2017_18学年高中数学第二讲证明不等式的基本方法第3节反证法与放缩法创新应用教学案

合集下载

《证明不等式的基本方法反证法与放缩法》

《证明不等式的基本方法反证法与放缩法》

《证明不等式的基本方法反证法与放缩法》证明不等式的基本方法包括反证法和放缩法。

反证法是一种常用的证明不等式的方法,它的思路是假设不等式不成立,然后通过推理推出一个矛盾的结论,从而证明原不等式的成立。

放缩法是通过对不等式进行变形、放缩,将原不等式转化为一个更易证明的形式。

首先介绍反证法。

对于一个要证明的不等式,我们可以假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。

然后通过对这个假设的推理,得出一个与已知条件相矛盾的结论,从而证明假设是错误的,进而证明原不等式的成立。

具体步骤如下:1.假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。

2.根据已知条件和假设,对变量进行推理,得出结论。

3.利用这个结论推出与已知条件矛盾的结论。

4.由此可以得出假设是错误的,从而证明原不等式的成立。

举个例子来说明反证法的应用:对于不等式x+y>0,假设不等式不成立,即存在一些满足条件的x和y使得x+y≤0。

然后我们通过推理可以得到y≤-x,即y的取值范围在x的左侧。

然而,根据已知条件,对于任意的x和y,x+y的和都大于0,与假设矛盾。

因此,假设错误,原不等式成立。

接下来介绍放缩法。

放缩法是通过对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。

放缩法的关键在于找到合适的放缩因子和放缩方法。

具体步骤如下:1.根据不等式的特点,选择合适的放缩因子和放缩方法。

2.对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。

3.对新形式的不等式进行证明。

4.如果新形式的不等式成立,根据不等式的等价性,原不等式也成立。

举个例子来说明放缩法的应用:对于不等式(x + y)(y + z)(z + x) ≥ 8xyz,我们可以使用放缩法进行证明。

我们选择放缩因子2和放缩方法(x + y) ≥ 2√xy,可以得到(2√xy)(2√yz)(2√xz) ≥ 8xyz。

化简后得到(√xy)(√yz)(√xz) ≥ xyz,即x·y·z ≥ xyz,显然成立。

高中数学第二讲证明不等式的基本方法2.3反证法与放缩法a45a高二45数学

高中数学第二讲证明不等式的基本方法2.3反证法与放缩法a45a高二45数学

1.实数 a,b,c 不全为 0 的等价条件为( ) A.a,b,c 均不为 0 B.a,b,c 中至多有一个为 0 C.a,b,c 中至少有一个为 0 D.a,b,c 中至少有一个不为 0 【解析】 实数 a,b,c 不全为 0 的含义即 a,b,c 中至少有一个不为 0, 其否定则是 a,b,c 全为 0,故选 D.
2.3 反证法与放缩法
2021/12/9
第一页,共四十九页。
本节目标 (mùbiāo)
1.理解反证法在证明不等式中的应用(yìngyòng). 2.掌握反证法证明不等式的方法.
3.掌握放缩法证明不等式的原理,并会用其证明不等式.
2021/12/9
第二页,共四十九页。
前置(qián zhì) 学习
前置(qián zhì) 学习
1+x 1+y 【证明】 假设 y <2 和 x <2 都不成立,
1+x 1+y 则有 y ≥2 和 x ≥2 同时成立,因为 x>0 且 y>0,
所以 1+x≥2y,且 1+y≥2x,
两式相加,得 2+x+y≥2x+2y,
所以 x+y≤2,
1+x 1+y 这与已知条件 x+y>2 矛盾,因此 y <2 和 x <2 中至少有一个成立.
提示:运用放缩法证明不等式的关键是放大(或缩小) 要适当.如果所要证明的不等式中含有分式,那么我们 把分母放大时相应分式的值就会缩小;
反之,如果把分母缩小,则相应分式的值就会放 大.有时也会把分子、分母同时放大,这时应该注意不 等式的变化情况,可以与相应的函数相联系,以达到判 断大小的目的,这些都是我们在证明中的常用方法与技 巧,也是放缩法中的主要形式.
2
2
∴a+1-b>1,b+1-c>1,c+1-d>1,d+1-a>1.

高中数学第二讲讲明不等式的基本方法三反证法与放缩法a45a高二45数学

高中数学第二讲讲明不等式的基本方法三反证法与放缩法a45a高二45数学

第七页,共二十三页。
探究一 反证法的应用 [例 1] 已知 f(x)=x2+px+q, 求证:(1)f(1)+f(3)-2f(2)=2; (2)|f(1)|,|f(2)|,|f(3)|中至少有一个不小于12.
12/12/2021
第八页,共二十三页。
[证明] (1)f(1)+f(3)-2f(2) =(1+p+q)+(9+3p+q)-2(4+2p+q)=2. (2)假设|f(1)|,|f(2)|,|f(3)|都小于12. 则|f(1)|+2|f(2)|+|f(3)|<2, 而|f(1)|+2|f(2)|+|f(3)|≥f(1)+f(3)-2f(2)=2 矛盾, ∴|f(1)|,|f(2)|,|f(3)|中至少有一个不小于12.
12/12/2021
第二页,共二十三页。
12/12/2021
01 课前 自主(zìzhǔ)梳理
02 课堂 合作(hézuò)探究 03 课后 巩固(gǒnggù)提升
课时作业
第三页,共二十三页。
[自主梳理]
一、反证法

假设(jiǎshè)要证的命题不成 立
,以此为出发点,结合已知条件,应用公理、定义、
12/12/2021
第九页,共二十三页。
利用反证法证明不等式的方法步骤 (1)反证法必须从否定结论进行推理,且必须根据这一条件进行论证;否则,仅否 定结论,不从结论的反面出发进行论证,就不是反证法. (2)当证明的结论中含有“不是”“不都”“不存在”等词语时,适于应用反证 法,因为此类问题的反面比较具体. (3)用反证法证明不等式时,推出的矛盾有三种表现形式:①与已知矛盾;②与假 设矛盾;③与显然成立的事实相矛盾.
12/12/2021
第十五页,共二十三页。

