2018年全国各地高考数学试题及解答分类大全(导数及其应用)
2018年高考真题汇编(函数与导数)

函数与导数1 .【2018年浙江卷】函数【解析】分析:先研究函数的奇偶性』再研究雷数在G")上的符号,即可判断选择详解;令= 2圍血滋,因为^ e =刃*血2(—x) = —2罔血Zx = —fG()p所以fOO = 2團血2耳力奇画数’排除选项止出因为工匸$町时『f@) < 0,所以曲穩选项J选D点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.c = b眉2. 【2018年理天津卷】已知il=lo^^in2, 2 ,则a, b, c的大小关系为A. u > b>cB.b>u> e C c> b> a D.c> a> b【答案】D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果b = ln2 = -^―e (0A)c= 3詰=和g* > Sg声详解:由题意结合对数函数的性质可知: "忆吆>1, 5慾, 2据此可得:•本题选择D选项.点睛:对于指数幕的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幕的底数或指数不相同,不能直接利用函数的单调性进行比较•这就必须掌握一些特殊方法•在进行指数幕的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断•对于不同底而同指数的指数幕的大小的比较,利用图象法求解,既快捷,又准确.龙兰0*3. 【2018年理新课标I卷】已知函数I曲乩北〉心饥巧二“/) + +a .若g (x)存在2个零点,则a的取值范围是A. [ - 1, 0)B. [0 , +R)C. [ - 1 , +R)D. [1 , +R)【答案】C【解析】分析;首先根据存在2个零点,得到方程f CO十""哨两个亀将其转化为金〉二-覽-口有两个解,即直线y =-第-诣曲^二fCO有两个交点”根据題中所给的函数解析式,画出函数f何的團像(将町4掉A再画出直绳=-补并将其上下移动』从图中可臥发现走丄时/龊7=-電-口与曲线y=f^>有两个玄点'从而求得结果.详解:画出函数的图像,7■-了在y轴右侧的去掉,再画出直线卜:讨,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程■有两个解,也就是函数有两个零点,此时满足,即• ,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果4. 【2018年理新课标I卷】设函数兀心--,若$叩为奇函数,则曲线:在点’ 处的切线方程为A.卜「阙B. H" - '■ - -IC."划D.【答案】D【解析】分析;利用奇函数偶此项系数为零求得"X进而得到的解析式,再对“)求导得出桩戋的斜率©进而求得切线方程.详解;因豹画数雇苛函数J 解得"二4所以』⑴二卯1,门>)二阪y 所臥厂◎二九代町二g所汰曲线y二厲刃在点(啦处的切线方程为y-m))二比建简可得y二知故选D点睛:该题考查的是有关曲线卜在某个点凤煮強;;|处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得帀,借助于导数的几何意义,结合直线方程的点斜式求得结果•5. 【2018年全国卷川理】设“=』0目仇2°収,方=衍的帖,贝UA. N + bunbcOB.C. u + bcOca/iD. kb<OCQ +市【答案】B1 i I 11【解析】分析:求出-= io^^ 2t-=lo^.32,得到- +二的范围,进而可得结果。
2018年全国各地高考数学试题及解答分类大全(圆锥曲线与方程)

2018年全国各地高考数学试题及解答分类大全 (圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=x y -的焦点坐标是( )A .(−2,0),(2,0) B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)1..答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2. (2018上海)设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2(B )2(C )2(D )43.(2018天津文、理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )(A )22139x y -= (B )22193x y -=(C )221412x y -= (D )221124x y -= 3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --=+,22222bc b bc b d c a b ++==+, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率:2229112c b e a a a==++,据此可得23a =,则双曲线的方程为22139x y -=.故选A .4.(2018全国新课标Ⅰ文)已知椭圆C:22214x ya+=的一个焦点为(20),,则C的离心率为()A.13B.12C.2D .224、答案:C解答:知2c=,∴2228a b c=+=,22a=,∴离心率22e=.5.(2018全国新课标Ⅰ理)已知双曲线C:2213xy-=,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN△为直角三角形,则|MN|=()A.32B.3 C.23D.45. 答案:B解答:渐近线方程为:2203xy-=,即3y x=±,∵OMN∆为直角三角形,假设2ONMπ∠=,如图,∴3NMk=,直线MN方程为3(2)y x=-.联立333(2)y xy x⎧=-⎪⎨⎪=-⎩∴33(,)22N-,即3ON=,∴3MONπ∠=,∴3MN=,故选B.6.(2018全国新课标Ⅰ理)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为23的直线与C 交于M,N两点,则FM FN⋅=()A.5 B.6 C.7 D.86. 