高三数学(理)一轮复习夯基提能作业本:第四章 三角函数 第八节 解三角形 Word版含解析

合集下载

高考数学一轮复习 第四章 三角函数与解三角形 4.8 解三角形应用举例真题演练集训 理 新人教A版(

高考数学一轮复习 第四章 三角函数与解三角形 4.8 解三角形应用举例真题演练集训 理 新人教A版(

举例真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第四章三角函数与解三角形4.8 解三角形应用举例真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第四章三角函数与解三角形4.8 解三角形应用举例真题演练集训理新人教A版的全部内容。

用举例真题演练集训理新人教A版1.[2014·浙江卷]如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小(仰角θ为直线AP与平面ABC所成角).若AB=15 m,AC=25 m,∠BCM=30°,则tan θ的最大值是( )A.305B.错误!C.错误!D.错误!答案:D解析:如图,过点P作PO⊥BC于点O,连接AO,则∠PAO=θ。

设CO=x m,则OP=错误!x m.在Rt△ABC中,AB=15 m,AC=25 m,所以BC=20 m.所以cos ∠BCA=错误!。

所以AO=错误!=错误!(m).所以tan θ=错误!=错误!=错误!。

当错误!=错误!,即x=错误!时,tan θ取得最大值为错误!=错误!.2.[2015·湖北卷]如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.答案:100错误!解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=错误!,解得BC=300错误! m。

2019届高三数学一轮复习 第四章 三角函数、解三角形 第八节 解三角形夯基提能作业本 文.doc

2019届高三数学一轮复习 第四章 三角函数、解三角形 第八节 解三角形夯基提能作业本 文.doc

2019届高三数学一轮复习第四章三角函数、解三角形第八节解三角形夯基提能作业本文1.如图,两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站南偏西40°方向上,灯塔B在观察站南偏东60°方向上,则灯塔A在灯塔B的( )A.北偏东10°方向上B.北偏西10°方向上C.南偏东80°方向上D.南偏西80°方向上2.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C 处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )A.10海里B.10海里C.20海里D.20海里3.(2016江西联考)某位居民站在离地20 m高的阳台上观测到对面楼房房顶的仰角为60°,楼房底部的俯角为45°,那么这栋楼房的高度为( )A.20mB.20(1+)mC.10(+)mD.20(+)m4.某人向正东方向走x km后,向右转150°,然后朝新方向走3 km,结果他离出发点恰好是 km,那么x 的值为( )A. B.2 C.或2 D.35.如图,一条河的两岸平行,河的宽度d=0.6 k m,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为( )A.8 km/hB.6 km/hC.2 km/hD.10 km/h6.如图,为了测量A,C两点间的距离,选取同一平面上的B,D两点,测出四边形ABCD各边的长度(单位:km):AB=5,BC=8,CD=3,DA=5,且∠B与∠D互补,则AC的长为km.7.某同学骑电动车以24 km/h的速度沿正北方向的公路行驶,在点A处测得电视塔S在电动车的北偏东30°方向上,15 min后到点B处,测得电视塔S在电动车的北偏东75°方向上,则点B与电视塔的距离是km.8.如图,在山顶上有一座铁塔BC,在塔顶B处测得地面上一点A的俯角α=60°,在塔底C处测得A处的俯角β=45°,已知铁塔BC的高为24 m,则山高CD= m.9.隔河看两目标A与B,但不能到达,在岸边选取相距千米的C、D两点,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面内),求两目标A、B之间的距离.10.为扑灭某着火点,现场安排了两支水枪,如图,D是着火点,A、B分别是水枪位置,已知AB=15 m,在A 处看着火点的仰角为60°,∠ABC=30°,∠BAC=105°(其中C为D在地面上的射影),求两支水枪的喷射距离至少是多少.B组提升题组11.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方的点A处测得水柱顶端的仰角为45°,从点A向北偏东30°方向前进100 m到达点B,在B点处测得水柱顶端的仰角为30°,则水柱的高度是( )A.50 mB.100 mC.120 mD.150 m12.如图,航空测量组驾驶飞机飞行的航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s,某一时刻飞机看山顶的俯角为15°,经过420 s后看山顶的俯角为45°,则山顶的海拔为m.(取=1.4,=1.7)13.如图,一栋建筑物AB的高为(30-10)m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面上的点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别是15°和60°,在楼顶A处测得塔顶C的仰角为30°,则通信塔CD的高为m.14.如图,在海岸A处发现北偏东45°方向上,距A处(-1)海里的B处有一艘走私船.在A处北偏西75°方向上,距A处2海里的C处的我方缉私船奉命以10海里/时的速度追截走私船,此时走私船正以10海里/时的速度,从B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.15.(2016辽宁沈阳二中月考)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船位于点A的北偏东45°且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ且与点A相距10海里的位置C.(1)求该船的行驶速度(单位:海里/时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.答案全解全析A组基础题组1.D 由条件及题图可知,∠A=∠ABC=40°,因为∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°方向上.2.A 如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得=, 解得BC=10(海里).3.B 如图,设AB为阳台的高度,CD为楼房的高度,AE为水平线.由题意知AB=DE=20 m,∠DAE=45°,∠C AE=60°,故AE=20 m,则CE=20 m.所以CD=20(1+)m.故选B.4.C 由题意作出示意图,如图所示,由余弦定理得()2=x2+32-2x·3·cos 30°,整理得x2-3x+6=0,解得x=或2.故选C.5.B 连接AB,设AB与河岸线所成的锐角为θ,客船在静水中的速度为v km/h,由题意知,sin θ==,从而cos θ=,结合已知及余弦定理可得=+12-2××2×1×,解得v=6.选B.6.答案7解析∵82+52-2×8×5×cos(π-D)=32+52-2×3×5×cos D,∴cos D=-,∴在△ACD中,由余弦定理可计算得AC==7.则AC的长为7 km.7.答案3解析由题意知AB=24×=6 km,在△ABS中,∠BAS=30°,AB=6km,∠ABS=180°-75°=105°,∴∠ASB=45°,由正弦定理知=,∴BS==3(km).8.答案(36+12)解析tan∠BAD=,tan∠CAD=,则tan∠BA C=tan(∠BAD-∠CAD)====,又tan∠BAC=tan(60°-45°)=2-,∴=2-,解得CD=(36+12)m.9.解析在△ACD中,∠ACD=120°,∠CAD=∠ADC=30°,所以AC=CD=千米.在△BCD中,∠BCD=45°,∠BDC=75°,∠CBD=60°,由正弦定理知BC==千米.在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=()2+-2×××cos 75°=3+2+-=5,所以AB=千米,所以两目标A,B之间的距离为千米.10.解析在△ABC中,可知∠ACB=45°,由正弦定理得=,解得AC=15 m.又∵∠CAD=60°,∴AD=30 m,CD=15 m,在△ABC中,由正弦定理得=,解得BC= m.由勾股定理可得BD==15 m.综上可知,两支水枪的喷射距离至少分别为30 m,15 m.B组提升题组11.A 如图,设水柱高度是h m,水柱底端为C,则在△ABC中,∠BAC=60°,AC=h m,AB=100 m,BC=h m,根据余弦定理得(h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h+100)=0,解得h=50(舍负),故水柱的高度是50 m.12.答案 2 650解析如图,作CD垂直于直线AB于点D,∵∠A=15°,∠DBC=45°,∴∠ACB=30°,又在△ABC中,=,AB=50×420=21 000,∴BC=×sin 15°=10 500(-).∵CD⊥AD,∴CD=BC·sin∠DBC=10 500×(-)×=10 500×(-1)=7 350.故山顶的海拔h=10 000-7 350=2 650(m).13.答案60解析如图,在Rt△ABM中,AM=====20.易知∠MAN=∠AMB=15°,所以∠MAC=30°+15°=45°,又∠AMC=180°-15°-60°=105°,所以∠ACM=30°.在△AMC中,由正弦定理得=,解得MC=40.在Rt△CMD中,CD=40×sin 60°=60,故通信塔CD的高为60 m.14.解析如图,设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则CD=10t海里,BD=10t海里,在△ABC中,由余弦定理,有BC2=AB2+AC2-2AB·ACcos∠BAC=(-1)2+22-2(-1)·2·cos 120°=6,解得BC=(海里).∵=,∴sin∠ABC===,可知∠ABC=45°,∴B点在C点的正东方向上,∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得=,∴sin∠BCD===.可知∠BCD=30°.∵在△BCD中,∠CBD=120°,∠BCD=30°,∴∠D=30°,∴BD=BC,即10t=.∴t=,易知小时≈15分钟.∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.15.解析(1)如图,AB=40海里,AC=10海里,∠BAC=θ.由于0°<θ<90°,sin θ=,所以cos θ==.由余弦定理得BC==10(海里).所以该船的行驶速度为=15(海里/时).(2)该船会进入警戒水域.理由如下:如图所示,设直线AE与直线BC相交于点Q.在△ABC中,由余弦定理得,cos∠ABC===.从而sin∠ABC===.在△ABQ中,由正弦定理得,AQ===40(海里).由于AE=55海里>40海里=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15(海里).过点E作EP⊥BC于点P,在Rt△QPE中,PE=QE·sin∠PQE,则PE=QE·sin∠AQC=QE·sin(45°-∠ABC)=15×=3(海里),又3海里<7海里,所以该船会进入警戒水域.。

