【高考一轮】2018课标版文科数学一轮复习 3.1变化率与导数、导数的计算 夯基提能作业本(含答案)

合集下载

2018届高三数学一轮复习:第三章 导数及其应用 第一节 变化率与导数、导数的计算

2018届高三数学一轮复习:第三章 导数及其应用 第一节 变化率与导数、导数的计算

第一节变化率与导数、导数的计算A组基础题组1.已知函数f(x)=cosx,则f(π)+f'=()A.-B.-C.-D.-2.已知f(x)=x(2016+lnx),若f'(x0)=2017,则x0等于()A.e2B.1C.ln2D.e3.(2016济宁模拟)曲线y=xe x+2x-1在点(0,-1)的切线方程为()A.y=3x-1B.y=-3x-1C.y=3x+1D.y=-3x-14.(2016贵州贵阳一模,6)曲线y=xe x在点(1,e)处的切线与直线ax+by+c=0垂直,则的值为()A.-B.-C.D.5.(2016重庆适应性测试)若直线y=ax是曲线y=2lnx+1的一条切线,则实数a=()A. B.2 C. D.26.(2014江西,11,5分)若曲线y=xlnx上点P处的切线平行于直线2x-y+1=0,则点P的坐标是.7.已知f(x)=3lnx-2xf'(1),则曲线y=f(x)在点A(1,m)处的切线方程为.8.曲线y=alnx(a>0)在x=1处的切线与两坐标轴所围成的三角形的面积为4,则a=.9.求下列函数的导数:(1)y=x·tanx;(2)y=(x+1)(x+2)(x+3);(3)y=.10.已知函数f(x)=x-,g(x)=a(2-lnx).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a 的值,并判断两切线是否为同一条直线.B组提升题组11.(2017河南郑州二中期末)下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(-1)=()A. B.- C. D.-或12.已知f(x)=lnx,g(x)=x2+mx+(m<0),直线l与函数f(x),g(x)的图象都相切,且与f(x)图象的切点为(1,f(1)),则m的值为()A.-1B.-3C.-4D.-213.若点P是曲线y=x2-lnx上任意一点,则点P到直线y=x-2的最小距离为.14.函数f(x)=的图象在点(-1,2)处的切线与坐标轴围成的三角形的面积等于.15.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值;(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.16.设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.答案全解全析A组基础题组1.C∵f(x)=cosx,∴f'(x)=-cosx+·(-sinx),∴f(π)+f'=-+·(-1)=-.2.B f'(x)=2016+lnx+x×=2017+lnx,由f'(x0)=2017,得2017+lnx0=2017,则lnx0=0,解得x0=1.3.A由题意得y'=(x+1)e x+2,则曲线y=xe x+2x-1在点(0,-1)处的切线的斜率为(0+1)e0+2=3,故曲线y=xe x+2x-1在点(0,-1)处的切线方程为y+1=3x,即y=3x-1.4.D y'=e x+xe x,则y'|x=1=2e,∵切线与直线ax+by+c=0垂直,∴-=-,∴=,故选D.5.B依题意,设直线y=ax与曲线y=2lnx+1的切点的横坐标为x0,对于y=2lnx+1,易知y'=,则有y'=,于是有解得x 0=,a=2,选B.6.答案(e,e)解析令f(x)=xlnx,则f'(x)=lnx+1,设P(x0,y0),则f'(x0)=lnx0+1=2,∴x0=e,此时y0=x0lnx0=elne=e,∴点P的坐标为(e,e).7.答案x-y-3=0解析由题意得f'(x)=-2f'(1),所以f'(1)=3-2f'(1),即f'(1)=1.∴m=f(1)=-2f'(1)=-2,所以所求切线方程为y+2=x-1,即x-y-3=0.8.答案8解析令f(x)=y=alnx,则f'(x)=,∴在x=1处的切线的斜率为a,∵f(1)=aln1=0,故切点为(1,0),∴切线方程为y=a(x-1),令y=0,得x=1;令x=0,得y=-a,∵a>0,∴所围成的三角形的面积为×a×1=4,∴a=8.9.解析(1)y'=(x·tanx)'=x'tanx+x(tanx)'=tanx+x·'=tanx+x·=tanx+.(2)y'=(x+1)(x+2)]'(x+3)+(x+1)(x+2)(x+3)'=(x+1)'(x+2)+(x+1)(x+2)'](x+3)+(x+1)(x+2)=(x+2+x+1)(x+3)+(x+1)(x+2)=(2x+3)(x+3)+(x+1)(x+2)=3x2+12x+11.(3)因为y===e x+e-x-=e x+e-x-,所以y'=(e x)'+(e-x)'-'=e x-e-x-.10.解析易知:曲线y=f(x)在x=1处的切线斜率为f'(1)=3,曲线y=g(x)在x=1处的切线斜率为g'(1)=-a.又f'(1)=g'(1),所以a=-3.因为曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1),得y+1=3(x-1),即切线方程为3x-y-4=0;曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),得y+6=3(x-1),即切线方程为3x-y-9=0,所以两切线不是同一条直线.B组提升题组11.D∵f'(x)=x2+2ax+a2-1,∴f'(x)的图象开口向上,则排除②④.若f'(x)的图象为①,则a=0,f(-1)=; 若f'(x)的图象为③,则a2-1=0,且-a>0,∴a=-1,∴f(-1)=-.综上知选D.12.D∵f'(x)=,∴直线l的斜率k=f'(1)=1,又f(1)=0,∴切线l的方程为y=x-1.g'(x)=x+m,设直线l与g(x)的图象的切点为(x0,y0),则有x0+m=1,y0=x0-1,y0=+mx0+(m<0),由此可解得m=-2.13.答案解析由y=x2-lnx,得y'=2x-(x>0),设点P 0(x0,y0)是曲线y=x2-lnx上到直线y=x-2的距离最小的点,则y'=2x0-=1,解得x0=1或x0=-(舍).∴点P0的坐标为(1,1).∴所求的最小距离==.14.答案解析f'(x)==,则f'(-1)=-4,故切线方程为y=-4x-2,切线在x,y轴上的截距分别为-,-2,故所求三角形的面积为.15.解析f'(x)=3x2+2(1-a)x-a(a+2).(1)由题意得解得b=0,a=-3或a=1.(2)因为曲线y=f(x)存在两条垂直于y轴的切线,所以关于x的方程3x2+2(1-a)x-a(a+2)=0有两个不相等的实数根,所以Δ=4(1-a)2+12a(a+2)>0,即4a2+4a+1>0,所以a≠-.所以a的取值范围为∪.16.解析(1)方程7x-4y-12=0可化为y=x-3,当x=2时,y=,故2a-=.又因为f'(x)=a+,则有a+=,所以a=1,b=3.故f(x)=x-.(2)设P(x0,y0)为曲线上任一点,由(1)知,f'(x)=1+,则曲线在点P(x0,y0)处的切线方程为y-y0=(x-x0),即y-=(x-x0).令x=0,得y=-,从而得切线与直线x=0的交点坐标为.令y=x,得x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以曲线y=f(x)在点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,此定值为6.。