答案:D解答:由题意知直线MN的方程为2(2)3y x=+,设1122(,),(,)M x y N x y,与抛物线方程联立有22(2)34y xy x⎧=+⎪⎨⎪=⎩,可得1112xy=⎧⎨=⎩或2244xy=⎧⎨=⎩,∴(0,2),(3,4)FM FN==,∴03248FM FN⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c ce a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==,由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5 B .2C .3D .211.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1||6||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,∴222222222224(6)4644633b c a bb c a b c a c a c+-=⇒+-=⇒-=- 223c a ⇒=3e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>5,则a =_________. 2.【答案】4【解析】在双曲线中,2224c a b a =++,且5c e a ==245a +,22454a a +=,216a ∴=,04a a >∴=.3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________. 3.31;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为3113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m m e m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。
解三角形、数列2018年全国数学高考分类真题(含答案)

解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n=2a n﹣1+1,②,﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。
2018年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)

2018年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)一、选择题1.(2018全国新课标Ⅰ文、理)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =1. 答案:D解答:∵()f x 为奇函数,∴()()f x f x -=-,即1a =,∴3()f x x x =+,∴'(0)1f =,∴切线方程为:y x =,∴选D.二、填空1.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .1.【答案】3-【解析】由()2620f x x ax '=-=得0x =,3ax =,因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以03a>,03a f ⎛⎫= ⎪⎝⎭, 因此3221033a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,3a =,从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0f x f =,()()(){}()min min 1,11f x f f f =-=-,()()()()max min 01143f x f x f f +=+-=-=-.2.(2018天津文)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 2.【答案】e【解析】由函数的解析式可得:()11e ln e e ln x x x f x x x x x ⎛⎫=⨯+⨯='+ ⎪⎝⎭,则()111e ln1e 1f ⎛⎫=⨯+= ⎪⎝⎭'.即()1f '的值为e .3.(2018全国新课标Ⅱ文)曲线2ln y x =在点(1,0)处的切线方程为__________. 3.【答案】22y x =-【解析】由()2ln y f x x ==,得()2f x x'=,则曲线2ln y x =在点()1,0处的切线的斜率为()12k f ='=,则所求切线方程为()021y x -=-,即22y x =-.4.(2018全国新课标Ⅱ理)曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 4.【答案】2y x =【解析】21y x '=+,2201k ∴==+,2y x ∴=.5.(2018全国新课标Ⅲ理)曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 5.答案:3-解答:(1)x x y ae ax e =+,则(0)12f a '=+=-,所以3a =-.三、解答题1.(2018北京文)设函数()()23132e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()22f ,处的切线斜率为0,求a ; (2)若()f x 在1x =处取得极小值,求a 的取值范围. 1.【答案】(1)12;(2)()1,+∞. 【解析】(1)()()23132e x f x ax a x a ⎡⎤=-+++⎣⎦,()()211e xf x ax a x ⎡⎤∴=-++⎣⎦',()()2221e f a -'=,由题设知()20f '=,即()221e 0a -=,解得12a =. (2)方法一:由(1)得()()()()211e 11e x xf x ax a x ax x ⎡⎤=-++=--⎣⎦'.若1a >,则当11x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<;当()1x ∈+∞,时,()0f x '>. 所以()f x 在1x =处取得极小值.若1a ≤,则当()01x ∈,时,110ax x -≤-<,()0f x ∴'>. 