2024届高考数学一轮复习第四章《三角函数与解三角形》专项突破二 三角函数与解三角形

2024届高考数学一轮复习第四章《三角函数与解三角形》专项突破二 三角函数与解三角形
记 的内角 , , 的对边分别为 , , ,分别以 , , 为边长的三个正三角形的面积依次为 , , .已知 , .
(1) 求 的面积;
[答案] 规范答题由题意得 , , ,阅卷得分:正确利用面积公式写出三个正三角形的面积,收获1分;则 ,即 ,阅卷得分:根据三个正三角形面积之间的关系求出 , , 之间的关系,收获2分;由余弦定理的推论 ,得 ,阅卷得分:利用余弦定理的推论得出 ,收获2分;则 ,又 ,则 , ,
2. (2022湖北荆州高三四模)在 中,角 , , 所对的边分别为 , , , , ,延长 至 ,使 , 的面积为 .
(1) 求 的长;
[解析] 由 及余弦定理的推论得 ,因为 ,所以 ,又因为 ,所以 为等边三角形,故 ,由 ,可得 ,所以 ,解得 或 .
第四章 三角函数与解三角形
专项突破二 三角函数与解三角形
解三角形是高中数学的一个重要考点,在新高考Ⅰ卷中为解答题必考考点之一.主要与三角恒等变换、三角形的有关性质结合命题.通常第一问是解三角形,第二问是求三角形的面积、周长等的最值或范围.主要位于解答题的前两题位置,难度不大.需重点关注开放性试题,通过对不同条件的选取获得不同的解题思路,培养学生提出问题、发现问题、分析问题、解决问题的能力.
(2) 若 ,求 的取值范围.
[解析] , , , ,当且仅当 时取等号,又 , 的取值范围是 .
例4 (2022山东高三模拟)如图,在 中, , , 的对边分别为 , , , 的面积为 ,且 .
(1) 求 的大小;
[解析] 在 中,由 ,有 ,则 ,即 , , .
阅卷得分:利用已知条件求出 , 的值,收获2分;则 .阅卷得分:利用三角形面积公式求出三角形的面积,收获1分;
[解析] 思路分析先表示出 , , ,然后由 得到 ,结合余弦定理的推论求得 ,再由三角形面积公式求解即可;

近年高考数学一轮复习第四章三角函数、解三角形第六节简单的三角恒等变换夯基提能作业本文(2021年整

近年高考数学一轮复习第四章三角函数、解三角形第六节简单的三角恒等变换夯基提能作业本文(2021年整

(北京专用)2019版高考数学一轮复习第四章三角函数、解三角形第六节简单的三角恒等变换夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第四章三角函数、解三角形第六节简单的三角恒等变换夯基提能作业本文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第四章三角函数、解三角形第六节简单的三角恒等变换夯基提能作业本文的全部内容。

第六节简单的三角恒等变换A组基础题组1.若=—,则sin α+cos α的值为( )A.—B。

— C.D。

2.已知sin 2α=,tan(α—β)=,则tan(α+β)等于()A。

-2 B.-1 C.— D。

3。

的值是()A. B.C。

D.4.已知sin 2α=,则cos2=()A. B.— C. D.—5。

在斜三角形ABC中,sin A=-cos B·cos C,且tan B·tan C=1-,则角A的值为( )A. B. C. D.6.已知tan=,则tan= 。

7。

的值为.8。

已知cos(α+β)=,cos(α—β)=,则tan αtan β的值为。

9.已知tan α=-,c os β=,α∈,β∈,求tan(α+β)的值,并求出α+β的值.B组提升题组10.若锐角α,β满足(1+tan α)(1+tan β)=4,则α+β=。

11。

= 。

12。

已知角α的顶点在坐标原点,始边与x轴的正半轴重合,终边经过点P(-3,).(1)求sin 2α-tan α的值;(2)若函数f(x)=cos(x—α)cos α-sin(x—α)sin α,求函数g(x)=f-2f2(x)在区间上的值域.13。

