2018届高三数学(文)一轮复习夯基提能作业本:第三章 导数及其应用 第一节 变化率与导数、导数的计算
2018-2019学年高中一轮复习理数:第三章 导数及其应用 含解析

第三章⎪⎪⎪导数及其应用第一节 导数的概念及运算本节主要包括2个知识点: 1.导数的运算; 2.导数的几何意义.突破点(一) 导数的运算[基本知识]1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. 2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.3.基本初等函数的导数公式4.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[基本能力]1.判断题(1)f ′(x 0)与(f (x 0))′的计算结果相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) (4)⎝⎛⎭⎫sin π3′=cos π3.( ) (5)若(ln x )′=1x ,则⎝⎛⎭⎫1x ′=ln x .( )(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .( ) (7)y =cos 3x 由函数y =cos u ,u =3x 复合而成.( ) 答案:(1)× (2)× (3)√ (4)× (5)× (6)× (7)√ 2.填空题(1)已知f (x )=13-8x +2x 2,f ′(x 0)=4,则x 0=________. 解析:∵f ′(x )=-8+4x ,∴f ′(x 0)=-8+4x 0=4,解得x 0=3. 答案:3(2)函数y =ln xe x 的导函数为________________.答案:y ′=1-x ln xx e x(3)已知f (x )=2sin x +x ,则f ′⎝⎛⎭⎫π4=________.解析:∵f (x )=2sin x +x ,∴f ′(x )=2cos x +1,则f ′⎝⎛⎭⎫π4=2cos π4+1=2+1. 答案:2+1[全析考法][典例] (1)函数f (x )=(x +1)2(x -3),则其导函数f ′(x )=( ) A .3x 2-2x B .3x 2-2x -5 C .3x 2-xD .3x 2-x -5(2)(2018·钦州模拟)已知函数f (x )=x ln x ,则f ′(1)+f (4)的值为( )A .1-8ln 2B .1+8ln 2C .8ln 2-1D .-8ln 2-1(3)已知函数f (x )=sin x cos φ-cos x sin φ-1(0<φ<π2),若f ′⎝⎛⎭⎫π3=1,则φ的值为( ) A.π3B.π6C.π4D.5π12[解析] (1)法一:因为f (x )=(x +1)2(x -3)=(x +1)(x +1)(x -3),所以f ′(x )=[(x +1)(x +1)]′(x -3)+(x +1)(x +1)(x -3)′=2(x +1)(x -3)+(x +1)2=3x 2-2x -5.法二:f (x )=(x +1)2(x -3)=x 3-x 2-5x -3,则f ′(x )=3x 2-2x -5.(2)因为f ′(x )=ln x +1,所以f ′(1)=0+1=1,所以f ′(1)+f (4)=1+4ln 4=1+8ln 2.故选B.(3)因为f (x )=sin x cos φ-cos x sin φ-1⎝⎛⎭⎫0<φ<π2,所以f ′(x )=cos x cos φ+sin x sin φ=cos(x -φ),因为f ′⎝⎛⎭⎫π3=1,所以cos ⎝⎛⎭⎫π3-φ=1,因为0<φ<π2,所以φ=π3,故选A. [答案] (1)B (2)B (3)A[方法技巧] 导数运算的常见形式及其求解方法[全练题点]1.下列函数中满足f (x )=f ′(x )的是( ) A .f (x )=3+x B .f (x )=-x C .f (x )=ln xD .f (x )=0解析:选D 若f (x )=0,则f ′(x )=0,从而有f (x )=f ′(x ).故选D. 2.(2018·延安模拟)设函数f (x )=ax +3,若f ′(1)=3,则a =( ) A .2 B .-2 C .3D .-3解析:选C 由题意得,f ′(x )=a ,因为f ′(1)=3,所以a =3,故选C.3.(2018·南宁模拟)设f (x )在x =x 0处可导,且li m Δx →f (x 0+3Δx )-f (x 0)Δx=1,则f ′(x 0)=( )A .1B .0C .3 D.13解析:选D 因为lim Δx →0f (x 0+3Δx )-f (x 0)Δx =1,所以lim Δx →0 ⎣⎡⎦⎤3×f (x 0+3Δx )-f (x 0)3Δx =1,即3f ′(x 0)=1,所以f ′(x 0)=13.故选D.4.(2018·桂林模拟)已知函数y =x cos x -sin x ,则其导函数y ′=( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B 函数y =x cos x -sin x 的导函数y ′=cos x -x sin x -cos x =-x sin x ,故选B.5.(2018·九江一模)已知f (x )是(0,+∞)上的可导函数,且f (x )=x 3+x 2f ′(2)+2ln x ,则函数f (x )的解析式为( )A .f (x )=x 3-32x 2+2ln xB .f (x )=x 3-133x 2+2ln x C .f (x )=x 3-3x 2+2ln x D .f (x )=x 3+3x 2+2ln x解析:选B ∵f (x )=x 3+x 2f ′(2)+2ln x ,∴f ′(x )=3x 2+2xf ′(2)+2x ,令x =2,得f ′(2)=12+4f ′(2)+1,∴f ′(2)=-133,∴f (x )=x 3-133x 2+2ln x ,故选B.突破点(二) 导数的几何意义[基本知识]函数f (x )在点x 0处 的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).特别地,如果曲线y =f (x )在点(x 0,y 0)处的切线垂直于x 轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.[基本能力]1.判断题(1)曲线的切线与曲线不一定只有一个公共点.( ) (2)求曲线过点P 的切线时P 点一定是切点.( ) 答案:(1)√ (2)× 2.填空题(1)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 答案:2x -y +1=0(2)已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________. 解析:设切点为(x 0,y 0),则f ′(x 0)=-1a ·e x 0=-1,∴e x 0=a ,又-1a ·e x 0=-x 0+1,∴x 0=2,a =e 2. 答案:e 2(3)曲线f (x )=x ln x 在点M (1,f (1))处的切线方程为________.解析:由题意,得f ′(x )=ln x +1,所以f ′(1)=ln 1+1=1,即切线的斜率为1.因为f (1)=0,所以所求切线方程为y -0=x -1,即x -y -1=0.答案:x -y -1=0[全析考法]“过点A A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.[例1] 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. [方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程:点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程:切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1),求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.求切点坐标[例2] (2018·32P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)[解析] ∵f (x )=x 3+ax 2,∴f ′(x )=3x 2+2ax ,∵曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,∴3x 20+2ax 0=-1,∵x 0+x 30+ax 20=0,解得x 0=±1,∴当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1.故选D.[答案] D求参数值或范围[例3] (1)(2018·长沙一模)若曲线y =12e x 2与曲线y =a ln x 在它们的公共点P (s ,t )处具有公共切线,则实数a =( )A .-2 B.12 C .1D .2(2)(2018·南京调研)若函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,则实数a 的取值范围是________.[解析] (1)y =12e x 2的导数为y ′=x e ,在点P (s ,t )处的切线斜率为s e ,y =a ln x 的导数为y ′=a x ,在点P (s ,t )处的切线斜率为a s ,由题意知,s e =a s ,且12e s 2=a ln s ,解得ln s =12,s 2=e ,故a =1.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,故1x +a =2,即a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).[答案] (1)C (2)(-∞,2)[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.[全练题点]1.[考点一]曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x ,∴y ′=cos x +e x ,∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.2.[考点一]曲线y =x e x +2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1D .y =-2x -1解析:选A 因为y ′=e x +x e x +2,所以曲线y =x e x +2x -1在点(0,-1)处的切线的斜率k =y ′| x =0=3,∴切线方程为y =3x -1.3.[考点二]已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12解析:选A 已知曲线y =x 24-3ln x (x >0)的一条切线的斜率为12,由y ′=12x -3x =12,得x =3,故选A.4.[考点三](2018·东城期末)若直线y =-x +2与曲线y =-e x+a相切,则a 的值为( )A .-3B .-2C .-1D .-4解析:选A 由于y ′=(-e x +a )′=-e x +a ,令-e x +a =-1,得切点的横坐标为x =-a ,所以切点为(-a ,-1),进而有-(-a )+2=-1,故a =-3.5.[考点三](2018·西安一模)若曲线y =e x -ae x (a >0)上任意一点处的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,则a =( )A.112 B.13 C.34D .3解析:选C y ′=e x +a e x ,∵y =e x -aex 在任意一点处的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,∴e x +a e x ≥3,由a >0知,e x +a ex ≥2a ⎝⎛⎭⎫当且仅当e x =a e x 时等号成立,故2a =3,故a =34,故选C.[全国卷5年真题集中演练——明规律] 1.(2014·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 2.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:易得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点横坐标为x 1,曲线y =ln(x +1)上的切点横坐标为x 2,则y =ln x +2的切线方程为:y =1x 1·x +ln x 1+1,y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+ 1)-x 2x 2+1.根据题意,有⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.答案:1-ln 23.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f(x)为偶函数,所以当x>0时,f(x)=f(-x)=ln x-3x,所以当x>0时,f′(x)=1x-3,则f′(1)=-2.所以y=f(x)在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.答案:y=-2x-1[课时达标检测][小题对点练——点点落实]对点练(一)导数的运算1.(2018·泉州质检)设函数f(x)=x(x+k)(x+2k),则f′(x)=()A.3x2+3kx+k2B.x2+2kx+2k2C.3x2+6kx+2k2D.3x2+6kx+k2解析:选C法一:f(x)=x(x+k)(x+2k),f′(x)=(x+k)(x+2k)+x[(x+k)(x+2k)]′=(x+k)·(x+2k)+x(x+2k)+x(x+k)=3x2+6kx+2k2,故选C.法二:因为f(x)=x(x+k)(x+2k)=x3+3kx2+2k2x,所以f′(x)=3x2+6kx+2k2,故选C.2.(2018·泰安一模)给出下列结论:①若y=log2x,则y′=1x ln 2;②若y=-1x,则y′=12x x;③若f(x)=1x2,则f′(3)=-227;④若y=ax(a>0),则y′=a x ln a.其中正确的个数是()A.1 B.2 C.3 D.4解析:选D根据求导公式可知①正确;若y=-1x=-x-12,则y′=12x-32=12x x,所以②正确;若f(x)=1x2,则f′(x)=-2x-3,所以f′(3)=-227,所以③正确;若y=ax(a>0),则y′=a x ln a,所以④正确.因此正确的结论个数是4,故选D.3.若函数y=x m的导函数为y′=6x5,则m=()A.4 B.5C.6 D.7解析:选C因为y=x m,所以y′=mx m-1,与y′=6x5相比较,可得m=6.4.已知函数f(x)=xe x(e是自然对数的底数),则其导函数f′(x)=()A.1+x e xB.1-x e xC .1+xD .1-x解析:选B 函数f (x )=xe x ,则其导函数f ′(x )=e x -x e x e 2x =1-x e x ,故选B.5.若f (x )=x 2-2x -4ln x ,则f ′(x )<0的解集为( ) A .(0,+∞) B .(0,2) C .(0,2)∪(-∞,-1)D .(2,+∞)解析:选B 函数f (x )=x 2-2x -4ln x 的定义域为{x |x >0},f ′(x )=2x -2-4x =2x 2-2x -4x ,由f ′(x )=2x 2-2x -4x<0,得0<x <2,∴f ′(x )<0的解集为(0,2),故选B. 6.(2018·信阳模拟)已知函数f (x )=a e x +x ,若1<f ′(0)<2,则实数a 的取值范围是( ) A.⎝⎛⎭⎫0,1e B .(0,1) C .(1,2)D .(2,3)解析:选B 根据题意,f (x )=a e x +x ,则f ′(x )=(a e x )′+x ′=a e x +1,则f ′(0)=a +1,若1<f ′(0)<2,则1<a +1<2,解得0<a <1,所以实数a 的取值范围为(0,1).故选B.对点练(二) 导数的几何意义1.(2018·安徽八校联考)函数f (x )=tan x 2在⎣⎡⎦⎤π2,f ⎝⎛⎭⎫π2处的切线的倾斜角α为( ) A.π6 B.π4 C.π3D.π2解析:选B f ′(x )=⎝ ⎛⎭⎪⎫sin x2cos x 2′=12cos 2x 2,得切线斜率k =tan α=f ′⎝⎛⎭⎫π2=1,故α=π4,选B.2.若函数f (x )=x 3-x +3的图象在点P 处的切线平行于直线y =2x -1,则点P 的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,即3x 2-1=2⇒x =1或-1,又f (1)=3,f (-1)=3,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故点P 的坐标为(1,3)或(-1,3).3.(2018·福州质检)过点(-1,1)与曲线f (x )=x 3-x 2-2x +1相切的直线有( )A .0条B .1条C .2条D .3条解析:选C 设切点P (a ,a 3-a 2-2a +1),由f ′(x )=3x 2-2x -2,当a ≠-1时,可得切线的斜率k =3a 2-2a -2=(a 3-a 2-2a +1)-1a -(-1),所以(3a 2-2a -2)(a +1)=a 3-a 2-2a ,即(3a 2-2a -2)(a +1)=a (a -2)(a +1),所以a =1,此时k =-1.又(-1,1)是曲线上的点且f ′(-1)=3≠-1,故切线有2条.4.(2018·重庆一模)已知直线y =a 与函数f (x )=13x 3-x 2-3x +1的图象相切,则实数a的值为( )A .-26或83B .-1或3C .8或-83D .-8或83解析:选D 令f ′(x )=x 2-2x -3=0,得x =-1或x =3,∵f (-1)=83,f (3)=-8,∴a =83或-8.5.(2018·临川一模)函数f (x )=x +ln xx的图象在x =1处的切线与两坐标轴围成的三角形的面积为( )A.12B.14C.32D.54解析:选B 因为f (x )=x +ln xx ,f ′(x )=1+1-ln x x 2,所以f (1)=1,f ′(1)=2,故切线方程为y -1=2(x -1).令x =0,可得y =-1;令y =0,可得x =12.故切线与两坐标轴围成的三角形的面积为12×1×12=14,故选B.6.(2018·成都诊断)若曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,+∞ C .(0,+∞)D .[0,+∞)解析:选D 由题意知,函数y =ln x +ax 2的定义域为(0,+∞),y ′=1x +2ax =2ax 2+1x ≥0恒成立,即2ax 2+1≥0,a ≥-12x 2恒成立,又在定义域内,-12x 2∈(-∞,0),所以实数a 的取值范围是[0,+∞).7.(2017·柳州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R ),F (x )=f ′(x )e x ,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C ∵f ′(x )=2x +b ,∴F (x )=2x +b e x ,F ′(x )=2-2x -be x,又F (x )的图象在x =0处的切线方程为y =-2x +c ,∴⎩⎪⎨⎪⎧ F ′(0)=-2,F (0)=c ,得⎩⎪⎨⎪⎧b =c ,b =4,∴f (x )=(x +2)2≥0,f (x )min=0.8.(2018·唐山模拟)已知函数f (x )=x 2-1,g (x )=ln x ,则下列说法中正确的为( ) A .f (x ),g (x )的图象在点(1,0)处有公切线B .存在f (x )的图象的某条切线与g (x )的图象的某条切线平行C .f (x ),g (x )的图象有且只有一个交点D .f (x ),g (x )的图象有且只有三个交点解析:选B 对于A ,f (x )的图象在点(1,0)处的切线为y =2x -2,函数g (x )的图象在点(1,0)处的切线为y =x -1,故A 错误;对于B ,函数g (x )的图象在(1,0)处的切线为y =x -1,设函数f (x )的图象在点(a ,b )处的切线与y =x -1平行,则f ′(a )=2a =1,a =12,故b =⎝⎛⎭⎫122-1=-34,即g (x )的图象在(1,0)处的切线与f (x )的图象在⎝⎛⎭⎫12,-34处的切线平行,B 正确;如图作出两函数的图象,可知两函数的图象有两个交点,C ,D 错误.故选B.9.(2018·包头一模)已知函数f (x )=x 3+ax +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:函数f (x )=x 3+ax +1的导数为f ′(x )=3x 2+a ,f ′(1)=3+a ,又f (1)=a +2,所以切线方程为y -a -2=(3+a )(x -1),因为切线经过点(2,7),所以7-a -2=(3+a )(2-1),解得a =1.答案:1[大题综合练——迁移贯通]1.(2018·兰州双基过关考试)定义在实数集上的函数f (x )=x 2+x ,g (x )=13x 3-2x +m .(1)求函数f (x )的图象在x =1处的切线方程;(2)若f (x )≥g (x )对任意的x ∈[-4,4]恒成立,求实数m 的取值范围. 解:(1)∵f (x )=x 2+x ,∴f (1)=2.∵f ′(x )=2x +1,∴f ′(1)=3.∴所求切线方程为y -2=3(x -1),即3x -y -1=0. (2)令h (x )=g (x )-f (x )=13x 3-x 2-3x +m ,则h ′(x )=(x -3)(x +1). ∴当-4≤x ≤-1时,h ′(x )≥0; 当-1<x ≤3时,h ′(x )≤0; 当3<x ≤4时,h ′(x )>0.要使f (x )≥g (x )恒成立,即h (x )max ≤0, 由上知h (x )的最大值在x =-1或x =4处取得, 而h (-1)=m +53,h (4)=m -203,∴h (x )的最大值为m +53,∴m +53≤0,即m ≤-53.∴实数m 的取值范围为⎝⎛⎦⎤-∞,-53. 2.