所以1不是()f x 的极小值点. 综上可知,a 的取值范围是()1,+∞. 方法二:()()()11e x f x ax x =--'.(1)当0a =时,令()0f x '=得1x =,()f x ',()f x 随x 的变化情况如下表:()f x ∴(2)当0a >时,令()0f x '=得11x a =,21x =. ①当12x x =,即1a =时,()()21e 0x f x x '=-≥,()f x ∴在R 上单调递增, ()f x ∴无极值,不合题意.②当1x x >,即01a <<时,()f x ',()f x 随x 的变化情况如下表:()f x ∴在1x =处取得极大值,不合题意.③当x x <,即1a >时,f x ',f x 随x 的变化情况如下表:x1a ⎛⎫-∞ ⎪⎝⎭,1a 1,1a ⎛⎫ ⎪⎝⎭ 1 ()1+∞,()f x ' +-+()f x极大值极小值()f x ∴(3)当0a <时,令()0f x '=得11x a =,21x =,()f x ',()f x 随x 的变化情况如下表: x1a ⎛⎫-∞ ⎪⎝⎭,1a 1,1a ⎛⎫ ⎪⎝⎭ ()1+∞,()f x ' -+-()f x极小值 极大值(f ∴综上所述,a 的取值范围为()1+∞,.2.(2018北京理)设函数()f x =[2(41)43ax a x a -+++]e x . (Ⅰ)若曲线y= f (x )在点(1,(1)f )处的切线与x 轴平行,求a ;(Ⅱ)若()f x 在x =2处取得极小值,求a 的取值范围.2.【答案】(1)a 的值为1;(2)a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.【解析】(1)因为()()24143e xf x ax a x a ⎡⎤=-+++⎣⎦, 所以()()()2241e 4143e x xf x ax a ax a x a '⎡⎤=-++-+++⎡⎤⎣⎦⎣⎦ ()2–212e xax a x ⎡⎤=++⎣⎦,()()11e f a '=-,由题设知()10f '=,即()1e 0a -=,解得1a =. 此时()13e 0f =≠,所以a 的值为1.(2)由(1)得()()()()2–212e 12e x xf x ax a x ax x '⎡⎤=++=--⎣⎦. 若12a >,则当1,2x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<; 当()2,x ∈+∞时,()0f x '>,所以()0f x <在2x =处取得极小值. 若12a ≤,则当()0,2x ∈时,20x -<,1–1102ax x ≤-<,所以()0f x '>,所以2不是()f x 的极小值点. 综上可知,a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.3.(2018江苏)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.3.【答案】(1)见解析;(2)a 的值为e 2; (3)对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.【解析】(1)函数()f x x =,()222g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x =+-=+⎧⎨⎩,此方程组无解,因此,()f x 与()g x 不存在“S ”点.(2)函数()21f x ax =-,()ln g x x =,则()2f x ax '=,()1g x x'=. 设0x 为()f x 与()g x 的“S ”点,由()0f x 与()0g x 且()0f x '与()0g x ',得200001ln 12ax x ax x ⎧-==⎪⎨⎪⎩,即200201ln 21ax x ax -==⎧⎨⎩,(*) 得01ln 2x =-,即120e x -=,则2121e e 22a -==⎛⎫⎪⎝⎭. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S ”点.因此,a 的值为e2.(3)对任意0a >,设()323h x x x ax a =--+.因为()00h a =>,()11320h a a =--+=-<,且()h x 的图象是不间断的,所以存在()00,1x ∈,使得()00h x =,令()03002e 1x x b x =-,则0b >.函数()2f x x a =-+,()e xb g x x =,则()2f x x '=-,()()2e 1x b x g x x-'=. 由()()f x g x =且()()f x g x ''=,得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1xx x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**), 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间()0,1内的一个“S 点”. 因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2; (Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.4..答案:(1)略;(2)略.解答:(1)1()f x x '=,不妨设12()()f x f x t ''==,即12,x x1t x=的两2102xtx -+=的根,所以1404t ∆=->,得1016t <<12t =1t=,12122111()()ln ln 2ln 22f x f x x x t t t t+=-=-=+,令1()2ln 2g t t t =+,222141()022t g t t t t -'=-=<,∴()g t 在1(0,)16上单调递减. 所以1()()88ln 216g t g >=-,即12()()88ln 2f x f x +>-.(2)设()()()ln h x kx a f x kx x a =+-=-+,则当x 充分小时()0h x <,充分大时()0h x >,所以()h x 至少有一个零点,则2111())164h x k k x '=+=-+-,①116k ≥,则()0h x '≥,()h x 递增,()h x 有唯一零点,②1016k <<,则令211())0416h x k '=-+-=,得()h x 有两个极值点1212,()x x x x <,14>,∴1016x <<.