2024年高考数学总复习第四章《三角函数解三角形》复习试卷及答案解析

2024年高考数学总复习第四章《三角函数解三角形》复习试卷及答案解析

2024年高考数学总复习第四章《三角函数、解三角形》复习试卷及答案解析一、选择题1.sin215°-cos215°等于()A.-12B.12C.-32D.32答案C解析sin215°-cos215°=-(cos215°-sin215°)=-cos30°=-32.故选C.2.若sinα=45,则-22cosα等于()A.225B.-225C.425D.-425答案A解析-22 cosα=sinαcos π4+cosαsinπ4-22cosα=45×22=225.3.已知sinα=-45α是第四象限角,则sin()A.52 10B.325C.7210D.425答案C解析由同角三角函数基本关系可得cosα=1-sin2α==35,结合两角差的正弦公式可得sin π4cosα-cosπ4sinα=7210.故选C. 4.函数f(x)=sin x的最大值为()A.3B.2C.23D.4答案A解析函数f(x)=sin x=12sin x +32cos x +sin x =32sin x +32cos xx +12cos=3sin ≤3.故f (x )的最大值为3.故选A.5.已知函数f (x )=2cos(ωx +φ)->0,|φ|y =1相邻两个交点的距离为4π3,若f (x )>0对x -π8,φ的取值范围是()A.-π12,0-π8,-π24C.-π12,D.0,π12答案B解析由已知得函数f (x )的最小正周期为4π3,则ω=32,当x -π8,时,32x +φ-3π16+φ,3π8+因为f (x )>0,即+>12,φ≥-π3+2k π,≤π3+2k π(k ∈Z ),解得-7π48+2k π≤φ≤-π24+2k π(k ∈Z ),又|φ|<π8,所以-π8<φ≤-π24,故选B.6.(2019·山师大附中模拟)设函数f (x )=sin(2x +φ)(0<φ<π)在x =π6时取得最大值,则函数g (x )=cos(2x +φ)的图象()AB C .关于直线x =π6对称D .关于直线x =π3对称答案A解析因为当x =π6时,f (x )=sin(2x +φ)(0<φ<π)取得最大值,所以φ=π6,即g (x )=x+π6,k ∈Z ,对称轴x =k π2-π12,k ∈Z ,故选A.7.(2019·沈阳东北育才学校模拟)如图平面直角坐标系中,角α-π2<β边分别交单位圆于A ,B 两点,若B 点的纵坐标为-513,且满足S △AOB =34,则sinα2·α2-sin +12的值为()A .-513 B.1213C .-1213D.513答案B解析由图易知∠xOA =α,∠xOB =-β.由题可知,sin β=-513.由S △AOB =34知∠AOB =π3,即α-β=π3,即α=π3+β.则sinα2-sin +12=3sin α2cos α2-sin 2α2+12=32sin α-12(1-cos α)+12=32sin α+12cos α=β=cos β=1-sin 2β=1213.故选B.8.(2019·重庆铜梁一中月考)已知函数f (x )=2sin(ωx +φ)(ω>0),x ∈-π12,2π3的图象如图,若f (x 1)=f (x 2),且x 1≠x 2,则f (x 1+x 2)的值为()A.3B.2C .1D .0答案C解析由图象得3T 4=2π3--π12∴T =π,ω=2πT=2,由2sin π6×2+φ=2sin π3+φ=2,得π3+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),由x 1+x 2=π6×2=π3,得f (x 1+x 2)=f π3=2sin 2×π3+π6+2k π1,故选C.9.(2019·重庆巴蜀中学期中)已知f (x )=sin(ωx +θ)其中ω>0,θ∈0,π2f ′(x 1)=f ′(x 2)=0,|x 1-x 2|的最小值为π2,f (x )=f π3-x 将f (x )的图象向左平移π6个单位长度得g (x ),则g (x )的单调递减区间是()A.k π,k π+π2(k ∈Z )B.k π+π6,k π+2π3(k ∈Z )C.k π+π3,k π+5π6(k ∈Z )D.k π+π12,k π+7π12(k ∈Z )答案A解析∵f (x )=sin(ωx +θ)其中ω>0,θ∈0,π2,由f ′(x 1)=f ′(x 2)=0可得x 1,x 2是函数的极值点,∵|x 1-x 2|的最小值为π2,∴12T =πω=π2,∴ω=2,∴f (x )=sin(2x +θ),又f (x )=f π3-x ∴f (x )的图象的对称轴为x =π6,∴2×π6+θ=k π+π2,k ∈Z ,又θ∈0,π2∴θ=π6,∴f (x )=x 将f (x )的图象向左平移π6个单位长度得g (x )=sin 2+π6=cos 2x 的图象,令2k π≤2x ≤2k π+π,k ∈Z ,∴k π≤x ≤k π+π2,k ∈Z ,则g (x )=cos 2x 的单调递减区间是k π,k π+π2(k ∈Z ),故选A.10.(2019·成都七中诊断)已知函数f (x )=sin(ωx +φ)(其中ω>0)的最小正周期为π,函数g (x )=+3f (x ),若对∀x ∈R ,都有g (x )≤|,则φ的最小正值为()A.π3B.2π3C.4π3D.5π3答案B解析由函数f (x )的最小正周期为π,可求得ω=2,∴f (x )=sin(2x +φ),g (x )=+3f (x )=sin 2φ+3sin(2x +φ)=cos(2x +φ)+3sin(2x +φ)=x +φ∴g (x )=x +φ又g (x )≤|,∴x =π3是g (x )的一条对称轴,代入2x +φ+π6中,有2×π3+φ+π6=π2+k π(k ∈Z ),解得φ=-π3+k π(k ∈Z ),当k =1时,φ=2π3,故选B.11.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于()A .27B .4C .23D .33答案C 解析∵a cos B +b cos Ac=2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C ,∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6=2,=4=4,=2,c 2=a 2+b 2-2ab cos C =4+16-8=12,∴c =23,故选C.12.(2019·河北衡水中学调研)若函数f (x )=(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是(),112∪14,23,16∪13,23C.14,23 D.13,23答案B解析易知函数y =sin x 的单调区间为k π+π2,k π+3π2,k ∈Z .由k π+π2≤ωx +π6≤k π+3π2,k ∈Z ,得k π+π3ω≤x ≤k π+4π3ω,k ∈Z .因为函数f(x )=ω>0)在区间(π,2π)内没有最值,所以f (x )在区间(π,2π)内单调,所以(π,2π)⊆k π+π3ω,k π+4π3ω,k ∈Z ,所以π,2π,k ∈Z ,解得k +13ω≤k 2+23,k ∈Z .由k +13≤k 2+23,k ∈Z ,得k ≤23,k ∈Z .当k =0时,得13≤ω≤23;当k =-1时,得-23≤ω≤16.又ω>0,所以0<ω≤16.综上,得ω,16∪13,23.故选B.二、填空题13.(2019·陕西四校联考)已知sin α=2cos α,则cos 2α=________.答案-35解析由已知得tan α=2,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=1-44+1=-35.14.(2019·山师大附中模拟)已知=14,则x ________.答案78解析根据三角函数诱导公式,得=14,x x 2cos 1=78.15.(2019·武汉示范高中联考)函数y =sin x +cos x +2sin x cos x 的最大值为________.答案2+1解析令t =sin x +cos x ,则t =sin x +cos x=2sin t ∈[-2,2],则t 2=1+2sinx cos x ,所以sin x cos x =t 2-12,所以y =t 2+t -1-54,对称轴为t =-12,因为t ∈[-2,2],所以当t =2时取得最大值,为2+1.16.(2019·银川一中月考)已知函数f (x )=cos x sin x (x ∈R ),则下列四个命题中正确的是________.(写出所有正确命题的序号)①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间-π4,π4上是增函数;④f (x )的图象关于直线x =3π4对称.答案③④解析f (x 1)=-f (x 2),即12sin 2x 1=-12sin 2x 2,由f (x )图象(图略)可知,①错误;由周期公式可得T =2π2=π,②错误;由f (x )的图象可知,③正确;=12sin 3π2=-12④正确.故填③④.三、解答题17.(2019·抚州七校联考)已知函数f (x )=cos(ωx +φ>0,|φ的距离为π2,且f (x )的图象与y =sin x 的图象有一个横坐标为π4的交点.(1)求f (x )的解析式;(2)当x ∈0,7π8时,求f (x )的最小值,并求使f (x )取得最小值的x 的值.解(1)由题可知,T =π=2πω,ω=2,又×π4+sin π4,|φ|<π2,得φ=-π4.所以f (x )=x (2)因为x ∈0,7π8,所以2x -π4∈-π4,3π2,当2x -π4=π,即x =5π8时,f (x )取得最小值.f (x )min = 1.18.(2019·福建闽侯五校期中联考)已知向量a =(3sin x ,cos x ),b =(cos x ,-cos x ),f (x )=a ·b .(1)求f (x )的最小正周期和单调递增区间;(2)若x a ·b =-54,求cos 2x 的值.解(1)f (x )=a ·b =3sin x cos x -cos 2x=32sin 2x -cos 2x +12=x -12,∴f (x )的最小正周期是π.令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),∴k π-π6≤x ≤k π+π3(k ∈Z ),∴f (x )的单调递增区间为k π-π6,k π+π3(k ∈Z ).(2)∵a ·b =x -12=-54,∴x =-34.∵x∴2x -π6∈,∴x =-74,∴cos 2x =x +π6=x cos π6-x sinπ6=-74×32-×12=3-218.。

(江苏专版)2020版高考数学一轮复习第四章三角函数、解三角形第八节解三角形的综合应用课件理苏教版

(江苏专版)2020版高考数学一轮复习第四章三角函数、解三角形第八节解三角形的综合应用课件理苏教版

[由题悟法] 解决测量角度问题的 3 个注意事项 (1)测量角度时,首先应明确方位角及方向角的含义. (2)求角的大小时,先在三角形中求出其正弦或余弦值. (3)在解应用题时,要根据题意正确画出示意图,通过这 一步可将实际问题转化为可用数学方法解决的问题,解题中 也要注意体会正、余弦定理“联袂”使用的优点.
答案:5 6
必过易错关
易混淆方位角与方向角概念:方位角是指北方向线与目 标方向线按顺时针之间的夹角,而方向角是正北或正南方向 线与目标方向线所成的锐角.
[小题纠偏] 1.在某次测量中,在 A 处测得同一半平面方向的 B 点的
仰角是 60°,C 点的俯角是 70°,则∠BAC=________. 答案:130°
[即时应用] 如图,位于 A 处的信息中心获悉:在其正东方向相距 40 海里 的 B 处有一艘渔船遇险,在原地等待营救.信息中心立即把 消息告知在其南偏西 30°、相距 20 海里的 C 处的乙船,现乙 船朝北偏东 θ 的方向沿直线 CB 前往 B 处救援,求 cos θ 的值.
[通法在握] 求距离问题的 2 个注意事项 (1)选定或确定要创建的三角形,首先确定所求量所在的 三角形,若其他量已知则直接求解;若有未知量,则把未知 量放在另一确定三角形中求解. (2)确定用正弦定理还是余弦定理,如果都可用,就选择 更便于计算的定理.
[演练冲关] 1.(2019·如东中学测试)如图,某住宅小区的平
2.若点 A 在点 C 的北偏东 30°,点 B 在点 C 的南偏东 60°, 且 AC=BC,则点 A 在点 B 的________方向上. 解析:如图所示,∠ACB=90°, 又 AC=BC, 所以∠CBA=45°, 而 β=30°, 所以 α=90°-45°-30°=15°. 所以点 A 在点 B 的北偏西 15°. 答案:北偏西 15°

