2017中考数学海淀二模(1)
2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
2017年北京中考数学试卷及答案

①在点 , , 中, 的关联点是;
②点P在直线 上,若P为 的关联点,求点P的横坐标的取值范围;
(2) 的圆心在x轴上,半径为2,直线 与x轴、y轴分别交与点A,B.若线段AB上的所有点都是 的关联点,直接写出圆心C的横坐标的取值范围.
13。如图,在△ABC中,M,N分别是AC,BC的中点,若 ,则 。
14。如图,AB为 的直径,C,D为 上的点, 。若∠CAB=40°,则∠CAD=°.
15.如图,在平面直角坐标系xOy中,△AOB可以看成是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:.
(以上材料来源于《古证复原的原则》、《吴文俊与中国》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程.
证明: (+).
易知, =,=.
可得: 。
21.关于x的一元二次方程 。
(1)求证:方程总有两个实数根;
(2)若方程有一个根小于1,求k的取值范围.
22。如图在四边形ABCD中,BD为一条射线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,
D。2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多
9。小苏和小林在右图的跑道上进行4×50米折返跑。在整个过程中,
跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的
对应关系如下图所示。下列叙述正确的是
A。两个人起跑线同时出发,同时到达终点
B.小苏跑全程的平均速度大于小林跑全程的平均速度
2017年北京市高级中等学校招生考试
数学试卷
学校:姓名:准考证号:
考
生
须
知
2017各地中考及北京各区一、二模数学试题分类整理——平行四边形、特殊平行四边形的性质与判定

类型2:平四与特殊平四的性质与判定(1)选填 1、(广东中考10)如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③;④,其中正确的是( )A .①③B .②③C .①④D .②④ 2、(朝阳一模8)如图,广场中心的菱形花坛ABCD 的周长是40米,∠A =60°,则A ,C 两点之间的距离为( )A .5米B .53米C .10米D .103米3、(通州一模8)如图,将一张矩形的纸对折,旋转90°后再对折,然后沿着右图中的虚线剪下,则剪下的纸片打开后的形状一定为( ) A .三角形 B .菱形 C .矩形 D .正方形4、(海淀二模4)如图,ABCD 中,AD =5,AB =3,∠BAD 的平分线AE 交BC 于E 点,则EC 的长为( )A .4B .3C .2D .1 5、(平谷一模2)把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A ,则点A对应的数是( ) A .1B .2C .3D .26、(河南中考9)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ′处,则点C 的对应点C ′的坐标为( )A .(√3,1)B .(2,1)C .(1,√3)D .(2,√3)7、(青岛中考7)如图,平行四边形ABCD 的对角线AC与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( ) A .23 B .23C .721 D .7212ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△A -13210B E CA D8、(德州中考11)如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b (a >b ),M 在BC 边上,且BM =b ,连接AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转至△NGF .给出以下五个结论:①∠AND =∠MPC ;②CP =;③△ABM≌△NGF ;④S 四边形AMFN =a 2+b 2;⑤A ,M ,P ,D 四点共圆.其中正确的个数是( )A .2B .3C . 4D .59、(苏州中考10)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F DE ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为( )A .283B .243C .323D .3238-10、(顺义二模15)如图,在正方形ABCD 和正方形AEFG 中,顶点E 在边AD 上,连接DG 交EF 于点H ,若FH =1,EH =2,则DG 的长为 . 11、(西城二模13)如图,正方形ABCD ,AC 为对角线,点E 在AC 上,且AE =AB ,则∠BED 的度数为 °.12、(怀柔一模13)如图,在ABCD 中,ED =2,BC =5,∠ABC的平分线交AD 于点E ,则AB 的长为_______________. 13、(通州一模15)如图,Rt △ABC ≌Rt △DCB ,两斜边交于点O ,如果AC =3,那么OD 的长为_____________.14、(苏州中考18)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB _______________(结果保留根号).2b b a-E DCB AOABCDH GF EDCB A D GC B AFEM NP15、(北京中考20) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证. (以上材料源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.(2)解答题(基础、中等) 16、(顺义一模19)如图,□ABCD 中,BE ⊥CD 于E ,CE =DE .求证:∠A =∠ABD .17、(通州一模19)如图,在矩形ABCD 中,连接对角线AC ,BD ,延长BC 至点E ,使BC =CE ,连接DE . 求证:DE =AC .18、(燕山一模19)在△ABC 中, AD =BF ,点D ,E ,F 分别是AC ,BC ,BA 延长线上的点,四边形ADEF 为平行四边形. 求证: AB =ACAB C D EEDBA C FE DAB C19、(杭州中考21)如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG 。
2017北京中考数学一模27汇总