课标通用2018届高考数学一轮复习第三章导数及其应用第1节变化率与导数导数的计算课件理201709023115

课标通用2018届高考数学一轮复习第三章导数及其应用第1节变化率与导数导数的计算课件理201709023115

(2)曲线的切线不一定与曲线只有一个公共点.(
(3) 与 曲 线 只 有 一 个 公 共 点 的 直 线 一 定 是 曲 线 的 切 线.( )
(4)[f(ax+b)]′=f ′(ax+b).(
2
) )
1 (5)若 f(x)=f ′(a)x +lnx(a>0), 则 f ′(x)=2x f ′(a)+ x .(
1 3 4 y-3x0+3=x2 0(x-x0),
2 3 4 2 y=x0·x- x0+ . 3 3
∵点
2 3 4 2 P(2,4)在切线上,∴4=2x0- x0+ , 3 3
2 3 2 2 即 x3 - 3 x + 4 = 0 ,∴ x + x - 4 x 0 0 0 0 0+4=0,
x 1 x (2)由题可得:y=sin -cos2 =- sinx, 2 2
1 1 1 ∴y′= -2sinx ′=- (sinx)′=- cosx. 2 2
1+ x+1- x 1 1 2 (3)y= + = = , 1- x 1+ x (1- x)(1+ x) 1-x
f(x)=ex f(x)=logax (a>0 且 a≠1) f(x)=lnx
f ′(x)=ex
1 f ′(x)=xlna(a>0,且 a≠1)
1 f ′(x)=x
4.导数运算法则
f (x)±g′(x) ; (1)[f(x)± g(x)]′=____________
f ′(x)g(x)+f(x)g′(x) ; (2)[f(x)·g(x)]′=__________________ f ′(x)g(x)-f(x)g′(x) f (x) 2 [ g ( x )] (3) ′=___________________ (g(x)≠0). g(x)

高考数学一轮复习 第三章 导数及其应用 第1讲 变化率与导数、导数的运算 理(2021年最新整理)

高考数学一轮复习 第三章 导数及其应用 第1讲 变化率与导数、导数的运算 理(2021年最新整理)

2018版高考数学一轮复习第三章导数及其应用第1讲变化率与导数、导数的运算理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第三章导数及其应用第1讲变化率与导数、导数的运算理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第三章导数及其应用第1讲变化率与导数、导数的运算理的全部内容。

第三章导数及其应用第1讲变化率与导数、导数的运算一、选择题1.设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为( )A.-错误! B.0 C.错误! D.5解析因为f(x)是R上的可导偶函数,所以f(x)的图象关于y轴对称,所以f(x)在x=0处取得极值,即f′(0)=0,又f(x)的周期为5,所以f′(5)=0,即曲线y=f(x)在x=5处的切线的斜率为0,选B。

答案 B2.函数f(x)是定义在(0,+∞)上的可导函数,且满足f(x)〉0,xf′(x)+f(x)〈0,则对任意正数a,b,若a>b,则必有( ).A.af(b)<bf(a)B.bf(a)<af(b)C.af(a)〈f(b) D.bf(b)〈f(a)解析构造函数F(x)=错误!(x>0),F′(x)=错误!,由条件知F′(x)〈0,∴函数F(x)=错误!在(0,+∞)上单调递减,又a〉b〉0,∴错误!〈错误!,即bf(a)〈af(b).答案B3.已知函数f(x)=x3+2ax2+错误!x(a〉0),则f(2)的最小值为( ).A.12错误!B.12+8a+错误!C.8+8a+错误!D.16解析f(2)=8+8a+错误!,令g(a)=8+8a+错误!,则g′(a)=8-错误!,由g′(a)〉0得a>错误!,由g′(a)<0得0<a〈错误!,∴a=错误!时f(2)有最小值.f(2)的最小值为8+8×错误!+错误!=16.故选D.答案D4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=().A.-e B.-1 C.1 D.e解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+错误!,∴f′(1)=2f′(1)+1,则f′(1)=-1。

最新-2018届高考数学一轮复习 31 变化率与导数、导数的计算课件 新人教A版 精品

最新-2018届高考数学一轮复习 31 变化率与导数、导数的计算课件 新人教A版 精品

2.函数y=f(x)在x=x0处的导数 (1)定义
称函数y=f(x)在x=x0处的瞬时变化率
lim
x0
f (x0 x) x
f (x0 )
=
y
lim
x0 x
为函数y=f(x)在
x=x0处的导数,记作f′(x0)或y′|x=x0,
即f′(x0)=
lim
x0
y x
=
lim f (x0 x) f (x0 )
复合而成,
∴y′=f′(u)·u′(x)=(u5)′(2x-3)′=5u4·2
=10u4=10(2x-3)4.
(2)设u=3-x,
则y=
3 x
由y=u
1 2
与u=3-x复合而成.
y
f
(u) u(x)
1
(u 2 )(3 x)
1
u
1 2
(1)
2
1
Байду номын сангаас
u
1 2
1
3x.
2
2 3 x 2x 6
(3)设y=u2,u=sin v,v=2x+ π , 3
( C)
x
A.Δx+ 1 +2
B.Δx- 1 -2
x
x
C.Δx+2
D.2+Δx- 1
x
解析 ∵Δy=(1+Δx)2+1-12-1=(Δx)2+2Δx,
∴ y =Δx+2. x
2.设正弦函数y=sin x在x=0和x= π 附近的平均变化率 2
为k1,k2,则k1,k2的大小关系为 ( A )
A.k1>k2
思维启迪 (1)A在曲线上,即求在A点的切线方程.

