能守恒定律等.要将电磁学和力学的知识综合起来应用.2.解题方法(1)选择研究对象,即哪一根导体棒或几根导体棒组成的系统;(2)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;(3)求回路中的电流大小;(4)分析其受力情况;(5)分析研究对象所受各力的做功情况和合外力做功情况,选定所要应用的物理规律;(6)运用物理规律列方程求解.电磁感应力学问题中,要抓好受力情况、运动情况的动态分析:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.附:安培力的方向判断 3.电磁感应问题中两大研究对象及其相互制约关系【典例1】一个质量m=0.1 kg的正方形金属框总电阻R=0.5 Ω,金属框放在表面绝缘的斜面AA′B′B的顶端(金属框上边与AA′重合),自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d 的匀强磁场后滑至斜面底端(金属框下边与BB′重合),设金属框在下滑过程中的速度为v,与此对应的位移为x,那么v2x图象如图所示,已知匀强磁场方向垂直斜面向上,金属框与斜面间的动摩擦因数μ=0.5,取g=10 m/s2,sin 53°=0.8;cos 53°=0.6.(1)根据v2x图象所提供的信息,计算出金属框从斜面顶端滑至底端所需的时间T;(2)求出斜面AA′B′B的倾斜角θ;(3)求匀强磁场的磁感应强度B的大小;【变式1】如图甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L=1 m,上端接有电阻R=3 Ω,虚线OO′下方是垂直于导轨平面的匀强磁场.现将质量m=0.1 kg、电阻r=1 Ω的金属杆ab,从OO′上方某处垂直导轨由静止释放,杆下落过程中始终与导轨保持良好接触,杆下落过程中的v-t图象如图乙所示(取g=10 m/s2).求:(1)磁感应强度B的大小.(2)杆在磁场中下落0.1 s的过程中电阻R产生的热量.1.题型特点:磁通量发生变化的闭合电路或切割磁感线导体将产生感应电动势,回路中便有感应电流.从而涉及电路的分析及电流、电压、电功等电学物理量的计算.2.解题方法(1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =Blv sin θ或E =n ΔΦΔt求感应电动势的大小,利用右手定则或楞次定律判断电流方向.如果在一个电路中切割磁感线的有几个部分但又相互联系,可等效成电源的串、并联.(2)分析电路结构(内、外电路及外电路的串并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串并联电路的基本性质等列方程求解.【典例2】 如图所示,匀强磁场B =0.1 T ,金属棒AB 长0.4 m ,与框架宽度相同,电阻为13Ω,框架电阻不计,电阻R 1=2 Ω,R 2=1 Ω,当金属棒以5 m/s 的速度匀速向左运动时,求:(1)流过金属棒的感应电流多大?(2)若图中电容器C 为0.3 μF ,则充电荷量是多少?【变式2】 如图所示,PN 与QM 两平行金属导轨相距1 m ,电阻不计,两端分别接有电阻R 1和R 2,且R 1=6 Ω,ab 导体的电阻为2 Ω,在导轨上可无摩擦地滑动,垂直穿过导轨平面的匀强磁场的磁感应强度为1 T .现ab 以恒定速度v =3 m/s 匀速向右移动,这时ab 杆上消耗的电功率与R 1、R 2消耗的电功率之和相等,求:(1)R2的阻值.(2)R 1与R 2消耗的电功率分别为多少?(3)拉ab 杆的水平向右的外力F 为多大?解析 (1)内外功率相等,则内外电阻相等,1.题型特点:一般可把图象问题分为三类(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.电磁感应的图象:主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.【典例3】如图所示,边长为L、总电阻为R的正方形线框abcd放置在光滑水平桌面上,其bc边紧靠磁感应强度为B、宽度为2L、方向竖直向下的有界匀强磁场的边缘.现使线框以初速度v0匀加速通过磁场,下列图线中能定性反映线框从进入到完全离开磁场的过程中,线框中的感应电流的变化的是().——电磁感应图象问题的解决方法(1)明确图象的种类,即是Bt图象还是Φt图象,或者Et图象、It图象等.(2)分析电磁感应的具体过程.(3)用右手定则或楞次定律确定方向对应关系.(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式.(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等.(6)判断图象(或画图象或应用图象解决问题).【变式3】(2012·江西十校二模)矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,磁感应强度B随时间变化的图象如图所示,t=0时刻,磁感应强度的方向垂直纸面向里.若规定导线框中感应电流逆时针方向为正,则在0~4 s时间内,线框中的感应电流I以及线框的ab边所受安培力F随时间变化的图象为下图中的(安培力取向上为正方向)().考点四电磁感应中的能量问题1.题型特点:电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功的形式实现的,安培力做功的过程,是电能转化为其他形式能的过程,外力克服安培力做功,则是其他形式的能转化为电能的过程.2.能量转化及焦耳热的求法(1)能量转化(2)求解焦耳热Q的几种方法【典例4】如图所示,水平虚线L1、L2之间是匀强磁场,磁场方向水平向里,磁场高度为h.竖直平面内有一等腰梯形线框,底边水平,其上下边长之比为5∶1,高为2h.现使线框AB边在磁场边界L1的上方h高处由静止自由下落,当AB边刚进入磁场时加速度恰好为0,在AB边刚出磁场的一段时间内,线框做匀速运动.