l2017中考一模27汇编27(西城).在平面直角坐标系xOy 中,二次函数y =mx 2 -(2m + 1)x + m -5的图象与x 轴有两个公共点.(1)求m 的取值范围;(2)若m 取满足条件的最小的整数, ①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y 的取值范围是-6 ≤ y ≤ 4-n ,求n 的值;③将此二次函数平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为y =a (x -h )2 + k ,当x < 2时,y 随x 的增大而减小,求k 的取值范围.27(房山). 在平面直角坐标系xOy 中,直线32-=x y 与y 轴交于点A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线32-=x y 交于点C. (1)求点C 的坐标;(2)如果抛物线n nx nx y 542+-= (n >0)与线段BC 有唯一公共点,求n 的取值范围.27(顺义).如图,已知抛物线28(0)y ax bx a =++≠与x 轴交于A (-2,0),B 两点,与y 轴交于C 点,tan ∠ABC =2.(1)求抛物线的表达式及其顶点D 的坐标;(2)过点A 、B 作x 轴的垂线,交直线CD 于点E 、F ,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF (含线段端点)只有1个公共点.求m 的取值范围.27(平谷).直线33y x =-+与x 轴,y 轴分别交于A ,B 两点,点A 关于直线1x =-的对称点为点C .(1)求点C 的坐标;(2)若抛物线()230y mx nx m m =+-≠经过A ,B ,C 三点,求该抛物线的表达式;(3)若抛物线()230y ax bx a =++≠ 经过A ,B 两点,且顶点在第二象限,抛物线与线段AC 有两个公共点,求a 的取值范围.27(通州).在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ). (1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.27(海淀).平面直角坐标系xOy 中,抛物线2222y mx m x =-+交y 轴于A 点,交直线x =4于B 点.(1)抛物线的对称轴为x = (用含m 的代数式表示); (2)若AB ∥x 轴,求抛物线的表达式;(3)记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),若对于图象G 上任意一点P (P x ,P y ),2P y ≤,求m 的取值范围.27(东城).二次函数2(2)2(2)5y m x m x m =+-+-+,其中20m +>. (1)求该二次函数的对称轴方程; (2)过动点C (0,n )作直线l ⊥y 轴.① 当直线l 与抛物线只有一个公共点时, 求n 与m 的函数关系;② 若抛物线与x 轴有两个交点,将抛物线在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 当n =7时,直线l 与新的图象恰好有三个公共点,求此时m 的值;(3)若对于每一个给定的x 的值,它所对应的函数值都不小于1,求m 的取值范围.27(丰台).在平面直角坐标系xOy 中,抛物线()01242≠-+-=m m mx mx y 与平行于x 轴的一条直线交于A ,B 两点. (1)求抛物线的对称轴;(2)如果点A 的坐标是(-1,-2),求点B 的坐标;(3)抛物线的对称轴交直线AB 于点C , 如果直线AB 与y 轴交点的纵坐标为-1,且抛物线顶点D 到点C 的距离大于2,求m 的取值范围.27(门头沟). 在平面直角坐标系xOy 中,抛物线()()13y a x x =+-与x 轴交于A ,B 两点,点A 在点B 的左侧,抛物线的顶点为P ,规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界).(1)如果该抛物线经过(1, 3),求a 的值,并指出此时“G 区域”有______个整数点;(整数点就是横纵坐标均为整数的点) (2)求抛物线()()13y a x x =+-的顶点P 的坐标(用含a 的代数式表示); (3)在(2)的条件下,如果G 区域中仅有4个整数点时,直接写出a 的取值范围.27(石景山).在平面直角坐标系xOy 中,抛物线2443(0)y ax ax a a =-+-≠的顶点为A . (1)求顶点A 的坐标;(2)过点(0,5)且平行于x 轴的直线l ,与抛物线2443(0)y ax ax a a =-+-≠交于B ,C 两点.①当2a =时,求线段BC 的长;②当线段BC 的长不小于6时,直接写出a 的取值范围.。
2017海淀初中数学二模答案(终稿)(1)

海淀九年级第二学期期末练习数学答案2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.2x ≠12.答案不唯一,例如(0,0)13.1 14.答案不唯一,在10.89.6t -≤≤-范围内即可15.216.乙;乙的平均成绩更高,成绩更稳定.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.原式 =23--------------------------------------------------------------------------4分 =5 --------------------------------------------------------------------------5分18.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②由不等式①,得362x x +-≥, ----------------------------------------------------------------- 1分解得2x ≥; -----------------------------------------------------------------2分由不等式①,得1233x x +>-,------------------------------------------------------------------ 3分解得4x <;-------------------------------------------------------------------4分∴ 原不等式组的解集是24x ≤<.--------------------------------------------------------------- 5分19.连接AC ,则△ABC ≌ △ADC .----------------------------1分证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,,----------------------------4分 ∴△ABC ≌ △ADC .----------------------------5分 20.解:∵关于x 的方程412m xx-=的根是2,∴4124m -=.------------------------------------------------------------------------------1分∴4m =.------------------------------------------------------------------------------2分∴()2428m m --+DCBA()244248=--⨯+ ------------------------------------------------------------------------------ 4分0=.-------------------------------------------------------------------------------- 5分21.