2.4绝对值不等式解法
绝对值不等式的解法步骤

绝对值不等式的解法步骤一、绝对值的定义在开始讨论绝对值不等式的解法步骤之前,首先要了解绝对值的定义。
绝对值是指一个数与零之间的距离,表示为|a|,其中a为实数。
绝对值的定义如下:当a≥0时,|a|=a;当a<0时,|a|=-a。
二、绝对值不等式的基本形式绝对值不等式是指包含绝对值符号的不等式,常见的形式有以下两种:1. |x|<a,表示x与0的距离小于a;2. |x|>a,表示x与0的距离大于a。
三、解绝对值小于形式的不等式1. 当|a|<b时,有两种情况:a) a>0时,解为-b<a<b;b) a<0时,解为空集。
2. 当|a|≤b时,有两种情况:a) a>0时,解为-a≤x≤a;b) a<0时,解为x=0。
四、解绝对值大于形式的不等式1. 当|a|>b时,有两种情况:a) a>0时,解为x<-b或x>b;b) a<0时,解为解为x<-b或x>b。
2. 当|a|≥b时,有两种情况:a) a>0时,解为x≤-b或x≥b;b) a<0时,解为解为x≤-b或x≥b。
五、解绝对值不等式的注意事项在解绝对值不等式时,需要注意以下几点:1. 对于绝对值不等式中的常数a和b,要根据实际情况判断其正负性,以正确确定解的范围。
2. 在解绝对值不等式时,需要根据绝对值的定义,将不等式分解为两个简单的不等式,并分别求解。
3. 在进行不等式的运算过程中,要根据不等式的性质进行合理的变形,确保解的正确性。
4. 在解绝对值不等式时,可以通过画数轴的方式来辅助理解和确定解的范围。
六、绝对值不等式的应用绝对值不等式在实际问题中有着广泛的应用。
例如,在求解含有变量的不等式时,往往需要通过绝对值不等式的知识来确定变量的取值范围。
另外,在求解数列极限、证明不等式等数学问题中,也常常需要运用绝对值不等式的知识。
解绝对值不等式的步骤包括了绝对值的定义、绝对值不等式的基本形式、解绝对值小于形式的不等式、解绝对值大于形式的不等式以及解绝对值不等式的注意事项。
绝对值不等式的解题方法与技巧

绝对值不等式的解题方法与技巧绝对值不等式是指形式为|ax + b| < c或|ax + b| > c的不等式,其中a、b、c为实数且a不等于0。
解绝对值不等式的方法和技巧如下:1. 分类讨论法,对于形如|ax + b| < c或|ax + b| > c的绝对值不等式,可以根据ax + b的正负情况分别讨论。
当ax + b大于等于0时,即ax + b >= 0,此时不等式化简为ax + b < c或ax + b > c;当ax + b小于0时,即ax + b < 0,此时不等式化简为-(ax + b) < c或-(ax + b) > c。
分别解出这两种情况下的不等式,得到的解集合再取并集即为原不等式的解集合。
2. 图像法,可以将|ax + b|看作一个以点(-b/a, 0)为中心,以c为半径的圆形,|ax + b| < c对应的是圆心到直线ax + b = c的距离小于c的区域,|ax + b| > c对应的是圆心到直线ax + b = c的距离大于c的区域。
通过绘制图像,可以直观地找到不等式的解集合。
3. 代数法,对于形如|ax + b| < c或|ax + b| > c的绝对值不等式,可以通过代数方法将其转化为一元一次不等式进行求解。
例如,对于|2x 3| < 5,可以分别得到-5 < 2x 3 < 5,进而得到-2 < x < 4,即解集合为(-2, 4)。
4. 绝对值性质法,利用绝对值的性质,如|a| < b等价于-b <a < b,可以将绝对值不等式转化为一元一次不等式进行求解。
总之,解绝对值不等式的方法和技巧有很多种,可以根据具体的不等式形式和题目要求选择合适的方法进行求解,需要灵活运用代数、几何和逻辑推理等知识。
希望以上回答能够帮助到你。
数学(第一册)不等式42.4 含绝对值的不等式