(课标通用)2018年高考数学一轮复习第三章导数及其应用3.1变化率与导数、导数的计算学案理

(课标通用)2018年高考数学一轮复习第三章导数及其应用3.1变化率与导数、导数的计算学案理

§3.1 变化率与导数、导数的计算考纲展示► 1.了解导数概念的实际背景. 2.理解导数的几何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1x的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.考点1 导数的概念及运算法则1.导数的概念函数y =f (x )在x =x 0处的导数:称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0Δy Δx=lim Δx →0fx 0+Δx -f x 0Δx为函数y=f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx=lim Δx →0________.函数f (x )的导函数:称函数f ′(x )= lim Δx →0f x +Δx -f xΔx 为f (x )的导函数.答案:f x 0+Δx -f x 0Δx2.基本初等函数的导数公式续表答案:0 αxα-1cos x -sin x e x a xln a xx ln a3.导数的运算法则(1)[f (x )±g (x )]′=________; (2)[f (x )g (x )]′=________; (3)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x2(g (x )≠0).答案:(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x ) 4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=________,即y 对x 的导数等于________的导数与________的导数的乘积.答案:y u ′·u x ′ y 对u u 对x(1)[教材习题改编]在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10.则运动员的速度v =________,加速度a =________.答案:-9.8t +6.5,-9.8(2)[教材习题改编]f (x )=cos x 在点⎝ ⎛⎭⎪⎫π2,0处的切线的倾斜角为________.答案:3π4导数运算中的两个误区:变量理解错误;运算法则用错. (1)若函数f (x )=2x 3+a 2,则f ′(x )=________.答案:6x 2解析:本题易出现一种求导错解:f ′(x )=6x 2+2a ,没弄清函数中的变量是x ,而a 只是一个字母常量,其导数为0.(2)函数y =ln xe x 的导函数为__________.答案:y ′=1-x ln xx e x解析:y ′=1x ·e x -e x·ln x x 2=1-x ln xx e x,易用错商的求导法则.[典题1] 分别求出下列函数的导数: (1)y =e xln x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x2cos x2;(4)y =ln 1+2x .[解] (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x·1x=e x ⎝ ⎛⎭⎪⎫ln x +1x .(2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x3.(3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12·11+2x ·(1+2x )′=11+2x .[点石成金] 导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导. (3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.考点2 导数运算的应用[典题2] (1)[2017·吉林实验中学高三]函数f (x )的导函数f ′(x ),对∀x ∈R ,都有f ′(x )>f (x )成立,若f (ln 2)=2,则满足不等式f (x )>e x 的x 的范围是( )A .(1,+∞)B .(0,1)C .(ln 2,+∞)D .(0,ln 2)[答案] C [解析] 设F (x )=f xex,F ′(x )=f xx-f xxx2=f x -f xex>0,∴F (x )在定义域R 上单调递增,不等式f (x )>e x即F (x )>1, ∵f (ln 2)=2,∴F (ln 2)=1,即F (x )>F (ln 2), ∴x >ln 2,故选C.(2)已知f (x )=12x 2+2xf ′(2 016)+2 016ln x ,则f ′(2 016)=________.[答案] -2 017[解析] 由题意得f ′(x )=x +2f ′(2 016)+2 016x,所以f ′(2 016)=2 016+2f ′(2016)+2 0162 016,即f ′(2 016)=-(2 016+1)=-2 017.(3)在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.[答案] 212[解析] 因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.[点石成金] 在求导过程中,要仔细分析函数解析式的特点,紧扣法则,记准公式,预防运算错误.1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=( )A.-1 B.-2C.2 D.0答案:B解析:∵f(x)=ax4+bx2+c,∴f′(x)=4ax3+2bx.又f′(1)=2,∴4a+2b=2,∴f′(-1)=-4a-2b=-2.2.设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n(x)=f′n-1(x),n∈N*,则f2 017(x)=( )A.sin x B.-sin xC.cos x D.-cos x答案:C解析:f1(x)=f0′(x)=cos x,f2(x)=f1′(x)=-sin x,f3(x)=f2′(x)=-cos x,f4(x)=f3′(x)=sin x,…,由规律知,这一系列函数式值的周期为4,故f2 017(x)=cos x.考点3 导数的几何意义导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点________处的________(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为________.答案:P(x0,y0) 切线的斜率y-y0=f′(x0)(x-x0)曲线y=2x3-3x+5在点(2,15)处的切线的斜率为________.答案:21解析:因为y′=6x2-3,所以曲线在点(2,15)处的切线的斜率k=6×22-3=21.求曲线的切线方程:确定切点;求导数;得出斜率;写出切线方程. (1) 曲线y =x e x+2x -1在点(0,-1)处的切线方程为__________. 答案:3x -y -1=0解析:依题意得y ′=(x +1)e x+2,则曲线y =x e x+2x -1在点(0,-1)处的切线的斜率k =(0+1)e 0+2=3,故曲线y =x e x +2x -1在点(0,-1)处的切线方程为y +1=3x ,即3x -y -1=0.(2)若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =__________. 答案:12解析:易知点(1,a )在曲线y =ax 2-ln x 上,y ′=2ax -1x,∴y ′|x =1=2a -1=0,∴a =12.[考情聚焦] 导数的几何意义是每年高考的必考内容,考查题型既有选择题、填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题.主要有以下几个命题角度: 角度一 求切线方程[典题3] (1)[2017·河北唐山模拟]曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0 D .(e -1)x -y -1=0 [答案] C[解析] 由于y ′=e -1x,所以y ′x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.(2)[2017·四川雅安模拟]设曲线y =e x+12ax 在点(0,1)处的切线与直线x +2y -1=0垂直,则实数a =( )A .3B .1C .2D .0[答案] C[解析] ∵与直线x +2y -1=0垂直的直线斜率为2, ∴f ′(0)=e 0+12a =2,解得a =2.(3)过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条 D .0条[答案] A[解析] 由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 2-3,利用点斜式方程可知切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程2x 30-6x 20+7=0.