解:(1)∵直线3l y mx =-:过点A (2,0),∴023m =-. ------------------------------------------------------------------------------ 1分 ∴32m =. ------------------------------------------------------------------------------ 2分 ∴直线l 的表达式为332y x =-.-----------------------------------------------------3分 (2)n =32-或92.------------------------------------------------------------------------- 5分22.(1)C ; ---------------------------------------------------------------------------------------------- 2分 (2)① B ; ---------------------------------------------------------------------------------------------- 4分 ② 100. ---------------------------------------------------------------------------------------------- 5分 23.(1)证明:∵EF 垂直平分AC ,∴F A =FC ,EA =EC ,----------------------------------------------------------------1分 ∵ AF ∥BC , ∴∠1=∠2. ∵AE =CE , ∴∠2=∠3. ∴ ∠1=∠3. ∵EF ⊥AC ,∴∠ADF =∠ADE =90°.∵ ∠1+∠4=90°,∠3+∠5=90°. ∴∠4=∠5.∴ AF =AE .----------------------------------------------------------------2分 ∴AF =FC =CE =EA .∴四边形AECF 是菱形.----------------------------------------------------------------3分 (2)解:∵∠BAC =∠ADF =90°, ∴AB ∥FE . ∵AF ∥BE , ∴四边形ABEF 为平行四边形. ∵AB =10,∴FE =AB =10.-----------------------------------------------------------------------------------4分 ∵∠ACB =30°,∴tan ABAC ACB==∠∴12AECF S AC FE ⋅==菱形----------------------------------------------------------5分54321F E DCB A24.(1)北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计表(单位:万人)北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计图(单位:万人)---------------------------------- 2分(2)35.1;-------------------------------------------------------------------------------------------------- 3分(3)答案不唯一,预估理由与预估结果相符即可.--------------------- 5分25.(1)证明:∵D 为 AC的中点,∴∠CBA =2∠CBE .------------------------------------ 1分 ∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠1+∠CBA =90°. ∴∠1+2∠CBE =90°. ∵AP 是⊙O 的切线,∴∠P AB =∠1+∠P AC =90°.----------------------------- 2分∴∠P AC =2∠CBE .--------------------------------------3分(2)思路:①连接AD ,由D 是 AC的中点,∠2=∠CBE , 由∠ACB =∠P AB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE ,得PE =2PD =2m ,∠5=12∠P AC =∠CBE =α-------- 4分③在Rt △P AD 中,由PD =m ,∠5=α,可求P A 的长; ④在Rt △P AB 中,由P A 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长;⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长.------------------- 5分A26.(1)答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等;-------------------------------2分 (2)答案不唯一,符合题意即可;-----------------------------------------------------------------4分 (3)所写的性质与图象相符即可.----------------------------------------------------------------- 5分 27.(1)解:∵抛物线()222244y x mx m x m =-+-=--,其对称轴为1x =,∴1m =.∴该抛物线的表达式为223y x x =--.------------------------------------------------- 2分 (2)解:当0y =时,2230x x --=,解得11x =-,23x =,∴抛物线与x 轴的交点为A (1-,0),B (3,0). --------------------------------- 3分 ∴4AB =.当0x =时,3y =-,∴抛物线与y 轴的交点为C (0,3-). ------------------------------------------- 4分 ∵12CD AB =, ∴CD =2.∵CD ∥x 轴,点D 在点C 的左侧,∴点D 的坐标为(2-,3-). --------------------------------------------------5分(3)11t -≤≤.------------------------------------------------------------------------------------ 7分28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°, ∴∠BAC =2∠BAD =40°. --------------------------------------1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点, ∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ----------------------------------------2分(2)①画出一种即可. ----------------------------------------------------------------------------------3分MPN ECDB AFEAPN ECB A②证明:想法1:连接DE.