高三数学(理)一轮总复习(江苏专用)讲义 第四章_三角函数、解三角形_.DOC

高三数学(理)一轮总复习(江苏专用)讲义 第四章_三角函数、解三角形_.DOC

高三数学(理)一轮总复习(江苏专用)讲义 第四章_三角函数、解三角形_.DOC第一节 弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式3.定义[来源:学|科|网][来源:学§科§网Z§X§X§K]设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cos αyx叫做α的正切,记作tan α各象限符号Ⅰ+++Ⅱ+--Ⅲ--+Ⅳ-+-三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线1.(教材习题改编)将-11π4表示成θ+2kπ(k∈Z)的形式,则使|θ|最小的θ值为________.解析:∵-11π4=-3π4+(-2π),∴θ=-3π4.答案:-3π42.(教材习题改编)如图,用弧度表示顶点在原点,始边重合于x轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界)为________.解析:因为75°=5π12,330°=11π6,故集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪11π6+2k π<α<5π12+2π+2k π,k ∈Z ,即⎩⎨⎧⎭⎬⎫α⎪⎪⎪2k π-π6<α<2k π+5π12,k ∈Z . 答案:⎩⎨⎧⎭⎬⎫α⎪⎪⎪2k π-π6<α<2k π+5π12,k ∈Z 3.(教材习题改编)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定落在第________象限.解析:由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的非正半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,所以θ的终边只能位于第四象限.答案:四4.已知半径为120 mm 的圆上,有一条弧的长是144 mm ,则该弧所对的圆心角的弧度数为________.答案:1.21.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.4.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α =x r ,tan α=y x .[小题纠偏]1.下列命题正确的是________.①小于90°的角都是锐角;②第一象限的角都是锐角;③终边相同的角一定相等;④-950°12′是第二象限的角.答案:④2.已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,则cos θ=________,tan θ=________.解析:由题意,得r =3+m 2,∴m3+m2=24m . ∵m ≠0,∴m =±5,故角θ是第二或第三象限角.当m =5时,r =22,点P 的坐标为(-3,5),角θ是第二象限角,∴cos θ=x r =-322=-64,tan θ=yx =5-3=-153;当m =-5时,r =22,点P 的坐标为(-3,-5),角θ是第三象限角,∴cos θ=x r =-322=-64,tan θ=y x =-5-3=153.答案:-64 ±1533.若α是第一象限角,则α3是第________象限角.解析:∵α是第一象限角, ∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k 3·360°<α3<k 3·360°+30°,k ∈Z. 当k =3n 时,有n ·360°<α3<n ·360°+30°,k ∈Z ,∴α3为第一象限角. 当k =3n +1时,有n ·360°+120°<α3<n ·360°+150°,k ∈Z ,∴α3为第二象限角. 当k =3n +2时,有n ·360°+240°<α3<n ·360°+270°,k ∈Z ,∴α3为第三象限角. 综上可知,α3为第一、二、三象限角.答案:一、二、三考点一 角的集合表示及象限角的判定(基础送分型考点——自主练透)[题组练透]1.给出下列四个命题: ①-3π4是第二象限角;②4π3是第三角限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有________(填序号).解析:-3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确; -400°=-360°-40°,从而③正确; -315°=-360°+45°,从而④正确. 答案:②③④2.(易错题)若角α是第二象限角,则α2是第________象限角.解析:∵α是第二象限角,∴π2+2kπ<α<π+2kπ,k∈Z,∴π4+kπ<α2<π2+kπ,k∈Z.当k为偶数时,α2是第一象限角;当k为奇数时,α2是第三象限角.答案:一、三3.若角α与8π5终边相同,则在[0,2π]内终边与α4角终边相同的角是________.解析:由题意,得α=8π5+2kπ(k∈Z),α4=2π5+kπ2(k∈Z).又α4∈[0,2π],所以k可取的所有值为0,1,2,3,故α4可取的所有值为2π5,9π10,7π5,19π10.答案:2π5,9π10,7π5,19π104.在-720°~0°范围内所有与45°终边相同的角为________.解析:所有与45°有相同终边的角可表示为:β=45°+k×360°(k∈Z),则令-720°≤45°+k×360°<0°,得-765°≤k×360°<-45°,解得-765360≤k<-45360,从而k=-2或k=-1,代入得β=-675°或β=-315°. 答案:-675°或-315°[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合; (4)求并集化简集合.2.确定kα,αk (k ∈N *)的终边位置3步骤 (1)用终边相同角的形式表示出角α的范围; (2)再写出kα或αk 的范围;(3)然后根据k 的可能取值讨论确定kα或αk 的终边所在位置,如“题组练透”第2题易错.考点二 扇形的弧长及面积公式 基础送分型考点——自主练透[题组练透]1.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是________.解析:设此扇形的半径为r ,弧长为l ,则⎩⎨⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧ r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.答案:4或12.(易错题)若扇形的圆心角是α=120°,弦长AB =12 cm ,则弧长l =________cm.解析:设扇形的半径为r cm,如图.由sin 60°=6r,得r=4 3 cm,∴l=|α|·r=2π3×43=833π cm.答案:83 3π3.已知扇形周长为40,当它的半径和圆心角分别取何值时,扇形的面积最大?解:设圆心角是θ,半径是r,则2r+rθ=40.又S=12θr2=12r(40-2r)=r(20-r)=-(r-10)2+100≤100.当且仅当r=10时,S max=100,此时2×10+10θ=40,θ=2.所以当r=10,θ=2时,扇形的面积最大.[谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l=αr,扇形的面积公式是S=12lr=12αr2(其中l是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量,如“题组练透”第2题.考点三三角函数的定义(常考常新型考点——多角探明)[命题分析]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在高考中多以填空题的形式出现.常见的命题角度有: (1)三角函数值的符号判定;(2)由角的终边上一点的P 的坐标求三角函数值; (3)由三角函数的定义求参数值.[题点全练]角度一: 三角函数值的符号判定1.若sin αtan α<0,且cos αtan α<0,则角α是第________象限角.解析:由sin αtan α<0可知sin α,tan α异号, 则α为第二或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三或第四象限角.综上可知,α为第三象限角. 答案:三角度二:由角的终边上一点P 的坐标求三角函数值 2.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.答案:-353.(2019·苏州调研)已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m4,则m =________.解析:由题设知x =-3,y =m ,∴r 2=|OP |2=(-3)2+m 2(O 为原点),r =3+m 2. ∴sin α=mr =2m 4=m 22,∴r =3+m 2=22, 即3+m 2=8,解得m =±5. 答案:±5角度三:由三角函数的定义求参数值4.已知角α的终边经过点P (x ,-6),且tan α=-35,则x 的值为________.解析:由三角函数的定义知tan α=-6x ,于是-6x =-35,解得x=10.答案:105.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.解析:∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3. 答案:(-2,3][方法归纳]应用三角函数定义的3种求法(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.一抓基础,多练小题做到眼疾手快1.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为________cm 2.解析:∵72°=2π5,∴S 扇形=12αr 2=12×2π5×202=80π(cm 2). 答案:80π2.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限.解析:因为点P 在第三象限,所以⎩⎪⎨⎪⎧tan α<0,cos α<0,所以角α的终边在第二象限.答案:二3.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.解析:∵2 010°=67π6=12π-5π6,∴与2 010°终边相同的角中绝对值最小的角的弧度数为-5π6.答案:-5π64.(2019·南京六校联考)点A (sin 2 015°,cos 2 015°)位于第________象限.解析:因为sin 2 015°=sin(11×180°+35°) =-sin 35°<0,cos 2 015°=cos(11×180°+35°) =-cos 35°<0,所以点A (sin 2 015°,cos 2 015°)位于第三象限. 答案:三5.(2019·福州一模)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=________.解析:因为α是第二象限角,所以cos α=15x <0,即x <0.又cos α=15x =xx 2+16.解得x =-3,所以tan α=4x =-43.答案:-43二保高考,全练题型做到高考达标1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是________.解析:将表的分针拨快应按顺时针方向旋转,为负角. 又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.答案:-π32.(2019·宿迁模拟)已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α等于________.解析:因为r =(2sin 2)2+(-2cos 2)2=2,由任意三角函数的定义,得sin α=yr =-cos 2.答案:-cos 23.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为________.