(2018·青岛期末)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x-4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又因为f ′(x )=a +bx2,所以⎩⎨⎧2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3,所以f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,所以切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x ,得y =x =2x 0,所以切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0 |2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.3.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.(3)证明:不存在与曲线C 同时切于两个不同点的直线. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k , 则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).(3)证明:设存在直线与曲线C 同时切于不同的两点A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则点A (x 1,y 1)处的切线方程为y -⎝⎛⎭⎫13x 31-2x 21+3x 1=(x 21-4x 1+3)(x -x 1),化简得y =(x 21-4x 1+3)x +⎝⎛⎭⎫-23x 31+2x 21,而点B (x 2,y 2)处的切线方程是y =(x 22-4x 2+3)x +⎝⎛⎭⎫-23x 32+2x 22. 由于两切线是同一直线,则有x 21-4x 1+3=x 22-4x 2+3,即x 1+x 2=4;又有-23x 31+2x 21=-23x 32+2x 22,即-23(x 1-x 2)·(x 21+x 1x 2+x 22)+2(x 1-x 2)(x 1+x 2)=0,则-13(x 21+x 1x 2+x 22)+4=0,则x 1(x 1+x 2)+x 22-12=0,即(4-x 2)×4+x 22-12=0,即x 22-4x 2+4=0,解得x 2=2.但当x 2=2时,由x 1+x 2=4得x 1=2,这与x 1≠x 2矛盾. 所以不存在与曲线C 同时切于两个不同点的直线.第二节 导数与函数的单调性本节主要包括2个知识点:1.利用导数讨论函数的单调性或求函数的单调区间;2.利用导数解决函数单调性的应用问题.突破点(一)利用导数讨论函数的单调性或求函数的单调区间[基本知识]1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.由函数的单调性与导数的关系可得的结论(1)函数f(x)在(a,b)内可导,且f′(x)在(a,b)任意子区间内都不恒等于0.当x∈(a,b)时,f′(x)≥0⇔函数f(x)在(a,b)上单调递增;f′(x)≤0⇔函数f(x)在(a,b)上单调递减.(2)f′(x)>0(<0)在(a,b)上成立是f(x)在(a,b)上单调递增(减)的充分条件.[基本能力]1.判断题(1)若函数f(x)在区间(a,b)上单调递增,那么在区间(a,b)上一定有f′(x)>0.()(2)如果函数在某个区间内恒有f′(x)=0,则函数f(x)在此区间上没有单调性.()(3)f′(x)>0是f(x)为增函数的充要条件.()答案:(1)×(2)√(3)×2.填空题(1)函数f(x)=e x-x的减区间为________.答案:(-∞,0)(2)函数f(x)=1+x-sin x在(0,2π)上的单调情况是________.答案:单调递增(3)已知f(x)=x3-ax在[1,+∞)上是增函数,则a的最大值是________.答案:3[全析考法][例1] (2016·山东高考节选)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0,x ∈(0,1)时, f ′(x )>0,f (x )单调递增; x ∈(1,+∞)时, f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x - 2a ⎝⎛⎭⎫x + 2a . ①若0<a <2,则 2a >1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时, f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. ②若a =2,则2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③若a >2,则0< 2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫ 2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫ 2a ,1内单调递减,在(1,+∞)内单调递增.[方法技巧]导数法研究函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] (2018·山东德州期中)已知函数f (x )=13x 3-(2m +1)x 2+3m (m +2)x +1,其中m为实数.(1)当m =-1时,求函数f (x )在[-4,4]上的最大值和最小值; (2)求函数f (x )的单调递增区间.[解] (1)当m =-1时,f (x )=13x 3+x 2-3x +1,f ′(x )=x 2+2x -3=(x +3)(x -1).当x <-3或x >1时,f ′(x )>0,f (x )单调递增; 当-3<x <1时,f ′(x )<0,f (x )单调递减. ∴当x =-3时,f (x )极大值=10; 当x =1时,f (x )极小值=-23.又∵f (-4)=233,f (4)=793,∴函数f (x )在[-4,4]上的最大值为793,最小值为-23.(2)f ′(x )=x 2-2(2m +1)x +3m (m +2) =(x -3m )(x -m -2).当3m =m +2,即m =1时,f ′(x )=(x -3)2≥0, ∴f (x )单调递增,即f (x )的单调递增区间为(-∞,+∞).当3m >m +2,即m >1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <m +2或x >3m , 此时f (x )的单调递增区间为(-∞,m +2),(3m ,+∞).当3m <m +2,即m <1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <3m 或x >m +2, 此时f (x )的单调递增区间为(-∞,3m ),(m +2,+∞). 综上所述:当m =1时,f (x )的单调递增区间为(-∞,+∞); 当m >1时,f (x )的单调递增区间为(-∞,m +2),(3m ,+∞); 当m <1时,f (x )的单调递增区间为(-∞,3m ),(m +2,+∞).[方法技巧] 用导数求函数单调区间的三种类型及方法[全练题点]1.[考点二](2018·江西金溪一中等校联考)已知函数f (x )与f ′(x )的图象如图所示,则函数g (x )=f (x )ex 的单调递减区间为( )A .(0,4)B .(-∞,1),⎝⎛⎭⎫43,4C.⎝⎛⎭⎫0,43 D .(0,1),(4,+∞)解析:选D g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,令g ′(x )<0,即f ′(x )-f (x )<0,由题图可得x ∈(0,1)∪(4,+∞).故函数g (x )的单调递减区间为(0,1),(4,+∞).故选D.2.[考点二](2018·芜湖一模)函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A.()0,+∞ B.()-∞,0 C.()-∞,1D.()1,+∞解析:选D 由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 3.[考点一]已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:此时f (x )在 ⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.4.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b , 由已知可得⎩⎪⎨⎪⎧f (1)=a +1=c ,g (1)=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6;由F ′(x )<0得,-a 2<x <-a6.∴函数f (x )+g (x )的单调递增区间是⎝⎛⎭⎫-∞,-a 2,⎝⎛⎭⎫-a6,+∞;单调递减区间为⎝⎛⎭⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.[全析考法]已知函数的单调性求参数的取值范围[例1] (1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数, 所以f ′(x )≥0在(1,+∞)上恒成立, 即3x 2-a ≥0在(1,+∞)上恒成立, 所以a ≤3x 2在(1,+∞)上恒成立, 所以a ≤3,即a 的取值范围为(-∞,3]. (2)因为f (x )在区间(-1,1)上为减函数, 所以f ′(x )=3x 2-a ≤0在(-1,1)上恒成立, 即a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3. 即a 的取值范围为[3,+∞). (3)因为f (x )=x 3-ax -1,所以f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 因为f (x )的单调递减区间为(-1,1), 所以3a3=1,即a =3.[方法技巧]由函数的单调性求参数取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围,注意检验等号成立时导数是否在(a ,b )上恒为0.(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围.比较大小或解不等式[例2] (1)(2017·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1) 的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定(2)已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)设g (x )=f (x )ex ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意得g ′(x )>0,所以g (x )单调递增, 当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)ex 2, 所以e x 1f (x 2)>e x 2f (x 1).(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)A (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→⎣⎡⎦⎤f (x )x ′;(4)f ′(x )+f (x )→[e x f (x )]′; (5)f ′(x )-f (x )→⎣⎡⎦⎤f (x )e x ′.[全练题点]1.[考点一]若函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,则( ) A .a ≥3 B .a =3 C .a ≤3D .0<a <3解析:选A 因为函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,所以f ′(x )=3x 2-2ax ≤0在[0,2]上恒成立.当x =0时,显然成立,当x ≠0时,a ≥32x 在(0,2]上恒成立.因为32x ≤3,所以a ≥3.综上,a ≥3. 2.[考点一]已知函数f (x )=12x 2-t cos x ,若其导函数f ′(x )在R 上单调递增,则实数t 的取值范围为( )A.⎣⎡⎦⎤-1,-13 B.⎣⎡⎦⎤-13,13 C .[-1,1]D.⎣⎡⎦⎤-1,13解析:选C 因为f (x )=12x 2-t cos x ,所以f ′(x )=x +t sin x .令g (x )=f ′(x ),因为f ′(x )在R 上单调递增,所以g ′(x )=1+t cos x ≥0恒成立,所以t cos x ≥-1恒成立,因为cos x∈[-1,1],所以⎩⎪⎨⎪⎧-t ≥-1,t ≥-1,所以-1≤t ≤1,即实数t 的取值范围为[-1,1].3.[考点二]对于R 上可导的任意函数f (x ),若满足1-xf ′(x )≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)解析:选A 当x <1时,f ′(x )<0,此时函数f (x )单调递减,当x >1时,f ′(x )>0,此时函数f (x )单调递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值,所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).4.[考点二](2018·江西赣州联考)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)解析:选A 设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x )-e x .由已知f (x )>1-f ′(x ),可得g ′(x )>0在R 上恒成立,即g (x )是R 上的增函数.因为f (0)=0,所以g (0)=-1,则不等式e x f (x )>e x -1可化为g (x )>g (0),所以原不等式的解集为(0,+∞).5.[考点一](2018·四川成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)6.[考点一](2018·辽宁大连双基测试)已知函数f (x )=ln x +axx +1(a ∈R ).(1)若函数f (x )在区间(0,4)上单调递增,求a 的取值范围; (2)若函数y =f (x )的图象与直线y =2x 相切,求a 的值.解:(1)f ′(x )=1x +a (x +1)-ax (x +1)2=(x +1)2+axx (x +1)2.∵函数f (x )在区间(0,4)上单调递增,∴f ′(x )≥0在(0,4)上恒成立,∴(x +1)2+ax ≥0, 即a ≥-x 2+2x +1x =-⎝⎛⎭⎫x +1x -2在(0,4)上恒成立. ∵x +1x ≥2,当且仅当x =1时取等号,∴a ∈[-4,+∞).(2)设切点为(x 0,y 0),则y 0=2x 0,f ′(x 0)=2,y 0=ln x 0+ax 0x 0+1,∴1x 0+a (x 0+1)2=2,①且2x 0=ln x 0+ax 0x 0+1.② 由①得a =⎝⎛⎭⎫2-1x 0(x 0+1)2,③ 代入②,得2x 0=ln x 0+(2x 0-1)(x 0+1), 即ln x 0+2x 20-x 0-1=0.令F (x )=ln x +2x 2-x -1,x >0,则 F ′(x )=1x +4x -1=4x 2-x +1x >0, ∴F (x )在(0,+∞)上单调递增. ∵F (1)=0,∴x 0=1,代入③式得a =4.[全国卷5年真题集中演练——明规律] 1.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x . 因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x ≥0恒成立, 即k ≥1x 在区间(1,+∞)上恒成立. 因为x >1,所以0<1x <1,所以k ≥1.故选D.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎡⎦⎤-1,13 C.⎣⎡⎦⎤-13,13 D.⎣⎡⎦⎤-1,-13 解析:选C 法一:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.法二:函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C.3.(2015·全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:选A 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.4.(2017·全国卷Ⅰ)已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减. (ⅱ)若a >0,则由f ′(x )=0,得x =-ln a .当x ∈(-∞,-ln a )时,f ′(x )<0; 当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. (2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0, 故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a +ln a >0,即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a +ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln ⎝⎛⎭⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0. 由于ln ⎝⎛⎭⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).[课时达标检测][小题对点练——点点落实]对点练(一) 利用导数讨论函数的单调性或求函数的单调区间1.(2018·福建龙岩期中)函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为( ) A .(-∞,-2) B .[3,+∞) C .[-2,3]D.⎣⎡⎭⎫12,+∞ 解析:选A 由题图可以看出-2,3是函数f (x )=x 3+bx 2+cx +d 的两个极值点,即方程f ′(x )=3x 2+2bx +c =0的两根,所以-2b 3=1,c3=-6,即2b =-3,c =-18,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3可化为y =log 2(x 2-x -6).解x 2-x -6>0得x <-2或x >3.因为二次函数y =x 2-x -6的图象开口向上,对称轴为直线x =12,所以函数y =log 2(x 2-x -6)的单调递减区间为(-∞,-2).故选A.2.(2017·焦作二模)设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,+∞)D .(0,+∞)解析:选B 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x -2x +2=(4x -2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧ 4x -2>0,ln x <0,或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝⎛⎭⎫12,1,故选B. 3.(2018·湖北荆州质检)函数f (x )=ln x -12x 2-x +5的单调递增区间为________.解析:函数f (x )的定义域为(0,+∞),再由f ′(x )=1x -x -1>0可解得0<x <5-12.答案:⎝ ⎛⎭⎪⎫0,5-12 对点练(二) 利用导数解决函数单调性的应用问题1.(2018·河南洛阳模拟)已知函数f (x )=-x 3+ax 2-x -1在R 上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,-3)∪(3,+∞)D .(-3,3)解析:选B f ′(x )=-3x 2+2ax -1,由题意知,f ′(x )≤0在R 上恒成立,则Δ=(2a )2-4×(-1)×(-3)≤0恒成立,解得-3≤a ≤ 3.2.(2018·河北正定中学月考)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)·f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a解析:选B 由f (x )=f (2-x )可知,f (x )的图象关于直线x =1对称.根据题意知当x ∈(-∞,1)时,f ′(x )>0,f (x )为增函数,当x ∈(1,+∞)时,f ′(x )<0,f (x )为减函数,所以f (3)=f (-1)<f (0)<f ⎝⎛⎭⎫12,即c <a <b .故选B.3.(2018·河北唐山期末)已知函数f (x )=ln(e x +e -x )+x 2,则使得f (2x )>f (x +3)成立的x的取值范围是( )A .(-1,3)B .(-∞,-3)∪(3,+∞)C .(-3,3)D .(-∞,-1)∪(3,+∞)解析:选D 因为f (-x )=ln(e -x +e x )+(-x )2=ln(e x +e -x )+x 2=f (x ),所以函数f (x )是偶函数.通过导函数可知函数y =e x +e-x在(0,+∞)上是增函数,所以函数f (x )=ln(e x +e-x)+x 2在(0,+∞)上也是增函数,所以不等式f (2x )>f (x +3)等价于|2x |>|x +3|,解得x <-1或x >3.故选D.4.(2018·云南大理州统测)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 017为奇函数,则不等式f (x )+2 017e x <0的解集是( )A .(-∞,0)B .(0,+∞) C.⎝⎛⎭⎫-∞,1e D.⎝⎛⎭⎫1e ,+∞解析:选B 设h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,所以h (x )是定义在R 上的减函数.因为f (x )+2 017为奇函数,所以f (0)=-2 017,h (0)=-2 017.因为f (x )+2 017e x <0,所以f (x )e x <-2 017,即h (x )<h (0),结合函数h (x )的单调性可知x >0,所以不等式f (x )+2 017e x <0的解集是(0,+∞).故选B.5.若函数f (x )=x +4mx -m ln x 在[1,2]上为减函数,则m 的最小值为( ) A.32 B.34 C.23D.43解析:选C 因为f (x )=x +4m x -m ln x 在[1,2]上为减函数,所以f ′(x )=1-4m x2-m x =x 2-mx -4mx2≤0在[1,2]上恒成立,所以x 2-mx -4m ≤0在[1,2]上恒成立.令g (x )=x 2-mx -4m ,所以⎩⎪⎨⎪⎧g (1)=1-m -4m ≤0,g (2)=4-2m -4m ≤0,所以m ≥23,故m 的最小值为23,故选C.6.已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x 得f ′(x )=sin x +x cos x ,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又f (-x )=-x sin(-x )=x sin x =f (x ),因而f (x )为偶函数,∴当f (x 1)<f (x 2)时有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,。