∵AB=AC,AD为BC边上的高,∴D为BC中点.∵E为AC中点,∴ED∥AB,∴∠1=∠APE.--------------------------------- 4分∵∠ADC=90°,E为AC中点,∴12AE DE CE AC===.同理可证12AE NE CE AC===.∴AE=NE=CE=DE.∴A,N,D,C在以点E为圆心,AC为直径的圆上.-----5分∴∠1=2∠MAD.------------------------------------------ 6分∴∠APE=2∠MAD.------------------------------------------- 7分想法2:设∠MAD=α,∠DAC=β,∵CN⊥AM,∴∠ANC=90°.∵E为AC中点,∴12AE NE AC==.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.--------------------- 4分∴∠NEC=∠ANE+∠NAC=2α+2β.------------------------ 5分∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC-∠BAC=2α.--------------------------------- 6分∴∠APE=2∠MAD.--------------------------------------------- 7分想法3:在NE上取点Q,使∠NAQ=2∠MAD,连接AQ,∴∠1=∠2.∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∴∠BAD-∠1=∠CAD-∠2,即∠3=∠4.----------------------------------------- 4分∴∠3+∠NAQ=∠4+∠NAQ,即∠P AQ=∠EAN.∵CN⊥AM,ED C BAPMN4321QNMPABCDE∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠EAN .---------------------------------------------------------------- 5分 ∴∠P AQ =∠ANE . ∵∠AQP =∠AQP ,∴△P AQ ∽△ANQ .---------------------------------------------------------------- 6分 ∴∠APE =∠NAQ =2∠MAD .-------------------------------------------------------- 7分29.(1)①R ,S ;----------------------------------------------------------------------------------------------- 2分 ②(4-,0)或(4,0);------------------------------------------------------------------------ 4分 (2)①由题意,直线3y x =-与x 轴交于C (3,0),与y 轴交于D (0,3-). 点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为3. 即点N 在右图中所示的正方形CDEF 上. ∵点E 的坐标为(3-,0),点N 在直线x n =上,∴33n -≤≤.--------------------------------------------------------------------------------------- 6分 ②m ≤1-或m ≥1.------------------------------------------------------------------------------------ 8分x。
(完整版)2017年北京市中考数学试题及答案

2017年北京市高级中等学校招生考试数 学 试 题一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度 2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠ D .4x ≠ 3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b > D .0b c +> 5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C. D .6.若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .187. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭g 的值是( )A . -3B . -1 C. 1 D .38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A .两人从起跑线同时出发,同时到达终点B .小苏跑全程的平均速度大于小林跑全程的平均速度 C. 小苏前15s 跑过的路程大于小林前15s 跑过的路程 D .小林在跑最后100m 的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:① 当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ② 随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③ 若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620. 其中合理的是( )A .①B .② C. ①② D .①③二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________. 13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .14.如图,AB 为O e 的直径,C D 、为O e 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .15.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .16.下图是“作已知直角三角形的外接圆”的尺规作图过程 已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ; (3)以O 为圆心,OA 为半径作O e .O e 即为所求作的圆.请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.计算:(4cos3012+--.18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.21.关于x 的一元二次方程()23220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 23. 