高中数学第二讲证明不等式的基本方法2.3反证法与放缩法素材1新人教A版选修45

高中数学第二讲证明不等式的基本方法2.3反证法与放缩法素材1新人教A版选修45

高中数学第二讲证明不等式的基本方法2.3反证法与放缩法素材1新人教A版选修45一览众山小诱学·导入材料:从前有个国王总认为自己是个“至高无上的权威”,又是个“大慈大悲”的救世主.在处决犯人前,总要叫犯人抽签决定自己的命运,即在两张小纸片上,一张写“活”字,一张写“死”字,抽到“活”字可幸免一死.一个囚犯一天将要被处决,他的死对头买通了狱吏,把两张纸片都写上了“死”字让他去抽,心想,这下犯人必死无疑.谁知那个狱吏把此消息透露给了犯人.国王宣布抽签开始后,那犯人胸有成竹、不慌不忙地抽出一纸片,看也不看便放进嘴里,就吞下肚子,使在场的人慌了手脚,而犯人只受了痛打一顿的处罚而死里逃生了.问题:上述材料中犯人机智地保全了性命,试问你能说清理由吗?导入:因为谁都搞不清犯人抽到的是“死”还是“活”,此时,国王查看剩下的纸片上写的是“死”字,由此反证,可知被犯人吞下的是“活”字了.于是国王下令,将犯人痛打一顿,以责罚他不该擅自吞吃纸片,随后又不得不将犯人释放了.上述材料中犯人机智地运用反证法保全了性命,真可谓棋高一筹.这就是反证法思想在生活中的应用,下面就研究反证法以及放缩法在不等式证明中的应用.温故·知新1何谓矛盾呢?答:在逻辑中指两个概念互相排斥或两个判断不能同时为真也不能同时为假的关系.2.生活中的归谬证法是什么意思呢?答:归谬证法是指:当我们发现对方意见谬误时,不予驳斥和争辩,而是顺着他的思路,把谬误推导出来.对方的意见原来可能只考虑到一方面的效果,而忽略了另一方面的影响以及可能产生的负作用,所以归谬论证就有意朝这些方面推导.这种推导有时可以适当地夸大,使谬误更加明显,这就等于给对方戴上望远镜与显微镜.在整个推导过程中,自己始终表现得十分真诚,而且越真诚效果越好.对方感到你如此真诚地按照他的意见进行设想,而结果又是如此荒谬,往往会禁不住哑然失笑.这笑是笑他本人的愚笨,于是你的目的也达到了,这就是古人所采用的归谬论证法的效果.1。

高中数学第2讲证明不等式的基本方法第三课时反证法与放缩法a45a高二45数学

高中数学第2讲证明不等式的基本方法第三课时反证法与放缩法a45a高二45数学

12/8/2021
第十一页,共二十三页。
题型二 放缩法证明不等式 求证:32-n+1 1<1+212+…+n12<2-n1(n∈N*,
且 n≥2).
思路点拨 欲证的式子中间是一个和的形式,但我们还 不能利用求和公式来求,可以将分母适当放大或缩小成可以 求和的形式,进而求和,最后证得该不等式成立.
12/8/2021
12/8/2021
第八页,共二十三页。
典例剖析·规律总结
题型一 换元法证明不等式 已知 x2+y2≤1,求证:|x2+2xy-y2|≤ 2.
思路点拨 由条件x2+y2≤1联想(liánxiǎng)三角代换.
【证明】 因为 x2+y2≤1,故可设 x=rcos θ, y=rsin θ(0≤r≤1,0≤θ<2π),
<
1 k(k-1)

1 k2
>
1 k(k+1)

1 k<
2 k+
k-1

1 k
>
2 k+
k+1(以上
k≥2,且
k∈N+).
放缩法的理论依据主要有:①不等式的传递性;②等
量加不等量为不等量;③同分子(母)异分母(子)的两个分式 大小的比较.
12/8/2021
第七页,共二十三页。
3.反证法 要 证 不 等 式 M>N , 先 假 设 M≤N , 由 题 设 及 其 他 性 质,推出矛盾,从而肯定M>N成立.凡涉及到的证明不等式 为否定性命题,唯一性命题或是含“至多”“至少(zhìshǎo)” 等字句时,可考虑使用反证法.
放缩法、反证法等.。变式训练。思路点拨 本题是以否定(fǒudìng)形式给出的命题,通常考虑用反证 法,通过推理论证,得出与条件或与事实矛盾的结论.