2018版高考数学(理)一轮复习文档:第三章导数及其应用3.1含解析

1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是错误! 错误!=错误!错误!,我们称它为函数y =f (x )在x =x 0处的导数,记作()00|x x f x y ''=或,即f ′(x 0)=错误! 错误!=错误! 错误!.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=04.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[错误!]′=错误!(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y对u的导数与u对x的导数的乘积.【知识拓展】1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2。
[错误!]′=-错误!(f(x)≠0).3.[af(x)+bg(x)]′=af′(x)+bg′(x).4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡".【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( ×)(2)f′(x0)与[f(x0)]′表示的意义相同.(×)(3)曲线的切线不一定与曲线只有一个公共点.(√)(4)与曲线只有一个公共点的直线一定是曲线的切线.(×)(5)函数f(x)=sin(-x)的导数是f′(x)=cos x.(×)1.(教材改编)若f(x)=x·e x,则f′(1)等于()A.0 B.e C.2e D.e2答案C解析f′(x)=e x+x·e x,∴f′(1)=2e。
【高考一轮】2018课标版文科数学一轮复习 夯基提能练习题460页(含答案详解)

2018课标版文科数学一轮复习夯基提能练习题目录2018课标版文科数学一轮复习1.1集合夯基提能作业本(含答案)2018课标版文科数学一轮复习1.2命题及其关系、充分条件与必要条件夯基提能作业本(含答案)2018课标版文科数学一轮复习1.3简单的逻辑联结词、全称量词与存在量词夯基提能作业本(含答案)2018课标版文科数学一轮复习2.1函数及其表示夯基提能作业本(含答案)2018课标版文科数学一轮复习2.2函数的单调性与最值夯基提能作业本(含答案)2018课标版文科数学一轮复习2.3函数的奇偶性与周期性夯基提能作业本(含答案)2018课标版文科数学一轮复习2.4二次函数与幂函数夯基提能作业本(含答案)2018课标版文科数学一轮复习2.5指数与指数函数夯基提能作业本(含答案)2018课标版文科数学一轮复习2.6对数与对数函数夯基提能作业本(含答案)2018课标版文科数学一轮复习2.7函数的图象夯基提能作业本(含答案)2018课标版文科数学一轮复习2.8函数与方程夯基提能作业本(含答案)2018课标版文科数学一轮复习2.9函数模型及其应用夯基提能作业本(含答案)2018课标版文科数学一轮复习3.1变化率与导数、导数的计算夯基提能作业本(含答案) 2018课标版文科数学一轮复习3.2导数与函数的单调性夯基提能作业本(含答案)2018课标版文科数学一轮复习3.3导数与函数的极值、最值夯基提能作业本(含答案) 2018课标版文科数学一轮复习3.4导数与函数的综合问题夯基提能作业本(含答案)2018课标版文科数学一轮复习4.1任意角和弧度制及任意角的三角函数夯基提能作业本(含答案)2018课标版文科数学一轮复习4.2同角三角函数基本(含答案)关系式与诱导公式夯基提能作业本2018课标版文科数学一轮复习4.3三角函数的图象与性质夯基提能作业本(含答案)2018课标版文科数学一轮复习4.4函数y=Asin(ωx+φ)的图象及应用夯基提能作业本(含答案)2018课标版文科数学一轮复习4.5两角和与差的正弦、余弦和正切公式及二倍角公式夯基提能作业本(含答案)2018课标版文科数学一轮复习4.6简单的三角恒等变换夯基提能作业本(含答案)2018课标版文科数学一轮复习4.7正弦定理和余弦定理夯基提能作业本(含答案)2018课标版文科数学一轮复习4.8解三角形夯基提能作业本(含答案)2018课标版文科数学一轮复习5.1平面向量的概念及其线性运算夯基提能作业本(含答案) 2018课标版文科数学一轮复习5.2平面向量基本(含答案)定理及坐标表示夯基提能作业本2018课标版文科数学一轮复习5.2平面向量基本(含答案)定理及坐标表示夯基提能作业本2018课标版文科数学一轮复习5.3平面向量的数量积与平面向量应用举例夯基提能作业本(含答案)2018课标版文科数学一轮复习6.1数列的概念及简单表示法夯基提能作业本(含答案) 2018课标版文科数学一轮复习6.2等差数列及其前n项和夯基提能作业本(含答案)2018课标版文科数学一轮复习6.3等比数列及其前n项和夯基提能作业本(含答案)2018课标版文科数学一轮复习6.4数列求和夯基提能作业本(含答案)2018课标版文科数学一轮复习7.1不等关系与不等式夯基提能作业本(含答案)2018课标版文科数学一轮复习7.2一元二次不等式及其解法夯基提能作业本(含答案) 2018课标版文科数学一轮复习7.3二元一次不等式(组)及简单的线性规划问题夯基提能作业本(含答案)2018课标版文科数学一轮复习7.4基本(含答案)不等式及其应用夯基提能作业本2018课标版文科数学一轮复习8.1空间几何体及其三视图、直观图夯基提能作业本(含答案)2018课标版文科数学一轮复习8.2空间几何体的表面积和体积夯基提能作业本(含答案) 2018课标版文科数学一轮复习8.3空间点、直线、平面之间的位置关系夯基提能作业本(含答案)2018课标版文科数学一轮复习8.4直线、平面平行的判定与性质夯基提能作业本(含答案) 2018课标版文科数学一轮复习8.5直线、平面垂直的判定与性质夯基提能作业本(含答案) 2018课标版文科数学一轮复习9.1直线的倾斜角与斜率、直线的方程夯基提能作业本(含答案)2018课标版文科数学一轮复习9.2直线的交点与距离公式夯基提能作业本(含答案)2018课标版文科数学一轮复习9.3圆的方程夯基提能作业本(含答案)2018课标版文科数学一轮复习9.4直线与圆、圆与圆的位置关系夯基提能作业本(含答案) 2018课标版文科数学一轮复习9.5椭圆夯基提能作业本(含答案)2018课标版文科数学一轮复习9.6双曲线夯基提能作业本(含答案)2018课标版文科数学一轮复习9.7抛物线夯基提能作业本(含答案)2018课标版文科数学一轮复习9.8直线与圆锥曲线夯基提能作业本(含答案)2018课标版文科数学一轮复习9.9圆锥曲线的综合问题夯基提能作业本(含答案)2018课标版文科数学一轮复习10.1随机事件的概率夯基提能作业本(含答案)2018课标版文科数学一轮复习10.2古典概型与几何概型夯基提能作业本(含答案)2018课标版文科数学一轮复习10.3随机抽样夯基提能作业本(含答案)2018课标版文科数学一轮复习10.4用样本(含答案)估计总体夯基提能作业本2018课标版文科数学一轮复习10.5变量的相关关系、统计案例夯基提能作业本(含答案) 2018课标版文科数学一轮复习10.6概率与统计的综合问题夯基提能作业本(含答案) 2018课标版文科数学一轮复习11.1数系的扩充与复数的引入夯基提能作业本(含答案) 2018课标版文科数学一轮复习11.2算法与程序框图夯基提能作业本(含答案)2018课标版文科数学一轮复习11.3合情推理与演绎推理夯基提能作业本(含答案)2018课标版文科数学一轮复习11.4直接证明与间接证明夯基提能作业本(含答案)2018课标版文科数学一轮复习12.1坐标系夯基提能作业本(含答案)2018课标版文科数学一轮复习12.2参数方程夯基提能作业本(含答案)2018课标版文科数学一轮复习13.1绝对值不等式夯基提能作业本(含答案)2018课标版文科数学一轮复习13.2不等式的证明夯基提能作业本(含答案)2018课标版文科数学一轮复习阶段检测卷01(含答案)2018课标版文科数学一轮复习阶段检测卷02(含答案)2018课标版文科数学一轮复习阶段检测卷03(含答案)2018课标版文科数学一轮复习阶段检测卷04(含答案)2018课标版文科数学一轮复习阶段检测卷05(含答案)2018课标版文科数学一轮复习阶段检测卷06(含答案)第一节集合A组基础题组1.已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=( )A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)2.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=( )A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}3.已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是( )A.-3∈AB.3∉BC.A∩B=BD.A∪B=B4.(2016陕西西安模拟)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]5.已知集合A=,则集合A中的元素个数为( )A.2B.3C.4D.56.(2016山东,1,5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=( )A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}7.(2017山东临沂期中)设集合M={-1,0,1,2},N={x|lg(x+1)>0},则M∩N=( )A.{0,1}B.{0,1,2}C.{1,2}D.{-1,0,1}8.(2016辽宁沈阳模拟)设集合A=,B={b,a+b,-1},若A∩B={2,-1},则A∪B=( )A.{2,3}B.{-2,2,5}C.{2,3,5}D.{-1,2,3,5}9.已知A={0,m,2},B={x|x3-4x=0},若A=B,则m= .10.已知集合A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁R B)= .11.已知集合A={x|1≤x<5},C={x|-a<x≤a+3},若C∩A=C,则a的取值范围为.B组提升题组12.(2017山西大同模拟)已知全集为R,集合M={-1,0,1,5},N={x|x2-x-2≥0},则M∩(∁R N)=( )A.{0,1}B.{-1,0,1}C.{0,1,5}D.{-1,1}13.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或414.设集合M={x|-1≤x<2},N={y|y<a},若M∩N≠⌀,则实数a的取值范围是( )A.[-1,2)B.(-∞,2]C.[-1,+∞)D.(-1,+∞)15.(2016广西南宁模拟)已知全集U={x∈Z|0<x<8},集合M={2,3,5},N={x|x2-8x+12=0},则集合{1,4,7}为( )A.M∩(∁U N)B.∁U(M∩N)C.∁U(M∪N)D.(∁U M)∩N16.(2016辽宁沈阳模拟)已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素之和为( )A.15B.16C.20D.2117.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0},若A⊆B,则实数a的取值范围是( )A.(-∞,-1)B.(-∞,-1]C.(-∞,-2)D.(-∞,-2]18.(2016辽宁沈阳二中月考)设[x]表示不大于x的最大整数,集合A={x|x2-2[x]=3},B=,则A∩B= .答案全解全析A组基础题组1.B M∩N={x|-1<x<3}∩{x|-2<x<1}={x|-1<x<1}.2.A 由题意可得B={1,3,5},∴A∩B={1,3},故选A.3.C 化简A={y|y≥-1},因此A∩B={x|x≥2}=B.4.A 由题意知M={0,1},N={x|0<x≤1},所以M∪N=[0,1].故选A.5.C ∵∈Z,∴2-x的取值有-3,-1,1,3,又∵x∈Z,∴x的值分别为5,3,1,-1,故集合A中的元素个数为4.6.A 由题意知A∪B={1,3,4,5},又U={1,2,3,4,5,6},∴∁U(A∪B)={2,6},故选A.7.C ∵M={-1,0,1,2},N={x|lg(x+1)>0}=(0,+∞),∴M∩N={1,2}.8.D 由A∩B={2,-1},可得或当时,此时B={2,3,-1},所以A∪B={-1,2,3,5};当时,此时不符合题意,舍去.9.答案-2解析由题意知B={0,-2,2},若A=B,则m=-2.10.答案(-∞,1]∪[2,+∞)解析由题意知B={x|x2-2x<0}={x|0<x<2},∴∁R B=(-∞,0]∪[2,+∞),又A=[-1,1],∴A∪(∁R B)=(-∞,1]∪[2,+∞).11.答案a≤-1解析因为C∩A=C,所以C⊆A.①当C=⌀时,满足C⊆A,此时-a≥a+3,解得a≤-;②当C≠⌀时,要使C⊆A,则有解得-<a≤-1.由①②,得a≤-1.B组提升题组12.A ∵全集为R,N={x|x2-x-2≥0}={x|x≤-1或x≥2},∴∁R N={x|-1<x<2},又集合M={-1,0,1,5},∴M∩(∁R N)={0,1}.故选A.13.A ∵集合A={x∈R|ax2+ax+1=0}中只有一个元素,即ax2+ax+1=0只有一个解,∴当a≠0时,Δ=a2-4a=0,解之得a=0(舍)或a=4.当a=0时,A=⌀,不合题意.∴a=4.14.D 借助数轴可知a>-1,故选D.15.C由已知得U={1,2,3,4,5,6,7},N={2,6},又M={2,3,5},所以∁U N={1,3,4,5,7},∁U M={1,4,6,7},M∪N={2,3,5,6},M∩N={2},所以M∩(∁U N)={3,5},∁U(M∩N)={1,3,4,5,6,7},(∁U M)∩N={6},∁U(M∪N)={1,4,7},故选C.16.D 由x2-2x-3≤0,得(x+1)(x-3)≤0,则-1≤x≤3,又x∈N,故集合A={0,1,2,3}.由题意知A*B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A*B={1,2,3,4,5,6},∴A*B中的所有元素之和为1+2+3+4+5+6=21.17.B A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x>a}.因为A⊆B,所以a≤-1.18.答案{-1,}解析∵x2-2[x]=3,∴[x]=,又[x]≤x<[x]+1,∴∴-1≤x<1-或1+<x≤3,∴[x]=-1或[x]=2或[x]=3.结合x2=2[x]+3,可得x=-1或x=或x=3.∴A={-1,,3}.由<2x<8得-3<x<3,∴B={x|-3<x<3}.∴A∩B={-1,}.第二节命题及其关系、充分条件与必要条件A组基础题组1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤02.(2016陕西五校三模)已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定3.设a,b是实数,则“a>b”是“a2>b2”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2015安徽,3,5分)设p:x<3,q:-1<x<3,则p是q成立的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.若p是¬q的充分不必要条件,则¬p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.a<0,b<0的一个必要条件为( )A.a+b<0B.a-b>0C.>1D.<-17.原命题p:“设a,b,c∈R,若a>b,则ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.0B.1C.2D.48.直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件是( )A.-3<m<1B.-4<m<2C.0<m<1D.m<19.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是.10.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是.11.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是.12.已知函数f(x)=+a(x≠0),则“f(1)=1”是“f(x)为奇函数”的条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)B组提升题组13.给定下列四个命题:①若一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和②B.②和③C.③和④D.②和④14.(2016山东烟台诊断)若条件p:|x|≤2,条件q:x≤a,且p是q的充分不必要条件,则a的取值范围是( )A.a≥2B.a≤2C.a≥-2D.a≤-215.(2016辽宁大连双基检测)已知函数f(x)的定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∂x0∈R,f(x0)=f(-x0)”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.(2016广东佛山一模)已知a,b都是实数,那么“>”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.(2016江西鹰潭余江一中月考)在下列给出的命题中,正确命题的个数为( )①函数f(x)=2x3-3x+1的图象关于点(0,1)中心对称;②若x+y≠0,则x≠1或y≠-1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sin A<cos B.A.1B.2C.3D.418.下列命题:①若ac2>bc2,则a>b;②若sinα=sinβ,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是.19.设命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2+2x-8>0,且q是p的必要不充分条件,则实数a的取值范围是.答案全解全析A组基础题组1.D 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.2.B 命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p 的否命题.3.D a>b不能推出a2>b2,例如a=-1,b=-2;a2>b2也不能推出a>b,例如a=-2,b=1.故“a>b”是“a2>b2”的既不充分也不必要条件.4.C 令A={x|x<3},B={x|-1<x<3}.∵B⫋A,∴p是q的必要不充分条件.故选C.5.B ∵p是¬q的充分不必要条件,∴¬q是p的必要不充分条件.“若¬p,则q”是“若¬q,则p”的等价命题,∴¬p是q的必要不充分条件,故选B.6.A 若a<0,b<0,则一定有a+b<0,故选A.7.C 当c=0时,ac2=bc2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是正确的;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.8.C 若直线x-y+m=0与圆x2+y2-2x-1=0,即(x-1)2+y2=2有两个不同交点,则<,即|m+1|<2,解得-3<m<1,这是直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的充要条件,因此直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件可以是0<m<1,故选C.9.答案若a+b+c≠3,则a2+b2+c2<3解析根据否命题的定义知否命题为若a+b+c≠3,则a2+b2+c2<3.10.答案②③解析对于①,原命题的否命题为“若a≤b,则a2≤b2”,是假命题.对于②,原命题的逆命题为“若x,y互为相反数,则x+y=0”,是真命题.对于③,原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,是真命题.11.答案m=-2解析∵f(x)=x2+mx+1的对称轴为直线x=-,∴f(x)的图象关于直线x=1对称⇔-=1⇔m=-2.12.答案充要解析若f(x)=+a是奇函数,则f(-x)=-f(x),即f(-x)+f(x)=0,∴+a++a=2a++=0,即2a+=0,∴2a-1=0,即a=,f(1)=+=1.若f(1)=1,即f(1)=+a=1,解得a=,代入得,f(-x)=-f(x),f(x)是奇函数,∴“f(1)=1”是“f(x)为奇函数”的充要条件.B组提升题组13.D 只有一个平面内的两条相交直线都与另一个平面平行时,这两个平面才相互平行,所以①为假命题;②符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.14.A p:|x|≤2⇔-2≤x≤2.