令y =2x 30-6x 20+7,则y ′=6x 20-12x 0.由y ′=0得x 0=0或x 0=2.当x 0=0时,y =7>0;当x 0=2时,y =-1<0.结合函数y =2x 30-6x 20+7的单调性可得方程2x 30-6x 20+7=0有3个解.故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条,故选A.角度二 求切点坐标[典题4] 若曲线y =x ln x 上点P 处的切线平行于直线 2x -y +1=0,则点P 的坐标是________.[答案] (e ,e)[解析] 由题意得y ′=ln x +x ·1x=1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P 的坐标为(e ,e).角度三 求参数的值[典题5] (1)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2[答案] C[解析] ∵两曲线的交点为(0,m ),∴⎩⎪⎨⎪⎧m =a ,m =1,即a =1,∴f (x )=cos x ,∴f ′(x )=-sin x ,则f ′(0)=0,f (0)=1.又g ′(x )=2x +b ,∴g ′(0)=b , ∴b =0,∴a +b =1.(2)若函数f (x )=12x 2-ax +ln x 上存在垂直于y 轴的切线,则实数a 的取值范围是________.[答案] [2,+∞)[解析] ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线, ∴f ′(x )存在零点, ∴x +1x-a =0有解,∴a =x +1x≥2(x >0).[点石成金] 1.注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.已知斜率k ,求切点A (x 0,f (x 0)),即解方程f ′(x 0)=k .3.(1)根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.(2)当切线方程中x (或y )的系数含有字母参数时,则切线恒过定点.[方法技巧] 1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;[f (x 0)]′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即[f (x 0)]′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. [易错防范] 1.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.2.利用公式求导时,要特别注意除法公式中分子的符号,防止与乘法公式混淆. 3.直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,但直线不一定是曲线的切线;同样,直线是曲线的切线,但直线与曲线可能有两个或两个以上的公共点.4.曲线未必在其切线的同侧,如曲线y =x 3在其过点(0,0)的切线y =0的两侧.真题演练集训1.[2014·大纲全国卷]曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1答案:C 解析:y ′=ex -1+x ex -1=(x +1)ex -1,故曲线在点(1,1)处的切线斜率为y ′|x =1=2.2.[2014·新课标全国卷Ⅱ]设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3答案:D 解析:y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 3.[2016·新课标全国卷Ⅲ]已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.答案:y =-2x -1解析:由题意可得,当x >0时,f (x )=ln x -3x ,则f ′(x )=1x-3,f ′(1)=-2,则在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.4.[2016·新课标全国卷Ⅱ]若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.答案:1-ln 2解析:设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)),则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2), 化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,得⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=-x2x 2+1+ln x 2+,解得x 1=12,从而b =ln x 1+1=1-ln 2.5.[2015·陕西卷]设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.答案:(1,1)解析:y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).课外拓展阅读求解导数问题最有效的两种解题方法方法一 公式法利用导数公式和运算法则求导数的方法为公式法,其基本的解题步骤是: 第一步,用公式,运用导数公式和运算法则对所给函数进行求导; 第二步,得结论; 第三步,解后反思.[典例1] [改编题]求函数y =sin 2⎝ ⎛⎭⎪⎫2x +π3的导数. [思路分析][解] 解法一:y ′=2sin ⎝⎛⎭⎪⎫2x +π3⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x +π3′ =2sin ⎝⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3·⎝ ⎛⎭⎪⎫2x +π3′ =4sin ⎝⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3 =2sin ⎝⎛⎭⎪⎫4x +2π3. 解法二:设y =u 2,u =sin v ,v =2x +π3, 则y ′=y u ′·u v ′·v x ′=2u ·cos v ·2=4sin v cos v=4sin ⎝⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3 =2sin ⎝⎛⎭⎪⎫4x +2π3. 温馨提示当函数中既有复合函数求导,又有函数的四则运算时,要根据题中给出的表达式决定是先用四则运算还是先用复合函数求导法则,同时需要注意,复合函数的求导原则是从外层到内层进行,不要遗漏.方法二 构造法有些与函数有关的问题无法直接用导数来处理的,需要构造新的函数进行解决,这样的方法称为构造法,其基本的解题步骤是:第一步,构造函数,对要求的函数进行变形,或构造一个新的函数;第二步,运用公式,对变形后的函数或新构造的函数运用导数公式和运算法则进行求导; 第三步,得出结论.[典例2] 证明:当x >1时,有ln 2(x +1)>ln x ·ln(x +2).[思路分析][证明] 构造辅助函数f (x )=x +ln x (x >1),于是有f ′(x )=x ln x -x +x +x x +2x .因为1<x <x +1,所以0<ln x <ln(x +1),即x ln x <(x +1)ln(x +1).则在(1,+∞)内恒有f ′(x )<0,故f (x )在(1,+∞)内单调递减.又1<x <x +1,则f (x )>f (x +1), 即x +ln x >x +x +, 所以ln 2(x +1)>ln x ·ln(x +2).技巧点拨要证明f (x )>g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )>0,则F (x )在(a ,b )内是增函数,同时F (a )≥0,则有x ∈(a ,b )时,F (x )>0,即证明了f (x )>g (x ).同理可证明f (x )<g (x ).但要注意,此法中所构造的函数F (x )在给定区间内应是单调的.混淆“在某点处的切线”与“过某点的切线”致误[典例3] 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a =( ) A .-1或-2564B .-1或214C .-74或-2564D .-74或7[易错分析] 没有对点(1,0)是否为切点进行分析,误认为是切点而出错.[解析] 因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与y =x 3相切于点(x 0,x 30),则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32. 当x 0=0时,切线方程为y =0,由y =0与y =ax 2+154x -9相切可得a =-2564; 当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564. [答案] A易错提醒1.对于曲线切线方程问题的求解,对曲线的求导是一个关键点,因此求导公式、求导法则及导数的计算原则要熟练掌握.2.对于已知的点,应先确定其是否为曲线的切点,进而选择相应的方法求解.。