高中数学 第二讲 证明不等式的基本方法 2.3 反证法与放缩法 2.3.1 反证法课堂导学案 新人教A版选修45

高中数学 第二讲 证明不等式的基本方法 2.3 反证法与放缩法 2.3.1 反证法课堂导学案 新人教A版选修45

2.3.1 反证法课堂导学三点剖析一,熟悉反证法证明不等式的步骤【例1】 设f(x)、g(x)是定义在[0,1]上的函数,求证:存在x 0、y 0∈[0,1],使|x 0y 0-f(x 0)-g(y 0)|≥41. 证明:用反证法.假设对[0,1]内的任意实数x,y 均有|xy-f(x)-g(y)|<41,考虑对x,y 在[0,1]内取特殊值:(1)取x=0,y=0时,有|0×0-f(0)-g(0)|<41,∴|f(0)+g(0)|<41; (2)取x=1,y=0时,有|1×0-f(1)-g(0)|<41,∴|f(1)+g (0)|<41; (3)取x=0,y=1时,有|0×1-f(0)-g(1)|<41,∴|f(0)+g(1)|<41; (4)取x=1,y=1时,有|1×1-f(1)-g(1)|<41,∴|1-f(1)-g(1)|<41. ∵1=1-f(1)-g(1)+f(0)+g(1)+f(1)+g(0)-f(0)-g(0),∴1≤|1-f(1)-g(1)|+|f(0)+g(1)|+|f(1)+g(0)|+|f(0)+g(0)|<41+41+41+41=1. ∴1<1,矛盾,说明假设不能成立.故要证结论成立.各个击破类题演练1求证:如果a>b>0,那么n n b a >(n∈N 且n>1).证明:假设n a 不大于n b 有两种情况:n n b a <或者n n b a =.由推论2和定理1,当n n b a <时,有a<b;当n n b a =时,有a=b ,这些都与已知a>b>0矛盾,所以n n b a >. 变式提升1求证:如果a>b>0,那么21a <21b . 证明:假设21a ≥21b , 则21a -21b =2222b a a b -≥0. ∵a>b>0,∴a 2b 2>0.∴b 2-a 2=(b+a)(b-a)≥0.∵a>b>0,∴b+a>0.∴b -a≥0,即b≥a.这与已知a>b 矛盾.∴假设不成立,原结论21a <21b 成立. 二、什么时候用反证法证明不等式 【例2】 设0<a 、b 、c<1,求证:(1-a)b,(1-b)c,(1-c)a 三个数不可能同时大于41. 思路分析:此命题为否定式,直接证明比较困难,可以考虑反证法.假设命题不成立,则三个数都大于41,然后从这个结论出发,推出与题设矛盾的结果来.证明:假设(1-a)b,(1-b)c,(1-c)a 三个数都大于41,即(1-a)b>41,(1-b)c>41,(1-c)a>41.以上三式相乘得(1-a)b5(1-b)c5(1-c)a>641,亦即(1-a)a5(1-b)b5(1-c)c>641.①又∵0<a<1,∴0<(1-a)a≤[2)1(aa +-]2=41.同理,0<(1-b)b≤41,0<(1-c)c≤41.以上三式相乘得(1-a)a·(1-b)b·(1-c)c≤641,与①矛盾.∴假设不成立,故命题获证.类题演练2已知x>0,y>0,且x+y>2,求证:x y +1与y x+1中至少有一个小于2.证明:假设x y +1、y x +1都不小于2,则x y+1≥2,y x+1≥2.∵x>0,y>0,∴1+y≥2x,1+x≥2y,2+x+y≥2(x+y).∴x+y≤2,这与已知x+y>2矛盾.故假设不成立,原题得证.变式提升2设a,b,c 均为正数且a+b+c=1,求证:a 2+b 2+c 2≥31.证明:∵ab≤222b a +,bc≤222c b +,ca≤222a c +,三式相加得ab+bc+ca≤a 2+b 2+c 2.假设a 2+b 2+c 2<31,由1=a+b+c,∴1=(a+b+c)2=a 2+b 2+c 2+2(ab+bc+ca)≤a 2+b 2+c 2+2(a 2+b 2+c 2)=3(a 2+b 2+c 2)<3×31=1, 即1<1,显然不成立.三、体会反证法证明不等式的优越性【例3】 若△ABC 三边a,b,c 的倒数成等差数列,则∠B<2π. 证明:假设∠B≥2π,则b 边最大,有b>a,b>c. ∴a 1>b 1,c 1>b1. 两式相加得a 1+c 1>b2, 这与题设a 1+c 1=b2相矛盾. 因此,假设是错误的, ∴∠B<2π. 温馨提示证明过程就那么简单,推出矛盾也这般容易!用反证法证明不等式思路清清爽爽,有化难为易的功效.类题演练3若|a|<1,|b|<1,求证:|ab b a ++1|<1. 证明:假设|ab b a ++1|≥1,则|a+b|≥|1+ab|. ∴a 2+b 2+2ab≥1+2ab+a 2b 2.∴a 2+b 2-a 2b 2-1≥0.∴a 2-1-b 2(a 2-1)≥0.∴(a 2-1)(1-b 2)≥0.∴⎪⎩⎪⎨⎧≥≤⎪⎩⎪⎨⎧≤≥⎪⎩⎪⎨⎧≤-≤-⎪⎩⎪⎨⎧≥-≥-1,11,1.01,01010122222222b a b a b a b a 或即或 即a 2≥1,b 2≤1或a 2≤1,b 2≥1,与已知矛盾. ∴|abb a ++1|<1. 变式提升3 已知f(x)=x 2+px+q,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21. 证明:用反证法.假设|f(1)|,|f(2)|,|f(3)|都小于21,则 |f(1)|+2|f(2)|+|f(3)|<2,而|f(1)|+2|f(2)|+|f(3)|≥|f(1)+f(3)-2f(2)|=|(1+p+q)+(9+3p+q)-(8+4p+2q)|=2,相互矛盾.∴|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21.。