§2.4 含绝对值的不等式【教学目的】理解绝对值的几何意义,掌握简单的含绝对值不等式的解法.【教学重点】含绝对值的不等式的解法.【教学难点】去绝对值后的不等式与原不等式的等价性.【教学过程】引入:在许多商品的外包装都标明其质量,如商店出售的表明500g 的袋装食盐,其实际数可能有误差,商品质量规定误差不能超过5g ,设实际数是x g ,那么x 应满足⎩⎨⎧≤-≤-55005500x x 用绝对值表示就是5500≤-x .新课:一、绝对值不等式一般地,含有绝对值记号的不等式叫做含绝对值的不等式.我们知道,在实数集R 中:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩当时,当时,当时.根据实数的绝对值的定义,有ab a b =,(0)a a b b b=≠. 怎样解绝对值不等式呢?先看含绝对值的方程3=x ,方程的解是13x =-,23x =.在数轴上表示如下: x 3再看绝对值不等式3<x ,由绝对值意义,结合数轴表示如下:绝对值不等式3<x 的解集是{}33<<-x x .类似地,绝对值不等式3>x 表示数轴上到原点的距离大于3的点的集合. 在数轴上表示为:-3 绝对值不等式3>x 的解集是{}33>-<x x x 或. 一般地,若0a >,则 22x a x a a x a <⇔<⇔-<<,22,x a x a x a x a >⇔>⇔<->或.即0a >时,绝对值不等式x a <的解集是{}x a x a -<<,( 注意:不是x a <±!) 绝对值不等式x a >的解集是{}a x a x x -<>或,( 注意:不是x a >±!) 绝对值不等式x a ≤的解集是{}x a x a -≤≤, 绝对值不等式x a ≥的解集是{}a x a x x -≤≥或.绝对值不等式ax b k +<(0)k >去掉绝对值转化为一般不等式 k b ax k <+<-绝对值不等式ax b k +>(0)k >转化为一般不等式ax b k ax b k +>+<-或.上述公式简言之:“绝对值不等式小于在中间、大于在两头”的规律去掉绝对值,把绝对值不等式化为一般不等式,再得到解集.这与一元二次不等式解集有类似之处.二、含绝对值不等式的解法举例例1解 据算术根的定义,1a a -+=21,1;1,01;12,0.a a a a a -≥⎧⎪≤<⎨⎪-<⎩例2 解不等式235x -<.解 原不等式等价于5235x -<-<. 解之得解集为{}14x x -<<.用区间表示,则为(1,4)x ∈-.例3 解不等式256x x ->.解 原不等式等价于 256x x -<-, (1)或256x x ->. (2)解不等式(1),得 26x <<;解不等式(2),得 1x <- 或 6x >.∴ 原不等式的解集是{}|1,23,6x x x x <-<<>或或.用区间表示,则为(,1)(2,3)(6,)x ∈-∞-+∞.练习1:见书P44. 三、综合练习练习3:1. 求下列不等式的解集:(1) 214602x x -+>; (2) 28160x x -+<; (3) 1383<-x ; (4)1243≥-x . 2. 思考: 绝对值不等式ax b k +<, ax b k +>, 当0k ≤时, 绝对值不等式的解分别如何?【小结与作业】课堂小结:本次课主要学习了含绝对值不等式的解法,学会把绝对值不等式转化为不含绝对值的不等式,从而解绝对值不等式.本课作业:习题2.4.。
绝对值不等式的解法有哪些

绝对值不等式的解法有哪些绝对值不等式是数学知识,那么绝对值不等式的解法有哪些呢?为了更好的帮助大家。
下面是由小编为大家整理的“绝对值不等式的解法有哪些”,仅供参考,欢迎大家阅读。
绝对值不等式的解法有哪些通解一般是数轴标根法,也是一般情况下最快的方法。
在数轴上把使绝对值为零的点都标出来,根据绝对值的几何意义,绝对值表示的是两点间的距离(当然就为正了),以此解题。