2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标13 变化率与导数、导数的计算 理

2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标13 变化率与导数、导数的计算 理

2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标13变化率与导数、导数的计算 理[解密考纲]本考点主要考查导数的计算和曲线的切线问题,涉及导数的问题,离不开导数的计算,它是导数方法的基础;曲线的切线问题,有时在选择题、填空题中考查,有时会出现在解答题中的第(1)问.一、选择题1.若f (x )=2xf ′(1)+x 2,则f ′(0)=( D ) A .2 B .0 C .-2D .-4解析:f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2,所以f ′(0)=2f ′(1)+0=-4.2.在等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( D )A .0B .26C .29D .212解析:∵f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)·…·(x -a 8)]′ =(x -a 1)·…·(x -a 8)+x [(x -a 1)·…·(x -a 8)]′, ∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8 =(a 1·a 8)4=(2×4)4=(23)4=212.3.(2017·河南八市质检)已知函数f (x )=sin x -cos x ,且f ′(x )=12f (x ),则tan 2x的值是( D )A .-23B .-43C .43D .34解析:因为f ′(x )=cos x +sin x =12sin x -12cos x ,所以tan x =-3,所以tan 2x =2tan x 1-tan 2x =-61-9=34,故选D . 4.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( B )A .⎣⎢⎡⎭⎪⎫0,π4B .⎣⎢⎡⎭⎪⎫3π4,πC .⎝ ⎛⎦⎥⎤π2,3π4 D .⎣⎢⎡⎭⎪⎫π4,π2 解析:∵y =4e x +1,∴y ′=-4e xx +2=-4exx2+2e x+1=-4e x+1ex +2≥-1⎝ ⎛⎭⎪⎫当且仅当e x =1e x ,即x =0时取等号,∴-1≤tan α<0. 又∵0≤α<π,∴3π4≤α<π,故选B .5.(2017·河南郑州质检)函数f (x )=e xcos x 在点(0,f (0))处的切线方程为( C ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0D .x -y -1=0解析:∵f ′(x )=e xcos x +e x(-sin x )=e x(cos x -sin x ),∴f ′(0)=e 0(cos 0-sin 0)=1.又∵f (0)=1,∴f (x )在点(0,1)处的切线方程为y -1=x ,即x -y +1=0,故选C .6.下面四个图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)=( D )A .13B .-23C .73D .-13或53解析:∵f ′(x )=x 2+2ax +a 2-1, ∴f ′(x )的图象开口向上,则②④排除. 若f ′(x )的图象为①,此时a =0,f (-1)=53;若f ′(x )的图象为③,此时a 2-1=0, 又对称轴x =-a >0,∴a =-1,∴f (-1)=-13.二、填空题7.(2017·广东惠州模拟)曲线y =-5e x+3在点(0,-2)处的切线方程为5x +y +2=0.解析:由y =-5e x +3得,y ′=-5e x,所以切线的斜率k =y ′|x =0=-5,所以切线方程为y +2=-5(x -0),即5x +y +2=0.8.(2017·河北邯郸模拟)曲线y =log 2x 在点(1,0)处的切线与坐标轴所围三角形的面积等于12log 2e.解析:∵y ′=1x ln 2,∴k =1ln 2,∴切线方程为y =1ln 2(x -1), ∴三角形面积为S =12×1×1ln 2=12ln 2=12log 2e.9.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点坐标为⎝ ⎛⎭⎪⎫3,94-3ln 3. 解析: ∵y ′=x 2-3x,∴⎩⎪⎨⎪⎧x 2-3x =12,x >0,解得x =3.故切点坐标为⎝ ⎛⎭⎪⎫3,94-3ln 3.三、解答题10.(1)已知f (x )=e πx·sin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12;(2)已知f (x )=(x +1+x 2)10,求f f.解析:(1)∵f ′(x )=πe πx sin πx +πe πxcos πx , ∴f ′⎝ ⎛⎭⎪⎫12=πe π2 ⎝ ⎛⎭⎪⎫sin π2+cos π2=πe π2 .(2)∵f ′(x )=10(x +1+x 2)9·⎝ ⎛⎭⎪⎫1+x1+x 2, ∴f ′(1)=10(1+2)9·⎝⎛⎭⎪⎫1+12=102(1+2)10=52(1+2)10. 又f (1)=(1+2)10,∴f f=5 2.11.已知曲线C :y =x 3-6x 2-x +6. (1)求C 上斜率最小的切线方程;(2)证明:C 关于斜率最小时切线的切点对称.解析:(1)y ′=3x 2-12x -1=3(x -2)2-13.当x =2时,y ′最小,即切线的斜率最小,最小值为-13,切点为(2,-12),切线方程为y +12=-13(x -2),即13x +y -14=0.(2)证明:设点(x 0,y 0)∈C ,点(x ,y )是点(x 0,y 0)关于切点(2,-12)对称的点,则⎩⎪⎨⎪⎧x 0=4-x ,y 0=-24-y .∵点(x 0,y 0)∈C ,∴-24-y =(4-x )3-6(4-x )2-(4-x )+6,整理得y =x 3-6x 2-x +6.∴点(x ,y )∈C ,于是曲线C 关于切点(2,-12)对称. 12.设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f (x )的解析式;(2)证明:函数y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点的切线与直线x =1和直线y =x 所围成的三角形的面积为定值,并求出此定值.解析:(1)f ′(x )=a -1x +b2,于是⎩⎪⎨⎪⎧2a +12+b =3,a -1+b2=0,解得⎩⎪⎨⎪⎧a =1,b =-1或⎩⎪⎨⎪⎧a =94,b =-83.因为a ,b ∈Z ,所以a =1,b =-1,故f (x )=x +1x -1. (2)证明:已知函数y 1=x ,y 2=1x都是奇函数.所以函数g (x )=x +1x也是奇函数,其图象是以原点为中心的中心对称图形.而f (x )=x-1+1x -1+1.可知,函数g (x )的图象按向量a =(1,1)平移,即得到函数f (x )的图象,故函数f (x )的图象是以点(1,1)为对称中心的中心对称图形.(3)证明:在曲线上任取一点⎝⎛⎭⎪⎫x 0,x 0+1x 0-1, 由f ′(x 0)=1-1x 0-2知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎢⎡⎦⎥⎤1-1x 0-2(x-x 0).令x =1得y =x 0+1x 0-1,切线与直线x =1的交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1.令y =x 得x =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1). 直线x =1与直线y =x 的交点为(1,1).从而所围三角形的面积为12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪⎪⎪2x 0-1|2x 0-2|=2.所以所围三角形的面积为定值2.。