教学设计2:第2讲 证明不等式的基本方法

教学设计2:第2讲 证明不等式的基本方法

第二节 证明不等式的基本方法1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:(基本不等式)如果a ,b >0,那么a +b2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.比较法(1)比差法的依据是:a -b >0⇔a >b .步骤是:“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.1.(教材改编题)已知a +b +c >0,ab +bc +ac >0,abc >0,用反证法求证a >0,b >0,c >0时的反设为( )A .a <0,b <0,c <0B .a ≤0,b >0,c >0C .a 、b 、c 不全是正数D .abc <0【解析】 a >0,b >0,c >0的否定是:a ,b ,c 不全是正数. 【答案】 C2.四个不相等的正数a 、b 、c 、d 成等差数列,则( ) A.a +d 2>bcB.a +d 2<bcC.a +d 2=bcD.a +d 2与bc 的大小不确定【解析】 ∵a +d =b +c ,且正数a ,b ,c ,d 不相等. ∴a +d 2=b +c2>bc . 【答案】 A3.设a =2,b =7-3,c =6-2,则a 、b 、c 间的大小关系是( ) A .a >b >c B .b >a >c C .b >c >a D .a >c >b 【解析】 由42+2>46+2>47+3,得a >c >b . 【答案】 D 4.已知|a |≠|b |,m =|a |-|b ||a -b |,n =|a |+|b ||a +b |,则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =n D .m ≤n【解析】 ∵|a |+|b |≥|a +b |, ∴n =|a |+|b ||a +b |≥1,又|a |-|b |≤|a -b |,∴m =|a |-|b ||a -b |≤1,因此n ≥m .【答案】 D5.已知a >0,b >0且ln(a +b )=0,则1a +1b的最小值是________.【解析】 由题意得,a +b =1,a >0,b >0, ∴1a +1b =2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =12时,等号成立.【答案】 4已知a >0,b >0,求证:a b +ba≥a +b . 【思路点拨】 (1)作差变形,化为因式乘积的形式;(2)注意到a +b >0也可作商,转化为判定商值与1的大小.【尝试解答】 法一 ∵(a b +ba)-(a +b ) =(a b -b )+(ba -a )=a -b b +b -a a=(a -b )(a -b )ab =(a +b )(a -b )2ab≥0,∴a b +ba ≥a +b .法二 由于a b +ba a +b =a a +b bab (a +b )=(a +b )(a -ab +b )ab (a +b )=a +b ab -1≥2abab-1=1.又a >0,b >0,ab >0. ∴a b +ba≥a +b .,1.在法一中,采用局部通分,优化了解题过程;在法二中,利用不等式的性质,把证明a >b 转化为证明ab>1(b >0).2.作差(商)证明不等式,关键是对差(商)式进行合理的变形,特别注意作商证明不等式,不等式的两边应同号.设a ,b 是非负实数,求证:a 3+b 3≥ab (a 2+b 2).【证明】 a 3+b 3-ab (a 2+b 2) =(a 3-a 2ab )+(b 3-b 2ab ) =a 2a (a -b )-b 2b (a -b ) =(a -b )(a 5-b 5). 当a ≥b ≥0时,a ≥b 且a 5≥b 5, 当b >a ≥0时,a <b 且a 5<b 5, ∴a 3+b 3-ab (a 2+b 2)≥0, ∴a 3+b 3≥ab (a 2+b 2).(2013·大连调研)已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+(1a +1b +1c)2≥63,并确定a ,b ,c 为何值时,等号成立.【思路点拨】 考虑待证不等式的结构特征,a 2+b 2+c 2与1a +1b +1c 分别运用基本不等式;相加后,再用基本不等式,并根据等号成立的条件确定a ,b ,c 的值.【尝试解答】 因为a ,b ,c 均为正数,由均值不等式得 a 2+b 2+c 2≥3(abc )23,① 1a +1b +1c ≥3(abc )-13, 所以(1a +1b +1c )2≥9(abc )-23.②故a 2+b 2+c 2+(1a +1b +1c )2≥3(abc )23+9(abc )-23. 又3(abc )23+9(abc )-23≥227=63,③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立; 当且仅当3(abc )23=9(abc )-23时,③式等号成立.因此当且仅当a =b =c =314时,原式等号成立.,1.综合法证明的逻辑关系是:A ⇒B 1⇒B 2⇒…⇒B n ⇒B (A 为已知条件或数学定义、定理、公理,B 为要证结论),它的常见书面表达是“∵,∴”或“⇒”.2.综合法证明不等式,利用已证的不等式为基础,例如:a 2+b 2≥2ab ,a +b2≥ab (a ≥0,b ≥0),|a +b |≤|a |+|b |及其变形等,再运用不等式的性质推导出所要证的不等式.(2013·徐州模拟)设a 、b 、c 为正实数,求证:1a 3+1b 3+1c3+abc ≥2 3.【证明】 因为a ,b ,c 为正实数,由均值不等式可得 1a 3+1b 3+1c 3≥3 31a 3·1b 3·1c 3, 所以1a 3+1b 3+1c 3≥3abc.所以1a 3+1b 3+1c 3+abc ≥3abc +abc .又3abc+abc ≥2 3abc·abc =23, 所以1a 3+1b 3+1c 3+abc ≥2 3.已知a >0,求证:a 2+1a 2-2≥a +1a-2.【思路点拨】 观察待证不等式两边的特征:①左边是无理式,右边是有理式.②两边均非负.可考虑用分析法,通过平方寻找它成立的充分条件.【尝试解答】 要证原不等式,只需证 a 2+1a 2+2≥a +1a+2,∵a >0,∴两边均大于零. 因此只需证a 2+1a 2+4+4a 2+1a 2≥a 2+1a 2+2+2+22(a +1a),只需证2a 2+1a 2≥2(a +1a),只需证2(a 2+1a 2)≥a 2+1a 2+2,即证a 2+1a 2≥2,又a 2+1a 2≥2显然成立,∴原不等式成立.,,\x(\a\al( 1.(1)分析法是寻找结论成立的充分条件,对于无理不等式去根号,分式不等式去分母,采用分析法是常用方法.(2)此题证明的关键是在两边非负的条件下平方去根号.,2.分析法证明的思路是“执果索因”,其框图表示为:Q ⇐P 1))→P 1⇐P 2)→P 2⇐P 3→…→得到一个明显成立的条件.KK(2013·盐城调研)已知m >0,a ,b ∈R ,求证:(a +mb 1+m )2≤a 2+mb 21+m.【证明】 ∵m >0,∴1+m >0. 欲证(a +mb 1+m )2≤a 2+mb 21+m 成立.只需证明(a +mb )2≤(1+m )(a 2+mb 2), 即证m (a 2-2ab +b 2)≥0, 只要证明a 2-2ab +b 2≥0,又a 2-2ab +b 2=(a -b )2≥0显然成立, 故(a +mb 1+m )2≤a 2+mb 21+m.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14.【思路点拨】 当直接证明命题较困难时,可根据“正难则反”,利用反证法加以证明. 【尝试解答】 假设三式同时大于14,即b -ab >14,c -bc >14,a -ac >14.三式同向相乘,得(1-a )a (1-b )b (1-c )c >164.①∵0<a <1,∴(1-a )a ≤(1-a +a 2)2=14.同理(1-b )b ≤14,(1-c )c ≤14.又(1-a )a ,(1-b )b ,(1-c )c 均大于零. ∴(1-a )a (1-b )b (1-c )c ≤164,②因此①式与②式矛盾.故假设不成立,即原命题成立.,1.反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面推理,就不是反证法. 2.凡涉及否定性、惟一性命题或含“至多”“至少”等语句的不等式时,常可考虑反证法.设m 是|a |、|b |和1中最大的一个,当|x |>m 时,求证:|a x +bx2|<2.【证明】 ∵m 是|a |,|b |和1中的最大的一个. ∴|x |>m ≥1,|x |>m ≥|b |, ∴|x 2|>m 2>|b |. 又|x |>m ≥|a |, 因此|a x +b x 2|≤|a x |+|b x 2|=|a ||x |+|b ||x 2|<|x ||x |+|x 2||x 2|=2.一种原则“正难则反”原则.当直接证明有困难时,常采用反证法.一个程序反证法证明步骤是:(1)作出否定结论的假设;(2)利用假设进行推理,导出矛盾;(3)否定假设,肯定结论.两种方法1.分析法:B⇐B1⇐B2⇐…⇐B n⇐A(结论).(步步寻求不等式成立的充分条件)(已知).2.综合法:A⇒B1⇒B2⇒…⇒B n⇒B(已知).(逐步推演不等式成立的必要条件)(结论).从近两年高考命题看,做为新课标选考的重要内容,不等式证明严格按考试说明要求命题,试题难度不超过中等.着重考查比较法、综合法与分析法证明不等式,在证明中要注意放缩法的应用.创新探究之十四新定义型不等式及其证明(2013·常州质检)若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.(1) 若x2-1比1远离0,求x的取值范围;(2)对任意两个不相等的正数a,b,证明:a3+b3比a2b+ab2远离2ab ab.【规范解答】(1)由题意知|x2-1-0|>|1-0|,即|x2-1|>1,所以x2-1<-1或x2-1>1,解得x>2或x<-2,所以x的取值范围是{x|x>2或x<-2}.(2)要证明a3+b3比a2b+ab2远离2ab ab,即证|a3+b3-2ab ab|>|a2b+ab2-2ab ab|,因为a ≠b ,故a 2b +ab 2>2a 2bab 2=2ab ab , a 3+b 3>2a 3b 3=2ab ab .所以只需证a 3+b 3-2ab ab >a 2b +ab 2-2ab ab . 即证明a 3+b 3-(a 2b +ab 2)>0, 化简得(a -b )2(a +b )>0显然成立, 所以a 3+b 3比a 2b +ab 2远离2ab ab .创新点拨:(1)本题是在题设情境上进行创新,定义新概念“x 比y 远离m ”;(2)注重新知识的接受、迁移能力,是对再学习能力的很好考查,并考查绝对值不等式的解法及不等式的证明.应对措施:(1)认真审题,吃透概念,抓住“x 比y 远离m ”,建立不等式;(2)“万变不离其宗”,增强自信,平时强化迁移能力的培养,善于把“新概念”,“新运算”转化为我们熟悉的“旧概念”、“旧运算”,并严格按照规定进行操作.1.(2013·合肥调研)若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的编号).①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④a 3+b 3≥3;⑤1a +1b ≥2.【解析】 令a =b =1,排除②④; 由2=a +b ≥2ab ⇒ab ≤1,命题①正确; a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确; 1a +1b =a +b ab =2ab ≥2,命题⑤正确. 【答案】 ①③⑤2.(2013·济南模拟)已知a >0,b >0,且a +b >2,求证:1+b a ,1+ab 中至少有一个小于2.【证明】 假设1+b a ,1+a b 都不小于2,则1+b a ≥2,1+ab ≥2,∵a >0,b >0,∴1+b ≥2a ,1+a ≥2b , 两式相加可得1+b +1+a ≥2a +2b ,即a +b ≤2. 这与已知a +b >2矛盾,故假设不成立. 因此,1+b a ,1+ab 中至少有一个小于2.。