因为p是q的充分不必要条件,所以有[-2,2]⫋(-∞,a],即a≥2.15.A 若f(x)为偶函数,则有f(x)=f(-x),所以p⇒q;若f(x)=x,当x=0时,f(0)=f(-0),而f(x)=x为奇函数,所以q⇒/p,故选A.16.B 由ln a>ln b⇒a>b>0⇒>,故必要性成立;当a=1,b=0时,满足>,但ln b无意义,所以ln a>ln b不成立,故充分性不成立,故选B.17.C 对于①,由f(x)+f(-x)=2x3-3x+1-2x3+3x+1=2,得函数f(x)=2x3-3x+1的图象关于点(0,1)中心对称,∴①正确;对于②,“若x+y≠0,则x≠1或y≠-1”的逆否命题为“若x=1且y=-1,则x+y=0”,该逆否命题正确,∴②正确;对于③,实数x,y满足x2+y2=1,如图,表示过圆O上任一点(x,y)和点(-2,0)的连线的斜率,则的最大值为,∴③正确;对于④,△ABC为锐角三角形,则A+B>,则A>-B,又A<,-B>0,∴sin A>sin=cos B,∴④错误.∴正确命题的个数是3.18.答案①③④解析对于①,ac2>bc2,c2>0,所以a>b正确;对于②,sin30°=sin150°⇒/30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④显然正确.19.答案(-∞,-4]解析不等式x2-4ax+3a2<0的解集为A=(3a,a)(a<0),不等式x2+2x-8>0的解集为B={x|x<-4或x>2},因为q是p的必要不充分条件,所以A⫋B,故实数a的取值范围是(-∞,-4].第三节简单的逻辑联结词、全称量词与存在量词A组基础题组1.(2015湖北,3,5分)命题“∂x0∈(0,+∞),ln x0=x0-1”的否定是( )A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∂x0∈(0,+∞),ln x0≠x0-1D.∂x0∉(0,+∞),ln x0=x0-12.(2015浙江,4,5分)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( )A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∂n0∈N*,f(n0)∉N*且f(n0)>n0D.∂n0∈N*,f(n0)∉N*或f(n0)>n03.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧(¬q)B.(¬p)∧qC.(¬p)∧(¬q)D.p∧q4.下列命题中的假命题为( )A.∀x∈R,e x>0B.∀x∈N,x2>0C.∂x0∈R,ln x0<1D.∂x0∈N*,sin=15.设非空集合A,B满足A⊆B,则以下表述一定正确的是( )A.∂x0∈A,x0∉BB.∀x∈A,x∈BC.∀x∈B,x∉AD.∀x∈B,x∈A6.(2016湖南四县一模)下列命题中,为真命题的是( )A.∂x0∈R,≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=-1D.“a>1,b>1”是“ab>1”的充分条件7.(2016云南昆明一中考前强化)已知命题p:∀x∈R,x+≥2;命题q:∂x∈,使sin x+cosx=,则下列命题中,为真命题的是( )A.(¬p)∧qB.p∧(¬q)C.(¬p)∧(¬q)D.p∧q8.已知命题p:∂x0∈R,使sin x0=;命题q:∀x∈R,都有x2+x+1>0,给出下列结论:①命题“p∧q”是真命题;②命题“p∧(¬q)”是假命题;③命题“(¬p)∨q”是真命题;④命题“(¬p)∨(¬q)”是假命题.其中正确的结论是( )A.②③B.②④C.③④D.①②③9.命题p的否定是“对所有正数x,>x+1”,则命题p是.10.已知命题p:a2≥0(a∈R),命题q:函数f(x)=x2-x在区间[0,+∞)上单调递增,则下列命题:①p∨q;②p∧q;③(¬p)∧(¬q);④(¬p)∨q.其中为假命题的序号为.11.若命题p:关于x的不等式ax+b>0的解集是,命题q:关于x的不等式(x-a)(x-b)<0的解集是{x|a<x<b},则在命题“p∧q”“p∨q”“¬p”“¬q”中,是真命题的是.12.若命题“∀x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是.B组提升题组13.下列说法中正确的是( )A.命题“∀x∈R,e x>0”的否定是“∂x∈R,e x>0”B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题C.“x2+2x≥ax在x∈[1,2]上恒成立”⇔“对于x∈[1,2],有(x2+2x)min≥(ax)max”D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题14.下列说法错误的是( )A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”B.若命题p:∂x0∈R,+x0+1<0,则¬p:∀x∈R,x2+x+1≥0C.若x,y∈R,则“x=y”是“xy≥”的充要条件D.已知命题p和q,若“p或q”为假命题,则命题p与q中必一真一假15.若函数f(x),g(x)的定义域和值域都是R,则f(x)>g(x)(x∈R)成立的充要条件是( )A.∂x0∈R,f(x0)>g(x0)B.有无穷多个x∈R,使得f(x)>g(x)C.∀x∈R,f(x)>g(x)+1D.R中不存在x使得f(x)≤g(x)16.已知命题p:∂x0∈R,tan x0=1,命题q:x2-3x+2<0的解集是{x|1<x<2},现有以下结论:①命题“p且q”是真命题;②命题“p且¬q”是假命题;③命题“¬p或q”是真命题;④命题“¬p或¬q”是假命题.其中正确的是( )A.②③B.①②④C.①③④D.①②③④17.(2016湖南邵阳石齐中学月考)下列命题正确的个数是( )①“在三角形ABC中,若sin A>sin B,则A>B”的逆命题是真命题;②若p:x≠2或y≠3,q:x+y≠5,则p是q的必要不充分条件;③“∀x∈R,x3-x2+1≤0”的否定是“∀x∈R,x3-x2+1>0”;④“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”.A.1B.2C.3D.418.已知命题p:“∀x∈[1,2],x2≥a”,命题q:“∂x0∈R,+2ax0+2-a=0成立”,若命题“p∧q”是真命题,则实数a的取值范围为( )A.(-∞,-2]B.(-2,1)C.(-∞,-2]∪{1}D.[1,+∞)19.下列结论:①若命题p:∂x0∈R,tan x0=2;命题q:∀x∈R,x2-x+>0.则命题“p∧(¬q)”是假命题;②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3;③“设a,b∈R,若ab≥2,则a2+b2>4”的否命题为“设a,b∈R,若ab<2,则a2+b2≤4”.其中正确结论的序号为.(把你认为正确结论的序号都填上)20.给定两个命题,命题p:对任意实数x,ax2>-ax-1恒成立,命题q:关于x的方程x2-x+a=0有实数根.若“p∨q”为真命题,“p∧q”为假命题,则实数a的取值范围是.答案全解全析A组基础题组1.A 特称命题的否定为全称命题,所以∂x0∈(0,+∞),ln x0=x0-1的否定是∀x∈(0,+∞),ln x≠x-1,故选A.2.D “f(n)∈N*且f(n)≤n”的否定为“f(n)∉N*或f(n)>n”,全称命题的否定为特称命题,故选D.3.A 由题意知,命题p为真命题,命题q为假命题,故¬q为真命题,所以p∧(¬q)为真命题.4.B 对于选项A,由函数y=e x的图象可知,∀x∈R,e x>0,故选项A为真命题;对于选项B,当x=0时,x2=0,故选项B为假命题;对于选项C,当x0=时,ln=-1<1,故选项C为真命题;对于选项D,当x0=1时,sin=1,故选项D为真命题.综上知选B.5.B 根据集合之间的关系以及全称、特称命题的含义可得B正确.6.D 因为y=e x>0,x∈R恒成立,所以A不正确;因为当x=-5时,2-5<(-5)2,所以B不正确;当a=b=0时,a+b=0,但是没有意义,所以C不正确;“a>1,b>1”是“ab>1”的充分条件,显然正确.故选D.7.A 在命题p中,当x<0时,x+<0,所以命题p为假命题,所以¬p为真命题;在命题q中,sinx+cos x =sin,当x=时,sin x+cos x=,所以q为真命题,故选A.8.A ∵>1,∴命题p是假命题.∵x2+x+1=+≥>0,∴命题q是真命题.由真值表可以判断“p∧q”为假,“p∧(¬q)”为假,“(¬p)∨q”为真,“(¬p)∨(¬q)”为真,所以只有②③正确,故选A.9.答案∂x 0∈(0,+∞),≤x0+1解析因为p是¬p的否定,所以只需将全称量词变为存在量词,再对结论否定即可.10.答案②③④解析显然命题p为真命题,则¬p为假命题.∵f(x)=x2-x=-,∴函数f(x)在区间上单调递增.∴命题q为假命题,则¬q为真命题.∴p∨q为真命题,p∧q为假命题,(¬p)∧(¬q)为假命题,(¬p)∨q为假命题.11.答案¬p、¬q解析依题意可知命题p和q都是假命题,所以“p∧q”为假、“p∨q”为假、“¬p”为真、“¬q”为真.12.答案[-8,0]解析当a=0时,不等式显然成立;当a≠0时,由题意知解得-8≤a<0.综上,a的取值范围是-8≤a≤0.B组提升题组13.B 全称命题“∀x∈M,p(x)”的否定是“∂x∈M,¬p(x)”,故命题“∀x∈R,e x>0”的否定是“∂x∈R,e x≤0”,A错;命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”的逆否命题为“已知x,y∈R,若x=2且y=1,则x+y=3”,是真命题,故原命题是真命题,B正确;“x2+2x≥ax在x∈[1,2]上恒成立”⇔“对于x∈[1,2],有(x+2)min≥a”,由此可知C错;命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为“若函数f(x)=ax2+2x-1只有一个零点,则a=-1”,而函数f(x)=ax2+2x-1只有一个零点⇔a=0或a=-1,故D错.故选B.14.D 易知A、B正确;由xy≥⇔4xy≥(x+y)2⇔4xy≥x2+y2+2xy⇔(x-y)2≤0⇔x=y知C正确;对于D,命题“p或q”为假命题,则命题p与q均为假命题,所以D不正确.15.D A是f(x)>g(x)(x∈R)成立的必要不充分条件,所以A不符合;对于B,由于在区间(0,1)内也有无穷多个数,因此无穷性是说明不了任意性的,所以B也不符合;对于C,由∀x∈R, f(x)>g(x)+1可以推导出∀x∈R,f(x)>g(x),即充分性成立,但f(x)>g(x)成立时不一定有f(x)>g(x)+1,比如f(x)=x2+0.5,g(x)=x2,因此必要性不成立,所以C不符合;易知D符合,所以选D.16.D ∵命题p:∂x0∈R,tan x0=1为真命题,命题q:x2-3x+2<0的解集是{x|1<x<2}为真命题,∴“p且q”是真命题,“p且¬q”是假命题,“¬p或q”是真命题,“¬p或¬q”是假命题,故①②③④都正确.17.C “在△ABC中,若sin A>sin B,则A>B”的逆命题为“在△ABC中,若A>B,则sin A>sin B”,在△ABC中,若A>B,则a>b,根据正弦定理可知sin A>sin B,∴逆命题是真命题,∴①正确;¬p:x=2且y=3,¬q:x+y=5,显然¬p⇒¬q,则由原命题与逆否命题的等价性知q⇒p,则p是q的必要条件;由x≠2或y≠3,推不出x+y≠5,比如x=1,y=4时,x+y=5,不满足x+y≠5,∴p不是q的充分条件,∴p是q的必要不充分条件,∴②正确;“∀x∈R,x3-x2+1≤0”的否定是“∂x∈R,x3-x2+1>0”,∴③不对;“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”,∴④正确.18.C 若p是真命题,即a≤(x2)min,x∈[1,2],所以a≤1;若q是真命题,即+2ax0+2-a=0有解,则Δ=4a2-4(2-a)≥0,即a≥1或a≤-2.命题“p∧q”是真命题,则p是真命题,q也是真命题,故有a≤-2或a=1.19.答案①③解析在①中,命题p是真命题,命题q也是真命题,故“p∧(¬q)”是假命题是正确的.在②中,由l1⊥l2,得a+3b=0,所以②不正确.在③中“设a,b∈R,若ab≥2,则a2+b2>4”的否命题为“设a,b∈R,若ab<2,则a2+b2≤4”,正确.20.答案(-∞,0)∪解析若p真,则a=0或故0≤a<4.若q真,则(-1)2-4a≥0,即a≤.∵“p∨q”为真命题,“p∧q”为假命题,∴p,q中有且仅有一个为真命题.若p真q假,则<a<4;若p假q真,则a<0.综上,实数a的取值范围为(-∞,0)∪.第一节函数及其表示A组基础题组1.函数g(x)=+log2(6-x)的定义域是( )A.{x|x>6}B.{x|-3<x<6}C.{x|x>-3}D.{x|-3≤x<6}2.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是( )A.g(x)=2x+1B.g(x)=2x-1C.g(x)=2x-3D.g(x)=2x+73.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为( )A.g(x)=2x2-3xB.g(x)=3x2-2xC.g(x)=3x2+2xD.g(x)=-3x2-2x4.已知f(x)=则f+f的值等于( )A.1B.2C.3D.-25.具有性质:f=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y=x-;②y=x+;③y=f(x)=中满足“倒负”变换的函数是( )A.①②B.②③C.①③D.只有①6.(2015湖北,7,5分)设x∈R,定义符号函数sgn x=则( )A.|x|=x|sgn x|B.|x|=xsgn|x|C.|x|=|x|sgn xD.|x|=xsgn x7.设函数f(x)=若f=4,则b= .8.如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)·f(b),且f(1)=1,则++++…+= .9.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(a,c为常数).已知此工人组装第4件产品用时30分钟,组装第a件产品用时15分钟,那么c和a 的值分别是, .10.根据如图所示的函数y=f(x)(x∈[-3,2))的图象,写出函数的解析式.11.已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1.(1)求函数f(x)的解析式;(2)求函数y=f(x2-2)的值域.B组提升题组12.(2016陕西西安模拟)已知函数f(x)=若f(4)=2f(a),则实数a的值为( )A.-1或2B.2C.-1D.213.函数y=的定义域为R,则实数k的取值范围为( )A.k<0或k>4B.0≤k<4C.0<k<4D.k≥4或k≤014.设映射f:x→-x2+2x-1是集合A={x|x>2}到集合B=R的映射.若对于实数p∈B,在A中不存在对应的元素,则实数p的取值范围是( )A.(1,+∞)B.[-1,+∞)C.(-∞,-1)D.(-∞,-1]15.已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为( )A.f(x)=x2-12x+18B.f(x)=x2-4x+6C.f(x)=6x+9D.f(x)=2x+316.(2016湖南邵阳石齐中学月考)已知函数f(x)=-1的定义域是[a,b](a,b∈Z),值域是[0,1],那么满足条件的整数数对(a,b)共有( )A.2个B.3个C.5个D.无数个17.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数6.时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为( )A.y=B.y=C.y=D.y=18.已知函数f(x)满足对任意的x∈R都有f+f=2成立,则f+f+…+f= .19.已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为.20.已知函数f(x)=2x-1,g(x)=求f(g(x))和g(f(x))的解析式.答案全解全析A组基础题组1.D 由解得-3≤x<6,故函数的定义域为[-3,6).2.B ∵g(x+2)=2x+3=2(x+2)-1,∴g(x)=2x-1.3.B 设g(x)=ax2+bx+c(a≠0),∵g(1)=1,g(-1)=5,且图象过原点,∴解得∴g(x)=3x2-2x.4.C f=-cos=cos=,f=f+1=f+2=-cos+2=+2=,故f+f=3.5.C 易知①满足条件;②不满足条件;对于③,易知f=满足f=-f(x),故③满足“倒负”变换,故选C.6.D 由已知可知xsgn x=而|x|=所以|x|=xsgn x,故选D.7.答案解析f=3×-b=-b,若-b<1,即b>,则3×-b=-4b=4,解得b=,与b>矛盾,舍去;若-b≥1,即b≤,则=4,即-b=2,解得b=.8.答案2016解析已知f(a+b)=f(a)f(b),令b=1,∵f(1)=1,∴f(a+1)=f(a),即=1,由于a是任意实数,所以当a取1,2,3,…,2016时,==…==1.故++++…+=2016.9.答案60;16解析因为组装第a件产品用时15分钟,所以=15,①所以必有4<a,且==30.②联立①②解得c=60,a=16.10.解析由题图易知:当-3≤x<-1时,f(x)=-x-,当-1≤x<1时,f(x)=x-,当1≤x<2时,f(x)=1,综上,f(x)=11.解析(1)设f(x)=ax2+bx+c(a≠0),由题意可知整理得∴解得∴f(x)=x2+x.(2)由(1)知y=f(x2-2)=(x2-2)2+(x2-2)=(x4-3x2+2)=-,当x2=时,y取最小值-,故函数y=f(x2-2)的值域为.B组提升题组12.A f(4)=log24=2,因而2f(a)=2,即f(a)=1,当a>0时,f(a)=log2a=1,因而a=2,当a≤0时, f(a)=a2=1,因而a=-1,故选A.13.B 由题意,知kx2+kx+1≠0对任意实数x恒成立,当k=0时,1≠0恒成立,∴k=0符合题意.当k≠0时,Δ=k2-4k<0,解得0<k<4.综上,0≤k<4.14.B 令y=-x2+2x-1=-(x-1)2,当x>2时,y<-1,而对于实数p∈R,在A={x|x>2}中不存在对应的元素,所以实数p的取值范围是[-1,+∞),故选B.15.B 由f(x)+2f(3-x)=x2可得f(3-x)+2f(x)=(3-x)2,由以上两式解得f(x)=x2-4x+6,故选B.16.C ∵函数f(x)=-1的值域是[0,1],∴1≤≤2,∴0≤|x|≤2,∴-2≤x≤2,∴[a,b]⊆[-2,2].又由于仅当x=0时,f(x)=1,当x=±2时,f(x)=0,故在定义域中一定有0,且2,-2中必有其一,故满足条件的整数数对(a,b)有(-2,0),(-2,1),(-2,2),(-1,2),(0,2),共5个.17.B 根据规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表,即当余数分别为7、8、9时可增选一名代表.因此用取整函数可表示为y=.故选B.18.答案7解析由f+f=2,得f+f=2,f+f=2,f+f=2,又f==×2=1,∴f+f+…+f=2×3+1=7.19.答案-解析①当a>0时,1-a<1,1+a>1,此时f(1-a)=2(1-a)+a=2-a,f(1+a)=-(1+a)-2a=-1-3a.由f(1-a)=f(1+a)得2-a=-1-3a,解得a=-.不符合,舍去.②当a<0时,1-a>1,1+a<1,此时f(1-a)=-(1-a)-2a=-1-a,f(1+a)=2(1+a)+a=2+3a,由f(1-a)=f(1+a)得-1-a=2+3a,解得a=-.综上可知,a的值为-.20.解析当x≥0时,g(x)=x2,则f(g(x))=2x2-1,当x<0时,g(x)=-1,则f(g(x))=-3,∴f(g(x))=当2x-1≥0,即x≥时,g(f(x))=(2x-1)2,当2x-1<0,即x<时,g(f(x))=-1,∴g(f(x))=第二节函数的单调性与最值A组基础题组1.(2016北京,4,5分)下列函数中,在区间(-1,1)上为减函数的是( )A.y=B.y=cos xC.y=ln(x+1)D.y=2-x2.下列函数中,满足“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是( )A.f(x)=-xB.f(x)=x3C.f(x)=ln xD.f(x)=2x3.函数f(x)=x|x-2|的单调减区间是( )A.[1,2]B.[-1,0]C.[0,2]D.[2,+∞)4.(2015吉林长春质量检测(二))已知函数f(x)=|x+a|在(-∞,-1)上是单调函数,则a的取值范围是( )A.(-∞,1]B.(-∞,-1]C.[-1,+∞)D.[1,+∞)5.定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则( )A.f(-1)<f(3)B.f(0)>f(3)C.f(-1)=f(3)D.f(0)=f(3)6.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于( )A.-1B.1C.6D.127.已知f(x)=的值域为R,那么a的取值范围是.8.已知函数f(x)=则f(x)的最小值是.9.已知f(x)=(x≠a),若a>0且f(x)在(1,+∞)内单调递减,则a的取值范围为.10.已知函数f(x)=-(a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)在上的值域是,求a的值.。
【数学课件】2018版高考数学(文)一轮复习:第3章-导数及其应用(人教A版4份)

考点突破
课堂总结
4.(2017· 豫北名校期末联考)曲线y=-5ex+3在点(0,-2) 处的切线方程为________. 解析 ∵y′=-5ex,∴所求曲线的切线斜率k=y′|x=0=
-5e0=-5,∴切线方程为y-(-2)=-5(x-0),即5x
+y+2=0. 答案 5x+y+2=0
基础诊断
考点突破
课堂总结
5.(2015· 全国 Ⅰ 卷 ) 已知函数 f(x) = ax3 +x +1 的图象在点 (1 , f(1))处的切线过点(2,7),则a=________. 解析 由题意可得f′(x)=3ax2+1,则f′(1)=3a+1,
又f(1)=a+2,
∴切线方程为y-(a+2)=(3a+1)(x-1). ∵切线过点(2,7), ∴7-(a+2)=3a+1,解得a=1. 答案 1
f′(x)g(x)-f(x)g′(x) f (x ) 2 [ g ( x ) ] (3) ′=______________________________ (g(x)≠0).
g(x)
基础诊断 考点突破 课堂总结
诊断自测 1.判断正误(在括号内打“√”或“×”) (1)f′(x0)与(f(x0))′表示的意义相同.( )
(2)求f′(x0)时,应先求f′(x),再代入求值,(2)错.