求:(1)DC边刚进入磁场时,线框加速度的大小;(2)从线框开始下落到DC边刚进入磁场的过程中,线框的机械能损失和重力做功之比——解决这类问题的基本方法:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗的电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.【变式4】如图所示,在倾角为θ=37°的斜面内,放置MN和PQ两根不等间距的光滑金属导轨,该装置放置在垂直斜面向下的匀强磁场中.导轨M、P端间接入阻值R1=30 Ω的电阻和理想电流表,N、Q端间接阻值为R2=6 Ω的电阻.质量为m=0.6 kg、长为L=1.5 m的金属棒放在导轨上以v0=5 m/s的初速度从ab处向右上滑到a′b′处的时间为t=0.5 s,滑过的距离l=0.5 m.ab处导轨间距L ab=0.8 m,a′b′处导轨间距L a′b′=1 m.若金属棒滑动时电流表的读数始终保持不变,不计金属棒和导轨的电阻.sin 37°=0.6,cos 37°=0.8,g取10 m/s2,求:(1)此过程中电阻R1上产生的热量;(2)此过程中电流表上的读数;(3)匀强磁场的磁感应强度.二、高考体验一、电磁感应中的图象问题(高频考查)1.(2010·广东理综,16)如图939所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ沿导轨从MN 处匀速运动到M′N′的过程中,棒上感应电动势E随时间t变化的图象,可能正确的是().2.(2011·海南卷,6)如图所示,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF;OO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里.一边长为l的正方形导线框沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是().3.(2011·山东卷,22)如图所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c、d,置于边界水平的匀强磁场上方同一高度h处.磁场宽为3h,方向与导轨平面垂直.先由静止释放c,c刚进入磁场即匀速运动,此时再由静止释放d,两导体棒与导轨始终保持良好接触.用a c表示c的加速度,E kd表示d的动能,x c、x d分别表示c、d相对释放点的位移,图中正确的是().二、电磁感应中的力、电综合问题(高频考点)4. (2011·天津卷,11)如图9312所示,两根足够长的光滑平行金属导轨MN、PQ间距为L=0.5 m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m=0.02 kg,电阻均为R=0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B=0.2 T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止.取g=10 m/s2,问:(1)通过棒cd的电流I是多少,方向如何?(2)棒ab受到的力F多大?(3)棒cd每产生Q=0.1 J的热量,力F做的功W是多少?5.(2011·浙江卷,23)如图甲所示,在水平面上固定有长为L=2 m、宽为d=1 m的金属“U”型导轨,在“U”型导轨右侧l=0.5 m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示,在t=0时刻,质量为m=0.1 kg的导体棒以v0=1 m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1 Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g=10 m/s2).(1)通过计算分析4 s内导体棒的运动情况;(2)计算4 s内回路中电流的大小,并判断电流方向;(3)计算4 s内回路产生的焦耳热.6.(2011·大纲全国卷,24)如图所示,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计.在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放,金属棒下落过程中保持水平,且与导轨接触良好.已知某时刻后两灯泡保持正常发光.重力加速度为g.求:(1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.补练第一单元电磁感应现象楞次定律【典例1】如图一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是().A.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)【变式1】如图所示,光滑导电圆环轨道竖直固定在匀强磁场中,磁场方向与轨道所在平面垂直,导体棒ab的两端可始终不离开轨道无摩擦地滑动,当ab由图示位置释放,直到滑到右侧虚线位置的过程中,关于ab棒中的感应电流情况,正确的是().A.先有从a到b的电流,后有从b到a的电流B.先有从b到a的电流,后有从a到b的电流C.始终有从b到a的电流D.始终没有电流产生【典例2】下图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中表示正确的是().【变式2】北半球地磁场的竖直分量向下.如图所示,在北京某中学实验室的水平桌面上,放置边长为L的正方形闭合导体线圈abcd,线圈的ab边沿南北方向,ad边沿东西方向.下列说法中正确的是().A.若使线圈向东平动,则a点的电势比b点的电势低B.若使线圈向北平动,则a点的电势比b点的电势低C.若以ab为轴将线圈向上翻转,则线圈中感应电流方向为a→b→c→d→aD.若以ab为轴将线圈向上翻转,则线圈中感应电流方向为a→d→c→b→a【典例3】如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动.则PQ所做的运动可能是().A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动【变式3】如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引().A.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动【典例】如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放置在导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时().A.P、Q将互相靠拢B.P、Q将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g。