2017_2018学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教A版选修4_

2017_2018学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教A版选修4_

三反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法(1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f(x)=x2+px+q,求证:(1)f(1)+f(3)-2f(2)=2;1(2)|f(1)|,f|(2)|,|f(3)|中至少有一个不小于.2“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”.(1)f(1)+f(3)-2f(2)=(1+p+q)+(9+3p+q)-2(4+2p+q)=2.1(2)假设|f(1)|,|f(2)|,|f(3)|都小于,则|f(1)|+2|f(2)|+|f(3)|<2.2而|f(1)|+2|f(2)|+|f(3)|≥f(1)+f(3)-2f(2)=2矛盾,1∴|f(1)|,|f(2)|,|f(3)|中至少有一个不小于.2(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如1证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a,b,c不全为0的等价条件为()A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0解析:选D“不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”.2.证明:三个互不相等的正数a,b,c成等差数列,则a,b,c不可能成等比数列.证明:假设a,b,c成等比数列,则b2=ac.又∵a,b,c成等差数列,∴a=b-d,c=b+d(其中d为公差).∴ac=b2=(b-d)(b+d).∴b2=b2-d2.∴d2=0,∴d=0.这与已知中a,b,c互不相等矛盾.∴假设不成立.∴a,b,c不可能成等比数列.3.已知函数y=f(x)在R上是增函数,且f(a)+f(-b)<f(b)+f(-a),求证:a<b.证明:假设a<b不成立,则a=b或a>b.当a=b时,-a=-b,则有f(a)=f(b),f(-a)=f(-b),于是f(a)+f(-b)=f(b)+f(-a),与已知矛盾.当a>b时,-a<-b,由函数y=f(x)的单调性可得f(a)>f(b),f(-b)>f(-a),于是有f(a) +f(-b)>f(b)+f(-a),与已知矛盾.故假设不成立.∴a<b.利用放缩法证明不等式已知实数x,y,z不全为零.求证:3x2+xy+y2+y2+yz+z2+z2+zx+x2> (x+y+z).2解答本题可对根号内的式子进行配方后再用放缩法证明.y 3x2+xy+y2=(x+2 )2+y24y y y≥(x+2 )2=|x+2 |≥x+.22z同理可得:y2+yz+z2≥y+,2xz2+zx+x2≥z+,2由于x,y,z不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x2+xy+y2+y2+yz+z2+z2+zx+x2>y z x 3(x+ 2 )(z+2 )2 )+(y++=(x+y+z).2(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.1 1 1 14.设n是正整数,求证:≤++…+<1.2 n+1 n+2 2n1 1 1证明:由2n≥n+k>n(k=1,2,…,n),得≤<.2n n+k n1 1 1当k=1时,≤<,2n n+1 n1 1 1当k=2时,≤<,2n n+2 n…1 1 1当k=n时,≤<.2n n+n n1 n 1 1 1 n∴将以上n个不等式相加,得=≤++…+<=1.2 2n n+1 n+2 2n n5.设f(x)=x2-x+13,a,b∈,求证:|f(a)-f(b)|<|a-b|.证明:|f(a)-f(b)|=|a2-a-b2+b|=|(a-b)(a+b-1)|=|a-b||a+b-1|.∵0≤a≤1,0≤b≤1,∴0≤a+b≤2,-1≤a+b-1≤1,|a+b-1|≤1.∴|f(a)-f(b)|≤|a-b|.课时跟踪检测(八)1.设a,b,c∈R+,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R3同时大于零”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选C必要性是显然成立的;当PQR>0时,若P,Q,R不同时大于零,则其中两个为负,一个为正,不妨设P>0,Q<0,R<0,则Q+R=2c<0,这与c>0矛盾,即充分性也成立.2.若|a-c|<h,|b-c|<h,则下列不等式一定成立的是()A.|a-b|<2h B.|a-b|>2hC.|a-b|<h D.|a-b|>h解析:选A|a-b|=|(a-c)-(b-c)|≤|a-c|+|b-c|<2h.3.设x,y都是正实数,且xy-(x+y)=1,则()A.x+y≥2(2+1) B.xy≤2+1C.x+y≤(2+1)2 D.xy≥2(2+1)x+y解析:选A由已知(x+y)+1=xy≤(2 )2,∴(x+y)2-4(x+y)-4≥0.∵x,y都是正实数,∴x>0,y>0,∴x+y≥22+2=2( 2+1).4.对“a,b,c是不全相等的正数”,给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b与a<b及a≠c中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中判断正确的个数为()A.0 B.1C.2 D.3解析:选C若(a-b)2+(b-c)2+(c-a)2=0,则a=b=c,与已知矛盾,故①对;当a>b与a<b及a≠c都不成立时,有a=b=c,不符合题意,故②对;③显然不正确.5.若要证明“a,b至少有一个为正数”,用反证法证明时作的反设应为________.答案:a,b中没有任何一个为正数(或a≤0且b≤0)6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,lg 9+lg 11 lg 99 lg 100∴lg 9·lg11<=<=1,2 2 2∴lg 9·lg 11<1.答案:lg 9·lg 11<14x+y x y7.设x>0,y>0,A=,B=+,则A,B的大小关系是________.1+x+y1+x1+yx y x y解析:A=+<+=B.1+x+y1+x+y1+x1+y答案:A<B8.实数a,b,c,d满足a+b=c+d=1,且ac+bd>1.求证:a,b,c,d中至少有一个是负数.证明:假设a,b,c,d都是非负数.由a+b=c+d=1知a,b,c,d∈.a+c b+d从而ac≤ac≤,bd≤bd≤,2 2a+c+b+d ∴ac+bd≤=1,2即ac+bd≤1,与已知ac+bd>1矛盾,∴a,b,c,d中至少有一个是负数.9.已知a n=1 × 2+2 × 3+3 × 4+…+n n+1(n∈N*).n n+1n n+2求证:<a n< .2 2证明:∵n n+1=n2+n,∴n n+1>n,n n+1∴a n=1 × 2+2 × 3+…+n n+1>1+2+3+…+n=.2n+n+1∵n n+1< ,21+2 2+3 3+4 n+n+1∴a n< +++…+2 2 2 2n n n+2=+(1+2+3+…+n)=.2 2n n+1n n+2综上得<a n< .2 25 10.