【2018年高考一轮课程】文科数学 全国通用版 变化率与导数、导数的计算以及导数的几何意义 教案

【2018年高考一轮课程】文科数学  全国通用版 变化率与导数、导数的计算以及导数的几何意义 教案

一、自我诊断 知己知彼1.设()f x 存在导函数且满足()()112lim 12x f f x x∆→--∆=-∆,则曲线()f x 在点()()1,1f 处的切线的斜率为( )A. ﹣1B. ﹣2C. 1D. 2 【答案】A【解析】∵()f x 存在导函数且满足()()112lim12x f f x x∆→--∆=-∆∴曲线()y f x =在点()()1,1f 处的切线的斜率为()()()1121lim 12x f f x f x∆→--∆∆'==-故选A. 2.函数x xy e=在[0,2]上的最大值是( ) A.1e B. 22e 【答案】A 【解析】∵()x xf x e=, ∴()1xxf x e ='-, ∴当1x <时, ()()0,f x f x '>单调递增;当1x >时, ()()0,f x f x '<单调递减.∴()()max 11f x f e==.选A . 3.已知a 为函数()312f x x x =-的极小值点,则a =( ) A. -9 B. -2 C. 4 D. 2 【答案】D【解析】∵()312f x x x =-,∴()()()2312322f x x x x ==-'-+,∴当2x <-或2x >时, ()()0,f x f x '>单调递增; 当22x -<<时, ()()0,f x f x '<单调递减.∴当2x =时, ()f x 有极小值,即函数的极小值点为2.选D . 4.函数()af x x =, a Q ∈,若()'14f =,则a 的值为( )A. 4B. -4C. 5D. -5 【答案】A 【解析】()a f x x =()1a f x ax -∴=' ()'14f =114a a -∴⨯=, 4a =故选A5.函数y 22sin x cos x =-的导数是( )A. 24y x π⎛⎫=-⎪⎝⎭' B. cos2sin2y x x -'=C. sin2cos2y x x +'=D. 24y x π⎛⎫=+ ⎪⎝⎭' 【答案】A 【解析】因为y 2s i n x c o s x=-,所以()''sin2cos22222222444y x x cos x sin x sin os x os sin x x πππ⎫⎛⎫=-=+=+=-⎪⎭' ⎪⎝⎭,故选A.二、温故知新 夯实基础1.导数与导函数的概念 (1)一般地,函数()y f x =在0x x =处的瞬时变化率是()()0000limlim x x f x x f x yx x ∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作()00|x x f x y ''=或,即()0'f x =()()0000limlim x x f x x f x yx x∆→∆→+∆-∆=∆∆.(2)如果函数()y f x =在开区间(),a b 内的每一点处都有导数,其导数值在(),a b 内构成一个新函数,这个函数称为函数()y f x =在开区间内的导函数.记作()'f x 或'y . 2.导数的几何意义函数()y f x =在点0x 处的导数的几何意义,就是曲线()y f x =在点()00,()P x f x 处的切线的斜率k ,即()0'k f x =. 3.基本初等函数的导数公式4.导数的运算法则若()()','f x g x 存在,则有[()()]''()'()f x g x f x g x ±=±[()()]''()()()'()f x g x f x g x f x g x =+2()'()()()'()[]' [()0]()[()]f x f x g x f x g x g x g x g x -=≠''[()]()kf x kf x =.5.复合函数的导数复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为''',x u x y y u =即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.三、典例剖析 思维拓展考点一 导数的计算1.若()0'2f x =,则()()000limh f x h f x h h→+--=( )A. 1B. 2C. 4D. 6 【答案】C【解析】分析:由导函数定义, ()()()0000lim2?'h f x h f x h f x h→+--=,即可求出结果.详解:∵()0'2f x =, 则()()000h f x h f x h limh→+--=()()()()00000h f x h f x f x f x h limh→+-+--=()()()()00000h h f x h f x f x h f x limlimhh→-→+---+-=2f ′(x 0)=4. 故选:C .点睛:本题考查了导函数的概念,考查了转化的思想方法,考查了计算能力,属于中档题.2.若函数()f x 在R 上可导, ()()2ln f x xf e x +'=,则()f e '=( ) A. 1 B. -1 C. 1e- D. e - 【答案】C【解析】求导得: ()()1'2'f x f e x =+ ,把x e = 代入得()()1'2'f e f e e=+ 解得()1'-.f e e=考点二 导数的几何意义1.设函数()ln 1f x x =-的图象与x 轴相交于点A ,则()f x 在点A 处的切线方程为__________.【答案】0x ey e --= 【解析】函数()ln 1fx x =-与x 轴相交于点为(),0e , ()1f x x'=,故切线斜率()1k f e e ='=,故切线方程为: ()1y x e e=-,即: 0x ey e --=.故答案为: 0x ey e --=2.曲线():sin 2xC f x x e =++在0x =处的切线方程为_______.【答案】23y x =+【解析】∵曲线():sin 2xC f x x e =++∴()cos xf x x e ='+,则()02f '=.∴曲线C 在0x =处的切线的斜率为()02k f ='= ∵()03f =∴曲线C 在0x =处的切线方程为23y x =+ 故答案为23y x =+.3.已知函数()3f x x =,则过(1,1)的切线方程为__________.【答案】313244y x y x =-=+或【解析】 由函数()3f x x =,则()23f x x '=,当点()1,1为切点时,则()13f '=,即切线的斜率3k =, 所以切线的方程为()131y x -=-,即32y x =-,当点()1,1不是切点时,设切点()3,P m m ,则32131m k m m -==-,即2210m m --=,解得12m =-或1m =(舍去),所以34k = 所以切线的方程为()3114y x -=-,即3144y x =+.四、举一反三 成果巩固考点一导数的计算1.求下列函数的导数.()231(21)x y x =+ ()2sin2x y e x -=.【答案】(1)2422'(21)x x y x -=+;(2)'(2cos2sin2xy e x x -=-. 【解析】试题分析:(1)根据导数的除法运算法求导即可; (2)根据导数的乘法运算法则和复合函数的求导法则求导即可. 试题解析:()3222642(21)3(21)2221'(21)(21)x x x x x x y x x ⋅+-⋅+⋅-==++; ()()2'sin22cos22cos2sin2x x x y e x e x e x x ---=-+=-.2.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为()()()042064,,,,,,则()()11lim2x f x f x→--= ____________ .(用数字作答)【答案】1 【解析】()()()f 04f 42f 24===,,,∴由函数的图象可知,2402y 226x x x x -+≤≤⎧=⎨-≤≤⎩,,,由导数的几何意义知()()()x 0f 1x f 11lim f '112x2→--=-=.故答案为:1.3.已知函数()()221f x x xf =+',则()1f 的值为__________.【答案】-3【解析】 由函数()()221f x x xf =+',则()()221f x x f +''=,令1x =,所以()()1221f f =+'',解得()12f '=-,即()24f x x x =-,所以()211413f =-⨯=-.4.已知()21cos2y x =+,则3|x y π='= __________.【答案】【解析】()()()'21cos2sin224sin21cos2y x x x x =+⋅-⋅=-+;∴31|412x y π=⎛⎫=--= ⎪⎝⎭'故答案为:考点二 导数的几何意义1.已知函数()ln xf x x x e =-(e 为自然对数的底数),则()y f x =在点()()1,1f 处的切线方程为_______。