解析:设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr ,∴α= 3. 答案: 34.(1)已知扇形周长为10,面积是4,则扇形的圆心角为________. (2)已知扇形周长为40,若扇形面积最大,则圆心角为________. 解析:(1)设圆心角为θ,半径为r ,则⎩⎨⎧2r +rθ=10,12θ·r 2=4,解得⎩⎨⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8.(舍去) 故扇形圆心角为12.(2)设圆心角为θ,半径为r , 则2r +rθ=40.S =12θ·r 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100, 当且仅当r =10时,S max =100. 此时圆心角θ=2. 答案:(1)12(2)25.(2019·镇江调研)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.解析:取终边上一点(a,2a )(a ≠0),根据任意角的三角函数定义,可得cos θ=±55,故 cos 2θ=2cos 2θ-1=-35.答案:-356.已知α是第二象限的角,则180°-α是第________象限的角. 解析:由α是第二象限的角可得90°+k ·360°<α<180°+k ·360°(k ∈Z),则180°-(180°+k ·360°)<180°-α<180°-(90°+k ·360°),即-k ·360°<180°-α<90°-k ·360°(k ∈Z),所以180°-α是第一象限的角.答案:一7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°, 设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).答案:(-1,3)8.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为____________________.解析:如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈⎝ ⎛⎭⎪⎫π4,5π4.答案:⎝ ⎛⎭⎪⎫π4,5π49.已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解:设α终边上任一点为P (k ,-3k ), 则r =k 2+(-3k )2=10|k |. 当k >0时,r =10k ,∴sin α=-3k 10k =-310,1cos α=10 kk =10,∴10sin α+3cos α=-310+310=0;当k <0时,r =-10k ,∴sin α=-3k -10k =310,1cos α=-10k k =-10, ∴10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0. 10.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α,(1)由题意可得⎩⎨⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧ r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr =6.(2)法一:∵2r +l =8,∴S 扇=12lr =14l ·2r≤14⎝⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4, 当且仅当2r =l ,即α=lr =2时,扇形面积取得最大值4.∴圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr =2时, 扇形面积取得最大值4. ∴弦长AB =2sin 1×2=4sin 1. 三上台阶,自主选做志在冲刺名校1.若A 是第三象限角,且⎪⎪⎪⎪⎪⎪sin A 2=-sin A 2,则A2是第________象限角.解析:因为A 是第三象限角, 所以2k π+π<A <2k π+3π2(k ∈Z),所以k π+π2<A 2<k π+3π4(k ∈Z),所以A2是第二、四象限角.又因为⎪⎪⎪⎪⎪⎪sin A 2=-sin A 2,所以sin A2<0,所以A2是第四象限角.答案:四2.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y=sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为________.解析:由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限, 又角θ与角α的终边相同, 所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0. 所以y =-1+1-1=-1. 答案:-13.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断 tan α2sin α2cos α2的符号.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0, 知α在第一、三象限, 故α角在第三象限,其集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪2k π+π<α<2k π+3π2,k ∈Z .(2)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0, sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.第二节 同角三角函数的基本关系与诱导公式_1.同角三角函数的基本关系式 (1)平方关系 sin 2α+cos 2α=1; (2)商数关系 tan α=sin αcos α. 2.诱导公式1.(教材习题改编)若α是第二象限角,tan α=-815,则sin α=________.解析:由题意得⎩⎨⎧sin 2α+cos 2α=1,sin αcos α=-815,解得sin α=±817.因为α为第二象限角,所以sin α>0,所以sin α=817.答案:8172.(教材习题改编)已知tan θ=2,则sin ⎝ ⎛⎭⎪⎫π2+θ-cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2+θ-sin (π-θ)=________.解析:原式=cos θ-(-cos θ)cos θ-sin θ=2cos θcos θ-sin θ=21-tan θ=-2.答案:-23.若sin θcos θ=12,则tan θ+cos θsin θ的值是________.解析:tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2. 答案:24.(1)sin ⎝ ⎛⎭⎪⎫-31π4=________;(2)tan ⎝ ⎛⎭⎪⎫-26π3=________.答案:(1)22(2) 3 1.利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.3.注意求值与化简后的结果一般要尽可能有理化、整式化. [小题纠偏]1.已知α为第四象限角,且 sin(π-α)=-13,则tan α=________.解析:由 sin(π-α)=-13,得 sin α=-13.因为α在第四象限,所以 cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫-132=223,则 tan α=sin αcos α=-13223=-24.答案:-242.若sin(3π+θ)=13,则sin θ=________.答案:-133.已知cos(π+α)=-12,且α是第四象限角,计算:(1)sin(2π-α)=________;(2)sin[α+(2n +1)π]+sin[α-(2n +1)π]sin (α+2n π)cos (α-2n π)(n ∈Z)=______.解析:因为cos(π+α)=-12,所以-cos α=-12,cos α=12.又因为α是第四象限角, 所以sin α=-1-cos 2α=-32.(1)sin(2π-α)=sin[2π+(-α)]=sin(-α)=-sin α=32. (2)sin[α+(2n +1)π]+sin[α-(2n +1)π]sin (α+2n π)cos (α-2n π)=sin (2n π+π+α)+sin (-2n π-π+α)sin (2n π+α)cos (-2n π+α)=sin (π+α)+sin (-π+α)sin αcos α=-sin α-sin (π-α)sin αcos α=-2sin αsin αcos α=-2cos α=-4.答案:(1)32(2)-4考点一 三角函数的诱导公式(基础送分型考点——自主练透)[题组练透]1.sin 210°cos 120°的值为________.解析:sin 210°cos 120°=-sin 30°(-cos 60°)=12×12=14.答案:142.(2019·淮安模拟)已知角α终边上一点M 的坐标为(3,1),则cos ⎝⎛⎭⎪⎫α+π3的值是________. 解析:由题可知,cos α=32,sin α=12,所以cos ⎝ ⎛⎭⎪⎫α+π3=12cos α-32sin α=0. 答案:03.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________.解析:tan ⎝⎛⎭⎪⎫5π6+α=tan ⎝⎛⎭⎪⎫π-π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案:-334.(易错题)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α⎝ ⎛⎭⎪⎫sin α≠-12,则f ⎝⎛⎭⎪⎫-23π6=________. 解析:∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α =cos α(1+2sin α)sin α(1+2sin α)=1tan α, ∴f ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-4π+π6=1tan π6= 3.答案: 3[谨记通法]1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角就好了.” 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值,如“题组练透”第4题.考点二 同角三角函数的基本关系(题点多变型考点——纵引横联)已知α是三角形的内角,且sin α+cos α=15.求tan α的值.[解] 法一:联立方程⎩⎨⎧sin α+cos α=15, ①sin 2α+cos 2α=1, ②由①得cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形的内角, ∴⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝ ⎛⎭⎪⎫152,即1+2sin αcos α=125,∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π, ∴sin α>0,cos α<0,∴sin α-cos α>0. ∴sin α-cos α=75.由⎩⎪⎨⎪⎧sin α+cos α=15,sin α-cos α=75,得⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.同角三角函数基本关系式的应用技巧变换tan 2θ)=tan π4=(sin θ±cosθ)2∓2sin θcos θ和积 转换利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化表达式中含有sin θ±cos θ或sin θcos θ[越变越明][变式一] 保持母题条件不变, 求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由母题可知:tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2 =-43-45×⎝ ⎛⎭⎪⎫-43+2=87.