已知f(x)=ax2+bx+c,若a+c=0,f(x)在上的最大值为2,最小值为-.2b|a|<2.求证:a≠0且b|a|≥2.证明:假设a=0或①当a=0时,由a+c=0,得f(x)=bx,显然b≠0.由题意得f(x)=bx在上是单调函数,5所以f(x)的最大值为|b|,最小值为-|b|.5 1由已知条件得|b|+(-|b|)=2-=-,2 2这与|b|+(-|b|)=0相矛盾,所以a≠0.b b②当|a|≥2时,由二次函数的对称轴为x=-,2a知f(x)在上是单调函数,故其最值在区间的端点处取得.所以Error!或Error!b|a|<2.又a+c=0,则此时b无解,所以b|a|<2.由①②,得a≠0且本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1 1|x-2 |+|x+2 |,M为不等式f(x)<2的解集.1.(全国甲卷)已知函数f(x)=(1)求M;(2)证明:当a,b∈M时,|a+b|<|1+ab|.(1)解:f(x)=Error!1当x≤-时,由f(x)<2得-2x<2,解得x>-1;21 1当-<x< 时,f(x)<2恒成立;2 21当x≥时,由f(x)<2得2x<2,解得x<1.2所以f(x)<2的解集M={x|-1<x<1}.6(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)·(1-b2)<0.因此|a+b|<|1+ab|.2.(全国卷Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b> c+d;(2) a+b> c+d是|a-b|<|c-d|的充要条件.证明:(1)因为( a+b)2=a+b+2 ab,( c+d)2=c+d+2 cd,由题设a+b=c+d,ab>cd,得( a+b)2>( c+d)2.因此a+b> c+d.(2)①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得a+b> c+d.②充分性:若a+b> c+d,则( a+b)2>( c+d)2,即a+b+2 ab>c+d+2 cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b> c+d是|a-b|<|c-d|的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.7a+m1 a+m2已知b,m1,m2都是正数,a<b,m1<m2,求证:< .b+m1 b+m2a+m1 a+m2 -b+m1 b+m2a+m1b+m2-a+m2b+m1=b+m1b+m2am2+bm1-am1-bm2 =b+m1b+m2a-b m2-m1=.b+m1b+m2因为b>0,m1,m2>0,所以(b+m1)(b+m2)>0.又a<b,所以a-b<0.因为m1<m2,所以m2-m1>0.从而(a-b)(m2-m1)<0.a-b m2-m1于是<0.b+m1b+m2a+m1 a+m2所以< .b+m1 b+m2综合法证明不等式综合法证明不等式的思维方向是“顺推”,即由已知的不等式出发,逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a>0,b>0,a+b=1.1 1 1求证:++≥8.a b ab∵a>0,b>0,a+b=1.1∴1=a+b≥2ab,ab≤.21 ∴≥4.ab1 1 1 1 1 1(+b)+∴++ab=(a+b)a b a ab1≥2ab·2+4=8.ab1 1 1∴++≥8.a b ab8分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发,逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a>b>0.求证:a-b< a-b.要证a-b< a-b,只需证a< a-b+b,只需证( a)2<( a-b+b)2,只需证a<a-b+b+2 b a-b,只需证0<2 b a-b.∵a>b>0,上式显然成立,∴原不等式成立,即a-b< a-b.反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A则B”,我们可以通过否定B来达到肯定B的目的,如果B只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.1已知:在△ABC中,∠CAB>90°,D是BC的中点.求证:AD< BC(如右图所示).21假设AD≥BC.21①若AD=BC,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这29条边所对的角为直角”,知∠A=90°,与题设矛盾.1所以AD≠BC.21 1②若AD> BC,因为BD=DC=BC,2 2所以在△ABD中,AD>BD,从而∠B>∠BAD.同理∠C>∠CAD.所以∠B+∠C>∠BAD+∠CAD.即∠B+∠C>∠A.因为∠B+∠C=180°-∠A,所以180°-∠A>∠A,即∠A<90°,与已知矛盾.1故AD>BC不成立.21 由①②知AD<BC成立.2放缩法证明不等式放缩法是在顺推法逻辑推理过程中,有时利用不等式关系的传递性,作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当放缩,否则达不到目的.3 1 1 1 1求证:-<1++…+<2-(n∈N*且n≥2).2 n+1 22 n2 n∵k(k+1)>k2>k(k-1)(k∈N*且k≥2),1 1 1∴< < .k k+1k2 k k-11 1 1 1 1即-< < -.k k+1 k2 k-1 k分别令k=2,3,…,n,得1 1 1 1 1 1 1 1 1-< <1-,-< < -,2 3 22 2 3 4 32 2 3…1 1 1 1 1-< < -,将这些不等式相加,得n n+1 n2 n-1 n1 1 1 1 1 1 1 1 1 1 1 1 1 1-+-+…+-< ++…+<1-+-+…+-,2 3 3 4 n n+1 22 32 n2 2 2 3 n-1 n1 1 1 1 1 1即-< ++…+<1-.2 n+1 22 32 n2 n1 1 1 1 1 1∴1+-<1+++…+<1+1-.2 n+1 22 32 n2 n1031111即-<1++…+<2-(n∈N*且n≥2)成立.2n+122n2n10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3节反证法与放缩法创新应用[核心必知]1.反证法先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们称这种证明问题的方法为反证法.2.放缩法证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.我们把这种方法称为放缩法.[问题思考]1.用反证法证明不等式应注意哪些问题?提示:用反证法证明不等式要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能要逐一论证,缺少任何一种可能,证明都是不完全的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证;否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)推导出来的矛盾可以是多种多样的,有的与已知条件相矛盾,有的与假设相矛盾,有的与定理、公理相违背,有的与已知的事实相矛盾等,但推导出的矛盾必须是明显的.2.