如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线2y x =-交于点()3,A m . (1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0ky x x=>的图象于点N . ①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.24.如图,AB 是O e 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作O e 的切线交CE 的延长线于点D . (1)求证:DB DE =;(2)若12,5AB BD ==,求O e 的半径.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下: 甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77 乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格) 分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a .估计乙部门生产技能优秀的员工人数为____________;b .可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,P 是AB 所对弦AB 上一动点,过点P 作PM AB ⊥交AB 于点M ,连接MB ,过点P 作PN MB ⊥于点N .已知6AB cm =,设A P 、两点间的距离为xcm ,P N 、两点间的距离为ycm .(当点P 与点A 或点B 重合时,y 的值为0)小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当PAN ∆为等腰三角形时,AP 的长度约为____________cm . 27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C .(1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O e 的半径为2时,①在点123115,0,,,,02222P P P ⎛⎛⎫⎛⎫⎪ ⎪ ⎝⎭⎝⎭⎝⎭中,O e 的关联点是_______________. ②点P 在直线y x =-上,若P 为O e 的关联点,求点P 的横坐标的取值范围.(2)C e 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C e 的关联点,直接写出圆心C 的横坐标的取值范围.。
中考数学 二模 25题

1.(2017年嘉定宝山)已知:8=AB ,⊙O 经过点A 、B .以AB 为一边画平行四边形ABCD ,另一边CD 经过点O (如图8).以点B 为圆心,BC 为半径画弧,交线段OC 于点E (点E 不与点O 、点C 重合).(1)求证:OE OD =;(2)如果⊙O 的半径长为5(如图9),设x OD =,y BC =,求y 关于x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为5,联结AC ,当AC BE ⊥时,求OD 的长.2.(2017年普陀)如图10,半圆O 的直径AB =10,有一条定长为6的动弦CD 在弧AB 上滑动(点C 、点D 分别不与点A 、点B 重合),点E 、F 在AB 上,EC ⊥CD ,FD ⊥CD . (1)求证:EO OF =;(2)联结OC ,如果△ECO 中有一个内角等于45 ,求线段EF 的长; (3)当动弦CD 在弧AB 上滑动时,设变量CE x =,四边形CDFE 面积为S ,周长为l ,问:S 与l 是否分别随着x 的变化而变化?试用所学的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.图9 B O A 备用图 B OA 图8 E CB A O D 图103.(2017年崇明)如图,梯形ABCD 中,AB CD ∥,90ABC ∠=︒,6AB =,8BC =,tan 2D =,点E 是射线CD 上一动点(不与点C 重合),将BCE ∆沿着BE 进行翻折,点C 的对应点记为点F . (1)如图1,当点F 落在梯形ABCD 的中位线MN 上时,求CE 的长;(2)如图2,当点E 在线段CD 上时,设CE x =,BFC EFCS y S ∆∆=,求y 与x 之间的函数关系式,并写出定义域;(3)如图3,联结AC ,线段BF 与射线CA 交于点G ,当CBG ∆是等腰三角形时,求CE 的长.ABCDEFM NEDCFABEDC FAB GD CAB(第25题图1)(第25题图2)(第25题图3)(第25题备用图)4.(2017年杨浦)已知:以O 为圆心的扇形AOB 中,∠AOB =90°,点C 为»AB 上一动点,射线AC 交射线OB 于点D ,过点D 作OD 的垂线交射线OC 于点E ,联结AE . (1) 如图1,当四边形AODE 为矩形时,求∠ADO 的度数; (2) 当扇形的半径长为5,且AC =6时,求线段DE 的长;(3) 联结BC ,试问:在点C 运动的过程中,∠BCD 的大小是否确定?若是,请求出它 的度数;若不是,请说明理由.5.(2017年奉贤)已知:如图9,线段AB =4,以AB 为直径作半圆O ,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC ,过点C 作CD //AB ,且CD =PC ,过点D 作DE//PC ,交射线PB 于点E ,PD 与CE 相交于点Q . (1)若点P 与点A 重合,求BE 的长; (2)设PC = x ,y CEPD,当点P 在线段AO 上时,求y 与x 的函数关系式及定义域; (3)当点Q 在半圆O 上时,求PC 的长.图9ACPOBD E Q备用图AO BCA OBCD E(备用图) A O B CD E (图1)6.(2017年闵行)如图,在梯形ABCD 中,AD // BC ,∠B = 90°,AB = 4,BC = 9,AD = 6.点E 、F 分别在边AD 、BC 上,且BF = 2DE ,联结FE .FE 的延长线与CD 的延长线相交于点P .设DE = x ,PEy EF . (1)求y 关于x 的函数解析式,并写出函数的定义域;(2)当以ED 为半径的⊙E 与以FB 为半径的⊙F 外切时,求x 的值;(3)当△AEF ∽△PED 时,求x 的值.7.(2017年长宁金山)如图,△ABC 的边AB 是⊙O 的直径,点C 在⊙O 上,已知AC =6 cm ,BC =8 cm ,点P 、Q 分别在边AB 、BC 上,且点P 不与点A 、B 重合,BQ =k ·AP (k >0),连接PC 、PQ . (1)求⊙O 的半径长; (2)当k =2时,设AP =x ,△CPQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△CPQ ∽△ABC ,且∠ACB =∠CPQ ,求k 的值.第25题图A B CDE F P (第25题图)A B C D (备用图)EP 第25题图 C AB D8.(2017年虹口)如图,在△ABC 中,AB=AC =5,cos B =45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D ,∠BPD=∠BAC .