比如|x-3|+|x-6|>5,如果x在3和6之间,那么x到3的距离加上x到6的距离就只能是6-3=3,而5-3=2,2/2=1,故答案应为x<3-1=2或者x>6+1=7,即(x<2)||(x>7)。
也可以用零点分段法,也是在数轴上将使式中绝对值为零的点都标出,然后不用几何意义,而是分段讨论。
把每个绝对值项展开,然后化为普通不等式,将求得的解集与你所分的这一段取交集,得到x在此段的解集(比如在-1还有就是平方法了。
不过这种方法在式中存在多个不等式项时不好使,一般情况下不推荐使用。
比如,你的不等式原来有3项,平方后就成了3*3=9项,使计算复杂化了。
拓展阅读:绝对值有哪些性质(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性.(2)绝对值等于0的数只有一个,就是0.(3)绝对值等于同一个正数的数有两个,这两个数互为相反数.(4)互为相反数的两个数的绝对值相等.绝对值七个性质(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性。
(2)绝对值等于0的数只有一个,就是0。
(3)绝对值等于同一个正数的数有两个,这两个数互为相反数。
(4)互为相反数的两个数的绝对值相等。
绝对值等式、不等式:(6)|a|*|b|=|ab|(7)|a|/|b|=|a/b|(b≠0)(8)a^2=|a|^2(9)|x|-|y|<=|x+y|<=|x|+|y|。
绝对值与不等式的解法

绝对值与不等式的解法绝对值和不等式是高中数学中重要的概念和解题方法。
绝对值常常出现在不等式中,对于解决这类问题,我们需要掌握一些基本的解法和技巧。
本文将介绍绝对值与不等式的解法,包括绝对值不等式和绝对值方程两个方面。
一、绝对值不等式的解法绝对值不等式是指形如|f(x)| ≤ g(x),或|f(x)| ≥ g(x) 这样的数学不等式。
解决这类问题的关键在于将绝对值不等式转化为不等式组或分段函数。
下面以一个具体的例子来说明解答绝对值不等式的步骤。
例题:解不等式 |2x - 3| ≤ 5首先,我们需要根据绝对值的定义进行分情况讨论。
当 2x - 3 ≥ 0 时,|2x - 3| = 2x - 3;当 2x - 3 < 0 时,|2x - 3| = -(2x - 3)。
针对每一种情况,我们可以得到以下两个不等式:当 2x - 3 ≥ 0 时,2x - 3 ≤ 5,解得x ≤ 4;当 2x - 3 < 0 时,-(2x - 3) ≤ 5,解得x ≥ -1。
因此,综合两种情况的解集,得到最终的解为 -1 ≤ x ≤ 4。
二、绝对值方程的解法绝对值方程是指形如 |f(x)| = g(x) 的方程。
解决这类问题的关键在于将绝对值方程转化为分段函数,并通过分析不同情况求解。
下面以一个具体的例子来说明解答绝对值方程的步骤。
例题:解方程 |4x - 7| = 3同样地,我们根据绝对值的定义进行分情况讨论。
当4x - 7 ≥ 0 时,|4x - 7| = 4x - 7;当 4x - 7 < 0 时,|4x - 7| = -(4x - 7)。
针对每一种情况,我们可以得到以下两个方程:当 4x - 7 ≥ 0 时,4x - 7 = 3,解得 x = 2;当 4x - 7 < 0 时,-(4x - 7) = 3,解得 x = 1/4。
因此,综合两种情况的解集,得到最终的解为 x = 2 或 x = 1/4。
绝对值不等式的解法及应用

绝对值不等式的解法及应用绝对值不等式在数学中具有重要的应用价值,在各个领域中都有广泛的运用。
本文将对绝对值不等式的解法进行简要说明,并介绍其在实际问题中的应用。
一、绝对值不等式的解法1. 求解一元绝对值不等式对于形如 |x|<a 的不等式,其中 a>0 ,我们可以将其分解为两个简单的不等式,即 x<a 和-x<a ,然后再根据这两个不等式得到解的范围。