运用放缩法证明不等式的关键是什么?提示:运用放缩法证明不等式的关键是放大(或缩小)要适当.如果所要证明的不等式中含有分式,那么我们把分母放大时相应分式的值就会缩小;反之,如果把分母缩小,则相应分式的值就会放大.有时也会把分子、分母同时放大,这时应该注意不等式的变化情况,可以与相应的函数相联系,以达到判断大小的目的,这些都是我们在证明中的常用方法与技巧,也是放缩法中的主要形式.设a ,b ,c ,d 都是小于1的正数,求证:4a (1-b ),4b (1-c ),4c (1-d ),4d (1-a )这四个数不可能都大于1.[精讲详析] 本题考查反证法的应用.解答本题若采用直接法证明将非常困难,因此可考虑采用反证法从反面入手解决.假设4a (1-b )>1,4b (1-c )>1,4c (1-d )>1,4d (1-a )>1,则有a (1-b )>14,b (1-c )>14,c (1-d )>14,d (1-a )>14.∴a (1-b )>12,b (1-c )>12,c (1-d )>12,d (1-a )>12.又∵a (1-b )≤a +(1-b )2,b (1-c )≤b +(1-c )2,c (1-d )≤c +(1-d )2, d (1-a )≤d +(1-a )2,∴a +1-b 2>12,b +1-c 2>12, c +1-d 2>12,d +1-a 2>12.将上面各式相加得2>2,矛盾. ∴4a (1-b ),4b (1-c ),4c (1-d ),4d (1-a ) 这四个数不可能都大于1.——————————————————(1)当证明的结论中含有“不是”,“不都”,“不存在”等词语时,适于应用反证法,因为此类问题的反面比较具体.(2)用反证法证明不等式时,推出的矛盾有三种表现形式:①与已知相矛盾,②与假设矛盾,③与显然成立的事实相矛盾.1.已知f(x)是R上的单调递增函数,且f(a)+f(-b)>f(-a)+f(b).求证:a>b.证明:假设a≤b,则当a=b时-b=-a,于是有f(a)+f(-b)=f(b)+f(-a)与已知矛盾.当a<b时,-a>-b,于是有f(a)<f(b),f(-b)<f(-a),∴f(a)+f(-b)<f(b)+f(-a)与已知矛盾.∴a>b.实数a、b、c、d满足a+b=c+d=1,ac+bd>1,求证:a、b、c、d中至少有一个是负数.[精讲详析] 本题考查“至多”、“至少”型命题的证明方法.解答本题应假设a、b、c、d都是非负数,然后证明并得出矛盾.假设a、b、c、d都是非负数,即a≥0,b≥0,c≥0,d≥0,则1=(a+b)(c+d)=(ac+bd)+(ad+bc)≥ac+bd,这与已知中ac+bd>1矛盾,∴原假设错误,∴a、b、c、d中至少有一个是负数.——————————————————(1)在证明中含有“至少”、“至多”、“最多”等字眼时,或证明否定性命题、唯一性命题时,可使用反证法证明.在证明中常见的矛盾可以与题设矛盾,也可以与已知矛盾,与显然的事实矛盾,也可以自相矛盾.(2)在用反证法证明的过程中,由于作出了与结论相反的假设,相当于增加了题设条件,在证明过程中必须使用这个增加的条件,否则就不是反证法.2.已知函数y =f (x )在区间(a ,b )上是增函数,求证:y =f (x )在区间(a ,b )上至多有一个零点.证明:假设函数y =f (x )在区间(a ,b )上至少有两个零点,不妨设x 1,x 2(x 1≠x 2)为函数y =f (x )在区间(a ,b )上的两个零点,且x 1<x 2,则f (x 1)=f (x 2)=0.∵函数y =f (x )在区间(a ,b )上为增函数,x 1,x 2∈(a ,b )且x 1<x 2,∴f (x 1)<f (x 2),与f (x 1)=f (x 2)=0矛盾, ∴原假设不成立.∴函数y =f (x )在(a ,b )上至多有一个零点.求证:32-1n +1<1+122+…+1n 2<2-1n(n ∈N +且n ≥2).[精讲详析] 本题考查放缩法在证明不等式中的应用,解答本题要注意欲证的式子中间是一个和的形式,但我们不能利用求和公式或其他方法求和,因此可考虑将分母适当放大或缩小成可以求和的形式,进而求和,并证明该不等式.∵k (k +1)>k 2>k (k -1), ∴1k (k +1)<1k 2<1k (k -1),即1k -1k +1<1k 2<1k -1-1k (k ∈N +且k ≥2).分别令k =2,3,…,n得12-13<122<1-12,13-14<132<12-13,…1n -1n +1<1n 2<1n -1-1n , 将这些不等式相加得12-13+13-14+…+1n -1n +1<122+132+…+1n 2<1-12+12-13+…+1n -1-1n , 即12-1n +1<122+132+…+1n 2<1-1n, ∴1+12-1n +1<1+122+132+…+1n 2<1+1-1n ,即32-1n +1<1+122+132+…+1n 2<2-1n (n ∈N +且n ≥2)成立. ——————————————————(1)放缩法证不等式主要是根据不等式的传递性进行变换,即欲证a >b ,可换成证a >c 且c >b ,欲证a <b ,可换成证a <c 且c <b .(2)放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标.而且要恰到好处,目标往往要从证明的结论考察.常用的放缩方法有增项、减项、利用分式的性质、利用不等式的性质、利用已知不等式、利用函数的性质进行放缩等.比如:舍去或加上一些项:⎝ ⎛⎭⎪⎫a +122+34>⎝ ⎛⎭⎪⎫a +122;将分子或分母放大(缩小):1k2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k>2k +k +1(k ∈R ,k >1)等.3.已知:a n =1×2+2×3+3×4+…+n (n +1)(n ∈N +),求证:n (n +1)2<a n <n (n +2)2.证明:∵n (n +1)=n 2+n , ∴n (n +1)>n ,∴a n =1×2+2×3+…+n (n +1)>1+2+3+…40+n =n (n +1)2.∵n (n +1)<n +(n +1)2,∴a n <1+22+2+32+3+42+…+n +(n +1)2=12+(2+3+…+n )+n +12=n (n +2)2. 综上得:n (n +1)2<a n <n (n +2)2.反证法和放缩法在高考中单独命题的可能性不大,一般以解答题一问的形式出现,但反证法和放缩法是一种重要的思维模式,在逻辑推理中有着广泛的应用.[考题印证](安徽高考)设直线l 1:y =k 1x +1,l 2:y =k 2x -1, 其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.[命题立意] 本题考查直线与直线的位置关系,线线相交的判断与证明,点在曲线上的判断与证明,考查学生推理论证的能力.[证明] (1)反证法.假设l 1与l 2不相交,则l 1与l 2平行,有k 1=k 2.代入k 1k 2+2=0,得k 21+2=0,此与k 1为实数的事实相矛盾.