以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E ,联结CE ,设BD=x ,CE=y . (1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域; (3)如果⊙O 与⊙P 相交于点C 、E ,且⊙O 经过点B ,当OP=54时,求AD 的长.9.(2017年浦东新区)如图所示,︒=∠45MON ,点P 是MON ∠内一点,过点P 作OM PA ⊥于点A 、ON PB ⊥于点B ,且22=PB .取OP 的中点C ,联结AC 并延长,交OB 于点D .(1)求证:OPB ADB ∠=∠;(2)设x PA =,y OD =,求y 关于x 的函数解析式;(3)分别联结AB 、BC ,当ABD △与CPB △相似时,求PA 的长.(第25题图)(备用图)10.(2016年崇明)如图,已知BC 是半圆O 的直径,8BC =,过线段BO 上一动点D ,作AD BC ⊥交半圆O 于点A ,联结AO ,过点B 作BH AO ⊥,垂足为点H ,BH 的延长线交半圆O 于点F . (1)求证:AH BD =;(2)设BD x =,BE BF y ⋅=,求y 关于x 的函数关系式;(3)如图2,若联结FA 并延长交CB 的延长线于点G ,当FAE ∆与FBG ∆相似时,求BD 的长度.11.(2016年宝山嘉定)如图8,⊙O 与过点O 的⊙P 相交于AB ,D 是⊙P 的劣弧OB 上一点,射线OD 交⊙O 于点E ,交AB 的延长线于点C .如果AB =24,32tan =∠AOP . (1) 求⊙P 的半径长;(2) 当△AOC 为直角三角形时,求线段OD 的长; (3) 设线段OD 的长度为x ,线段CE 的长度为y ,求y 与x 之间的函数关系式及其定义域.(第25题图1)ABDOE HFC(第25题图2) CO D B G A F H E 图8_C _ E _B _O_P_A_ D12.(2016年长宁金山)如图, 已知在Rt △ABC 中, ∠ACB =90°, AB =5, 4sin 5A, P 是边BC 上的一点, PE ⊥AB , 垂足为E , 以点P 为圆心, PC 为半径的圆与射线PE 相交于点Q , 线段CQ 与边AB 交于点D . (1)求AD 的长;(2)设CP =x , △PCQ 的面积为y , 求y 关于x 的函数解析式, 并写出定义域;(3)过点C 作CF ⊥AB , 垂足为F , 联结PF 、QF , 如果△PQF 是以PF 为腰的等腰三角形, 求CP 的长.13.(2016年闸北)如图,在△ABC 中,AB=AC=6,BC=4,⊙B 与边AB 相交于点D ,与边BC 相交于点E ,设⊙B 的半径为x . (1)当⊙B 与直线AC 相切时,求x 的值;(2)设DC 的长为y ,求y 关于x 的函数解析式,并写出定义域; (3)若以AC 为直径的⊙P 经过点E ,求⊙P 与⊙B 公共弦的长.BCAP EQDBCACB ADE (第25题图)14.(2016年闵行)如图,已知在△ABC 中,AB = AC = 6,AH ⊥BC ,垂足为点H .点D 在边AB 上,且AD = 2,联结CD 交AH 于点E .(1)如图1,如果AE = AD ,求AH 的长;(2)如图2,⊙A 是以点A 为圆心,AD 为半径的圆,交线段AH 于点F .设点P 为边BC 上一点,如果以点P 为圆心,BP 为半径的圆与⊙A 外切,以点P 为圆心,CP 为半径的圆与⊙A 内切,求边BC 的长;(3)如图3,联结DF .设DF = x ,△ABC 的面积为y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围.15.(2016年松江)已知:如图1,在梯形ABCD 中,AD //BC ,∠BCD =90º, BC=11,CD=6,tan ∠ABC =2,点E 在AD 边上,且AE=3ED ,EF //AB 交BC 于点F ,点M 、N 分别在射线FE 和线段CD 上.(1)求线段CF 的长; (2)如图2,当点M 在线段FE 上,且AM ⊥MN ,设FM ·cos ∠EFC =x ,CN =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)如果△AMN 为等腰直角三角形,求线段FM 的长.AB C H D (第25题图1) E AB C H D E(第25题图3) F P AB C H D E(第25题图2) F (第25题图1)AC B DE F(第25题图2)AC B DE FNM (备用图)A CBDE F16.(2016年黄埔)如图7,在Rt △ABC 中,90ACB ∠=︒,1AC =,BC =7,点D 是边CA 延长线上的一点,AE ⊥BD ,垂足为点E ,AE 的延长线交CA 的平行线BF 于点F ,联结CE 交AB 于点G .(1)当点E 是BD 的中点时,求tan AFB ∠的值;(2)CE AF 的值是否随线段AD 长度的改变而变化,如果不变,求出CE AF 的值;如果变化,请说明理由;(3)当BGE ∆与BAF ∆相似时,求线段AF 的长.19.(2016年杨浦)已知:半圆O 的直径AB =6,点C 在半圆O 上,且tan 22ABC ∠=,点D 为AC 上一点,联结DC (如图).(1)求BC 的长;(2)若射线DC 交射线AB 于点M ,且△MBC 与△MOC 相似,求CD 的长; (3)联结OD ,当OD//BC 时,作∠DOB 的平分线交线段DC 于点N ,求ON 的长.图7AB C DEF G (第25题备用图) A B O C A B O C D(第25题图)20.(2016年奉贤) 已知:如图,在边长为5的菱形ABCD 中,cos A =35,点P 为边AB 上一点,以A 为圆心、AP 为半径的⊙A 与边AD 交于点E ,射线CE 与⊙A 另一个交点为点F . (1)当点E 与点D 重合时,求EF 的长;(2)设AP =x ,CE =y ,求y 关于x 的函数关系式及定义域;(3)是否存在一点P ,使得 2EF PE =⋅,若存在,求AP 的长,若不存在,请说明理由.21.(2016年普陀)如图9,在Rt △ABC 中,90C ∠= ,14AC =,3tan 4A =,点D 是边AC 上的一点,8AD =.点E 是边AB 上一点,以点E 为圆心,EA 为半径作圆,经过点D .点F 是边AC 上一动点(点F 不与A 、C 重合),作FG EF ⊥,交射线BC 于点G . (1)用直尺圆规作出圆心E ,并求圆E 的半径长(保留作图痕迹);(2)当点G 在边BC 上时,设AF x =,CG y =,求y 关于x 的函数解析式,并写出它的定义域;(3)联结EG ,当△EFG 与△FCG 相似时,推理判断以点G 为圆心、CG 为半径的圆G 与圆E 可能产生的各种位置关系.DCBA E F第25题图P DCBA备用图DCBA图9DCBA图9备用图22.(2016年浦东)如图,Rt △ABC 中,90ACB ∠= ,6BC =,点D 为斜边AB 的中点,点E 为边AC 上的一个动点.联结DE ,过点E 作DE 的垂线与边BC 交于点F ,以,DE EF 为邻边作矩形DEFG .(1)如图1,当8AC =,点G 在边AB 上时,求DE 和EF 的长; (2)如图2,若12DE EF =,设AC x =,矩形DEFG 的面积为y ,求y 关于x 的函数解析式; (3)若23DE EF =,且点G 恰好落在Rt △ABC 的边上,求AC 的长.23.(2015年黄埔)如图8,Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.GFED C BA 第25题 图2A BC D EFG 第25题 图1 ABCD备用图DCBA(备用图)图8GFDCB A E23.