(4)f(x)=a3+2ax+x2=x2+2ax+a3,∴f′(x)=2x+2a,(4)错. 答案 (1)× (2)× (3)√ (4)×
基础诊断 考点突破 课堂总结
3 2.(选修 1-1P75 例 1 改编)有一机器人的运动方程为 s(t)=t + t (t 是时间,s 是位移),则该机器人在时刻 t=2 时的瞬时速度为 ( ) 19 17 15 13 A. 4 B. 4 C. 4 D. 4 3 解析 由题意知,机器人的速度方程为 v(t)=s′(t)=2t- 2, t 3 13 故当 t=2 时,机器人的瞬时速度为 v(2)=2×2- 2= . 2 4 答案 D
2018高三大一轮复习数学文教师用书:第三章 导数及其

§3.1 导数的运算及几何意义1.导数与导函数的概念(1)当x 1趋于x 0,即Δx 趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y =f (x )在x 0点的瞬时变化率.在数学中,称瞬时变化率为函数y =f (x )在x 0点的导数,通常用符号 f ′(x 0)表示,记作 f ′(x 0)=limx 1→x 0 f x 1 -f x 0x 1-x 0=limΔx →0 f x 0+Δx -f x 0Δx.(2)如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )=limΔx →0 f x +Δx -f xΔx,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,通常也简称为导数.2.导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).3.基本初等函数的导数公式4.若f ′(x ),g ′(x )存在,则有 (1)′=f ′(x )±g ′(x );(2)′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′ x g x -f x g ′ x [g x ]2(g (x )≠0).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“³”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 答案:(1)³ (2)³ (3)√ (4)³ (5)³1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为( )A .0B .3C .4D .-73解析:选B.∵f (x )=13x 3+2x +1,∴f ′(x )=x 2+2.∴f ′(-1)=3.2.如图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )解析:选D.由y =f ′(x )的图像知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图像知y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.解析:因为f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,所以f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x , 所以f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2, 即f ′⎝ ⎛⎭⎪⎫π2=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2. 答案:- 24.(2016²高考全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:分别求出两个对应函数的导数,设出两个切点坐标,利用导数得到两个切点坐标之间的关系,进而求出切线斜率,求出b 的值.求得(ln x +2)′=1x ,′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2),则k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1, 所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2. 答案:1-ln 25.(2016²高考全国丙卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:先利用函数奇偶性求出x >0时f (x )的解析式,再求切线方程.因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以f ′(x )=1x-3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.答案:y =-2x -1类型一 导数的运算求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x;(3)y =cos x ex ;(4)y =x sin ⎝⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2. 解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x2.(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′= cos x ′e x-cos x e x′ e x 2=-sin x +cos xex. (4)∵y =x sin ⎝⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ²4cos 4x=-12sin 4x -2x cos 4x .求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.1.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( ) A .e 2B .1C .ln 2D .e解析:选B.f ′(x )=2 016+ln x +x ³1x=2 017+ln x ,故由f ′(x 0)=2 017得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1.(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0解析:选B.f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数,且f ′(1)=2,∴f ′(-1)=-2.类型二 导数的几何意义题点1 已知切点的切线方程问题(1)(2017²云南昆明一检)函数f (x )=ln x -2x x的图像在点(1,-2)处的切线方程为( )A .2x -y -4=0B .2x +y =0C .x -y -3=0D .x +y +1=0解析 f ′(x )=1-ln x x2,则f ′(1)=1, 故该切线方程为y -(-2)=x -1, 即x -y -3=0. 答案 C (2)曲线y =e -2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________.解析 ∵y ′=-2e-2x,曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x +2,该直线与直线y =0和y =x 围成的三角形如图所示,其中直线y =-2x +2与y =x 的交点为A ⎝ ⎛⎭⎪⎫23,23, ∴三角形的面积S =12³1³23=13.答案 13题点2 未知切点的切线方程问题(1)(2017²山东威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1= 1+ln x 0 x 0,解得x 0=1,y 0=0. ∴切点为(1,0), ∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1, 即x -y -1=0.故选B. 答案 B(2)(2016²高考山东卷)若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析 设函数y =f (x )图像上的两点分别为(x 1,y 1),(x 2,y 2),且x 1≠x 2,则由题意知只需函数y =f (x )满足f ′(x 1)²f ′(x 2)=-1即可.y =f (x )=sin x 的导函数为f ′(x )=cos x ,则f ′(0)²f ′(π)=-1,故函数y =sin x 具有T 性质;y =f (x )=ln x 的导函数为f ′(x )=1x ,则f ′(x 1)²f ′(x 2)=1x 1x 2>0,故函数y =ln x 不具有T 性质;y=f (x )=e x 的导函数为f ′(x )=e x ,则f ′(x 1)²f ′(x 2)=e x 1+x 2>0,故函数y =e x不具有T 性质;y =f (x )=x 3的导函数为f ′(x )=3x 2,则f ′(x 1)²f ′(x 2)=9x 21x 22≥0,故函数y =x 3不具有T 性质.故选A.答案 A题点3 和切线有关的参数问题已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )A .-1B .-3C .-4D .-2解析 ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图像的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D. 答案 D导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f x 1 ,y 0-y 1=f ′ x 1 x 0-x 1 求解即可.(4)函数图像在每一点处的切线斜率的变化情况反映函数图像在相应点处的变化情况,由切线的倾斜程度可以判断出函数图像升降的快慢.2.(1)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 解析:设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ²1x=ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e.答案:-e(2)已知函数f (x )的图像在点M (1,f (1))处的切线方程2x -3y +1=0,则f (1)+f ′(1)=________.解析:依题意得2³1-3f (1)+1=0,即f (1)=1,由切线的斜率k =23,则f ′(1)=23,则f (1)+f ′(1)=53. 答案:53求曲线的切线方程条件审视不准致误(四)典例 (12分)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.由于题目中没有指明点O (0,0)的位置情况,容易忽略点O 在曲线y =x 3-3x 2+2x 上这个隐含条件,进而不考虑O 点为切点的情况.易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②得,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.对于求曲线的切线方程没有明确切点的情况,要先判断切线所过点是否在曲线上;若所过点在曲线上,要求该点是否为切点进行讨论.思想方法 感悟提高1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程.1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.课时规范训练(时间:40分钟)1.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b , 于是有f ′(0)=g ′(0),即-a sin 0=2³0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.2.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:选B.f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B.设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ).又y ′=1x +a ,所以y ′|x =x 0=1x 0+a=1,即x 0+a =1. 又y 0=ln(x 0+a ),所以y 0=0,则x 0=-1,所以a =2.4.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=3x +4sin x -cos x 的拐点是M (x 0,f (x 0)),则点M ( )A .在直线y =-3x 上B .在直线y =3x 上C .在直线y =-4x 上D .在直线y =4x 上解析:选B.f ′(x )=3+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由题意知4sinx 0-cos x 0=0,所以f (x 0)=3x 0,故M (x 0,f (x 0))在直线y =3x 上.故选B.5. 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4解析:选B.由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1,∴g ′(3)=1+3³⎝ ⎛⎭⎪⎫-13=0.6.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( )A .x +4y -2=0B .x -4y +2=0C .4x +2y -1=0D .4x -2y -1=0解析:选A.y ′=-e xe x +1 2=-1e x+1e x +2, 因为e x >0,所以e x+1e x ≥2e x ³1e x =2(当且仅当e x =1e x ,即x =0时取等号),则e x+1ex+2≥4,故y ′=-1e x+1e x +2≥-14当(x =0时取等号).当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A.7.已知f (x )=x ln x ,若过曲线y =f (x )上的点P 的切线斜率为2,则点P 的坐标为________.解析:设P (m ,n ), 易知f ′(x )=1+ln x , 则切线斜率为1+ln m =2, 解得m =e ,∴n =m ln m =eln e =e. 答案:(e ,e)8.已知函数f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的直线方程为y =ax +16,则实数a 的值是________.解析:先设切点为M (x 0,y 0),则切点在曲线上有y 0=x 30-3x 0,①求导数得到切线的斜率k =f ′(x 0)=3x 20-3, 又切线l 过A 、M 两点,所以k =y 0-16x 0, 则3x 20-3=y 0-16x 0,② 联立①②可解得x 0=-2,y 0=-2, 从而实数a 的值为a =k =-2-16-2=9.答案:99.求下列函数的导数. (1)y =x ²tan x ;(2)y =(x +1)(x +2)(x +3); (3)y =ln xx 2+1. 解:(1)y ′=(x ²tan x )′=x ′tan x +x (tan x )′=tan x +x ²⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ²cos 2x +sin 2x cos 2x=tan x +xcos 2x.(2)y ′=(x +1)′+(x +1)′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.(3)y ′= ln x ′ x 2+1 -ln x x 2+1 ′x 2+1 2=1x x 2+1 -2x ln x x 2+1 2=x 2+1-2x 2ln x x x 2+1 2. 10.设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝⎛⎭⎪⎫x 0-3x 0=⎝⎛⎭⎪⎫1+3x20(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点的坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.(时间:25分钟)11.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( )A.278B .-2C .2D .-278解析:选A.设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =y ′|x =t =3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278.12.设曲线y =xn +1(n ↔N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1²x 2²…²x n 的值为( )A.1nB .1n +1C.nn +1D .1解析:选B.对y =xn +1(n ↔N *)求导得y ′=(n +1)x n,令x =1得在点(1,1)处的切线的斜率k =n +1,在点(1,1)处的切线方程为y -1=(n +1)(x -1),由切线与x 轴的交点横坐标为x n ,不妨设y =0,所以x n =nn +1,则x 1²x 2²…²x n =12³23³34³…³n -1n ³n n +1=1n +1,故选B.13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.答案:1.函数的单调性如果在某个区间内,函数y =f (x )的导数f ′(x )>0,则在这个区间上,函数y =f (x )是增加的;如果在某个区间内,函数y =f (x )的导数f ′(x )<0,则在这个区间上,函数y =f (x )是减少的.2.函数的极值如果函数y =f (x )在区间(a ,x 0)上是增加的,在区间(x 0,b )上是减少的,则x 0是极大值点,f (x 0)是极大值.如果函数y =f (x )在区间(a ,x 0)上是减少的,在区间(x 0,b )上是增加的,则x 0是极小值点,f (x 0)是极小值.3.函数的最值(1)在闭区间上连续的函数f (x )在上必有最大值与最小值.(2)若函数f (x )在上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在上连续,在(a ,b )内可导,求f (x )在上的最大值和最小值的步骤如下:①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“³”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数 f (x )在某个区间内恒有 f ′(x )=0,则 f (x )在此区间内没有单调性.( )(3)函数的极大值不一定比极小值大.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( ) (5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 答案:(1)³ (2)√ (3)√ (4)³ (5)√1.函数f (x )=ln x -ax (a >0)的单调递增区间为( )A.⎝ ⎛⎭⎪⎫0,1a B .⎝ ⎛⎭⎪⎫1a,+∞ C.⎝⎛⎭⎪⎫-∞,1aD .(-∞,a )解析:选A.由f ′(x )=1x -a >0,得0<x <1a,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1a .2.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45xC .y =3125x 3-x D .y =-3125x 3+15x解析:选A.函数在上为减函数,所以在上y ′≤0,经检验只有A 符合.故选A. 3.已知e 为自然对数的底数,设函数f (x )=(e x-1)(x -1)k(k =1.2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值解析:选C.当k =1时,f ′(x )=e x²x -1,f ′(1)≠0, ∴x =1不是f (x )的极值点.当k =2时,f ′(x )=(x -1)(x e x+e x -2),显然f ′(1)=0,且在x =1附近的左侧,f ′(x )<0, 当x >1时,f ′(x )>0,∴f (x )在x =1处取到极小值,故选C.4.(教材改编)如图是f (x )的导函数f ′(x )的图像,则f (x )的极小值点的个数为________.解析:由题意知在x =-1处f ′(-1)=0,且其左右两侧导数符号为左负右正. 答案:15.设1<x <2,则ln x x,⎝ ⎛⎭⎪⎫ln x x 2,ln x2x2的大小关系是________.(用“<”连接)解析:令f (x )=x -ln x (1<x <2), 则f ′(x )=1-1x =x -1x>0,∴函数y =f (x )(1<x <2)为增函数,∴f (x )>f (1)=1>0,∴x >ln x >0⇒0<ln x x<1,∴⎝ ⎛⎭⎪⎫ln x x 2<ln x x.又ln x2x2-ln x x =2ln x -x ln x x 2= 2-x ln x x2>0, ∴⎝ ⎛⎭⎪⎫ln x x 2<ln x x<ln x 2x 2.答案:⎝ ⎛⎭⎪⎫ln x x 2<ln x x<ln x 2x 2 课时1 导数与函数的单调性类型一 不含参数的函数的单调性求函数f (x )=ln xx的单调区间.解 函数f (x )的定义域为(0,+∞). 因为f (x )=ln x x,所以f ′(x )=1-ln x x2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减. 故函数f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞). 确定函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.1.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C ..类型二 含参数的函数的单调性(2017²山东青岛模拟)已知函数f (x )=ln x +ax +a +1x-1. (1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当-12≤a ≤0时,讨论f (x )的单调性.解 (1)当a =1时,f (x )=ln x +x +2x-1,此时f ′(x )=1x +1-2x2,f ′(2)=12+1-24=1.又因为f (2)=ln 2+2+22-1=ln 2+2,所以切线方程为y -(ln 2+2)=x -2, 整理得x -y +ln 2=0. (2)f ′(x )=1x +a -1+ax2=ax 2+x -a -1x 2= ax +a +1 x -1 x 2.当a =0时,f ′(x )=x -1x 2. 此时,在(0,1)上,f ′(x )<0,f (x )单调递减; 在(1,+∞)上,f ′(x )>0,f (x )单调递增. 当-12≤a <0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x +a +1a x -1 x 2.当-1+a a =1,即a =-12时,f ′(x )=- x -1 22x 2≤0在(0,+∞)上恒成立, 所以f (x )在(0,+∞)上单调递减.当-12<a <0时,-1+a a >1,此时在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上,f ′(x )<0,f (x )单调递减,在⎝ ⎛⎭⎪⎫1,-1+a a 上,f ′(x )>0,f (x )单调递增.综上,当a =0时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当-12<a <0时,f (x )在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫1,-1+a a 上单调递增;当a =-12时,f (x )在(0,+∞)上单调递减.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.2.(2017²陕西西安模拟)讨论函数f (x )=(a -1)²ln x +ax 2+1的单调性.解:f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a 2a ,则当x ↔⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ↔⎝⎛⎭⎪⎫1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减,在⎝ ⎛⎭⎪⎫1-a 2a ,+∞上单调递增. 类型三 利用函数单调性求参数(2017²辽宁锦州质检)设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解 (1)f ′(x )=x 2-ax +b , 由题意得⎩⎪⎨⎪⎧f 0 =1,f ′ 0 =0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ↔(-∞,0)时,f ′(x )>0; 当x ↔(0,a )时,f ′(x )<0; 当x ↔(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞), 单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ↔(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ↔(-2,-1)时,a <⎝⎛⎭⎪⎫x +2x max =-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).