可知()h x 在1(0,)x 递增,12(,)x x递减,2(,)x+∞递增,∴1111111()ln )ln h x kx x a x x a x=++=+11ln xa =-++,又1111()h x x '=+=, ∴1()h x 在(0,16)上单调递增,∴1()(16)ln163ln16334ln 20h x h a <=-+≤-+-=, ∴()h x 有唯一零点,综上可知,0k >时,y kx a =+与()y f x =有唯一公共点.5.(2018天津文)设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d == 求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III)若曲线()y f x = 与直线 12()y x t =---有三个互异的公共点,求d 的取值范围.5.【答案】(1)0x y +=;(2)极大值为;极小值为-(3)((),10,-∞+∞.【解析】(1)由已知,可得()()()311f x x x x x x =-+=-,故()231f x x ='-, 因此()00f =,()01f '=-,又因为曲线()y f x =在点()()0,0f 处的切线方程为()()()000y f f x '-=-,故所求切线方程为0x y +=.(2)由已知可得()()()()()()()332232222222223393399f x x t x t x t x t x t x t x t x t t =-+---=---=-+--+.故()22223639f x x t x t +'=--.令()0f x '=,解得2x t =,或2x t =+. 当x 变化时,()f x ',()f x 的变化如下表:所以函数()f x 的极大值为29f t =-⨯=()f x 的极小值为(329f t =-⨯=-(3)曲线()y f x =与直线()2y x t =---x 的方程()()()()22220x t d x t x t d x t -+---+-+=有三个互异的实数解,令2u x t =-,可得()3210u d u +-+.设函数()()321g x x d x =+-+则曲线()y f x =与直线()2y x t =---价于函数()y g x =有三个零点.()()32'31g x x d =+-.当21d ≤时,()'0g x ≥,这时()g x 在R 上单调递增,不合题意.当21d >时,()'0g x =,解得1x =,2x =.易得,()g x 在()1,x -∞上单调递增,在[]12,x x 上单调递减,在()2,x +∞上单调递增.()g x 的极大值())3221109d g x g ⎛- ==+ ⎝.()g x 的极小值())322219d g x g -==-+. 若()20g x ≥,由()g x 的单调性可知函数()y g x =至多有两个零点,不合题意.若()20g x <,即()322127d ->,也就是d >,此时2d x >,()0g d d =+,且12d x -<,()32620g d d d -=--+-,从而由()g x 的单调性,可知函数()y g x =在区间()12,d x -,()12,x x ,()2,x d 内各有一个零点,符合题意.所以,d 的取值范围是((),10,-∞+∞.6.(2018天津理)已知函数()xf x a =,()log a g x x =,其中a >1. (I )求函数()()lnh x f x x a =-的单调区间;(II )若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln ax g x a+=-; (III )证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线. 6.【答案】(1)单调递减区间(),0-∞,单调递增区间为()0,+∞; (2)证明见解析;(3)证明见解析. 【解析】(1)由已知,()ln xh x a x a =-,有()ln ln x h x a a a '=-, 令()0h x '=,解得0x =.由1a >,可知当x 变化时,()h x ',()h x 的变化情况如下表:所以函数(2)由()ln x f x a a '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1ln x a a , 由()1ln g x x a=',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21ln x a ,因为这两条切线平行,故有121ln ln x a a x a=,即()122ln 1x x a a =,两边取以a 为底的对数,得212log 2log ln 0a x x a ++=,所以()122ln ln ln ax g x a+=-,(3)曲线()y f x =在点()11,x x a 处的切线()1111:ln x x l y a a a x x -=⋅-,曲线()y g x =在点()22,log a x x 处的切线()22221log :ln a l y x x x x a-=⋅-, 要证明当1ee a ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线,只需证明当1ee a ≥时,存在()1,x ∈-∞+∞,()20,x ∈+∞,使得1l 和2l 重合.即只需证明当1ee a ≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧⎪⎪⎨=⎪-⎪=-⎩①②有解,由①得()1221ln x x a a =,代入②,得111112ln ln ln 0ln ln x x aa x a a x a a -+++=③, 因此,只需证明当1ee a ≥时,关于1x 的方程③存在实数解.设函数()12ln ln ln ln ln x x au x a xa a x a a =-+++, 即要证明当1ee a ≥时,函数()y u x =存在零点.