(2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825.[变式二] 若母题条件变为“sin α+3cos α3cos α-sin α=5”, 求tan α的值.解:法一:由sin α+3cos α3cos α-sin α=5, 得tan α+33-tan α=5,即tan α=2.法二:由sin α+3cos α3cos α-sin α=5,得sin α+3cos α=15cos α-5sin α,∴6sin α=12cos α,即tan α=2.[变式三] 若母题中的条件和结论互换:已知α是三角形的内角,且tan α=-13, 求 sin α+cos α的值.解:由tan α=-13,得sin α= -13cos α,将其代入 sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0, ∴cos α=-31010, sin α=1010, 故 sin α+cos α=-105.[破译玄机]1.三角形中求值问题,首先明确角的范围,才能求出角的值或三角函数值.2.三角形中常用的角的变形有:A +B =π-C,2A +2B =2π-2C ,A 2+B 2+C 2=π2等,于是可得sin(A +B )=sin C ,cos ⎝ ⎛⎭⎪⎫A +B 2=sin C2等.一抓基础,多练小题做到眼疾手快1.若α∈⎝ ⎛⎭⎪⎫-π2,π2,sin α=-35,则cos(-α)=________.解析:因为α∈⎝ ⎛⎭⎪⎫-π2,π2,sin α=-35,所以cos α=45,即cos(-α)=45.答案:452.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ=________.解析:∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.答案:π33.已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α=________.解析:cos ⎝ ⎛⎭⎪⎫π4+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4-α=-sin ⎝ ⎛⎭⎪⎫α-π4=-13.答案:-134.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=________.解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-1-sin 2α=-35,∴tan α=sin αcos α=-43.答案:-435.如果sin(π+A )=12,那么cos ⎝ ⎛⎭⎪⎫3π2-A 的值是________. 解析:∵sin(π+A )=12,∴-sin A =12.∴cos ⎝ ⎛⎭⎪⎫3π2-A =-sin A =12.答案:12二保高考,全练题型做到高考达标1.(2019·南师附中检测)角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则sin(π-α)的值是________.解析:因为角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),所以sin α=255,sin(π-α)=sin α=255. 答案:2552.若sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,则sin α·cos α的值等于________. 解析:由sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,可得sin α=-2cos α,则tan α=-2,sin α·cos α=tan α1+tan 2α=-25.答案:-253.(2019·苏北四市调研)cos 350°-2sin 160°sin (-190°)=________.解析:原式=cos (360°-10°)-2sin (180°-20°)-sin (180°+10°)=cos 10°-2sin (30°-10°)-(-sin 10°)=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°= 3.答案: 34.已知f (α)=sin (π-α)cos (2π-α)cos (-π-α)tan α,则f ⎝ ⎛⎭⎪⎫-31π3=________.解析:∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫10π+π3 =-cos π3=-12.答案:-125.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α=__________.解析:∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.答案:326.化简:sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-αcos (π+α)+sin (π-α)·cos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)=________.解析:原式=cos α·sin α-cos α+sin α(-sin α)-sin α=-sin α+sin α=0. 答案:07.sin 4π3·cos 5π6·tan ⎝ ⎛⎭⎪⎫-4π3=________.解析:原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝ ⎛⎭⎪⎫π-π6·tan ⎝ ⎛⎭⎪⎫-π-π3=⎝ ⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3 =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334.答案:-3348.(2019·南通调研)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a (|a |≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=________. 解析:由题意知,cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ =-cos ⎝ ⎛⎭⎪⎫π6-θ=-a . sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0. 答案:09.已知函数f (x )=A sin ⎝⎛⎭⎪⎫x +π4,x ∈R ,且f (0)=1. (1)求A 的值;(2)若f (α)=-15,α是第二象限角,求cos α.解:(1)由f (0)=1,得A sin π4=1,A ×22=1,∴A = 2.(2)由(1)得,f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4=sin x +cos x .由f (α)=-15,得sin α+cos α=-15,∴sin α=-cos α-15,即sin 2α=⎝ ⎛⎭⎪⎫-cos α-152,∴1-cos 2α=cos 2α+25cos α+125,cos 2α+15cos α-1225=0,解得cos α=35或cos α=-45.∵α是第二象限角,∴cos α<0, ∴cos α=-45.10.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值: (1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.三上台阶,自主选做志在冲刺名校 1.sin 21°+sin 22°+…+sin 290°=________.解析:sin 21°+sin 22°+…+sin 290°=sin 21°+sin 22°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 21°+sin 290°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+sin 245°+sin 290°=44+12+1=912. 答案:9122.若f (x )=sin ⎝ ⎛⎭⎪⎫π2x +α+1,且f (2 013)=2,则f (2 015)=________. 解析:因为f (2 013)=sin ⎝ ⎛⎭⎪⎫π2×2 013+α+1= sin ⎝⎛⎭⎪⎫1 006π+π2+α+1=sin ⎝⎛⎭⎪⎫π2+α+1=cos α+1=2, 所以cos α=1.所以f (2 015)=sin ⎝ ⎛⎭⎪⎫π2×2 015+α+1 =sin ⎝⎛⎭⎪⎫1 007π+π2+α+1=-sin ⎝⎛⎭⎪⎫π2+α+1=-cos α+1=0. 答案:03.已知f (x )=cos 2(n π+x )·sin 2(n π-x )cos 2[(2n +1)π-x ](n ∈Z).(1)化简f (x )的表达式;(2)求f ⎝⎛⎭⎪⎫π2 014+f ⎝⎛⎭⎪⎫503π1 007的值.解:(1)当n 为偶数,即n =2k (k ∈Z)时, f (x )=cos 2(2k π+x )·sin 2(2k π-x )cos 2[(2×2k +1)π-x ]=cos 2x ·sin 2(-x )cos 2(π-x )=cos 2x ·(-sin x )2(-cos x )2=sin 2x ;当n 为奇数,即n =2k +1(k ∈Z)时, f (x )=cos 2[(2k +1)π+x ]·sin 2[(2k +1)π-x ]cos 2{[2×(2k +1)+1]π-x }=cos 2[2k π+(π+x )]·sin 2[2k π+(π-x )]cos 2[2×(2k +1)π+(π-x )]=cos 2(π+x )·sin 2(π-x )cos 2(π-x )=(-cos x )2sin 2x (-cos x )2=sin 2x ,综上得f (x )=sin 2x .(2)由(1)得f ⎝ ⎛⎭⎪⎫π2 014+f ⎝ ⎛⎭⎪⎫503π1 007=sin 2π2 014+sin 21 006π2 014=sin 2π2 014+sin 2⎝ ⎛⎭⎪⎫π2-π2 014 =sin 2π2 014+cos 2π2 014=1. 第三节 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(表中k ∈Z).1.(教材习题改编)函数y =2sin x -1的定义域为______________________.解析:由2sin x -1≥0,得sin x ≥12,则x ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z).答案:⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z) 2.(教材习题改编)使函数y =3cos ⎝ ⎛⎭⎪⎫2x -2π3取最小值时x 的集合为________________.解析:要使函数取最小值,则2x -2π3=2k π+π(k ∈Z),知x =k π+5π6,k ∈Z. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+5π6,k ∈Z3.(教材习题改编)函数y =2sin x ⎝⎛⎭⎪⎫π6≤x ≤2π3的值域是________. 解析:根据正弦函数图象,可知x =π6时,函数取到最小值1;x=π2时,函数取到最大值2. 答案:[1,2]4.函数y =-tan ⎝⎛⎭⎪⎫x +π6+2的定义域为______________.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π3,k ∈Z 1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时的情况.3.三角函数存在多个单调区间时易错用“∪”联结. [小题纠偏]1.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为________.解析:由已知x ∈⎣⎢⎡⎦⎥⎤0,π2, 得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π4上的最小值为-22.