(2015年奉贤)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .23.(2015年松江区)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,AB =4,AD=3,552sin =∠BCD ,点P 是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H . (1)求证:∠BCD =∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长;(3)如图2,点E 在BC 延长线上,且满足DP =CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.DCB (第25题图)AB(备用图)AABCHPD (第25题图1)ABCHPD EF(第25题图2)23.(2015年闵行区)如图,已知在梯形ABCD 中,AD // BC ,AB = DC = 5,AD = 4.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且ME // DN ,MF // AN ,联结EF .(1)如图1,如果EF // BC ,求EF 的长;(2)如果四边形MENF 的面积是△ADN 的面积的38,求AM 的长;(3)如果BC = 10,试探索△ABN 、△AND 、△DNC 能否两两相似?如果能,求AN 的长;如果不能,请说明理由.23.(2015年嘉定)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.A B C D M N E F(图1)A B C D M NE F (第25题图)A CB (M )ED 图10ACBMED图11。
中考中的费马点详解加练习

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。
之所以称业余,是由于皮耶·德·费马具有律师的全职工作。
他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。
费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。
著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。
“贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。
费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。
托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。
这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。
“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。
若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。
这个特殊点对于每个给定的三角形都只有一个。
1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的X角相等,均为120°。
所以三角形的费马点也称为三角形的等角中心。
2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
–1 –2 –3 –4 –5 –6
1
2
3
4
5
6
x
普通高校本专科学生 成人本专科学生
招生人数
17.2
在校生人数
研பைடு நூலகம்生
在科技方面,2016 年全年研究与试验发展(R&D)经费支出 1479.8 亿元, 比 2015 年增长了 6.9%, 全市研究与试验发展 (R&D) 活动人员 36.2 万人, 比上年增长 1.1 万人. 2013 年, 2014 年, 2015 年全年研究与试验发展 (R&D) 经费支出分别为 1185.0 亿元, 1268.8 亿元,1384.0 亿元,分别比前一年度增长 11.4%,7.1%,9.1%.
(1)请用统计图或统计表将北京市2016年研究生、普通高校本 专科学生、成人本专科学生的招生人数和在校生人数表示出来;
北京市 2016 年研究生、普通高校本专科学生、成人本专科学生 招生人数和在校生人数统计图(单位:万人)
70 60 50 40 30 20 10 0 58.8
29.2 9.7 15.5 6.1
2
B. y 3 x 1 D. y
1 x
9.如图,在等边三角形三个顶点和中心处的每个“○”中各填有一 个式子,若图中任意三个“○”中的式子之和均相等,则 a 的值 为 A.3 C.1 B.2
3 a b 2a 2
D.0
10.利用量角器可以制作“锐角正弦值速查卡” .制作方法如下:如图,设 OA=1,以 O 为圆心,分别以 0.05,0.1,0.15,0.2,„,0.9,0.95 长 为半径作半圆,再以 OA 为直径作⊙M.利用“锐角正弦值速查卡”可 sin 60 0.87 , sin 45 0.71 . 以读出相应锐角正弦的近似值. 例如: 下 列角度中正弦值最接近 0.94 的是 A.70° B.50° C.40° D.30°
y
l A O B
2
x
频数/人 240 210 180 150 120 90 60 30 20
O
240 200 160
100 80 80 50 25 25
40 60
15
5
20
80 100 120 140 160 180 200 220 240 月均花费/元
23.如图,在△ABC 中,∠BAC=90°,线段 AC 的垂直平分线 交 AC 于 D 点,交 BC 于 E 点,过点 A 作 BC 的平行线交 直线 ED 于 F 点,连接 AE,CF. (1)求证:四边形 AECF 是菱形; (2)若 AB=10,∠ACB=30°,求菱形 AECF 的面积.
P D E A O C B
26.已知 y 是 x 的函数,该函数的图象经过 A(1,6) ,B(3,2)两 点. (1)请写出一个符合要求的函数表达式 ;
(2)若该函数的图象还经过点 C(4,3) ,自变量 x 的取值范围是 x≥0 ,该 函数无最小值. ①如图,在给定的坐标系 xOy 中,画出一 个 符合条件的函数的图象; . .
y P 3 2 1 –3 –2 –1 O –1 1 2 3 x Q
(1)已知点 A 的坐标为( 3 ,1) , ①在点 R(0,4) ,S(2,2) ,T(2, 3 )中,为点 A 的同 族点的是 ; ②若点 B 在 x 轴上,且 A,B 两点为同族点,则点 B 的坐标 为 ;
(2)直线 l: y x 3 ,与 x 轴交于点 C,与 y 轴交于点 D, ①M 为线段 CD 上一点, 若在直线 x n 上存在点 N, 使得 M, N 两点为同族点,求 n 的取值范围;
想法3:在NE上取点Q,使∠NAQ=2∠MAD,要证∠APE=2∠MAD,只需证 △NAQ∽△APQ.
P
29.在平面直角坐标系 xOy 中,对于 P,Q 两点给出如下定义:若点 P 到两坐标轴的距离之和等于点 Q 到两坐标轴的距离之和, 则称 P, Q 两点为同族点.下图中的 P,Q 两点即为同族点.
(2)2015年北京市研究与试验发展(R&D)活动人员为_____ 万人; (3)根据材料中的信息,预估2017年北京市全年研究与试验发 展(R&D)经费支出约 亿元,你的预估理由是__________ .