()()21ln x u x a xa ='-,可知(),0x ∈-∞时,()0u x '>; ()0,x ∈+∞时,()u x '单调递减,又()010u '=>,()()21ln 2110ln a u a a ⎡⎤⎢⎥=-⎥'<⎢⎣⎦,故存在唯一的0x ,且00x >,使得()00u x '=,即()0201ln 0x a x a -=, 由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减.()u x 在0x x =处取得极大值()0u x ,因为1ee a ≥,故lnln 1a ≥-,所以()0000012ln ln ln ln ln x x a u x a x a a x a a =-+++()02012ln ln 22ln ln 0ln ln ln a a x a a x a +=++≥≥, 下面证明存在实数t ,使得()0u t <,由(1)可得1ln x a x a ≥+,当1ln x a >时, 有()()()12ln ln 1ln 1ln ln ln a u x x a x a x a a ≤+-+++()2212ln ln ln 1ln ln a a x x a a=-++++, 所以存在实数t ,使得()0u t <, 因此,当1e e a ≥时,存在()1,x ∈-∞+∞,使得()10u x =,所以,当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.7.(2018全国新课标Ⅰ文)已知函数()e ln 1x f x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥.7.答案:见解析解答:(1)()f x 定义域为(0,)+∞,1()x f x ae x'=-. ∵2x =是()f x 极值点,∴(2)0f '=,∴2211022ae a e-=⇒=. ∵x e 在(0,)+∞上增,0a >,∴x ae 在(0,)+∞上增. 又1x在(0,)+∞上减,∴()f x '在(0,)+∞上增.又(2)0f '=, ∴当(0,2)x ∈时,()0f x '<,()f x 减;当(2,)x ∈+∞时,()0f x '>,()f x 增.综上,212a e=,单调增区间为(2,)+∞,单调减区间为(0,2).(2)∵0x e ≥,∴当1a e ≥时有11x x x ae e e e-≥⋅=,∴1()ln 1ln 1x x f x ae x e x -=--≥--.令1()ln 1x g x e x -=--,(0,)x ∈+∞.11()x g x e x -'=-,同(1)可证()g x '在(0,)+∞上增,又111(1)01g e -'=-=,∴当(0,1)x ∈时,()0g x '<,()g x 减;当(1,)x ∈+∞时,()0g x '>,()g x 增. ∴11min ()(1)ln111010g x g e -==--=--=,∴当1a e≥时,()()0f x g x ≥≥.8.(2018全国新课标Ⅰ理)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.8.答案:(1)见解析;(2)见解析.解答:(1)①∵1()ln f x x a x x =-+,∴221'()x ax f x x-+=-,∴当22a -≤≤时,0∆≤,'()0f x ≤,∴此时()f x 在(0,)+∞上为单调递减.②∵0∆>,即2a <-或2a >,此时方程210x ax -+=两根为12x x ==,当2a <-时,此时两根均为负,∴'()f x 在(0,)+∞上单调递减.当2a >时,0∆>,此时()f x在上单调递减,()f x在(22a a -上单调递增,()f x在()2a ++∞上单调递减.∴综上可得,2a ≤时,()f x 在(0,)+∞上单调递减;2a >时,()f x 在(0,)2a,()2a ++∞上单调递减,()f x在上单调递增.(2)由(1)可得,210x ax -+=两根12,x x 得2a >,1212,1x x a x x +=⋅=,令120x x <<,∴121x x =,1211221211()()ln (ln )f x f x x a x x a x x x -=-+--+21122()(ln ln )x x a x x =-+-.∴12121212()()ln ln 2f x f x x x a x x x x --=-+⋅--,要证1212()()2f x f x a x x -<--成立,即要证1212ln ln 1x x x x -<-成立,∴1122212ln 0(1)x x x x x x x -+<>-,2221212ln 0x x x x x --+∴<-即要证22212ln 0x x x --+>(21x >) 令1()2ln (1)g x x x x x=--+>,可得()g x 在(1,)+∞上为增函数,∴()(1)0g x g >=,∴1212ln ln 1x x x x -<-成立,即1212()()2f x f x a x x -<--成立.9.(2018全国新课标Ⅰ理)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?9. 答案:略解答:(1)由题可知221820()(1)f p C p p =-(01p <<).∴2182172172020()[2(1)18(1)(1)]2(1)(110)f p C p p p p C p p p =-+-⨯-=--∴当1(0,)10p ∈时,()0f p '>,即()f p 在1(0,)10上递增;当1(,1)10p ∈时,()0f p '<,即()f p 在1(,1)10上递减.∴()f p 在点110p =处取得最大值,即0110p =.(2)(i )设余下产品中不合格品数量为Y ,则4025X Y =+,由题可知1(180,)10Y B ,∴11801810EY np ==⨯=.∴(4025)4025402518490EX E Y EY =+=+=+⨯=(元).(ii )由(i )可知一箱产品若全部检验只需花费400元,若余下的不检验则要490元,所以应该对余下的产品作检验.10.(2018全国新课标Ⅱ文)已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点.10.