答案:-222.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调减区间为____________. 解析:由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4得2k π≤2x -π4≤2k π+π(k ∈Z),解得k π+π8≤x ≤k π+5π8(k ∈Z).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z). 答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z) 3.函数y =lg sin(cos x )的定义域为________. 解析:由sin(cos x )>0⇒2k π<cos x <2k π+π(k ∈Z). 又-1≤cos x ≤1,∴0<cos x ≤1.故所求定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈⎝ ⎛⎭⎪⎫2k π-π2,2k π+π2,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈⎝ ⎛⎭⎪⎫2k π-π2,2k π+π2,k ∈Z考点一 三角函数的定义域与值域(基础送分型考点——自主练透)[题组练透]1.函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为________.解析:∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.∴y ∈[-3,2],∴y max +y min =2- 3答案:2- 3 2.(易错题)函数y =1tan x -1的定义域为______________.解析:要使函数有意义,必须有⎩⎨⎧tan x -1≠0,x ≠π2+kx ,k ∈Z ,即⎩⎪⎨⎪⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z.故函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z .答案:⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≠π4+k π且x ≠π2+k π,k ∈Z 3.函数y =lg(sin 2x )+9-x 2的定义域为______________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎨⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝⎛⎭⎪⎫0,π2.答案:⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π24.(易错题)求函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的最大值与最小值. 解:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22.∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的最大值为54,最小值为1-22.[谨记通法]1.三角函数定义域的2种求法(1)应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域,如“题组练透”第2题易忽视.(2)转化为求解简单的三角不等式求复杂函数的定义域. 2.三角函数最值或值域的3种求法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x 、cos x 、sin x cos x 或sin x ±cos x 换成t ,转化为二次函数,如“题组练透”第4题.考点二 三角函数的单调性(重点保分型考点——师生共研)[典例引领]写出下列函数的单调区间:(1)f (x )=2sin ⎝⎛⎭⎪⎫x +π4,x ∈[0,π];(2)f (x )=|tan x |;(3)f (x )=cos ⎝⎛⎭⎪⎫2x -π6,x ∈⎣⎢⎡⎦⎥⎤-π2,π2.解:(1)由-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤x ≤π4+2k π,k ∈Z.又x ∈[0,π],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π4, 递减区间为⎣⎢⎡⎦⎥⎤π4,π. (2)观察图象可知,y =|tan x |的增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z ,减区间是⎝ ⎛⎦⎥⎤k π-π2,k π,k ∈Z.(3)当2k π-π≤2x -π6≤2k π(k ∈Z),即k π-5π12≤x ≤k π+π12,k ∈Z ,函数f (x )是增函数.因此函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的单调递增区间是⎣⎢⎡⎦⎥⎤-5π12,π12,递减区间为⎣⎢⎡⎦⎥⎤-π2,-5π12,⎣⎢⎡⎦⎥⎤π12,π2.[由题悟法]求三角函数单调区间的2种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.[即时应用]1.(2019·宿迁调研)函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调减区间为______.解析:由已知函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间即可. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z.故所给函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z)2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________. 解析:∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增, 在⎣⎢⎡⎦⎥⎤π3,π2上单调递减知,π2ω=π3,∴ω=32.答案:32考点三 三角函数的奇偶性、周期性及对称性(常考常新型考点——多角探明)[命题分析]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.常见的命题角度有: (1)三角函数的周期;(2)求三角函数的对称轴或对称中心; (3)三角函数对称性的应用.[题点全练]角度一:三角函数的周期1.函数y =2sin ⎝ ⎛⎭⎪⎫π4-2x 的最小正周期为________.解析:T =2π|-2|=π.答案:π2.(2019·南京调研)若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk <2, 即k <π<2k .又k ∈N ,所以k =2或k =3. 答案:2或3角度二:求三角函数的对称轴或对称中心3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则函数f (x )的对称轴为________.解析:由题意得,2πω=π,ω=2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=π2+k π(k ∈Z),得x =π8+k π2(k ∈Z)即为函数f (x )的对称轴.答案:x =π8+k π2(k ∈Z)4.函数y =3tan ⎝⎛⎭⎪⎫2x +π3的对称中心是________.解析:2x +π3=k π2,k ∈Z ,所以x =k π4-π6,k ∈Z.答案:⎝ ⎛⎭⎪⎫k π4-π6,0(k ∈Z)角度三:三角函数对称性的应用5.(2019·南京四校联考)若函数y =cos ⎝ ⎛⎭⎪⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值为________.解析:πω6+π6=k π+π2(k ∈Z)⇒ω=6k +2(k ∈Z)⇒ωmin =2.答案:26.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为________.解析:由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f ⎝ ⎛⎭⎪⎫16=12cos π6=34.答案:34[方法归纳]函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.一抓基础,多练小题做到眼疾手快 1.函数y =cos x -32的定义域为________. 解析:∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z.答案:⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z)2.函数y =2cos 2x +5sin x -4的值域为________. 解析:y =2cos 2x +5sin x -4 =2(1-sin 2x )+5sin x -4 =-2sin 2x +5sin x -2=-2⎝ ⎛⎭⎪⎫sin x -542+98.故当sin x =1时,y max =1,当sin x =-1时,y min =-9, 故y =2cos 2x +5sin x -4的值域为[-9,1]. 答案:[-9,1]3.函数f (x )=tan ωx (ω>0)的图象相邻的两支截直线y =π4所得线段长为π4,则f ⎝ ⎛⎭⎪⎫π4的值是________.解析:由题意知,T =π4,所以πω=π4,所以ω=4,所以f (x )=tan 4x ,所以f ⎝ ⎛⎭⎪⎫π4=0.答案:04.函数f (x )=sin(-2x )的单调增区间是____________. 解析:由f (x )=sin(-2x )=-sin 2x ,2k π+π2≤2x ≤2k π+3π2得k π+π4≤x ≤k π+3π4(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z) 5.函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为________,此时x =______.解析:函数y =3-2cos ⎝ ⎛⎭⎪⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z).答案:5 3π4+2k π(k ∈Z)二保高考,全练题型做到高考达标1.函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是_______________________________.解析:由2x +π4=k π(k ∈Z)得,x =k π2-π8(k ∈Z).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z.答案:⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z 2.(2019·苏锡常镇四市调研)设函数f (x )=sin(ωx +φ)+3cos(ωx+φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且满足f (-x )=-f (x ),则函数f (x )的单调增区间为________.解析:因为f (x )=sin(ωx +φ)+3cos(ωx +φ)=2sin ⎝⎛⎭⎪⎫ωx +φ+π3⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且满足f (-x )=-f (x ),所以ω=2,φ=-π3,所以f (x )=2sin 2x ,令2x ∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z),解得函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z) 3.已知函数y =tan ωx 在⎝ ⎛⎭⎪⎫-π2,π2内是减函数,则ω的取值范。