电磁感应单元复习

第九章电磁感应历年高考对本章知识点考查的频率较高,来年高考估计不会有很大的变动.1.感应电流的产生和感应电流方向的判断,出题以选择题为主.2.导体切割磁感线产生感应电动势的计算.常结合力学、电学知识,解决与电量、热量的相关问题.3.法拉第电磁感应定律的应用是高考热点,常以综合性大题出现,并结合电路、力学、能量守恒等知识.4.对电磁感应图象问题的考查主要以选择题为主,是常考知识点.5.结合实际应用问题.如日光灯原理、电磁阻尼、电磁驱动及磁悬浮原理等.第1课时电磁感应现象楞次定律基本知识回顾一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:从正、反两面哪个面穿入,若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.(1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.(2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.(3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.2.产生感应电流的条件表述1:闭合电路的一部分导体在磁场内做切割磁感线运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件穿过电路的磁通量发生变化.电磁感应现象的实质是产生感应电动势.如果回路闭合,则有感应电流;如果回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律内容:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量变化.3.判断感应电流方向问题的思路运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为(1)明确原磁场:弄清原磁场方向及磁通量的变化情况;(2)确定感应磁场:即跟据楞次定律中的“阻碍”原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向;(3)判定感应电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流的方向.即据原磁场(Φ原方向及ΔΦ情况)确定感应磁场(B感方向) 判断感应电流(I感方向).说明:1.楞次定律是普遍规律,适用于一切电磁感应现象,而右手定则只适用于导体切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定更简便.2.右手定则与左手定则的区别:抓住因果关系才能无误.“因动而电”——用右手;“因电而动”——用左手.重点难点例析一、磁通量及其变化的计算由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:(1)此公式只适用于匀强磁场(2)式中的S是与磁场垂直的有效面积(3)磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反(4)磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|.【例1】面积为S的矩形线框abcd,处在磁感应强度为B的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁通量是由正向BSsinθ减小到零,再由零增大到负向BScosθ,所以,磁通量的变化量为:ΔΦ=Φ2-Φ1=-BScosθ-BSsinθ=-BS(cosθ+sinθ)【答案】-BS(cosθ+sinθ)【点拨】磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负.穿过某一面积的磁通量一般指合磁通量.●拓展在水平面上有一不规则的多边形导线框,面积为S=20cm2,在竖直方向加以如图9-1-2所示的磁场,则下列说法中正确的是(方向以竖直向上为正)( )A.前2s内穿过线框的磁通的变化为ΔΦ=0B.前1s内穿过线框的磁通的变化为ΔΦ=-30WbC.第二个1s内穿过线框的磁通的变化为ΔΦ=-3x10-3W bD.第二个1s内穿过线框的磁通的变化为ΔΦ= -1x10-3W b【解析】由题意可知:刚开始计时磁感应强度为1.5T,方向竖直向上,在1s内均匀减小到零,第二个1s内反向增大到-1.5T,因此前1s或第一个1s及第二个1s内磁通量的变化都是-3x10-3W b.选项C正确.【答案】( C )【点拨】本题易错选A,错因是忽视了磁通量的正负号.二、感应电流方向的判定感应电流方向的判定方法:方法一:右手定则(部分导体切割磁感线)方法二:楞次定律【例2】某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是( )A.a→○G→bB.先a→○G→b,后b→○G→aC.先b→○G→aD.先b→○G→a,后a→○G→b【解析】①确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下②明确回路中磁通量变化情况:向下的磁通量增加③由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上④应用右手定则可以判断感应电流的方向为逆图9-1-2图9-1-3图9-1-1时针方向(俯视),即: b→○G→a同理可以判断:条形磁铁穿出线圈过程中,向下的磁通量减小,由楞次定律可得线圈中将产生顺时针的感应电流(俯视),电流从a→○G→b.