例如,对于 |x|<3 这个不等式,我们可以拆分为 x<3 和 -x<3 ,再分别求解这两个不等式,得到解的范围为 -3<x<3 。
2. 求解含有绝对值不等式的方程对于形如 |f(x)|=g(x) 的方程,可以通过以下步骤求解:Step 1: 根据绝对值的定义,将绝对值拆解为两个条件,即 f(x)=g(x) 和 f(x)=-g(x) 。
Step 2: 分别求解这两个条件对应的方程,得到解的范围。
Step 3: 将 Step 2 中得到的解进行合并,得到最终的解集。
例如,对于 |x-2|=3 这个方程,我们可以拆解为 x-2=3 和 x-2=-3 ,然后求解这两个方程得到 x=5 和 x=-1 ,最终的解集为 {5, -1} 。
二、绝对值不等式的应用绝对值不等式在实际问题中有广泛的应用,下面将介绍其中两个常见的应用领域。
1. 绝对值不等式在不等式求解中的应用在不等式求解中,绝对值不等式是一种常见的工具。
通过合理地运用绝对值不等式,可以简化不等式的求解过程,提高解题效率。
下面通过一个例子来说明。
例题:求解不等式 |2x-1|<5 。
解:根据绝对值的定义,将不等式拆分为两个条件,即 2x-1<5 和2x-1>-5 。
然后分别求解这两个条件对应的方程,得到 x<3 和 x>-2 。
最后将这两个解的范围进行合并,得到最终的解集为 -2<x<3 。
2. 绝对值不等式在数列问题中的应用在数列问题中,绝对值不等式可以用来求解数列的范围,帮助我们找到数列的性质和规律。
绝对值不等式的解法

绝对值不等式的解法绝对值不等式在数学中有着广泛的应用,它们涉及到了绝对值的概念和不等式的解法。
本文将介绍几种常见的绝对值不等式的解法,并给出相应的例子进行说明。
一、绝对值不等式的基本性质在解绝对值不等式之前,我们先来了解一些绝对值的基本性质。
对于任意实数a,有以下三个性质:1. 非负性质:|a| ≥ 0绝对值表示的是一个数距离原点的距离,因此它始终是非负的。
2. 正负性质:如果a > 0,则 |a| = a;如果a < 0,则 |a| = -a这是绝对值的定义,即当a为正时,取a的值;当a为负时,取-a 的值。
3. 三角不等式:对于任意实数a和b,有|a + b| ≤ |a| + |b|这是绝对值的三角不等式,它表明两个数的绝对值之和不超过它们的绝对值的和。
有了以上基本性质的了解,我们可以利用它们来解决绝对值不等式。
二、1. 绝对值的定义法义来解决不等式。
例如,对于不等式 |2x - 3| ≤ 5,我们可以通过以下步骤来求解:(1)当2x - 3 ≥ 0时,|2x - 3| = 2x - 3,此时原不等式可以转化为2x - 3 ≤ 5,解得x ≤ 4。
(2)当2x - 3 < 0时,|2x - 3| = -(2x - 3) = -2x + 3,此时原不等式可以转化为 -2x + 3 ≤ 5,解得x ≥ -1。
综合以上两种情况的解集,最终得到该不等式的解集为 -1 ≤ x ≤ 4。
2. 绝对值的范围法当绝对值中的表达式的取值范围已知时,我们可以利用绝对值的非负性质来解决不等式。
例如,对于不等式 |x - 3| > 2,我们可以通过以下步骤来求解:(1)当 x - 3 > 0 时,|x - 3| = x - 3,此时原不等式可以转化为 x -3 > 2,解得 x > 5。
(2)当 x - 3 < 0 时,|x - 3| = -(x - 3) = -x + 3,此时原不等式可以转化为 -x + 3 > 2,解得 x < 1。
绝对值不等式的解法

绝对值不等式的解法绝对值不等式是数学中常见的一类不等式,对于绝对值不等式的解法,我们可以通过以下几种方法来进行求解。
在本文中,将介绍绝对值不等式的图像法、符号法、分情况讨论法以及代数法等几种常用解法。
一、图像法图像法是一种直观的解法,通过绘制图像来确定不等式的解集。
例1:解不等式 |x - 2| > 3。
首先,我们可以将其转化为两个方程:x - 2 > 3 或 x - 2 < -3解得:x > 5 或 x < -1将这两个解集对应的区间在数轴上标出,即可得到图像。