2018版高考数学一轮复习 第三章 导数及其应用 3.1 变化率与导数、导数的计算真题演练集训 理

2018版高考数学一轮复习 第三章 导数及其应用 3.1 变化率与导数、导数的计算真题演练集训 理

2018版高考数学一轮复习 第三章 导数及其应用 3.1 变化率与导数、导数的计算真题演练集训 理 新人教A 版1.[2014·大纲全国卷]曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1答案:C 解析:y ′=ex -1+x ex -1=(x +1)ex -1,故曲线在点(1,1)处的切线斜率为y ′|x =1=2.2.[2014·新课标全国卷Ⅱ]设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3答案:D 解析:y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 3.[2016·新课标全国卷Ⅲ]已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.答案:y =-2x -1解析:由题意可得,当x >0时,f (x )=ln x -3x ,则f ′(x )=1x-3,f ′(1)=-2,则在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.4.[2016·新课标全国卷Ⅱ]若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.答案:1-ln 2解析:设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)),则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2), 化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,得⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=-x2x 2+1+x 2+,解得x 1=12,从而b =ln x 1+1=1-ln 2.5.[2015·陕西卷]设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.答案:(1,1)解析:y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).课外拓展阅读求解导数问题最有效的两种解题方法方法一 公式法利用导数公式和运算法则求导数的方法为公式法,其基本的解题步骤是: 第一步,用公式,运用导数公式和运算法则对所给函数进行求导; 第二步,得结论; 第三步,解后反思.[典例1] [改编题]求函数y =sin 2⎝ ⎛⎭⎪⎫2x +π3的导数. [思路分析][解] 解法一:y ′=2sin ⎝ ⎛⎭⎪⎫2x +π3⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x +π3′=2sin ⎝ ⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3·⎝ ⎛⎭⎪⎫2x +π3′=4sin ⎝ ⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3 =2sin ⎝⎛⎭⎪⎫4x +2π3.解法二:设y =u 2,u =sin v ,v =2x +π3,则y ′=y u ′·u v ′·v x ′ =2u ·cos v ·2 =4sin v cos v=4sin ⎝ ⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3 =2sin ⎝ ⎛⎭⎪⎫4x +2π3. 温馨提示当函数中既有复合函数求导,又有函数的四则运算时,要根据题中给出的表达式决定是先用四则运算还是先用复合函数求导法则,同时需要注意,复合函数的求导原则是从外层到内层进行,不要遗漏.方法二 构造法有些与函数有关的问题无法直接用导数来处理的,需要构造新的函数进行解决,这样的方法称为构造法,其基本的解题步骤是:第一步,构造函数,对要求的函数进行变形,或构造一个新的函数;第二步,运用公式,对变形后的函数或新构造的函数运用导数公式和运算法则进行求导; 第三步,得出结论.[典例2] 证明:当x >1时,有ln 2(x +1)>ln x · ln(x +2). [思路分析][证明] 构造辅助函数f (x )=x +ln x(x >1),于是有f ′(x )=x ln x -x +x +x x +2x.因为1<x <x +1,所以0<ln x <ln(x +1), 即x ln x <(x +1)ln(x +1). 则在(1,+∞)内恒有f ′(x )<0, 故f (x )在(1,+∞)内单调递减. 又1<x <x +1, 则f (x )>f (x +1), 即x +ln x>x +x +,所以ln 2(x +1)>ln x ·ln(x +2). 技巧点拨要证明f (x )>g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )>0,则F (x )在(a ,b )内是增函数,同时F (a )≥0,则有x ∈(a ,b )时,F (x )>0,即证明了f (x )>g (x ).同理可证明f (x )<g (x ).但要注意,此法中所构造的函数F (x )在给定区间内应是单调的.混淆“在某点处的切线”与“过某点的切线”致误[典例3] 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a =( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[易错分析] 没有对点(1,0)是否为切点进行分析,误认为是切点而出错. [解析] 因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20, 所以切线方程为y -x 30=3x 20(x -x 0), 即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.[答案] A易错提醒1.对于曲线切线方程问题的求解,对曲线的求导是一个关键点,因此求导公式、求导法则及导数的计算原则要熟练掌握.2.对于已知的点,应先确定其是否为曲线的切点,进而选择相应的方法求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节变化率与导数、导数的计算A组基础题组1.已知函数f(x)=cos x,则f(π)+f '=( )A.-B.-C.-D.-2.(2017黑龙江、吉林八校联考)函数f(x)=x+sin x的图象在x=处的切线与两坐标轴围成的三角形的面积为( )A. B. C. D.+13.已知f(x)=x(2 014+ln x),若f '(x0)=2 015,则x0=( )A.e2B.1C.ln 2D.e4.(2016安徽安庆二模)给出定义:设f '(x)是函数y=f(x)的导函数, f ″(x)是函数f '(x)的导函数,若方程f ″(x)=0有实数解x0,则称点(x0, f(x0))为函数y=f(x)的“拐点”.已知函数f(x)=3x+4sin x-cos x的拐点是M(x0, f(x0)),则点M( )A.在直线y=-3x上B.在直线y=3x上C.在直线y=-4x上D.在直线y=4x上5.(2015河南郑州质检二)已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g'(x)是g(x)的导函数,则g'(3)=( )A.-1B.0C.2D.46.若曲线y=xln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是.7.