的中点,AC, 25.如图,AB 是⊙O 的直径,BC 为弦,D 为 AC BD 相交于 E 点,过点 A 作⊙O 的切线交 BD 的延长线于 P 点. (1)求证:∠PAC=2∠CBE; (2)若 PD=m,∠CBE=α,请写出求线段 CE 长的思路.
A
E F B D C
(2)若 M 为线段 BD 上的动点(点 M 与点 D 不重合) ,过点 C 作 CN⊥AM 于 N 点,射线 EN,AB 交于 P 点. ①依题意将图 2 补全; ②小宇通过观察、实验,提出猜想:在点 M 运动的过程中,始 终有∠APE=2∠MAD.
P P
(2)若 M 为线段 BD 上的动点(点 M 与点 D 不重合) ,过点 C 作 CN⊥AM 于 N 点,射线 EN,AB 交于 P 点. ①依题意将图 2 补全; ②小宇通过观察、实验,提出猜想:在点 M 运动的过程中,始 终有∠APE=2∠MAD.
1 (2) 若 CD∥x 轴, 点 D 在点 C 的左侧,CD AB , 求点 D 的坐标; 2
(3)在(2)的条件下,将抛物线在直线x=t右侧的部分 沿直线x=t翻折后的图形记为G,若图形G与线段CD有公 共点,请直接写出t的取值范围.
28.在锐角△ABC 中,AB=AC,AD 为 BC 边上的高,E 为 AC 中点. (1) 如图 1, 过点 C 作 CF⊥AB 于 F 点, 连接 EF. 若∠BAD=20°, 求∠AFE 的度数;
80 100 90 70 110 60 110 100 1 A 80 120 70 50 120 130 60 0.9 50 0.8 40 130 140 0.7 140 40 30 150 0.6 150 30 0.5 M 20 160 0.4 160 20 0.3 10 170 0.2 10 170 0.1 0 180 0 180
0.9
1.5
4.1
2.0
7.0
若每向上攀登 1 km,所在位置的气温下降幅度基本一致,则向上攀登的 海拔高度为 2.5 km 时,登山队所在位置的气温约为 ℃.
15.下图是测量玻璃管内径的示意图,点 D 正对“10mm”刻度线,点 A 正对“30mm”刻度线,DE∥AB.若量得 AB 的长为 6mm,则内径 DE 的长为 mm.
A D
F
B
E
C
在教育方面,全市共有 58 所普通高校和 81 个科研机构培养 研究生,全年研究生招生 9.7 万人,在校研究生 29.2 万人.全 市 91 所普通高校全年招收本专科学生 15.5 万人,在校生 58.8 万人.全市成人本专科招生 6.1 万人,在校生 17.2 万人.
(1)请用统计图或统计表将北京市2016年研究生、普通高校本 专科学生、成人本专科学生的招生人数和在校生人数表示出来;
甲
乙
17.计算: 12
1 3 2 2 tan 60 ° . 3
1
20.若关于 x 的方程
4 x
m 2x
1 的根是 2,求 m 4 2m 8 的值.
2
21.如图,在平面直角坐标系 xOy 中,过 点 A(2,0)的直线 l: y mx 3 与 y 轴交于点 B. (1)求直线 l 的表达式; n (2) 若点 C 是直线 l 与双曲线 y 的 x 一个公共点,AB=2AC,直接写出 n 的值.
B E
10 15 20 25 30
C
D
A
16.在一次飞镖比赛中,甲、乙两位选手各扔 10 次飞镖,下图记录了 他们的比赛结果.你认为两人中技术更好的是 理由是
1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1
,你的
.
1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1
y
6 5 4 3 2 1 –6 –5 –4 –3 –2 –1
O
–1 –2 –3 –4 –5 –6
1
2
3
4
5
6
x
(2)直线 l: y x 3 ,与 x 轴交于点 C,与 y 轴交于点 D, ②M 为直线 l 上的一个动点,若以(m,0)为圆心, 2 为半 径的圆上存在点 N,使得 M,N 两点为同族点,直接写出 m y 的取值范围.
北京市 2016 年研究生、普通高校本专科学生、成人本专科学生 招生人数和在校生人数统计表(单位:万人) 人数 类别 项目 招生人数 在校生人数 9.7 29.2 研究生 普通高校 本专科学生 15.5 58.8 成人 本专科学生 6.1 17.2
在教育方面,全市共有 58 所普通高校和 81 个科研机构培养 研究生,全年研究生招生 9.7 万人,在校研究生 29.2 万人.全 市 91 所普通高校全年招收本专科学生 15.5 万人,在校生 58.8 万人.全市成人本专科招生 6.1 万人,在校生 17.2 万人.
车 APP, 如图, “ ” 为小白同学的位置, “★”为检索到的共享单车停放点. 为
了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是 A.F6 C.D5
5 D
B.E6 D.F7
6 7
★ ★
E
★
F
★
★
8.在下列函数中,其图象与 x 轴没有交点的是 A. y 2 x C. y x
y
8 6 A 4 2 B 2 4 6 8
C
O
-2 -4
x