从而k 1≠k 2,即l 1与l 2相交. (2)法一 :由方程组⎩⎪⎨⎪⎧y =k 1x +1,y =k 2x -1,解得交点P 的坐标(x ,y )为⎩⎪⎨⎪⎧x =2k 2-k 1,y =k 2+k 1k 2-k 1.而2x 2+y 2=2⎝ ⎛⎭⎪⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.此即表明交点P (x ,y )在椭圆2x 2+y 2=1上.法二:l 1与l 2的交点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧y -1=k 1x ,y +1=k 2x .故知x ≠0,从而⎩⎪⎨⎪⎧k 1=y -1x ,k 2=y +1x .代入k 1k 2+2=0,得y -1x ·y +1x+2=0, 整理后,得2x 2+y 2=1,所以交点P 在椭圆2x 2+y 2=1上.一、选择题1.否定“自然数a 、b 、c 中恰有一个为偶数”时正确的反设为 ( ) A .a 、b 、c 都是奇数 B .a 、b 、c 都是偶数 C .a 、b 、c 中至少有两个偶数D .a 、b 、c 中至少有两个偶数或都是奇数解析:选D 三个自然数的奇偶情况有“三偶、三奇、二偶一奇、二奇一偶”4种,而自然数a 、b 、c 中恰有一个为偶数包含“二奇一偶”的情况,故反面的情况有3种,只有D 项符合.2.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A 、B 的大小关系为( )A .A =B B .A <BC .A ≤BD .A >B解析:选B B =x 1+x +y 1+y >x 1+x +y +y 1+x +y =x +y1+x +y=A ,即A <B .3.设a ,b ,c ∈(-∞,0),则三数a +1b ,b +1c ,c +1a的值 ( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2 解析:选C 假设都大于-2,则a +1b +b +1c +c +1a>-6,∵a ,b ,c <0,∴a +1a ≤-2,b +1b ≤-2,c +1c≤-2,∴a +1a+b +1b +c +1c≤-6,这与假设矛盾,则选C.4.对“a 、b 、c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( )A .0个B .1个C .2个D .3个解析:选C 对①,若(a -b )2+(b -c )2+(c -a )2=0,这时a =b =c ,不符合题意,故①(a -b )2+(b -c )2+(c -a )2≠0符合题意,∴①对.对②,当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对.对③,显然不正确.二、填空题 5.M =1210+1210+1+1210+2+…+1211-1与1的大小关系为________. 解析:M =1210+1210+1+1210+2+…+1211-1=1210+1210+1+1210+2+…+1210+(210-1) <1210+1210+1210+…+1210共210项=1.即M <1.答案:M <16.用反证法证明“已知平面上有n (n ≥3)个点,其中任意两点的距离最大为d ,距离为d 的两点间的线段称为这组点的直径,求证直径的数目最多为n 条”时,假设的内容为________.解析:对“最多”的否定应当是“最少”,二者之间应该是完全对应的,所以本题中的假设应为“直径的数目最少为n +1条”.答案:直径的数目最少为n +1条 7.A =1+12+13+…+1n与n (n ∈N +)的大小关系是________. 解析:A =11+12+13+…+1n ≥项 =nn=n . 答案:A ≥n8.已知a >2,则log a (a -1)log a (a +1)________1(填“>”、“<”或“=”). 解析:∵a >2,∴log a (a -1)>0,log a (a +1)>0, 又log a (a -1)≠log a (a +1),∴log a (a -1)log a (a +1)<log a (a -1)+log a (a +1)2,而log a (a -1)+log a (a +1)2=12log a (a 2-1)<12log a a 2=1, ∴log a (a -1)log a (a +1)<1. 答案:< 三、解答题9.已知0<x <2,0<y <2,0<z <2,求证:x (2-y ),y (2-z ),z (2-x )不都大于1. 证明:法一:假设x (2-y )>1且y (2-z )>1且z (2-x )>1均成立, 则三式相乘有:xyz (2-x )(2-y )(2-z )>1.① 由于0<x <2,∴0<x (2-x )=-x 2+2x =-(x -1)2+1≤1. 同理:0<y (2-y )≤1,且0<z (2-z )≤1, ∴三式相乘得:0<xyz (2-x )(2-y )(2-z )≤1②②与①矛盾,故假设不成立.∴x (2-y ),y (2-z ),z (2-x )不都大于1.法二:假设x (2-y )>1且y (2-z )>1且z (2-x )>1. ∴x (2-y )+y (2-z )+z (2-x )>3.③ 又x (2-y )+y (2-z )+z (2-x ) ≤x +(2-y )2+y +(2-z )2+z +(2-x )2=3,④④与③矛盾,故假设不成立, ∴原题设结论成立.10.已知实数x 、y 、z 不全为零,求证: x 2+xy +y 2+ y 2+yz +z 2+ z 2+zx +x 2>32(x +y +z ).证明:x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥ ⎝ ⎛⎭⎪⎫x +y 22=|x +y2|≥x +y2.同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2.由于x 、y 、z 不全为零,故上述三式中至少有一式取不到等号,所以三式累加得:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝⎛⎭⎪⎫x +y 2+⎝⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).11.已知数列{a n }满足a 1=2,a n +1=2⎝⎛⎭⎪⎫1+1n 2·a n (n ∈N +),(1)求a 2,a 3并求数列{a n }的通项公式;(2)设c n =n a n ,求证:c 1+c 2+c 3+…+c n <710.解:(1)∵a 1=2,a n +1=2⎝ ⎛⎭⎪⎫1+1n 2·a n (n ∈N +),∴a 2=2⎝ ⎛⎭⎪⎫1+112·a 1=16,a 3=2⎝ ⎛⎭⎪⎫1+122·a 2=72. 又∵a n +1(n +1)2=2·a n n 2,n ∈N +,∴⎩⎨⎧⎭⎬⎫a n n 2为等比数列. ∴a n n 2=a 112·2n -1=2n , ∴a n =n 2·2n .(2)证明:c n =n a n =1n ·2n, ∴c 1+c 2+c 3+…+c n=11·2+12·22+13·23+…+1n ·2n <12+18+124+14·⎝ ⎛⎭⎪⎫124+125+…+12n =23+14·124⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -31-12<23+14·1241-12=23+132 =6796=670960<96×796×10=710,所以结论成立.。

相关文档
最新文档