【答案】(1)(–,3∞-,()3++∞单调递增,(3-+单调递减;(2)见解析.【解析】(1)当3a =时,()3213333f x x x x --=-,()263x x f x -'-=.令()0f x '=解得3x =-3x =+当(3–,x -∈∞()3++∞时,()0f x '=;当(3x -∈+时,()0f x '<.故()f x 在(–,3∞-,()3++∞单调递增,在(3-+单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则()()()22222310x x x x x g x ++++'=≥,仅当0x =时()0g x '=,所以()g x 在()–∞+∞,单调递增,故()g x 至多有一个零点,从而()f x 至多有一个零点. 又()22111631260366a a a f a ⎛⎫-+-=--- ⎪⎝⎭=<-,()03131f a +=>,故()f x 有一个零点.综上,()f x 只有一个零点.11.(2018全国新课标Ⅱ理)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .11.【答案】(1)见解析;(2)2e 4.【解析】(1)当1a =时,()1f x ≥等价于()21e 10x x -+-≤,设函数()()21e 1x g x x -=+-,则()()()2221e 1e x x g'x x x x --=--+=--, 当1x ≠时,()0g'x <,所以()g x 在()0,+∞单调递减,而()00g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数()21e x h x ax -=-,()f x 在()0,+∞只有一个零点当且仅当()h x 在()0,+∞只有一个零点.当0a ≤时,()0h x >,()h x 没有零点;当0a >时,()()2e xh x ax x -'=-. 当()0,2x ∈时,()0h'x <;当()2,x ∈+∞时,()0h'x >.()h x ∴在()0,2单调递减,在()2,+∞单调递增.故()2421e a h =-是()h x 在[)0,+∞的最小值. ①若()20h >,即2e 4a <,()h x 在()0,+∞没有零点; ②若()20h =,即2e 4a =,()h x 在()0,+∞只有一个零点; ③若()20h <,即2e 4a >,由于()01h =,所以()h x 在()0,2有一个零点, 由(1)知,当0x >时,2e x x >,所以()()()33324421616161411110e 2e a a a a a h a a a =-=->-=->. 故()h x 在()2,4a 有一个零点,因此()h x 在()0,+∞有两个零点.综上,()f x 在()0,+∞只有一个零点时,2e 4a =.12.(2018全国新课标Ⅲ文)已知函数21()e xax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程;(2)证明:当1a ≥时,()e 0f x +≥.12.答案:详见解析解答:(1)由题意:()21x ax x f x e+-=得222(21)(1)22()()x x x x ax e ax x e ax ax x f x e e+-+--+-+'==, ∴2(0)21f '==,即曲线()y f x =在点()0,1-处的切线斜率为2,∴(1)2(0)y x --=-,即210x y --=;(2)证明:由题意:原不等式等价于:1210x e ax x +++-≥恒成立;令12()1x g x e ax x +=++-,∴1()21x g x e ax +'=++,1()2x g x e a +''=+,∵1a ≥,∴()0g x ''>恒成立,∴()g x '在(,)-∞+∞上单调递增,∴()g x '在(,)-∞+∞上存在唯一0x 使0()0g x '=,∴010210x e ax +++=,即01021x e ax +=--,且()g x 在0(,)x -∞上单调递减,在0(,)x +∞上单调递增,∴0()()g x g x ≥.又01220000000()1(12)2(1)(2)x g x e ax x ax a x ax x +=++-=+--=+-,111()1a g e a -'-=-,∵1a ≥,∴11011a e e -≤-<-,∴01x a≤-,∴0()0g x ≥,得证. 综上所述:当1a ≥时,()0f x e +≥.13.(2018全国新课标Ⅲ理)已知函数()()()22ln 12f x x ax x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;(2)若0x =是()f x 的极大值点,求a .13.答案:(1)见解答;(2)16a =-. 解答:(1)若0a =时,()(2)ln(1)2(1)f x x x x x =++->-, ∴1()ln(1)(2)21f x x x x '=+++-+1ln(1)11x x =++-+. 令1()ln(1)11h x x x =++-+, ∴2211()1(1)(1)x h x x x x '=-=+++. ∴当0x >时,()0h x '>,()h x 在(0,)+∞上单调递增,当10x -<<时,()0h x '<,()h x 在(1,0)-上单调递减.∴min ()(0)ln1110h x h ==+-=,∴()0f x '≥恒成立,∴()f x 在(1,)-+∞上单调递增,又(0)2ln100f =-=,∴当10x -<<时,()0f x <;当0x >时,()0f x >.(2)21()(21)ln(1)11ax f x ax x x +'=+++-+, 22212(1)1()2ln(1)01(1)ax ax x ax f x a x x x ++--''=+++≤++, 222(1)ln(1)(21)(1)210a x x ax x ax ax +++++++-≤,222(1)ln(1)340a x x ax ax x +++++≤,22[2(1)ln(1)34]a x x x x x ++++≤-.设22()2(1)ln(1)34h x x x x x =++++,∴()4(1)ln(1)2(1)64h x x x x x '=++++++,(0)60h '=>,(0)0h =, ∴在0x =邻域内,0x >时,()0h x >,0x <时,()0h x <.0x >时,222(1)ln(1)34x a x x x x -≤++++,由洛必达法则得16a ≤-, 0x <时,222(1)ln(1)34x a x x x x -≥++++,由洛必达法则得16a ≥-, 综上所述,16a =-.。