通过观察图像,我们可以得出原不等式的解集为 x < -1 或 x > 5。
二、符号法符号法是一种抽象的解法,通过符号的转换来确定不等式的解集。
例2:解不等式 |2x - 3| ≤ 4。
根据绝对值的定义,我们可以将不等式分解为以下两个条件:2x - 3 ≤ 4 且 2x - 3 ≥ -4解得:x ≤ 7/2 且x ≥ -1/2将这两个解集取交集,即可得到原不等式的解集为 -1/2 ≤ x ≤ 7/2。
三、分情况讨论法分情况讨论法是一种特殊的解法,通过考虑不同情况来确定不等式的解集。
例3:解不等式 |3x + 2| > 5。
根据绝对值的定义,我们可以得到以下两个不等式:3x + 2 > 5 或 3x + 2 < -5解得:x > 1 且 x < -7/3因此,我们可以根据不同的情况得出原不等式的解集为 x < -7/3 或x > 1。
四、代数法代数法是一种基础的解法,通过代数运算来确定不等式的解集。
例4:解不等式 |x - 4| ≥ 2。
根据绝对值的定义,我们可以得到以下两个不等式:x - 4 ≥ 2 或 x - 4 ≤ -2解得:x ≥ 6 或x ≤ 2因此,原不等式的解集为x ≤ 2 或x ≥ 6。
综上所述,绝对值不等式的解法包括图像法、符号法、分情况讨论法以及代数法等几种常用方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考察、研究特殊情况
绝对值的方程|x|=2的解是什么?如果解|x|<2与|x|>2呢? 由绝对值的意义可知,方程的解是x=2或x=-2,在数轴上表示如下:
x -5 -4 -3 -2 -1 0 1 2 3 4 5
结合数轴表示可知:|x|<2表示数轴上到原点距离小于2的点, 在数轴上表示出来. 因而不等式 |x|<2 等价于 -2<x<2 结合数轴表示可知:|x|>2表示数轴上到原点距离大于2的点的集合, 在数轴上表示出来. 就是 |x|>2 等价于 x<-2或x>2
例2:解不等式:|2x+5|>7。 分析: “2x+5”看作|x|>a中“x”, 其中a=7即可。 解:由原不等式可得: 2x+5>7或2x+5<-7, 整理:x>1或x<-6. 所以,原不等式的解集是: {x| x>1或x<-6}.
三、课堂练习:
解下列不等式:
(1) x 5 2
(2) 2x 1 5
绝对值不等式的解法
一、复习回顾
你能用汉语语言叙述这三条性质吗? (1)如果a>b,那么a+c>b+c; (2)如果a>b,c>0,那么 ac > bc; (3)如果a>b,c<0,那么ac < bc.
4 ?
5 ?
1
3 ? 5
|a|的意义
(1)从代数角度知道: a, a 0 a 0, a 0 a, a 0 (2)从几何角度看,|a|的意义是表示数a的 点与原点距离。
两个等价关系
一般地, |x|<a (a>0) |x|>a (a>0)
-a<x<a
x>a或x<-a
例题解析
例1:解不等式|x-500|≤5 解:由原不等式可得:-5≤x-500≤5, 由不等式性质,各加上500得: 495≤x≤505. 所以原不等式的解集是 {x|495≤x≤505}。
例题解析
(3) 3x 2 7
(4) 1 x 4
(5) 2 x 1 0
四、课时小结
1.
2.
含绝对值不等式解法关键是去掉绝对值 符号; 注意在解决问题过程中不等式的几何意 义;
五、课后作业:
课本P43,习题1-2
预习内容:课本P45—P46
a x -2 -1 0 1 2 3 4 5
-5
ห้องสมุดไป่ตู้
-4
-3
二、学习新课
1、问题提出
按商品质量规定,商店出售的标明500g的袋装食盐, 其实际数与所标数相差不能超过5g,设实际 数是x g,那么x应满足:
x 500 5 500 x 5
由绝对值的意义,这个结果也可以表示成|x-500|≤5