【答案】( D )【点拨】根据楞次定律判断感应电流方向,有以上四个基本步骤.●拓展如图9-1-4所示,用一根长为L质量不计的绝缘细杆与一个上弧长为l、下弧长为d0的金属线框的中点连结并悬挂于O点,悬点正下方存在一个上弧长为2l、下弧长为2d0的方向垂直纸面向里的匀强磁场,且d0<<L.先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦力,下列说法正确的是( )A.金属线框进入磁场时感应电流的方向为a→b→c→d→aB.金属线框离开磁场时感应电流的方向为a→d→c→b→aC.金属线框dc边进入磁场与ab边离开磁场的速度大小总是相等D.金属线框最终将在磁场内做简谐运动【解析】由右手定则或楞次定律均可判断,当线框进入磁场时,感应电流方向为:a→d→c→b→a,当线框离开磁场时,感应电流方向为:a→b→c→d→a.金属线框在进入或离开磁场时,机械能都要减小,最终将在磁场内做往复运动,由于d0<<L,线框运动为简谐运动.选项D正确.【答案】( D )三、楞次定律推论的应用在实际问题的分析中,楞次定律的应用可拓展为以下四个方面①阻碍原磁通量的变化,即“增反减同”;②阻碍相对运动,即“来拒去留”;③使线圈面积有扩大或缩小的趋势,即“大小小大”;④阻碍导体中原来的电流发生变化,即“自感现象”.【例3】如图9-1-5所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R滑片P自左向右滑的过程中,线圈ab将( )A.静止不动B.顺时针转动C.逆时针转动D.发生转动,但电源的极性不明,无法确定转动方向【解析】图9-1-5中的两个通电线圈绕向相同,电流的磁场方向相同,两磁铁之间合磁场方向是水平的.当滑动变阻器R的滑片P自左向右滑动时,电路中电流增大,两磁铁之间合磁场增强,穿过矩形线圈的磁通量增大.根据楞次定律,矩形闭合线圈中的感应电流磁场要阻碍磁通量增大,所以矩形线圈会顺时针转动,减小其垂直于磁场方向的投影面积,才能阻碍穿过的磁通量增大.【答案】( B )【点拨】本题现象属于减小面积阻碍磁通量增大情形.分析时应注意两通电线圈绕向相同还是相反,以及线圈所在处磁场的方向.四、安培定则、左手定则、右手定则、楞次定律的综合应有解决此类问题的关键是抓住因果关系①因电而生磁(I→B)→安培定则②因动而生电(v、B→I感)→右手定则③因电而受力(I、B→F安)→左手定则☆易错门诊【例3】在图9-1-6中,CDEF为闭合线圈,AB 为电阻丝.当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极?【错解】当变阻器的滑动头在最上端时,电阻丝图9-1-4图9-1-6图9-1-5RAB 因被短路而无电流通过.由此可知,滑动头下移时,流过AB 中的电流是增加的.当线圈CDEF 中的电流在G 处产生的磁感强度的方向是“〃”时,由楞次定律可知AB 中逐渐增加的电流在G 处产生的磁感强度的方向是“×”,再由右手定则可知,AB 中的电流方向是从A 流向B ,从而判定电源的上端为正极.【错因】楞次定律中“感生电流的磁场总是要阻碍引起感应电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位臵一般应该选在线圈的内部,而不是选在线圈的外部.【正解】当线圈CDEF 中的感应电流在G 处产生的磁感强度的方向是“〃”时,它在线圈内部产生磁感强度方向应是“×”,AB 中增强的电流在线圈内部产生的磁感强度方向是“〃”,所以,AB 中电流的方向是由B 流向A ,故电源的下端为正极. 【答案】电源的下端为正极【点拨】分析电学问题也要注意正确选取研究对象.课堂自主训练1.两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如9-1-7所示的方向,绕中心转动的角速度发生变化时,B 中产生如图所示的感应电流,则( BC )A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大 【解析】若A 带正电, 则穿过B 的磁通量垂直纸面向里,只有磁通量增大时,B 中才会产生逆时针方向的感应有尽电流,故A 的转速应增大,选项B 正确A 错误.若A 带负电,同理可推断选项C 正确D 错误.【答案】( BC )2.电阻R 、电容器C 与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N 极朝下,如图9-1-8所示.现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流方向和电容器极板的带电情况是( D )A.从a 到b,上极板带正电B.从a 到b,下极板带正电C.从b 到a,上极板带正电D.从b 到a,下极板带正电【解析】在N 极接近线圈上端的过程中,通过线圈的磁感线方向向下,磁通量增大,由楞次定律可判断流过线圈的电流方向下,即线圈下端相当于电源正极,故可知D 正确.【答案】( D )课后创新演练1.如图9-1-9所示,a 、b 、c 三个闭合线圈,放在同一平面内,当a 线圈 中有电流I 通过时,它 们的磁通量分别为Фa 、 Фb 、Фc 下列说法中正 确的是( B )A.Φa <Φb <ΦcB.Φa >Φb >ΦcC.Φa <Φc <ΦbD.Φa >Φc >Φb2.如图9-1-10所示,面积为S 的线圈放在磁感应强度为B 的竖直向上的匀强磁场中,若线圈平面与水平面所成的夹角为θ,那么穿过线圈的磁通量为( A )A.Φ=BScos θB.Φ=BSsin θC.Φ=BStan θD.Φ=BScot θ3.在水平面上有一固定的U 形金属框架,上置一金属杆ab,如图9-1-11所示(纸面即水平面),在垂直纸面方向有一匀强磁场,则( BD )A.若磁感应强度方向垂直纸面向外并增大时,杆ab 将向右移动B.若磁感应强度方向垂直纸面 向外并减小时,杆ab 将向右移动C.若磁感应强度方向垂直纸面 向里并增大时,杆ab 将向右移动D.若磁感应强度方向垂直纸面 向里并减小时,杆ab 将向右移动4.如图9-1-12所示,线框面积为S ,线框平面与磁感应强度为B 的匀强磁场方向垂直.