2018全国高考试题分类汇编-导数部分(含解析)

2018年全国高考试题分类汇编-导数部分(含解析)1.(2018·全国卷I高考理科·T5)同(2018·全国卷I高考文科·T6)设函数f=x3+-x2+ax.若f为奇函数,则曲线y=f在点处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x2.(2018·全国卷II高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为3.(2018·全国卷II高考文科·T13)曲线y=2ln x在点(1,0)处的切线方程为4.(2018·全国Ⅲ高考理科·T14)曲线y=e x在点处的切线的斜率为-2,则a=.5.(2018·天津高考文科·T10)已知函数f(x)=e x ln x,f′(x)为f(x)的导函数,则f′(1)的值为.6.(2018·全国卷I高考理科·T16)已知函数f=2sin x+sin2x,则f的最小值是.7.(12分)(2018·全国卷I高考文科·T21)已知函数f=a e x-ln x-1.(1)设x=2是f的极值点.求a,并求f的单调区间.(2)证明:当a≥时,f≥0.8.(2018·全国Ⅲ高考理科·T21)(12分)已知函数f=ln-2x.(1)若a=0,证明:当-1<x<0时,f<0;当x>0时,f>0.(2)若x=0是f的极大值点,求a.9.(2018·全国Ⅲ高考文科·T21)(12分)已知函数f=-.(1)求曲线y=f在点-处的切线方程.(2)证明:当a≥1时,f+e≥0.10.(本小题13分)(2018·北京高考理科·T18)设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a.(2)若f(x)在x=2处取得极小值,求a的取值范围.11.(本小题13分)(2018·北京高考文科·T19)设函数f(x)=[ax2-(3a+1)x+3a+2]e x.(1)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a.(2)若f(x)在x=1处取得极小值,求a的取值范围.12.(12分)(2018·全国卷I高考理科·T21)已知函数f=-x+a ln x.(1)讨论f的单调性.(2)若f存在两个极值点x1,x2,证明:-<a-2.-13.(2018·全国卷II高考理科·T21)(12分)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1.(2)若f(x)在(0,+∞)只有一个零点,求a.14.(2018·全国卷II高考文科·T21)(12分)已知函数f=x3-a.(1)若a=3,求f(x)的单调区间.(2)证明:f(x)只有一个零点.15.(本小题满分14分)(2018·天津高考理科·T20)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)-x ln a的单调区间.(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=-.(Ⅲ)证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.(本小题满分14分)(2018·天津高考文科·T20)设函数f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点,求d的取值范围.17.(本小题满分14分)(2018·江苏高考·T17)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围.(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)(2018·江苏高考·T19)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x-2不存在“S点”.(2)若函数f(x)=ax2-1与g(x)=ln x存在“S点”,求实数a的值.(3)已知函数f(x)=-x2+a,g(x)=,对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.19.(2018·浙江高考T22)(本题满分15分)已知函数f(x)=-ln x.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8-8ln2.(Ⅱ)若a≤3-4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.1.【解析】选D.因为f(x)为奇函数,所以f(-x)=-f(x),即a=1,所以f(x)=x3+x,所以f′(0)=1,所以切线方程为y=x.2.【解析】y′=,k==2,所以切线方程为y-0=2(x-0),即y=2x.答案:y=2x3.【解析】y′=,k==2,所以切线方程为y-0=2(x-1)即y=2x-2.答案:y=2x-24.【解析】由y=(ax+1)e x,所以y′=a e x+(ax+1)e x=(ax+1+a)e x,故曲线y=(ax+1)e x在(0,1)处的切线的斜率为k=a+1=-2,解得a=-3.答案:-35.【解析】因为f(x)=e x ln x,所以f′(x)=(e x ln x)′=(e x)′ln x+e x(ln x)′=e x·ln x+e x·,f′(1)=e1·ln1+e1·=e.答案:e6.【解析】方法一:f′(x)=2cos x+2cos2x=4cos2x+2cos x-2=4(cos x+1)-, 所以当cos x<时函数单调减,当cos x>时函数单调增,从而得到函数的减区间为--(k∈Z),函数的增区间为-(k∈Z),所以当x=2kπ-,k∈Z时,函数f(x)取得最小值,此时sin x=-,sin2x=-,所以f(x)min=2×--=-.