在本例3(3)中,1.若g (x )在(-2,-1)内为减函数,如何求解? 解:∵g ′(x )=x 2-ax +2, 且g (x )在(-2,-1)内为减函数, ∴g ′(x )≤0,即x 2-ax +2≤0 在(-2,-1)内恒成立,∴⎩⎪⎨⎪⎧g ′ -2 ≤0,g ′ -1 ≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3,即实数a 的取值范围为(-∞,-3]. 2.若g (x )在单调减区间为(-2,-1),求a 的值. 解:∵g (x )的单调减区间为(-2,-1), ∴x 1=-2,x 2=-1是g ′(x )=0的两个根, ∴(-2)+(-1)=a ,即a =-3.3.若g (x )在(-2,-1)上不单调,求a 的取值范围.解:由引申探究1知g (x )在(-2,-1)上为减函数,a 的范围是(-∞,-3], 若g (x )在(-2,-1)上为增函数,可知a ≥x +2x 在(-2,-1)上恒成立,又y =x +2x的值域为(-3,-22],∴a 的范围是∪ 已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.3.已知函数f (x )=x 3-ax -1,求下列条件下实数a 的取值范围. (1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围. (2)若f (x )在区间(-1,1)上为减函数,试求a 的取值范围.解:(1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立, 所以a ≤3x 2在(1,+∞)上恒成立, 所以a ≤3,即a 的取值范围为(-∞,3].(2)由f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,得a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3.即当a 的取值范围为分类讨论思想研究函数的单调性(五)典例 (12分)(2017²甘肃兰州市、张掖市联考)已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图像在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.思维点拨 依据g (x )的切线条件可得g ′(1)=0得a ,b 关系,代g (x )后消去b ,对a 进行分类讨论确定g ′(x )的符号.(1)依题意得g (x )=ln x +ax 2+bx , 则g ′(x )=1x+2ax +b .由函数g (x )的图像在点(1,g (1))处的切线平行于x 轴得:g ′(1)=1+2a +b =0,∴b =-2a -1.(2)由(1)得g ′(x )=2ax 2- 2a +1 x +1x=2ax -1 x -1x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1, 当a >0时,令g ′(x )=0,得x =1或x =12a ,若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a,由g ′(x )<0,得12a <x <1,若12a >1,即0<a <12,由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a;若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0. 综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)上单调递增,在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎭⎪⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝⎛⎭⎪⎫12a ,1上单调递减,在(1,+∞)上单调递增.(1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2)本题求解先分a =0或a >0两种情况,再比较12a和1的大小.思想方法 感悟提高1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性. 3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题的两种思路解决.1.f (x )为增函数的充要条件是对任意的x ↔(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.讨论函数单调性要在定义域内进行,不要忽略函数的间断点.课时规范训练(时间:40分钟)1.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.2.若f (x )=ln xx,e<a <b ,则( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1解析:选A.f ′(x )=1-ln x x2, 当x >e 时,f ′(x )<0,f (x )为减函数. ∴f (a )>f (b ).3.已知f (x )=x 3-ax 在上为单调函数,则a 的取值范围是________. 解析:f ′(x )=3a -4x +1x,若函数f (x )在上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0在上恒成立,即3a ≥4x -1x 或3a ≤4x -1x在上恒成立.令h (x )=4x -1x,则h (x )在上单调递增,所以3a ≥h (2)或3a≤h (1),即3a ≥152或3a ≤3,又a >0,所以0<a ≤25或a ≥1. 答案:⎝ ⎛⎦⎥⎤0,25∪[)1,+∞9.已知函数f (x )=x 4+a x -ln x -32,其中a ↔R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)对f (x )求导得f ′(x )=14-a x -1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ↔(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ↔(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 10.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -1x +1-f (x )在.(时间:25分钟)11.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在上是单调减函数,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34 B .⎝ ⎛⎭⎪⎫12,34C.⎣⎢⎡⎭⎪⎫34,+∞ D .⎝ ⎛⎭⎪⎫0,12 解析:选C.f ′(x )=(2x -2a )e x+(x 2-2ax )e x =e x,由题意知当x ↔时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g -1 ≤0.g 1 ≤0,即⎩⎪⎨⎪⎧-1 2+ 2-2a ² -1 -2a ≤0,12+2-2a -2a ≤0,解得a ≥34.12.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ↔R 恒成立,则( ) A .f (1)<e f (0),f (2 016)>e 2 016f (0) B .f (1)>e f (0),f (2 016)>e2 016f (0)C .f (1)>e f (0),f (2 016)<e 2 016f (0) D .f (1)<e f (0),f (2 016)<e 2 016f (0)解析:选D.令g (x )=f xex,则g ′(x )=⎝ ⎛⎭⎪⎫f xe x ′=f ′ x e x-f x e xe 2x=f ′ x -f xex<0,所以函数g (x )=f xex是单调减函数,所以g (1)<g (0),g (2 016)<g (0), 即f 1 e1<f 0 1,f 2 016 e2 016<f 01,故f (1)<e f (0),f (2 016)<e2 016f (0).13.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ↔⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.答案:⎝ ⎛⎭⎪⎫-19,+∞14.已知函数f (x )=-12x 2+4x -3ln x 在区间上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x=- x -1 x -3 x,由f ′(x )=0得函数f (x )的两个极值点为1和3, 则只要这两个极值点有一个在区间(t ,t +1)内, 函数f (x )在区间上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.答案:(0,1)∪(2,3)15.已知函数f (x )=a ln x -ax -3(a ↔R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图像在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ↔,函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤f ′ x +m 2在区间(t,3)上总不是单调函数,求m 的取值范围.解:(1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a 1-x x, 当a >0时,f (x )的增区间为(0,1), 减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞), 减区间为(0,1);当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′ t <0,g ′ 3 >0.当g ′(t )<0,即3t 2+(m +4)t -2<0时对任意t ↔恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-373.所以-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.课时2 导数与函数的极值、最值类型一 用导数解决函数极值问题题点1 根据函数图像判断极值设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图像如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 解析 由题图可知,当x <-2时,f ′(x )>0; 当-2<x <1时,f ′(x )<0; 当1<x <2时,f ′(x )<0; 当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D题点2 求函数的极值(2017²山东济南模拟)已知函数f (x )=x -a ln x (a ↔R ). (1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 由题意知函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因为f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②当a >0时,由f ′(x )=0,解得x =a .又当x ↔(0,a )时,f ′(x )<0;当x ↔(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.题点3 已知极值求参数(1)(2017²广州模拟)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.解析 由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7.答案 -7(2)(2017²福建福州质量检测)若函数f (x )=x 33-a2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上有极值点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫2,52B .⎣⎢⎡⎭⎪⎫2,52C.⎝⎛⎭⎪⎫2,103D .⎣⎢⎡⎭⎪⎫2,103解析 若函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上无极值,则当x ↔⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0恒成立或当x ↔⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax+1≤0恒成立.当x ↔⎝ ⎛⎭⎪⎫12,3时,y =x +1x 的值域是⎣⎢⎡⎭⎪⎫2,103;当x ↔⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0,即a ≤x +1x恒成立,a ≤2;当x ↔⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≤0,即a ≥x +1x 恒成立,a ≥103.因此要使函数f (x )在⎝ ⎛⎭⎪⎫12,3上有极值点, 实数a 的取值范围应是⎝⎛⎭⎪⎫2,103.答案 C(1)求函数f (x )极值的步骤: ①确定函数的定义域; ②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.1.(1)(2015²高考陕西卷)函数y =x e x在其极值点处的切线方程为________. 解析:由题知y ′=e x +x e x,令y ′=0,解得x =-1,代入函数解析式可得极值点的坐标为⎝⎛⎭⎪⎫-1,-1e ,又极值点处的切线为平行于x 轴的直线,故方程为y =-1e .答案:y =-1e(2)设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________. 解析:由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2- 2a +1 x 1+x ,由题意得:f ′(1)=0, 即-2a -2a -1=0,解得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x x -1 1+x ,当0<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0,所以f (1)是函数f (x )的极小值,所以a =-14.答案:-14类型二 用导数求函数的最值已知a ↔R ,函数f (x )=a x+ln x -1.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)求f (x )在区间(0,e]上的最小值.解 (1)当a =1时,f (x )=1x+ln x -1,x ↔(0,+∞),所以f ′(x )=-1x 2+1x =x -1x2,x ↔(0,+∞).因此f ′(2)=14,即曲线y =f (x )在点(2,f (2))处的切线斜率为14.又f (2)=ln 2-12,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -⎝ ⎛⎭⎪⎫ln 2-12=14(x -2),即x -4y +4ln 2-4=0.(2)因为f (x )=ax+ln x -1,所以f ′(x )=-a x2+1x=x -ax2.令f ′(x )=0,得x =a .①若a ≤0,则f ′(x )>0,f (x )在区间(0,e]上单调递增,此时函数f (x )无最小值. ②若0<a <e ,当x ↔(0,a )时,f ′(x )<0,函数f (x )在区间(0,a )上单调递减,当x ↔(a ,e]时,f ′(x )>0,函数f (x )在区间(a ,e]上单调递增,所以当x =a 时,函数f (x )取得最小值ln a .③若a ≥e,则当x ↔(0,e]时,f ′(x )≤0,函数f (x )在区间(0,e]上单调递减, 所以,当x =e 时,函数f (x )取得最小值ae.综上可知,当a ≤0时,函数f (x )在区间(0,e]上无最小值; 当0<a <e 时,函数f (x )在区间(0,e]上的最小值为ln a ; 当a ≥e 时,函数f (x )在区间(0,e]上的最小值为ae.2.已知y =f (x )是奇函数,当x ↔(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ↔(-2,0)时,f (x )的最小值为1,则a 的值等于( )A.14 B .13 C.12D .1解析:选D.由题意知,当x ↔(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a,当0<x <1a时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =-ln a -1=-1,解得a =1.类型三 函数极值和最值的综合问题(2017²四川德阳模拟)已知函数f (x )=13x 3-ax +1.(1)当x =1时,f (x )取得极值,求a 的值; (2)求f (x )在上的最小值. 解 因为f ′(x )=x 2-a , (1)当x =1时,f (x )取得极值, 所以f ′(1)=1-a =0,a =1, 又当x ↔(-1,1)时,f ′(x )<0;x ↔(1,+∞)时,f ′(x )>0,所以f (x )在x =1处取得极小值,即a =1时符合题意. (2)①当a ≤0时,f ′(x )>0对x ↔(0,1)恒成立,所以f (x )在(0,1)上单调递增,f (x )在x =0处取得最小值f (0)=1. ②当a >0时,令f ′(x )=x 2-a =0,解得x =-a 或a . ⅰ.当0<a <1时,a <1,当x ↔(0,a )时,f ′(x )<0,f (x )单调递减; 当x ↔(a ,1)时,f ′(x )>0,f (x )单调递增, 所以f (x )在x =a 处取得最小值f (a )=1-2a a3.ⅱ.当a ≥1时,a ≥1.x ↔(0,1)时,f ′(x )<0,f (x )单调递减,所以f (x )在x =1处取得最小值f (1)=43-a .。
全国通用2018版高考数学一轮温习第三章导数及其应用3_1导数的概念及运算课时作业文北师大版

A.1 B. C. D.
解析 点P是曲线y=x2-lnx上任意一点,当过点P的切线和直线y=x-2平行时,
点P到直线y=x-2的距离最小,
直线y=x-2的斜率为1,令y=x2-lnx,
得y′=2x- =1,解得x=1或x=- (舍去),
故曲线y=x2-lnx上和直线y=x-2平行的切线通过的切点坐标为(1,1),
( )
A.-eB.-1
C.1D.e
解析 由f(x)=2xf′(1)+lnx,得f′(x)=2f′(1)+ ,
∴f′(1)=2f′(1)+1,那么f′(1)=-1.
答案 B
3.曲线y=sinx+ex在点(0,1)处的切线方程是
( )
A.x-3y+3=0B.x-2y+2=0
C.2x-y+1=0D.3x-y+1=0
能力提升题组
(建议历时:20分钟)
11.(2016·山东卷)假设函数y=f(x
)的图像上存在两点,使得函数的图像在这两点处的切线相互垂直,那么称y=f(x)具有T性质,以下函数中具有T性质的是
( )
Ax3
解析 假设y=f(x)的图像上存在两点(x1,f(x1)),(x2,f(x2)),
第三章 导数及其应用
第1讲 导数的概念及运算
基础巩固题组
(建议历时:40分钟)
一、选择题
1.设y=x2ex,那么y′=
( )
A.x2ex+2xB.2xex
C.(2x+x2)exD.(x+x2)ex
解析y′=2xex+x2ex=(2x+x2)ex.
答案 C
2.已知函数f(x)的导函数为f′(x),且知足f(x)=2x·f′(1)+lnx,那么f′(1)等于
解析 因为y′=2ax- ,因此y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,解得a= .
届高三数学一轮总复习第三章导数及其应用课时跟踪检测理

第三章 导数及其应用 第一节 导数的概念与计算1.导数的概念 (1)平均变化率一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f x 2-f x 1x 2-x 1.(2)函数y =f (x )在x =x 0处的导数 ①定义:设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,此值Δy Δx=f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A为函数f (x )在x =x 0处的导数,记作f ′(x 0).②几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(3)函数f (x )的导函数若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数.2.基本初等函数的导数公式(sin x )′=cos_x ,(cos x )′=-sin_x ,(a x)′=a xln_a , (e x)′=e x,(log a x )=1x ln a ,(ln x )′=1x. 3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x [g x ](g (x )≠0).[小题体验]1.(教材习题改编)一次函数f (x )=kx +b 在区间[m ,n ]上的平均变化率为________. 解析:由题意得函数f (x )=kx +b 在区间[m ,n ]上的平均变化率为f n -f mn -m=k .答案:k2.(教材习题改编)如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +5,则f (3)=________,f ′(3)=________.解析:由图知切点为(3,2), 切线斜率为-1. 答案:2 -13.设函数f (x )在(0,+∞)内可导,且f (x )=x +ln x ,则f ′(1)=________. 解析:由f (x )=x +ln x (x >0),知f ′(x )=1+1x,所以f ′(1)=2.答案:24.(2015·天津高考)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案:31.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.[小题纠偏]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=________.解析:对关系式f (x )=2xf ′(e)+ln x 两边求导,得f ′(x )=2f ′(e)+1x,令x =e ,得f ′(e)=2f ′(e)+1e ,所以f ′(e)=-1e.答案:-1e2.已知f (x )=x 2+3xf ′(2),则f (2)=________.解析:因为f ′(x )=2x +3f ′(2),所以f ′(2)=4+3f ′(2),所以f ′(2)=-2,所以f (x )=x 2-6x ,所以f (2)=22-6×2=-8.答案:-83.已知定义在R 上的函数f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是________.解析:令x =0,得f (0)=1.对f (x )求导,得f ′(x )=e x+2x -1+cos x ,所以f ′(0)=1,故曲线y =f (x )在点(0,f (0))处的切线方程为y =x +1.答案:y =x +1考点一 导数的运算基础送分型考点——自主练透[题组练透]求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x;(3)y =cos x e x ;(4)y =11-x +11+x. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x′ =1x -1x2.(3)y ′=⎝⎛⎭⎪⎫cos x e x ′ =cos x ′e x-cos x e x′e x 2=-sin x +cos x ex. (4)∵y =11-x +11+x =21-x ,∴y ′=⎝ ⎛⎭⎪⎫21-x ′=-21-x ′1-x 2=21-x2.[谨记通法]求函数导数的3种原则考点二 导数的几何意义常考常新型考点——多角探明[命题分析]导数的几何意义是每年高考的必考内容,考查题型既有填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题.常见的命题角度有: (1)求切线方程; (2)求切点坐标; (3)求参数的值.[题点全练]角度一:求切线方程1.(2016·南通调研)已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于________.解析:∵f (x )=x 3-2x 2+x +6, ∴f ′(x )=3x 2-4x +1, ∴f ′(-1)=8,故切线方程为y -2=8(x +1), 即8x -y +10=0,令x =0,得y =10,令y =0,得x =-54,∴所求面积S =12×54×10=254.答案:254角度二:求切点坐标2.若曲线y =x ln x 上点P 处的切线平行于直线 2x -y +1=0,则点P 的坐标是________.解析:由题意得y ′=ln x +x ·1x=1+ln x ,直线2x -y +1=0的斜率为2. 设P (m ,n ),则1+ln m =2, 解得m =e ,所以n =eln e =e , 即点P 的坐标为(e ,e). 答案:(e ,e) 角度三:求参数的值3.(2016·南京外国语学校检测)已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b =________.