(2016课标全国Ⅲ,16,5分)已知f(x)为偶函数,当x≤0时, f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是.8.已知函数f(x)=e x-mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为.9.已知函数f(x)=x3-2x2+3x(x∈R)的图象为曲线C.(1)求过曲线C上任意一点切线斜率的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.10.已知函数f(x)=x-,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.B组提升题组11.(2016山东,10,5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是( )A.y=sin xB.y=ln xC.y=e xD.y=x312.(2016安徽皖江名校联考)已知函数f(x)=e x-2ax,g(x)=-x3-ax2.若不存在x1,x2∈R,使得f /(x1)=g/(x2),则实数a的取值范围为( )A.(-2,3)B.(-6,0)C.[-2,3]D.[-6,0]13.(2016重庆二诊)已知函数f(x)=+sin x,其导函数为f '(x),则f(2 016)+f(-2 016)+f '(2 016)-f'(-2 016)的值为( )A.0B.2C.2 016D.-2 01614.已知f(x)=acos x,g(x)=x2+bx+1,若曲线y=f(x)与曲线y=g(x)在交点(0,m)处有公切线,则a+b=( )A.-1B.0C.1D.215.若函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是 .16.设函数f(x)=ax-,曲线y=f(x)在点(2, f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.答案全解全析A组基础题组1.C ∵f '(x)=-cos x+(-sin x), f(π)=-,∴f(π)+f '=-+·(-1)=-.2.A f(x)=x+sin x,则f '(x)=1+cos x,则f '=1,而f=+1,故函数f(x)的图象在x=处的切线方程为y-=x-,即y=x+1.令x=0,可得y=1;令y=0,可得x=-1.故该切线与两坐标轴围成的三角形的面积为×1×1=.故选A.3.B 由题意可知f '(x)=2 014+ln x+x·=2 015+ln x.由f '(x0)=2 015,得ln x0=0,解得x0=1.4.B f '(x)=3+4cos x+sin x, f ″(x)=-4sin x+cos x,由题意知4sin x0-cos x0=0,所以f(x0)=3x0,故M(x0, f(x0))在直线y=3x上.故选B.5.B 由题图可知曲线y=f(x)在x=3处切线的斜率等于-,∴f '(3)=-.∵g(x)=xf(x),∴g'(x)=f(x)+xf '(x),∴g'(3)=f(3)+3f '(3),又由题图可知f(3)=1,∴g'(3)=1+3×=0.6.答案(e,e)解析令f(x)=xln x,则f '(x)=ln x+1,设P(x 0,y0),则f '(x0)=ln x0+1=2,∴x0=e,此时,y0=x0ln x0=eln e=e,∴点P的坐标为(e,e).7.答案y=2x解析当x>0时,-x<0, f(-x)=e x-1+x,而f(-x)=f(x),所以f(x)=e x-1+x(x>0),点(1,2)在曲线f(x)=e x-1+x(x>0)上,易知f '(1)=2,故曲线y=f(x)在点(1,2)处的切线方程是y-2=f '(1)·(x-1),即y=2x.8.答案解析函数f(x)=e x-mx+1的导函数为f '(x)=e x-m,要使曲线C存在与直线y=ex垂直的切线,则需e x-m=-有解,即m=e x+有解,由e x>0,得m>.则实数m的取值范围为.9.解析(1)由题意得f '(x)=x2-4x+3,则f '(x)=(x-2)2-1≥-1,即过曲线C上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C的其中一条切线的斜率为k,则由(2)中条件并结合(1)中结论可知,解得-1≤k<0或k≥1,故由-1≤x2-4x+3<0或x2-4x+3≥1,得x∈(-∞,2-]∪(1,3)∪[2+,+∞).10.解析根据题意有曲线y=f(x)在x=1处的切线斜率为f '(1)=3,曲线y=g(x)在x=1处的切线斜率为g'(1)=-a.又f '(1)=g'(1),所以a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1),得y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),得y+6=3(x-1),即切线方程为3x-y-9=0,所以两条切线不是同一条直线.B组提升题组11.A 设函数y=f(x)图象上两点的横坐标为x1,x2.由题意知只需函数y=f(x)满足f '(x1)·f '(x2)=-1(x1≠x2)即可.y=f(x)=sin x的导函数为f '(x)=cos x, f '(0)·f '(π) =-1,故A满足;y=f(x)=ln x的导函数为f '(x)=, f '(x1)·f '(x2)=>0,故B不满足;y=f(x)=e x的导函数为f '(x)=e x, f '(x1)·f '(x2)=>0,故C不满足;y=f(x)=x3的导函数为f '(x)=3x2, f '(x1)·f '(x2)=9≥0,故D不满足.故选A.12.D 依题意,知函数f '(x)与g'(x)值域的交集为空集,∵f '(x)=e x-2a>-2a,g'(x)=-3x2-2ax≤,∴≤-2a,解得-6≤a≤0.13.B ∵f(x)=+sin x,∴f '(x)=-+cos x,f(x)+f(-x)=+sin x++sin(-x)=2,∴f '(x)-f '(-x)=-+cos x+-cos(-x)=0,∴f(2 016)+f(-2 016)+f '(2 016)-f '(-2 016)=2.14.C 依题意得, f '(x)=-asin x,g'(x)=2x+b, f '(0)=g'(0),∴-asin 0=2×0+b,故b=0,∵m=f(0)=g(0),∴m=a=1,因此a+b=1,选C.15.答案∪解析 f '(x)=+a(x>0).∵函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,∴方程+a=2在区间(0,+∞)上有解,即a=2-在区间(0,+∞)上有解,∴a<2.若直线2x-y=0与曲线f(x)=ln x+ax相切,设切点为(x0,2x0),则解得x0=e,a=2-.综上,实数a的取值范围是∪. 16.解析(1)方程7x-4y-12=0可化为y=x-3,当x=2时,y=,故2a-=,又f '(x)=a+,即有a+=,解得a=1,b=3.故f(x)=x-.(2)证明:设P(x0,y0)为曲线上任一点,由(1)知, f '(x)=1+,则曲线在点P(x0,y0)处的切线方程为y-y0=(x-x0),即y-=(x-x0).令x=0,得y=-,从而得切线与直线x=0的交点坐标为.令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以曲线y=f(x)在点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为·|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,此定值为6.。

相关文档
最新文档