则穿过线框平面的磁通量为BS;若使线框绕轴OO ´转过600的角,则穿过线框平面的磁通量为 BS/2 ;若从初始位置转过900角,则穿过线框平面的磁通量为0;若从初始位置转过1800角,则穿过线框平面的磁通量变化量大小为2BS.若将单匝线框换成50匝线框,上述各空的结果图9-1-11图9-1-10图9-1-7图9-1-9图9-1-8图9-1-17将不变(填“变化”或“不变”).5.用如图9-1-13所示的电路来研究电磁感应现象.A 、B 为规格相同的电流表,D 是两个套在一起的大小线圈, 绕线方 向如图.小线圈与A 构成回路,大线圈与B 构成闭合电路.闭 合电键K ,稳定后电 流表 A 指针位置如 图.当电键K 突然断开时,电流表B 指针将向右偏(填“左”或“右”).【解析】闭合电键K 电路稳定后,与电流表A 相连接的线圈中电流方向向下,产生的磁场方向向上.当电键K 突然断开时,该线圈中的电流减小,其磁场减弱.与电流表B 相连接的线圈中感应电流的磁场,方向应向上,此线圈中感应电流的方向应向上.故电流表B 的指针会向右偏.【答案】右6.磁感应强度为B 的匀强磁场仅存在于边长为2L 的正方形范围内,有一个电阻为R 、边长为L 的正方形导线框abcd,沿垂直于磁感线方向,以速度v 匀速通过磁场,如图9-1-14所示,从ab 进入磁场时开始计时,到线框离开磁场为止.(1)画出穿过线框的磁通量随时间变化的图象; (2)判断线框中有无感应电流.若有,答出感应电流的方向.【解析】(1)如图9-1-15所示(2)线框进入磁场阶段,电流方向逆时针;线框在磁场中运动阶段,无电流;线框离开磁场阶段,电流方向顺时针.【答案】见解析7.如图 9-1-16所示,水平放置的两条光滑轨道 上,有可自由移动的金属棒PQ 、MN ,当PQ 在外力作用下运动时,MN 在磁场力作用下向右运动,则PQ 所做的运动可能是( BC )A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动【解析】设PQ 向右运动,用右手定则和安培定则判断可知,穿过L 1的磁感线方向向上.若PQ 向右加速运动,则穿过L 1的磁通量增加,用楞次定律判断可知,通过MN 的感应电流方向是N→M,对MN 用左手定则判断可知MN 向左运动,可见A 选项不正确.若PQ 向右减速运动,则穿过L 1的磁通量减少,用楞次定律判断可知,通地MN 的感应电流方向是M→N,用左手定则判断可知MN是向右运动,可见C 正确.同理设PQ 向左运动,用上述类似方法可判断B 正确,而D 错误.【答案】( BC )8.原始的电话机将听筒和话筒串联成一个电路,当自己对着话筒讲话时,会从听筒听到自己的声音,导致听觉疲劳而影响通话.现代的电话将听筒电路与话筒电路分开,改进的电路原理示意图如图9-1-17所示,图中线圈Ⅰ与线圈Ⅱ匝数相等,R b =1.2K Ω,R a 为可变电阻.当R 调到某一值时,从听筒中就听不到话筒传出的声音了,这时电阻R a =1.8KΩ.【解析】话筒是一个声电转换装臵,声音信号通过话筒后转换成的电信号 从线圈Ⅰ和线圈Ⅱ两个支 路走,两个支路的电流方向 相反,若要听筒中听不到话 筒的声音,要求这两个电流 必须大小相等,这样话筒连 接的线圈中磁通量为零,听 筒连接的线圈中就没有感 应电流.因此aab R R RR R +=,将数据代入可得:R b =1.8K Ω【答案】1.8K Ω图9-1-12图9-1-13图9-1-14图9-1-15图9-1-16第二课时 法拉第电磁感应定律基本知识回顾一、感应电动势在电磁感应现象中产生的电动势叫感应电动势, 产生感应电动势的那部分导体相当于电源,其电阻相当于电源内电阻.电动势是标量,为了区别反电动势,可以约定电动势的方向就是电源内部电流的方向. 二、感应电动势的大小1.法拉第电磁感应定律(1)内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:n t∆ΦE =∆(3)公式说明①上式适用于回路中磁通量发生变化的情形,回路不一定闭合.②感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比.要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③当∆Φ由磁场变化引起时, t∆∆Φ常用t B S∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用tSB ∆∆来计算. ④由tn E ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值.2.导体切割磁感线产生的感应电动势 (1)公式:E=BL v sin θ (2)对公式的理解①公式只适用于一部分导体在匀强磁场中做切割磁感线运动时产生的感应电动势的计算,其中L 是导体切割磁感线的有效长度,θ是矢量B 和v 方向间的夹角,且L 与磁感线保持垂直(实际应用中一般只涉及此种情况).②若θ=900,即B ⊥v 时,公式可简化为E=BL v ,此时,感应电动势最大;若θ=00,即B ∥V 时,导体在磁场中运动不切割磁感线,E=0.③若导体是曲折的,则L 应是导体的有效切割长度,即是导体两端点在B 、v 所决定平面的垂线上的投影长度.④公式E=BL v 中,若v 为一段时间内的平均速度,则E 亦为这段时间内感应电动势的平均值;若v 为瞬时速度,则E 亦为该时刻感应电动势的瞬时值.⑤直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v 计算时,式中v 是导线上各点切割速度的平均值,20L v ω+= ,所以122L ωE =3.反电动势反电动势对电路中的电流起削弱作用.重点难点例析【例1】一个200匝、面积为20cm 2的线圈,放在磁场中, 磁场的方向与线圈平面成300角, 若磁感应强度在0.05s 内由0.1T 增加到0.5T ,则0.05s 始末通过线圈的磁通量分别为 W b 和 Wb;在此过程中穿过线圈的磁通量的变化量为 Wb;磁通量的平均变化率为 Wb/s;线圈中的感应电动势的大小为 V.