解析:∵f ′(x )=4x 3+2ax -b ,由⎩⎪⎨⎪⎧f ′0=-13,f ′-1=-27⇒⎩⎪⎨⎪⎧-b =-13-4-2a -b =-27,∴⎩⎪⎨⎪⎧a =5,b =13,∴a +b =18. 答案:18[方法归纳]导数几何意义的应用的2个注意点(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.一抓基础,多练小题做到眼疾手快1.函数f (x )=(x +2a )(x -a )2的导数为________. 解析:∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2). 答案:3(x 2-a 2)2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.解析:由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案:-13.(2016·徐州一中检测)曲线y =f (x )=x (x -1)(x -2)·…·(x -6)在原点处的切线方程为________.解析:y ′=(x -1)(x -2)·…·(x -6)+x [(x -1)·(x -2)·…·(x -6)]′,所以f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)×(-6)+0=720.故切线方程为y =720x .答案:y =720x4.(2015·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1. 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案:15.已知曲线y =x 3+x -2在点P 0处的切线l 与直线4x -y -1=0平行,且点P 0在第三象限,则点P 0的坐标为________.解析:设P 0(x 0,y 0).由y =x 3+x -2,得y ′=3x 2+1. 由已知,得3x 20+1=4,解得x 0=±1. 当x 0=1时,y 0=0; 当x 0=-1时,y 0=-4.又点P 0在第三象限,∴切点P 0的坐标为(-1,-4). 答案:(-1,-4)二保高考,全练题型做到高考达标1.某物体做直线运动,其运动规律是s =t 2+3t(t 的单位:s ,s 的单位:m),则它在第4 s 末的瞬时速度为________ m/s.解析:∵s ′=2t -3t 2,∴在第4 s 末的瞬时速度v =s ′| t =4=8-316=12516 m/s.答案:125162.(2015·苏州二模)已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=________.解析:f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.答案:-23.已知f (x )=x (2 015+ln x ),若f ′(x 0)=2 016,则x 0=________.解析:f ′(x )=2 015+ln x +x ·1x=2 016+ln x ,故由f ′(x 0)=2 016得2 016+lnx 0=2 016,则ln x 0=0,解得x 0=1.答案:14.(2016·金陵中学模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为________.解析:因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π. 答案:⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π5.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为________.解析:∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 答案:-26.(2016·太原一模)函数f (x )=x e x的图象在点(1,f (1))处的切线方程是________. 解析: ∵f (x )=x e x, ∴f (1)=e ,f ′(x )=e x+x e x,∴f ′(1)=2e ,∴f (x )的图象在点(1,f (1))处的切线方程为y -e =2e(x -1),即y =2e x -e.答案:y =2e x -e7.(2015·无锡调研)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 答案:08.设函数f (x )=(x -a )(x -b )(x -c )(a ,b ,c 是两两不等的常数),则a f ′a+b f ′b+c f ′c=________.解析:∵f (x )=x 3-(a +b +c )x 2+(ab +bc +ca )x -abc , ∴f ′(x )=3x 2-2(a +b +c )x +ab +bc +ca ,f ′(a )=(a -b )(a -c ), f ′(b )=(b -a )(b -c ), f ′(c )=(c -a )(c -b ).∴a f ′a +bf ′b +c f ′c=aa -ba -c+bb -a b -c+c c -ac -b=a b -c -b a -c +c a -ba -b a -c b -c=0.答案:09.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3).解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x=tan x +xcos 2x.(2)y ′=(x +1)′[(x +2)(x +3)]+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.10.已知曲线y =f (x )=x 2a-1(a >0)在x =1处的切线为l ,求l 与两坐标轴所围成的三角形的面积的最小值.解:因为f (1)=1a-1,所以切点为⎝⎛⎭⎪⎫1,1a-1.由已知,得f ′(x )=2x a ,切线斜率k =f ′(1)=2a,所以切线l 的方程为y -⎝ ⎛⎭⎪⎫1a-1=2a(x -1),即2x -ay -a -1=0. 令y =0,得x =a +12;令x =0,得y =-a +1a. 所以l 与两坐标轴所围成的三角形的面积S =12×a +12×a +1a =14⎝ ⎛⎭⎪⎫a +1a +12≥14×2a ×1a +12=1,当且仅当a =1a,即a =1时取等号,所以S min =1.故l 与两坐标轴所围成的三角形的面积的最小值为1. 三上台阶,自主选做志在冲刺名校1.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.解析:设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =y ′|x =t=3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278.答案:2782.(2016·无锡一中检测)已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.解析:∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4×22+22,∴f ′⎝ ⎛⎭⎪⎫π4=2-1.故f ⎝ ⎛⎭⎪⎫π4=(2-1)×22+22=1.答案:13.(2016·苏北四市调研)设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)f ′(x )=a +b x2.∵点(2,f (2))在切线7x -4y -12=0上, ∴f (2)=2×7-124=12.又曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0, ∴⎩⎪⎨⎪⎧f ′2=74,f 2=12⇒⎩⎪⎨⎪⎧a +b 4=74,2a -b 2=12⇒⎩⎪⎨⎪⎧a =1,b =3.∴f (x )的解析式为f (x )=x -3x.(2)设⎝ ⎛⎭⎪⎫x 0,x 0-3x 0为曲线y =f (x )上任意一点,则切线的斜率k =1+3x 20,切线方程为y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝⎛⎭⎪⎫1+3x20(x -x 0), 令x =0,得y =-6x 0.由⎩⎪⎨⎪⎧y -⎝⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20x -x 0,y =x ,得⎩⎪⎨⎪⎧x =2x 0,y =2x 0.∴曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积S =12|2x 0|⎪⎪⎪⎪⎪⎪-6x 0=6,为定值.第二节 导数的应用1.函数的单调性在(a ,b )内可导函数f (x ),f ′(x )在(a ,b )任意子区间内都不恒等于0.f ′(x )≥0⇔f (x )在(a ,b )上为增函数.f ′(x )≤0⇔f (x )在(a ,b )上为减函数.2.函数的极值 (1)函数的极小值:函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)函数的极大值:函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近的其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[小题体验]1.(教材习题改编)函数f (x )=x 2e x的单调增区间是________.解析:函数f (x )的定义域为R ,f ′(x )=2x e x +x 2e x =e x (2x +x 2),令f ′(x )>0,得x <-2或x >0,所以函数f (x )的单调增区间为(-∞,-2)和(0,+∞).答案:(-∞,-2),(0,+∞)2.(教材习题改编)函数f (x )=13x 3+32x 2-4x +13取得极大值时x 的值是________.解析:f ′(x )=x 2+3x -4,令f ′(x )=0,得x 1=1,x 2=-4,经检验知x =-4时,函数y 取得极大值.答案:-43.(教材习题改编)函数f (x )=32x +sin x 在区间[0,2π]上的最大值为________. 解析:f ′(x )=32+cos x ,令f ′(x )=0,x ∈[0,2π], 得x =5π6或x =7π6,又f (0)=0,f ⎝ ⎛⎭⎪⎫5π6=53π12+12.f ⎝⎛⎭⎪⎫7π6=73π12-12,f (2π)=3π.所以函数f (x )在区间[0,2π]上的最大值为3π.答案:3π4.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则a 的最大值是________. 答案:31.求函数单调区间与函数极值时没有列表的习惯,会造成问题不能直观且有条理的解决.2.求函数最值时,易误认为极值点就是最值点,不通过比较就下结论.3.解题时要注意区分求单调性和已知单调性的问题,处理好f ′(x )=0时的情况;区分极值点和导数为0的点.[小题纠偏]1.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________. 解析:由题意,知f ′(x )=3x 2+2ax +b .由函数f (x )在x =1处取得极大值10,知⎩⎪⎨⎪⎧f ′1=0,f 1=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9满足题意,故a b =-23.答案:-232.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:因为f ′(x )=4x -1x (x >0),所以可求得f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞,单调递减区间为⎝ ⎛⎭⎪⎫0,12.又函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则⎩⎪⎨⎪⎧0≤k -1<12,k +1>12,解得1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 3.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________. 解析:y ′=6x 2-4x ,令y ′=0,得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827,f (2)=8. ∴最大值为8. 答案:8第一课时 导数与函数的单调性考点一 判断或证明函数的单调性重点保分型考点——师生共研[典例引领]设a ∈[-2,0],已知函数f (x )=⎩⎪⎨⎪⎧x 3-a +5x ,x ≤0,x 3-a +32x 2+ax ,x >0.证明f (x )在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增. 证明:设函数f 1(x )=x 3-(a +5)x (x ≤0),f 2(x )=x 3-a +32x 2+ax (x ≥0),①f 1′(x )=3x 2-(a +5),由于a ∈[-2,0],从而当-1<x ≤0时,f 1′(x )=3x 2-(a +5)<3-a -5≤0,所以函数f 1(x )在区间(-1,0]内单调递减. ②f 2′(x )=3x 2-(a +3)x +a =(3x -a )(x -1),由于a ∈[-2,0],所以当0<x <1时,f 2′(x )<0;当x >1时,f 2′(x )>0,即函数f 2(x )在区间[0,1)内单调递减,在区间(1,+∞)内单调递增.综合①②及f 1(0)=f 2(0),可知函数f (x )在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增.[由题悟法]导数法证明函数f (x )在(a ,b )内的单调性的3步骤(1)一求.求f ′(x );(2)二定.确认f ′(x )在(a ,b )内的符号;(3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[即时应用]已知函数f (x )=ln x -x1+2x.(1)求证:f (x )在区间(0,+∞)上单调递增; (2)若f [x (3x -2)]<-13,求实数x 的取值范围.解:(1)证明:由已知得f (x )的定义域为(0,+∞). ∵f (x )=ln x -x1+2x, ∴f ′(x )=1x -1+2x -2x 1+2x 2=4x 2+3x +1x 1+2x 2. ∵x >0,∴4x 2+3x +1>0,x (1+2x )2>0. ∴当x >0时,f ′(x )>0. ∴f (x )在(0,+∞)上单调递增. (2)∵f (x )=ln x -x1+2x ,∴f (1)=ln 1-11+2×1=-13.由f [x (3x -2)]<-13得f [x (3x -2)]<f (1).由(1)得⎩⎪⎨⎪⎧x3x -2>0,x3x -2<1,解得-13<x <0或23<x <1.∴实数x 的取值范围为⎝ ⎛⎭⎪⎫-13,0∪⎝ ⎛⎭⎪⎫23,1.考点二 求函数的单调区间重点保分型考点——师生共研[典例引领]已知函数f (x )=mx 3+nx 2(m ,n ∈R ,m ≠0),函数y =f (x )的图象在点(2,f (2))处的切线与x 轴平行.(1)用关于m 的代数式表示n ; (2)求函数f (x )的单调增区间.解:(1)由已知条件得f ′(x )=3mx 2+2nx , 又f ′(2)=0,所以3m +n =0,故n =-3m . (2)因为n =-3m , 所以f (x )=mx 3-3mx 2,所以f ′(x )=3mx 2-6mx . 令f ′(x )>0,即3mx 2-6mx >0, 当m >0时,解得x <0或x >2,则函数f (x )的单调增区间是(-∞,0)和(2,+∞); 当m <0时,解得0<x <2,则函数f (x )的单调增区间是(0,2). 综上,当m >0时,函数f (x )的单调增区间是(-∞,0)和(2,+∞); 当m <0时,函数f (x )的单调增区间是(0,2).[由题悟法] 确定函数单调区间4步骤(1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.[即时应用](2015·重庆高考改编)已知函数f (x )=ax 3+x 2(a ∈R)在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,求g (x )的单调区间. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43 =0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43 =16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x.令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )的减区间为(-∞,-4)和(-1,0),增区间为(-4,-1)和(0,+∞).考点三 已知函数的单调性求参数的范围题点多变型考点——纵引横联[典型母题]已知函数f (x )=x 3-ax -1. (1)讨论f (x )的单调性;(2)若f (x )在R 上为增函数,求实数a 的取值范围. [解] (1)f ′(x )=3x 2-a . ①当a ≤0时,f ′(x )≥0,所以f (x )在(-∞,+∞)上为增函数.②当a >0时,令3x 2-a =0得x =±3a3; 当x >3a 3或x <-3a 3时,f ′(x )>0; 当-3a 3<x <3a 3时,f ′(x )<0. 因此f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a a 上为减函数. 综上可知,当a ≤0时,f (x )在R 上为增函数;当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数. (2)因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在 (-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立. 因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即实数a 的取值范围为(-∞,0].根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.[提醒] f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0,且在(a ,b )内的任一非空子区间上f ′(x )不恒为0.应注意此时式子中的等号不能省略,否则漏解.[越变越明][变式1] 函数f (x )不变,若f (x )在区间(1,+∞)上为增函数,求a 的取值范围. 解:因为f ′(x )=3x 3-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].[变式2] 函数f (x )不变,若f (x )在区间(-1,1)上为减函数,试求a 的取值范围. 解:由f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,得a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3.即当a 的取值范围为[3,+∞)时,f (x )在(-1,1)上为减函数.[变式3] 函数f (x )不变,若f (x )的单调递减区间为(-1,1),求a 的值. 解:由母题可知,f (x )的单调递减区间为 ⎝ ⎛⎭⎪⎫-3a 3,3a 3,∴3a 3=1,即a =3.[破译玄机]函数的单调区间是指单调递增或单调递减,在求解中应列方程求解,与函数在某个区间上具有单调性是不同的.[变式4] 函数f (x )不变,若f (x )在区间(-1,1)上不单调,求a 的取值范围. 解:∵f (x )=x 3-ax -1,∴f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0).∵f (x )在区间(-1,1)上不单调,∴0<3a3<1,得0<a <3,即a 的取值范围为(0,3).[破译玄机]函数在其区间上不具有单调性,但可在子区间上具有单调性,如变式4中利用了3a 3∈(0,1)来求解.一抓基础,多练小题做到眼疾手快1.(2015·镇江模拟)函数f (x )=(x -3)e x的单调递增区间是________.解析:函数f (x )=(x -3)e x的导数为f ′(x )=[(x -3)e x]′=e x+(x -3)e x=(x -2)e x.由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2.答案:(2,+∞)2.设函数f (x )=13x 3+ax 2+5x +6在区间[1,3]上是单调函数,则实数a 的取值范围是________.解析:依题意,知当x ∈[1,3]时,f ′(x )=x 2+2ax +5的值恒不小于0或恒不大于0. 若当x ∈[1,3]时,f ′(x )=x 2+2ax +5≥0,即有-2a ≤x +5x在[1,3]上恒成立,而x +5x≥2x ·5x=25(当且仅当x =5时取等号),故-2a ≤25,解得a ≥- 5. 若当x ∈[1,3]时,f ′(x )=x 2+2ax +5≤0,即有-2a ≥x +5x恒成立,注意到函数g (x )=x +5x 在[1,5]上是减函数,在[5,3]上是增函数,且g (1)=6>g (3)=143,因此-2a ≥6,解得a ≤-3.综上所述,实数a 的取值范围是(-∞,-3]∪[-5,+∞). 答案:(-∞,-3]∪[-5,+∞)3.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.解析:在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上单调递增. 答案:单调递增4.(2016·启东模拟)已知a ≥1,f (x )=x 3+3|x -a |,若函数f (x )在[-1,1]上的最大值和最小值分别记为M ,m ,则M -m 的值为________.解析:当x ∈[-1,1]时,f (x )=x 3+3(a -x )=x 3-3x +3a (a ≥1),∴f ′(x )=3(x -1)(x +1).当-1<x <1时,f ′(x )<0,所以原函数f (x )在区间[-1,1]上单调递减,所以M =f (-1)=3a +2,m =f (1)=3a -2,所以M -m =4.答案:45.(2016·苏州测试)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.解析:f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝⎛⎭⎪⎫-x +1x max =83, ∴2a ≥83,即a ≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞ 二保高考,全练题型做到高考达标1.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,解得-1<x <11,所以函数f (x )的单调减区间为(-1,11).答案:(-1,11)2.若幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫22,12,则函数g (x )=e xf (x )的单调递减区间为________.解析:设幂函数f (x )=x α,因为图象过点⎝⎛⎭⎪⎫22,12,所以12=⎝ ⎛⎭⎪⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e xx =e x(x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)3.(2016·南通、扬州、淮安、连云港调研)设f (x )=4x 3+mx 2+(m -3)x +n (m ,n ∈R)是R 上的单调增函数,则实数m 的值为________.解析:因为f ′(x )=12x 2+2mx +m -3,又函数f (x )是R 上的单调增函数,所以12x2+2mx +m -3≥0在R 上恒成立,所以(2m )2-4×12(m -3)≤0,整理得m 2-12m +36≤0,即(m -6)2≤0.又因为(m -6)2≥0,所以(m -6)2=0,所以m =6.答案:64.已知函数f (x )=x +1ax在(-∞,-1)上单调递增,则实数a 的取值范围是________.解析:函数f (x )=x +1ax 的导数为f ′(x )=1-1ax2,由于f (x )在(-∞,-1)上单调递增,则f ′(x )≥0在(-∞,-1)上恒成立,即1a≤x 2在(-∞,-1)上恒成立.由于当x <-1时,x 2>1,则有1a≤1,解得a ≥1或a <0.答案:(-∞,0)∪[1,+∞)5.(2015·南通、扬州、泰州、淮安三调)已知函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+m ,0≤x ≤1,mx +5,x >1.若函数f (x )的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为________.解析:由f (x )=2x 3+3x 2+m ,得f ′(x )=6x 2+6x ,所以f (x )在[0,1]上单调递增,即f (x )=2x 3+3x 2+m 与x 轴至多有一个交点,要使函数f (x )的图象与x 轴有且只有两个不同的交点,即⎩⎪⎨⎪⎧m +5>0,m <0,从而可得m ∈(-5,0).答案:(-5,0)6.若函数f (x )=ax 3-3x 在(-1,1)上为单调递减函数,则实数a 的取值范围是________.解析:f ′(x )=3ax 2-3,∵f (x )在(-1,1)上为单调递减函数,∴f ′(x )≤0在(-1,1)上恒成立,即3ax 2-3≤0在(-1,1)上恒成立.当x =0时,a ∈R ;当x ≠0时,a ≤1x2,∵x∈(-1,0)∪(0,1),∴a ≤1.综上,实数a 的取值范围为(-∞,1].