近年高考数学一轮复习第四章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数夯基提能作业本文

近年高考数学一轮复习第四章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数夯基提能作业本文

(北京专用)2019版高考数学一轮复习第四章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第四章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数夯基提能作业本文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第四章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数夯基提能作业本文的全部内容。

第一节任意角和弧度制及任意角的三角函数A组基础题组1。

给出下列四个命题:①角-是第二象限角;②角是第三象限角;③角—400°是第四象限角;④角-315°是第一象限角.其中正确的命题有( )A.1个B.2个C。

3个D。

4个2。

若sin αtan α<0,且<0,则角α是( )A。

第一象限角B。

第二象限角C.第三象限角D。

第四象限角3。

(2017北京海淀期中)若角θ的终边过点P(3,—4),则tan(θ+π)=( )A. B.—C.D。

-4。

已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为()A.2 B。

4C。

6 D.85。

角α的终边与直线y=3x重合,且sin α〈0,又P(m,n)是角α终边上一点,且|OP|=,则m-n等于()A.2B.-2C。

4 D。

—46。

设角α是第三象限角,且=—sin,则角是第象限角.7.已知角α的终边上一点的坐标为,则角α的最小正值为。

8.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0〈α<π)的弧度数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八节解三角形A组基础题组1.(2017武汉三中月考)如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°方向上,灯塔B在观察站南偏东60°方向上,则灯塔A在灯塔B的( )A.北偏东10°方向上B.北偏西10°方向上C.南偏东80°方向上D.南偏西80°方向上2.设A,B两点在河的两岸,一测量者在A的同侧选定一点C,测出A、C的距离为50m,∠ACB=45°,∠CAB=105°,则可以计算出A,B两点间的距离为( )A.50mB.50mC.25mD.m3.如图,一条河的两岸平行,河的宽度d=0.6km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1km,水的流速为2km/h,若客船从码头A驶到码头B所用的最短时间为6min,则客船在静水中的速度为( )A.8km/hB.6km/hC.2km/hD.10km/h4.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )A.10海里B.10海里C.20海里D.20海里5.(2016东营模拟)如图,在塔底D的正西方A处测得塔顶的仰角为45°,在塔底D的南偏东60°的B处测得塔顶的仰角为30°,A、B的距离是84m,则塔高CD为( )6.(2016滨州模拟)已知A,B两个小岛相距10nmile,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,那么B岛和C岛间的距离是nmile.7.某同学骑电动车以24km/h的速度沿正北方向的公路行驶,在点A处测得电视塔S在电动车的北偏东30°方向上,15min后到点B处,测得电视塔S在电动车的北偏东75°方向上,则点B与电视塔的距离是km.8.如图所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15°方向上,与海轮相距20海里的B处,海轮按北偏西60°的方向匀速航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75°方向上,则海轮的速度为海里/分钟.9.如图,航空测量组驾驶飞机飞行的航线和山顶在同一铅直平面内,已知飞机的飞行高度为10000m,速度为50m/s,某一时刻飞机看山顶的俯角为15°,经过420s后看山顶的俯角为45°,求山顶的海拔高度.(取=1.4,=1.7)10.(2016黑龙江哈尔滨六中开学考试)某飞船上的返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为B,C,D).当返回舱在距地面1万米的P点时(假定以后垂直下落,并在A点着陆),C救援中心测得返回舱位于其南偏东60°方向,仰角为60°,B救援中心测得返回舱位于其南偏西30°方向,仰角为30°,D救援中心测得着陆点A位于其正东方向.(1)求B、C两救援中心间的距离;(2)求D救援中心与着陆点A间的距离.B组提升题组11.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°方向前进100m到达点B,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A.50mB.100mC.120mD.150m12.地面上有两座相距120米的塔,在矮塔塔底望高塔塔顶的仰角为α,在高塔塔底望矮塔塔顶的仰角为,且在两塔底连线的中点O处望两塔塔顶的仰角互为余角,则两塔的高度分别为( )A.50米,100米B.40米,90米C.40米,50米D.30米,40米13.(2016青岛模拟)如图,在海中一孤岛D的周围有2个观察站A,C,已知观察站A在岛D的正北5nmile处,观察站C在岛D的正西方,现在海面上有一船B,在A点测得其在南偏西60°方向4nmile处,在C点测得其在北偏西30°方向上,则两观测点A与C的距离为nmile.14.如图所示,长为3.5m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C处1.4m的地面上,另一端B在离堤足C处2.8m的石堤上,石堤的倾斜角为α,则tanα= .15.(2016辽宁沈阳二中月考)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船位于点A的北偏东45°且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ且与点A相距10海里的位置C.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.答案全解全析A组基础题组1.D由条件及题图可知,∠A=∠ABC=40°,因为∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°方向上.2.A由题意,易得B=30°.由正弦定理,得=,∴AB===50(m).3.B连接AB,设AB与河岸线所成的锐角为θ,客船在静水中的速度为vkm/h,由题意知,sinθ==,从而cosθ=,结合已知及余弦定理可得=+12-2××2×1×,解得v=6.选B.4.A如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得=,解得BC=10(海里).5.C设塔高CD=xm,则AD=xm,DB=xm.又由题意得∠ADB=90°+60°=150°,在△ABD中,利用余弦定理,得842=x2+(x)2-2·x2cos150°,解得x=12(负值舍去),故塔高为12m.6.答案5解析如图,在△ABC中,AB=10,A=60°,B=75°,C=45°,由正弦定理,得=,所以BC===5(nmile).7.答案3在△ABS中,∠BAS=30°,AB=6,∠ABS=180°-75°=105°,∴∠ASB=45°,由正弦定理知=,∴BS==3(km).8.答案解析由已知可得∠ACB=45°,∠B=60°,由正弦定理得=,所以AC===10,所以海轮航行的速度为=(海里/分钟).9.解析如图,作CD垂直直线AB于点D,∵∠A=15°,∠DBC=45°,∴∠ACB=30°,又在△ABC中,=,AB=50×420=21000,∴BC=×sin15°=10500(-).∵CD⊥AD,∴CD=BC·sin∠DBC=10500(-)×=10500(-1)=7350.故山顶的海拔高度为10000-7350=2650(m).10.解析(1)由题意,PA⊥AC,PA⊥AB,∠CAB=30°+60°=90°,则△PAC,△PAB,△ABC均为直角三角形,在Rt△PAC中,PA=1,∠PCA=60°,则AC=,在Rt△PAB中,PA=1,∠PBA=30°,则AB=,又∠CAB=90°,∴BC==.答:B、C两救援中心间的距离为万米.(2)易得sin∠ACD=sin∠ACB=,cos∠ACD=-,又∠CAD=30°,所以sin∠ADC=sin(30°+∠ACD)=,在△ADC中,由正弦定理得,=,AD==.答:D救援中心与着陆点A间的距离为万米.B组提升题组11.A如图,设水柱高度是hm,水柱底端为C,则在△ABC中,∠BAC=60°,AC=hm,AB=100m,BC=hm,根据余弦定理得(h)2=h2+1002-2·h·100·cos60°,即h2+50h-5000=0,即(h-50)(h+100)=0,解得h=50(舍负),故水柱的高度是50m.三角函数的倍角公式有=,①因为在两塔底连线的中点O望两塔塔顶的仰角互为余角,所以在O点望矮塔塔顶的仰角为-β.由tanβ=,tan=,得=,②联立①②解得H=90,h=40.即两座塔的高度分别为40米,90米.13.答案2解析如图,延长AB与DC,设交点为E,由题意可得∠E=30°,∠BCE=60°,∴∠EBC=90°,∠ABC=90°,在Rt△ADE中,AE==10nmile,所以EB=AE-AB=6nmile.在Rt△EBC中,BC=BE·tan30°=2nmile,在Rt△ABC中,AC==2(nmile).14.答案解析由题意可得,在△ABC中,AB=3.5,AC=1.4,BC=2.8,由余弦定理可得,AB2=AC2+BC2-2·AC·BC·cos∠ACB,即 3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cosα=,所以sinα=,所以tanα==.15.解析(1)如图,AB=40海里,AC=10海里,∠BAC=θ.由于0°<θ<90°,sinθ=,所以cosθ==.由余弦定理得BC==10(海里).所以该船的行驶速度为=15(海里/小时).在△ABC中,由余弦定理得,cos∠ABC===.从而sin∠ABC===.在△ABQ中,由正弦定理得,AQ===40(海里).由于AE=55海里>40海里=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15(海里).过点E作EP⊥BC于点P,则EP的长等于点E到直线BC的距离.在Rt△QPE中,PE=QE·sin∠PQE,则PE=QE·sin∠AQC=QE·sin(45°-∠ABC)=15×=3(海里),又3海里<7海里,所以该船会进入警戒水域.。

相关文档
最新文档