【解析】始、末的磁通量分别为: Φ1=B 1Ssinθ=0.1×20×10-4×1/2 W b=10-4W bΦ2=B 2Ssinθ=0.5×20X10-4×1/2 W b=5×10-4W b 磁通量变化量ΔΦ=Φ2-Φ1=4×10-4 W b磁通量变化率05.01044-=∆∆Φx t W b/s=8×10-3W b/s感应电动势大小n t∆ΦE =∆=200×8×10-3V=1.6V【答案】见解析【点拨】Φ、ΔΦ、ΔΦ/Δt 均与线圈匝数无关,彼此之间也无直接联系;感应电动势Ε的大小取决于ΔΦ/Δt 和线圈匝数n,与Φ和ΔΦ无必然联系.● 拓展如图9-2-1所示,圆形线圈 中串联了一个平行板电容器,圈 内有磁场,磁通量Φ随时间按正 弦规律变化.以垂直纸面向里的 磁场为正,从t=0开始,在平行 板电容器中点释放一个电子,若 电子运动中不会碰到板,关于电 子在一个周期内的加速度的判 断正确的是 ( )A.第二个T/4内,加速度方向向上,大小越来越小B.第二个T/4内,加速度方向向上,大小越来越大C.第三个T/4内,加速度方向向下,大小越来越大D.第三个T/4内,加速度方向向下,大小越来越小【解析】第二个1/4周期内,磁感应强度向里减小(磁通量减小),若有感应电流,其磁场方向应向里,感应电流方向为顺时针方向,则电容器下板带正电,电子的加速度方向向下,由于B 的变化越来越快,感应电动势越来越大,板间的电场强度越来越大,电子的加速度也越来越大,故A 、B 均错.第三个1/4周期内,磁 通量向外增加,感应电流的磁场仍向里,电子的加速度方向向下,由于Φ变化越来越慢,则电动势越来越小,加速度也越来越小,故C 错、D 对.【答案】( D )二、公式nt∆ΦE =∆和sin Lv θE =B 的比较1.E= n t∆∆Φ求的是回路中Δt 时间内的平均电动势.2.E=BL v sin θ既能求导体做切割磁感线运动的平均电动势,也能求瞬时电动势.v 为平均速度,E 为平均电动势;v 为瞬时速度,E 为瞬时电动势.其中L 为有效长度.(1)E=BL v 的适用条件:导体棒平动垂直切割磁感线,当速度v 与磁感线不垂直时,要求出垂直于磁感线的速度分量.(2)122L ωE =B 的适用条件:导体棒绕一个端点垂直于磁感线匀速转动切割磁感线.(3)E=nBSωsinωt 的适用条件:线框绕垂直于匀强磁场方向的一条轴从中性面开始转动,与轴的位置无关.若从与中性面垂直的位置开始计时,则公式变为E=nBS ωcos ωt3.公式nt∆ΦE =∆和E=BL v sinθ是统一的,前者当Δt →0时,E 为瞬时值,后者v 若代入平均速度v ,则求出的是平均值.一般说来,前者求平均感应电动势更方便,后者求瞬时电动势更方便.【例2】如图9-2-2所 示,导线全部为裸导线,半径 为r 的圆环内有垂直于平面 的匀强磁场,磁感应强度为B , 一根长度大于2r 的导线MN 以速度v 在圆环上无摩擦地 自左端匀速滑到右端.电路的固定电阻为R ,其余电阻不计.试求MN 从圆环的左端滑到右端的过程中,电阻R 上的电流的平均值及通过的电荷量.【解析】本题粗看起来是MN 在切割磁感线,属于“切割”类型,要用E=BL v 求解,但切割杆MN 的有效切割长度在不断变化,用公式E=BL v 难以求得平均感应电动势.事实上,回路中的磁通量在不断变化,所以本题中平均感应电动势应由E=ΔФ/Δt 来求.由于ΔΦ=B·ΔS=B πr 2,Δt=2r/v ,根据法拉第电磁 感应定律有:图9-2-1图9-2-22Brv t π=∆∆Φ=E所以 RBrv R 2π=E =I通过的电荷量 【答案】R BrvR 2π=E =I , Rr R t q 2πB =∆Φ=∆I =【点拨】感应电荷量q 的求法:,,nq t t R∆ΦE E =I ==I∆∆.综合得q nR∆Φ=可见,若闭合电路中产生了感应电流,则在时间Δt 内通过导线某截面的电量q 仅由线圈的匝数n,磁通量的变化量ΔΦ和闭合电路的电阻R 决定,与磁通量发生变化的时间无关.因此要快速求得通过导线某截面的电量q,关键是正确求得磁通量的变化量ΔΦ.● 拓展如图9-2-3所示,矩形 线圈abcd 由n=50匝组成, ab 边长L 1=0.4m,bc 边长L 2 =0.2m,整个线圈的电阻 R =2Ω,在B =0.1T 的匀强磁场中,以短边中点的连线为 轴转动,ω=50rad/s,求:(1)线圈从图示位置转动900过程中的平均电动势;(2)线圈转过900时的瞬时电动势.【解析】(1)Δt=T/4=2π/4ω=π/2ω, ΔΦ=BSt∆ΦE =∆.由以上各式代入数据得:(2)ωt=900Ε=nBSωsinωt=50×0.1×0.4×0.2×50×1V=20V【答案】(1)12.7V (2)20V三、直导体在匀强磁场中转动产生的感应电动势直导体绕其一点在垂直匀强磁场的平面内以角速度ω转动,切割磁感线,产生的感应电动势的大小为:(1)以中点为轴时 Ε=0 (2)以端点为轴时 122L ωE =B (平均速度取中点位置线速度v =ωL/2)(3)以任意点为轴时122()122L L ωE =B -(与两段的代数和不同)☆易错门诊【例3】如图9-2-4所示,长为6m 的导体AB 在磁感强度B =0.1T 的匀强磁场中,以AB 上的一点O 为轴,沿着顺时针方向旋转。
2025高考物理总复习法拉第电磁感应定律自感和涡流

最接近
A.0.30 V C.0.59 V
√B.0.44 V
D.4.3 V
考点一 电磁感应现象的理解和判断
根据法拉第电磁感应定律 E=ΔΔΦt ,可得 E1=ΔΔBt S1,E2= ΔΔBt S2,E3=ΔΔBt S3,三个线圈产生的感应电动势方向相同, 故 E=E1+E2+E3=103×(1.02+1.22+1.42)×10-4 V= 0.44 V,故选 B。
考点一 电磁感应现象的理解和判断
根据法拉第电磁感应定律有 I=ER=ΔΔBt ·RS 可得电流之比为 I1∶I2∶I3=2∶2∶ 3 即I1=I2>I3,故选C。
返回
< 考点二 >
导体切割磁感线产生感应电动势
考点二 导体切割磁感线产生感应电动势
1.导体平动切割磁感线产生感应电动势的算式E=Blv的理解 在匀强磁场中,B、l、v三者互相垂直。如果不相互垂直,
考点一 电磁感应现象的理解和判断
判断正误