答案:(-∞,1]7.(2016·盐城中学模拟)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.解析:设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪(1,+∞)8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 答案:⎝ ⎛⎭⎪⎫-19,+∞9.(2016·镇江五校联考)已知函数f (x )=ln x +k e x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解:(1)由题意得f ′(x )=1x-ln x -k e x, 又f ′(1)=1-ke =0,故k =1.(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0. 综上可知,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).10.(2016·徐州调研)已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -1x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解:(1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m x -1x +1-f (x )=m x -1x +1-ln x 在[1,+∞)上是减函数.∴φ′(x )=-x 2+2m -2x -1x x +12≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立,则2m -2≤x +1x,x ∈[1,+∞),∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2]. 三上台阶,自主选做志在冲刺名校1.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是________.解析:f ′(x )=(2x -2a )e x +(x 2-2ax )e x =[x 2+(2-2a )x -2a ]e x,由题意知当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g -1≤0,g1≤0,即⎩⎪⎨⎪⎧-12+2-2a ·-1-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.答案:⎣⎢⎡⎭⎪⎫34,+∞ 2.(2016·泰州模拟)若函数f (x )=x 2|x -a |在区间[0,2]上单调递增,则实数a 的取值范围是________.解析:当a ≤0时,f (x )=x 3-ax 2,f ′(x )=3x 2-2ax ≥0在[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增,则也在[0,2]上单调递增,成立;当a >0时,f (x )=⎩⎪⎨⎪⎧ax 2-x 3,0≤x ≤a ,x 3-ax 2,x >a .①当0≤x ≤a 时,f ′(x )=2ax -3x 2, 令f ′(x )=0,则x =0或x =23a ,则f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减; ②当x >a 时,f ′(x )=3x 2-2ax =x (3x -2a )>0,所以f (x )在(a ,+∞)上单调递增,所以当a >0时,f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减,在(a ,+∞)上单调递增.要使函数在区间[0,2]上单调递增,则必有23a ≥2,解得a ≥3.综上,实数a 的取值范围是(-∞,0]∪[3,+∞). 答案:(-∞,0]∪[3,+∞)3.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′x +m 2在区间(t,3)上总不是单调函数,求m 的取值范围.解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a 1-xx.当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′t <0,g ′3>0.当g ′(t )<0,即3t 2+(m +4)t -2<0 对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373.所以-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9. 第二课时 导数与函数的极值、最值考点一 运用导数解决函数的极值问题常考常新型考点——多角探明[命题分析]函数的极值是每年高考的必考内容,题型既有填空题,也有解答题,难度适中,为中高档题.常见的命题角度有: (1)已知函数求极值; (2)已知极值求参数; (3)由图判断极值.[题点全练]角度一:已知函数求极值1.已知函数f (x )=x -a ln x (a ∈R).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解:由题意知函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因为f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.角度二:已知极值求参数2.(2016·黑龙江哈三中期末)已知x =2是函数f (x )=x 3-3ax +2 的极小值点,那么函数f (x )的极大值为________.解析:x =2是函数f (x )=x 3-3ax +2的极小值点,即x =2是f ′(x )=3x 2-3a =0的根,将x =2代入得a =4,所以函数解析式为f (x )=x 3-12x +2,则由3x 2-12=0,得x =±2,故函数在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时函数f (x )取得极大值f (-2)=18.答案:183.若函数f (x )=13ax 3-ax 2+(2a -3)x +1在R 上存在极值,则实数a 的取值范围是________.解析:由题意知,f ′(x )=ax 2-2ax +2a -3,因为函数f (x )=13ax 3-ax 2+(2a -3)x +1在R 上存在极值,所以f ′(x )=0有两个不等实根, 其判别式Δ=4a 2-4a (2a -3)>0, 所以0<a <3,故实数a 的取值范围为(0,3). 答案:(0,3)角度三:由图判断极值4.已知函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )有________个极大值点,________个极小值点.解析:由导数与函数极值的关系,知当f ′(x 0)=0时,若在x 0的左侧f ′(x )>0,右侧f ′(x )<0,则f (x )在x =x 0处取得极大值;若在x 0的左侧f ′(x )<0,右侧f ′(x )>0,则f (x )在x =x 0处取得极小值.设函数f ′(x )的图象与x 轴的交点从左到右的横坐标依次为x 1,x 2,x 3,x 4,则f (x )在x =x 1,x =x 3处取得极大值,在x =x 2,x =x 4处取得极小值.答案:2 2[方法归纳]利用导数研究函数极值的一般流程考点二 运用导数解决函数的最值问题重点保分型考点——师生共研[典例引领]已知函数f (x )=xa-e x(a >0).(1)求函数f (x )的单调区间; (2)求函数f (x )在[1,2]上的最大值.解:(1)f (x )=x a-e x (a >0),则f ′(x )=1a-e x.令1a -e x =0,则x =ln 1a.当x 变化时,f ′(x ),f (x )的变化情况如下表:故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,ln a ;单调递减区间为⎝ ⎛⎭⎪⎫ln a ,+∞.(2)当ln 1a ≥2,即0<a ≤1e2时,f (x )max =f (2)=2a-e 2;当1<ln 1a <2,即1e 2<a <1e时,f (x )max =f ⎝ ⎛⎭⎪⎫ln 1a =1a ln 1a -1a; 当ln 1a ≤1,即a ≥1e时,f (x )max =f (1)=1a-e.[由题悟法]求函数f (x )在[a ,b ]上的最大值和最小值3步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.[即时应用]设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切,(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值. 解:(1)f ′(x )=a x-2bx ,∵函数f (x )在x =1处与直线y =-12相切,∴⎩⎪⎨⎪⎧f ′1=a -2b =0,f 1=-b =-12,解得⎩⎪⎨⎪⎧a =1,b =12.(2)由(1)得f (x )=ln x -12x 2,则f ′(x )=1x -x =1-x2x,∵当1e ≤x ≤e 时,令f ′(x )>0得1e ≤x <1;令f ′(x )<0,得1<x ≤e,∴f (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在[]1,e 上单调递减,∴f (x )max =f (1)=-12.考点三 函数极值和最值的综合问题重点保分型考点——师生共研[典例引领]已知函数f (x )=ax -2x-3ln x ,其中a 为常数.(1)当函数f (x )的图象在点⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线的斜率为1时,求函数f (x )在⎣⎢⎡⎦⎥⎤32,3上的最小值;(2)若函数f (x )在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围. 解:(1)∵f ′(x )=a +2x 2-3x,∴f ′⎝ ⎛⎭⎪⎫23=a =1, 故f (x )=x -2x-3ln x ,则f ′(x )=x -1x -2x2.由f ′(x )=0得x =1或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x 32⎝ ⎛⎭⎪⎫32,2 2 (2,3) 3 f ′(x ) -0 +f (x )1-3ln 2从而在⎣⎢⎡⎦⎥⎤32,3上,f (x )有最小值,且最小值为f (2)=1-3ln 2.(2)f ′(x )=a +2x 2-3x =ax 2-3x +2x2(x >0), 由题设可得方程ax 2-3x +2=0有两个不等的正实根, 不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a >0⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧Δ=9-8a >0,--32a >0,h 0>0,解得0<a <98. 故所求a 的取值范围为⎝ ⎛⎭⎪⎫0,98. [由题悟法]求函数在无穷区间(或开区间)上的最值的方法求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.[即时应用]已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值. 解:(1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b .当x =1时,切线l 的斜率为3,可得2a +b =0,①当x =23时,y =f (x )有极值,则f ′⎝ ⎛⎭⎪⎫23=0, 可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4. 所以1+a +b +c =4,得c =5. (2)由(1)可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:x -3 (-3,-2)-2 ⎝⎛⎭⎪⎫-2,23 23 ⎝ ⎛⎭⎪⎫23,1 1 f ′(x )+0 -0 +f (x )81395274所以y =f (x )在[-3,1]上的最大值为13,最小值为27.一抓基础,多练小题做到眼疾手快1.函数f (x )=ln x -x 在(0,e]上的最大值为________.解析:f ′(x )=1x -1=1-xx(x >0),令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,∴f (x )在(0,1]上是增函数,在(1,e]上是减函数.∴当x =1时,f (x )在(0,e]上取得最大值f (1)=-1.答案:-12.函数f (x )=12e x (sin x +cos x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的值域为________解析:∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴f ′(x )=e xcos x ≥0,∴f (0)≤f (x )≤f ⎝ ⎛⎭⎪⎫π2,即12≤f (x )≤12e π2.答案:⎣⎢⎡⎦⎥⎤12,12e π23.当函数y =x ·2x取极小值时,x =________. 解析:令y ′=2x +x ·2xln 2=0,∴x =-1ln 2. 答案:-1ln 24.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为________. 解析:若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有根,故Δ=(-4c )2-12>0,从而c >32或c <-32.故实数c 的取值范围为⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞. 答案:⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 5.已知函数f (x )=2f ′(1)ln x -x ,则f (x )的极大值为________.解析:因为f ′(x )=2f ′1x-1,令x =1,得f ′(1)=1.所以f (x )=2ln x -x ,f ′(x )=2x-1.当0<x <2,f ′(x )>0;当x >2,f ′(x )<0.从而f (x )的极大值为f (2)=2ln 2-2.答案:2ln 2-2二保高考,全练题型做到高考达标1.函数f (x )=12x 2-ln x 的最小值为________.解析:f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x<1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12.答案:122.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值和最小值分别为M ,N ,则M -N 的值为________.解析:f ′(x )=3x 2-3,令f ′(x )=0,得x =1(x =-1舍去).∵f (0)=-a ,f (1)=-2-a ,f (3)=18-a .∴M =18-a ,N =-2-a .∴M -N =20.答案:203.(2016·南京外国语学校)已知函数f (x )=x 3+bx 2+cx 的图象如图。
2018高考数学文人教新课标大一轮复习配套文档:第三章 导数及其应用 3-3 导数的应用二 含答案 精品

3.3 导数的应用(二)1.当f ′(x)在某个区间内个别点处为零,在其余点处均为正(或负)时,f(x)在这个区间上仍旧是单调递增(或递减)的,例如:在(-∞,+∞)上,f(x)=x3,当x=0时,f ′(x)=,当x≠0时,f ′(x)>0,而f(x)=x3显然在(-∞,+∞)上是单调递增函数.2.可导函数求最值的方法f ′(x)=0⇒x=x1,x2,…,x n,x∈.直接比较f(a),f(b),f(x1),…,f(x n),找出__________和____________即可.在此基础上还应注意:(1)结合____________可减少比较次数.(2)含参数的函数求最值时分类:①按____________分类;②按____________分类.3.实际问题中的导数,常见的有以下几种情形:(1)加速度是速度关于________的导数;(2)线密度是质量关于________的导数;(3)功率是功关于________的导数;(4)瞬时电流是电荷量关于________的导数;(5)水流的瞬时速度是流过的水量关于________的导数;(6)边际成本是成本关于________的导数.4.N型曲线与直线y=k的位置关系问题如图,方程f(x)=0有三个根x1,x2,x3时,极大值f(a)>0且极小值f(b)<0.曲线y=f(x)与直线y=k(k是常数)有一个交点时,见图中的直线①或直线②,极大值f(a)______k 或极小值f(b)______k;曲线y=f(x)与直线y=k(k是常数)有两个交点时,见图中的直线③或直线④,极大值f(a)______k 或极小值f(b)______k;曲线y=f(x)与直线y=k(k是常数)有三个交点时,见图中的直线⑤.以上这些问题,常见于求参数的取值范围、讨论不等关系等形式的题目.自查自纠1.02.最小值最大值(1)单调性(2)单调性极值点3.(1)时间(2)长度(3)时间(4)时间(5)时间(6)产量4.<>==(2016·岳阳模拟)函数f(x)=ln x-x在区间(0,e]上的最大值为( )A.1-e B.-1 C.-e D.0解:因为f ′(x)=1x-1=1-xx,当x∈(0,1)时,f ′(x)>0;当x∈(1,e]时,f ′(x)<0,所以当(((1)若x an。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节变化率与导数、导数的计算A组基础题组1.已知函数f(x)=cosx,则f(π)+f'=()A.-B.-C.-D.-2.(2017黑龙江、吉林八校联考)函数f(x)=x+sinx的图象在x=处的切线与两坐标轴围成的三角形的面积为()A. B. C. D.+13.已知f(x)=x(2014+lnx),若f'(x0)=2015,则x0=()A.e2B.1C.ln2D.e4.(2016安徽安庆二模)给出定义:设f'(x)是函数y=f(x)的导函数,f″(x)是函数f'(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.已知函数f(x)=3x+4sinx-cosx的拐点是M(x0,f(x0)),则点M()A.在直线y=-3x上B.在直线y=3x上C.在直线y=-4x上D.在直线y=4x上5.(2015河南郑州质检二)已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g'(x)是g(x)的导函数,则g'(3)=()A.-1B.0C.2D.46.若曲线y=xlnx上点P处的切线平行于直线2x-y+1=0,则点P的坐标是.7.(2016课标全国Ⅲ,16,5分)已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是.8.已知函数f(x)=e x-mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为.9.已知函数f(x)=x3-2x2+3x(x∈R)的图象为曲线C.(1)求过曲线C上任意一点切线斜率的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.10.已知函数f(x)=x-,g(x)=a(2-lnx)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.B组提升题组11.(2016山东,10,5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinxB.y=lnxC.y=e xD.y=x312.(2016安徽皖江名校联考)已知函数f(x)=e x-2ax,g(x)=-x3-ax2.若不存在x1,x2∈R,使得f'(x1)=g'(x2),则实数a的取值范围为()A.(-2,3)B.(-6,0)C.-2,3]D.-6,0]13.(2016重庆二诊)已知函数f(x)=+sinx,其导函数为f'(x),则f(2016)+f(-2016)+f'(2016)-f'(-2016)的值为()A.0B.2C.2016D.-201614.已知f(x)=acosx,g(x)=x2+bx+1,若曲线y=f(x)与曲线y=g(x)在交点(0,m)处有公切线,则a+b=()A.-1B.0C.1D.215.若函数f(x)=lnx+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是.16.设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.答案全解全析A组基础题组1.C∵f'(x)=-cosx+(-sinx),f(π)=-,∴f(π)+f'=-+·(-1)=-.2.A f(x)=x+sinx,则f'(x)=1+cosx,则f'=1,而f=+1,故函数f(x)的图象在x=处的切线方程为y-=x-,即y=x+1.令x=0,可得y=1;令y=0,可得x=-1.故该切线与两坐标轴围成的三角形的面积为×1×1=.故选A.3.B由题意可知f'(x)=2014+lnx+x·=2015+lnx.由f'(x0)=2015,得lnx0=0,解得x0=1.4.B f'(x)=3+4cosx+sinx,f″(x)=-4sinx+cosx,由题意知4sinx0-cosx0=0,所以f(x0)=3x0,故M(x0,f(x0))在直线y=3x上.故选B.5.B由题图可知曲线y=f(x)在x=3处切线的斜率等于-,∴f'(3)=-.∵g(x)=xf(x),∴g'(x)=f(x)+xf'(x),∴g'(3)=f(3)+3f'(3),又由题图可知f(3)=1,∴g'(3)=1+3×=0.6.答案(e,e)解析令f(x)=xlnx,则f'(x)=lnx+1,设P(x0,y0),则f'(x0)=lnx0+1=2,∴x0=e,此时,y0=x0lnx0=elne=e,∴点P的坐标为(e,e).7.答案y=2x解析当x>0时,-x<0,f(-x)=e x-1+x,而f(-x)=f(x),所以f(x)=e x-1+x(x>0),点(1,2)在曲线f(x)=e x-1+x(x>0)上,易知f'(1)=2,故曲线y=f(x)在点(1,2)处的切线方程是y-2=f'(1)·(x-1),即y=2x.8.答案解析函数f(x)=e x-mx+1的导函数为f'(x)=e x-m,要使曲线C存在与直线y=ex垂直的切线,则需e x-m=-有解,即m=e x+有解,由e x>0,得m>.则实数m的取值范围为.9.解析(1)由题意得f'(x)=x2-4x+3,则f'(x)=(x-2)2-1≥-1,即过曲线C上任意一点切线斜率的取值范围是-1,+∞).(2)设曲线C的其中一条切线的斜率为k,则由(2)中条件并结合(1)中结论可知,解得-1≤k<0或k≥1,故由-1≤x2-4x+3<0或x2-4x+3≥1,得x∈(-∞,2-]∪(1,3)∪2+,+∞).10.解析根据题意有曲线y=f(x)在x=1处的切线斜率为f'(1)=3,曲线y=g(x)在x=1处的切线斜率为g'(1)=-a.又f'(1)=g'(1),所以a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1),得y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),得y+6=3(x-1),即切线方程为3x-y-9=0,所以两条切线不是同一条直线.B组提升题组11.A设函数y=f(x)图象上两点的横坐标为x1,x2.由题意知只需函数y=f(x)满足f'(x1)·f'(x2)=-1(x1≠x2)即可.y=f(x)=sinx的导函数为f'(x)=cosx,f'(0)·f'(π)=-1,故A满足;y=f(x)=lnx 的导函数为f'(x)=,f'(x1)·f'(x2)=>0,故B不满足;y=f(x)=e x的导函数为f'(x)=e x,f'(x1)·f'(x2)=>0,故C不满足;y=f(x)=x3的导函数为f'(x)=3x2,f'(x1)·f'(x2)=9≥0,故D不满足.故选A.12.D依题意,知函数f'(x)与g'(x)值域的交集为空集,∵f'(x)=e x-2a>-2a,g'(x)=-3x2-2ax≤,∴≤-2a,解得-6≤a≤0.13.B∵f(x)=+sinx,∴f'(x)=-+cosx,f(x)+f(-x)=+sinx++sin(-x)=2,∴f'(x)-f'(-x)=-+cosx+-cos(-x)=0,∴f(2016)+f(-2016)+f'(2016)-f'(-2016)=2.14.C依题意得,f'(x)=-asinx,g'(x)=2x+b,f'(0)=g'(0),∴-asin0=2×0+b,故b=0,∵m=f(0)=g(0),∴m=a=1,因此a+b=1,选C.15.答案∪解析f'(x)=+a(x>0).∵函数f(x)=lnx+ax的图象存在与直线2x-y=0平行的切线,∴方程+a=2在区间(0,+∞)上有解,即a=2-在区间(0,+∞)上有解,∴a<2.若直线2x-y=0与曲线f(x)=lnx+ax相切,设切点为(x0,2x0),则解得x0=e,a=2-.综上,实数a的取值范围是∪.16.解析(1)方程7x-4y-12=0可化为y=x-3,当x=2时,y=,故2a-=,又f'(x)=a+,即有a+=,解得a=1,b=3.故f(x)=x-.(2)证明:设P(x0,y0)为曲线上任一点,由(1)知,f'(x)=1+,则曲线在点P(x0,y0)处的切线方程为y-y0=(x-x0),即y-=(x-x0).令x=0,得y=-,从而得切线与直线x=0的交点坐标为.令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以曲线y=f(x)在点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为·|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,此定值为6.。