1.Φ=0,ΔΔΦt 不一定等于0。( √ ) 2.穿过线圈的磁通量变化越大,感应电动势也越大。( × ) 3.穿过线圈的磁通量变化越快,感应电动势越大。( √ ) 4.线圈匝数n越多,磁通量越大,产生的感应电动势也越大。( × )
考点一 电磁感应现象的理解和判断
考点一 电磁感应现象的理解和判断
拓展 若匀强磁场垂直向里且均匀增大,则图中a、b两点比较,__a__点 电势高。
考点一 电磁感应现象的理解和判断
总结提升
判断感应电路中电势高低的方法
考点一 电磁感应现象的理解和判断
例2 (2022·全国甲卷·16)三个用同样的细导线做成的刚性闭合线框,正
方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的
第1讲 电磁感应现象 楞次定律-2025版物理大一轮复习

电磁感应现象楞次定律目标要求 1.知道电磁感应现象的产生条件并会分析解决实际问题。
2.会根据楞次定律判断感应电流的方向,会应用楞次定律的推论分析问题。
3.能够综合应用安培定则、左手定则、右手定则和楞次定律解决实际问题。
考点一对电磁感应现象的理解和判断1.磁通量(1)定义:磁感应强度B与面积S的□1乘积。
(2)公式:Φ=□2BS。
(3)适用条件:①匀强磁场;②S为垂直磁场的□3有效面积。
(4)磁通量是□4标量(填“标量”或“矢量”)。
(5)物理意义:穿过某一面积的□5磁感线的条数。
(6)标矢性:磁通量是□6标量,但有正负。
(7)磁通量变化:ΔΦ=Φ2-Φ1。
2.电磁感应现象(1)定义:只要穿过闭合导体回路的□7磁通量发生变化,闭合导体回路中就有感应电流。
(2)条件:穿过□8闭合电路的□9磁通量发生变化。
(3)实质:产生□10感应电动势,如果电路闭合,则有感应电流;如果电路不闭合,则只有□11感应电动势而无感应电流。
【判断正误】1.穿过线圈的磁通量与线圈的匝数无关。
(√)2.电路中磁通量发生变化时,就一定会产生感应电流。
(×)3.当导体切割磁感线运动时,导体中一定产生感应电流。
(×)1.判断感应电流有无的方法2.判断磁通量是否变化的方法(1)根据公式Φ=BS sinθ(θ为B与S间的夹角)判断。
(2)根据穿过平面的磁感线的条数是否变化判断。
3.产生感应电流的三种常见情况【对点训练】1.(磁通量及其变化)如图所示,线框abdc的左侧放置一通有恒定电流的长直导线,线框从位置Ⅰ按照以下四种方式运动(位置Ⅰ和位置Ⅲ关于MN对称),磁通量变化量的绝对值最大的是()A.平移到位置ⅡB.平移到位置ⅢC.以MN为转轴转到位置ⅢD.以bd为转轴转到位置Ⅱ解析:B由图可知,通电直导线电流方向向上,由安培定则可知,导线右侧磁场的方向向里,左侧磁场的方向向外,靠近导线磁感应强度增大,远离导线磁感应强度减小,设线框的面积为S,位置Ⅰ处和位置Ⅲ处的平均磁感应强度为B1,位置Ⅱ处的磁感应强度为B2,线框从位置Ⅰ平移到位置Ⅱ,磁通量的变化量的大小为ΔΦ1=(B1-B2)S,线框从位置Ⅰ平移到位置Ⅲ,磁通量的变化量的大小为ΔΦ2=(B1+B1)S=2B1S,以MN为转轴转到位置Ⅲ,磁通量的变化量的大小为ΔΦ3=0,以bd为转轴转到位置Ⅱ,磁通量的变化量的大小为ΔΦ4=(B1+B2)S,由以上分析可知,线框从位置Ⅰ平移到位置Ⅲ,磁通量的变化量绝对值最大。
电磁感应复习

特别提醒 1.公式 E=BLvsinθ 是法拉第电磁感应定律的一种特 殊形式,不具有普遍性. 2.应用 E=BLv 处理转动切割类问题时,速度 v 是 1 2 转动棒中点的速度,此时写为 E=感应强度大小均为B, 方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁 场宽度均为L.边长为L的正方形线框abcd的bc边紧靠磁场边 缘置于桌面上.使线框从静止开始沿x轴正方向匀加速通 过磁场区域,若以逆时针方向为电流的正方向,能反映线 框中感应电流变化规律的是( )
三、理想变压器原、副线圈基本 量的关系如图所示:
功率关系 P1=P2
U1 n1 = ,与负载、副线圈的个数多少 电压关系 U2 n2 无关 I 1 n2 (1)只有一个副线圈: = 基本 I 2 n1 关系 电流关系 (2)多个副线圈: I1n1=I2n2+I3n3+…+Innn 或 U1I1=U2I2+U3I3+…+UnIn 频率关系 f1=f2 因果 (1)U1 决定了 U2 关系 (2)I2 决定了 I1 (n1、 n2 不 (3)P2 决定了 P1 变)
有效值 对于非正弦交变电 流的有效值,以上 关系式不成立,应 根据定义来求
计算交流电通过导 计算通过导 体产生的热量、电 体的电荷量 q 功以及确定熔丝的 熔断电流
特别提醒 1.平移转轴,改变线圈形状,不会改变产生交流电的最大值. 2.交流电的瞬时值有时写成e=Emcosωt,不是交流电变了, 而是计时位置发生了改变.
ΔΦ 2.公式 E=n 与 E=nBLvsinθ 的比较 Δt ΔΦ E=nBLvsinθ E=n Δt 研究对 一段直导线(或可等效成直导 一个回路(不一定闭合) 象 线) 适用范 无论什么方式引起 Φ 的变 只适于一段导体切割磁感线 围 化都可以 磁场情 可以是匀强磁场,也可以 只能是匀强磁场 况 是变化磁场 物理意 义 各字母 含义 ① Δt 为一段时间,则 E 为 ①v 是平均速度,则 E 为平均 平均值②Δt→0 时, E 值②v 是瞬时速度,则 E 为瞬 则 为瞬时值 时值 ΔΦ 是 Φ 的变化率, ΔΦ、 ① L:有效切割长度②v:有效 与 Δt 切割速度③θ 是 B 与 v 的夹角 Φ 无必然联系
电磁感应总复习

电量问题 图象问题
例11:一匝数为 : 匝数为100匝,边长为 匝 边长为20cm的 的 正方形线圈,将它置于磁感应强度B= 正方形线圈,将它置于磁感应强度 = 0.05T的匀强磁场中,绕着垂直于磁场 的匀强磁场中, 的匀强磁场中 方向的轴以ω= 的角速度转动, 方向的轴以 =100πrad/s的角速度转动, 的角速度转动 当线圈平面跟磁场方向垂直时开始计 线圈和外电路的总电阻R= 时.线圈和外电路的总电阻 =10Ω.试 试 画出感应电流随时间变化的关系图象。 画出感应电流随时间变化的关系图象。 图象问题
力学问题
例9:如图,框与水平面成 °,宽L=0.4 m,两 :如图,框与水平面成37° , 端各有一个电阻R0=1 Ω,其他部分电阻不计,框 端各有一个电阻 ,其他部分电阻不计, 架足够长.垂直框架向上的匀强磁场B= 垂直框架向上的匀强磁场 架足够长 垂直框架向上的匀强磁场 =2T.ab长度 长度 为L=0.4 m,质量 =0.8 kg,电阻 =0.5Ω,棒与 = ,质量m= ,电阻r= , 框架μ= 由静止开始下滑, 框架 =0.5.由静止开始下滑,直到速度达到最大 由静止开始下滑 的过程中,上端电阻R 产生的热量Q 的过程中,上端电阻 0产生的热量 0=0.375J (1)杆ab的最大速度; 杆 的最大速度; 的最大速度 (2)从开始到速度最大的过程中 杆沿斜面下滑的 从开始到速度最大的过程中ab杆沿斜面下滑的 从开始到速度最大的过程中 距离. 距离
电路问题
例8:如图所示 竖直放置的光滑平行金属导轨 :如图所示, 竖直放置的光滑平行金属导轨, 相距l 导轨一端接有一个电容器, 电容量为C, 相距 , 导轨一端接有一个电容器 电容量为 匀 强磁场垂直纸面向里, 磁感应强度为B, 质量为m 强磁场垂直纸面向里 磁感应强度为 质量为 的金属棒ab可紧贴导轨自由滑动 现让ab由静止 可紧贴导轨自由滑动. 的金属棒 可紧贴导轨自由滑动 现让 由静止 下滑, 不考虑空气阻力, 下滑 不考虑空气阻力 也不考虑任何部分的电 阻和自感作用. 问金属棒的做什么运动? 阻和自感作用 问金属棒的做什么运动?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.始终沿逆时针方向 B.始终沿顺时针方向 C.先沿逆时针方向然后沿顺时针方向 D.先沿顺时针方向然后沿逆时针方向
4.如图4-3-19所示,通电螺线管两侧各悬挂一 如图4 19所示, 所示 个小铜环,铜环平面与螺线管截面平行.当电键S 个小铜环,铜环平面与螺线管截面平行.当电键S接 通瞬间,两铜环的运动情况是( 通瞬间,两铜环的运动情况是( b) A.同时向两侧推开 B.同时向螺线管靠拢 一个被推开,一个被吸引, C.一个被推开,一个被吸引,但因电源正负极未 知,无法具体判断 同时被推开或同时向螺线管靠拢, D.同时被推开或同时向螺线管靠拢,因电源正负 未知, 未知,无法具体判断
2.如图4 2.如图4-1-23所示,一个矩形线框从匀强磁场的 如图 23所示, 所示 上方自由落下,进入匀强磁场中, 上方自由落下,进入匀强磁场中,然后再从磁场中穿 出.已知匀强磁场区域的宽度L大于线框的高度h,那 么下列说法中正确的是( A 么下列说法中正确的是( ) 线框只在进入和穿出磁场的过程中, A.线框只在进入和穿出磁场的过程中,才有感应电 流产生 线框从进入到穿出磁场的整个过程中, B.线框从进入到穿出磁场的整个过程中,都有感应 电流产生 线框在进入和穿出磁场的过程中, C.线框在进入和穿出磁场的过程中,都是机械能转 变成电能 整个线框都在磁场中运动时, D.整个线框都在磁场中运动时,机械能转变成电能
知识网络构建
1.如图4-1-20所示,绕在铁芯上的线圈与 如图4 20所示, 所示 电源、滑动变阻器和开关组成一闭合回路, 电源、滑动变阻器和开关组成一闭合回路,在铁 芯的右端套有一个表面绝缘的铜环a,下列各种 中不产生感应电流的是( A) 情况铜环a中不产生感应电流的是( A.线圈中通以恒定的电流 通电时, B.通电时,使变阻器的滑片P匀速移动 通电时, C.通电时,使变阻器的滑片P加速移动 D.将开关突然断开的瞬间
3.如图4-3-16甲所示,长直导线与矩形线框abcd 如图4 16甲所示, 甲所示 处在同一平面中固定不动, 处在同一平面中固定不动,长直导线中通以大小和方 向随时间作周期性变化的电流i,i-t图象如图乙所 规定图中箭头所指的方向为电流正方向,则在~ 示,规定图中箭头所指的方向为电流正方向,则在~ 时间内,对于矩形线框中感应电流的方向, 时间内,对于矩形线框中感应电流的方向,下列判断 正确的是( A 正确的是( )
m的正方形线圈 的正方形线圈, 7.一个边长为a=1 m的正方形线圈,总电阻为R Ω, m/s的速度通过磁感应强度 =2 Ω,当线圈以v=2 m/s的速度通过磁感应强度 B=0.5 T的匀强磁场区域时,线圈平面总保持与磁 T的匀强磁场区域时 的匀强磁场区域时, 场垂直. m,如图4 20所示 所示, 场垂直.若磁场的宽度b>1 m,如图4-4-20所示, 求: (1)线圈进入磁场过程中感应电流的大小 线圈进入磁场过程中感应电流的大小; (1)线圈进入磁场过程中感应电流的大小;4 (2)线圈在穿过整个磁场过程中释放的焦耳热 线圈在穿过整个磁场过程中释放的焦耳热. (2)线圈在穿过整个磁场过程中释放的焦耳热.1
6.如图4 6.如图4-4-6所示,水平放置的平行金属导轨相 如图 所示, m, Ω, 距l=0.50 m,左端接一电阻R=0.20 Ω,磁感应 T的匀强磁场方向垂直于导轨面 的匀强磁场方向垂直于导轨面. 强度B=0.40 T的匀强磁场方向垂直于导轨面.导 垂直放在导轨上,并能无摩擦地沿导轨滑动, 体棒ab垂直放在导轨上,并能无摩擦地沿导轨滑动, 导轨和导体棒的电阻均可忽略不计, 导轨和导体棒的电阻均可忽略不计,当ab以v=4.0 m/s的速度水平向右匀速滑动时 的速度水平向右匀速滑动时, m/s的速度水平向右匀速滑动时,求: 棒中感应电动势的大小; (1)ab棒中感应电动势的大小;0. 1 (2)回路中感应电流的大小 回路中感应电流的大小; (2)回路中感应电流的大小;0.2 棒中哪端电势高; (3)ab棒中哪端电势高;a 的大小. (4)维持 (4)维持ab棒做匀速运动的水平外力F的大小.0.02
5.如图4-4-8甲所示的螺线管,匝数n=1500 如图4 如图 甲所示的螺线管, Ω, 匝,横截面积S=20 cm2,电阻r=1.5 Ω,与螺线 Ω, Ω, 管串联的外电阻R1=3.5 Ω,R2=2.5 Ω,向右穿 过螺线管的匀强磁场的磁感应强度按图乙所示规律 变化. (1)螺线管产生的感应电动势大小 螺线管产生的感应电动势大小; 变化.求: (1)螺线管产生的感应电动势大小; (2)通过螺线管的电流大小和方向 通过螺线管的电流大小和方向; (2)通过螺线管的电流大小和方向; (3)螺线管两端的电压大小 螺线管两端的电压大小, (3)螺线管两端的电压大小,并判断M、P两端的电 势高低. 势高低.