方法二:因为f(x)=2sin x+sin2x,所以f(x)最小正周期为T=2π,所以f′(x)=2(cos x+cos2x)=2(2cos2x+cos x-1),令f′(x)=0,即2cos2x+cos x-1=0,所以cos x=或cos x=-1.所以当cos x=,为函数的极小值点,即x=或x=π,当cos x=-1,x=π,所以f=-,f=,f(0)=f(2π)=0,f(π)=0,所以f(x)的最小值为-.答案:-7.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=a e x-.由题设知,f′(2)=0,所以a=.从而f(x)=e x-ln x-1,f′(x)=e x-.当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)当a≥时,f(x)≥-ln x-1.设g(x)=-ln x-1,则g′(x)=-.当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当时a≥时,f(x)≥0.8.【解析】(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f′(x)=ln(1+x)-.设函数g(x)=f′(x)=ln(1+x)-,则g′(x)=.当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0.故当x>-1时,g(x)≥g(0)=0,当且仅当x=0时,g(x)=0,从而f′(x)≥0,当且仅当x=0时,f′(x)=0.所以f(x)在(-1,+∞)上单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)(i)若a≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.(ii)若a<0,设函数h(x)==ln(1+x)-.由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点,当且仅当x=0是h(x)的极大值点. h′(x)=--=.如果6a+1>0,则当0<x<-,且|x|<min时,h′(x)>0,故x=0不是h(x)的极大值点.如果6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h′(x)<0,所以x=0不是h(x)的极大值点..如果6a+1=0,则h′(x)=---则当x∈(-1,0)时,h′(x)>0;当x∈(0,1)时,h′(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-.9.【解析】(1)f(x)的定义域为R,f′(x)=--,显然f(0)=-1,即点(0,-1)在曲线y=f(x)上,所求切线斜率为k=f′(0)=2,所以切线方程为y-(-1)=2(x-0),即2x-y-1=0.(2)方法一(一边为0):令g(x)=-ax2+(2a-1)x+2,当a≥1时,方程g(x)的判别式Δ=(2a+1)2>0,由g(x)=0得,x=-,2,且-<0<2,x,f′(x),f(x)的关系如下①若x∈(-∞,2],f(x)≥f-=-又因为a≥1,所以0<≤1,1<≤e,-≥-e,f(x)+e≥0,②若x∈(2,+∞),ax2+x-1>4a+2-1>0,e x>0,所以f(x)=->0,f(x)+e≥0,综上,当a≥1时,f(x)+e≥0.方法二(充要条件):①当a=1时,f(x)=-.显然e x>0,要证f(x)+e≥0只需证-≥-e, 即证h(x)=x2+x-1+e·e x≥0,h′(x)=2x+1+e·e x,观察发现h′(-1)=0,x,h′(x),h(x)的关系如下所以h(x)有最小值h(-1)=0,所以h(x)≥0即f(x)+e≥0.②当a>1时,由①知,-≥-e,又显然ax2≥x2,所以ax2+x-1≥x2+x-1,f(x)=-≥-≥-e,即f(x)+e≥0.综上,当a≥1时,f(x)+e≥0.方法三(分离参数):当x=0时,f(x)+e=-1+e≥0成立.当x≠0时,f(x)+e≥0等价于-≥-e,等价于ax2+x-1≥-e·e x,即ax2≥-e·e x-x+1等价于a≥--=k(x),等价于k(x)max≤1.k′(x)=--,令k′(x)=0得x=-1,2.x,k′(x),k(x)的关系如下又因为k(-1)=1,k(2)=-<0,所以k(x)max=1,k(x)≤1,x≠0,综上,当a≥1时,f(x)+e≥0.10.【解析】(1)因为f(x)=[ax2-(4a+1)x+4a+3]e x,所以f′(x)=[2ax-(4a+1)]e x+[ax2-(4a+1)x+4a+3]e x=[ax2-(2a+1)x+2]e x. f′(1)=(1-a)e.由题设知f′(1)=0,即(1-a)e=0,解得a=1.此时f(1)=3e≠0,所以a的值为1.(2)由(1)得f′(x)=[ax2-(2a+1)x+2]e x=(ax-1)(x-2)e x.若a>,则当x∈时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)在x=2处取得极小值.若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0, 所以f′(x)>0.所以2不是f(x)的极小值点.综上可知,a的取值范围是(,+∞).11.【解析】(1)因为f(x)=[ax2-(3a+1)x+3a+2]e x, 所以f′(x)=[ax2-(a+1)x+1]e x,f′(2)=(2a-1)e2, 由题设知f′(2)=0,即(2a-1)e2=0,解得a=.(2)方法一:由(1)得f′(x)=[ax2-(a+1)x+1]e x=(ax-1)(x-1)e x若a>1,则当x∈时,f′(x)<0.当x∈(1,+∞)时,f′(x)>0.所以f(x)在x=1处取得极小值.若a≤1,则当x∈(0,1)时,ax-1≤x-1<0,所以f′(x)>0.所以1不是f(x)的极小值点.综上可知,a的取值范围是(1,+∞).方法二:f′(x)=(ax-1)(x-1)e x.①当a=0时,令f′(x)=0得x=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.②当a>0时,令f′(x)=0得x1=,x2=1.(ⅰ)当x1=x2,即a=1时,f′(x)=(x-1)2e x≥0,所以f(x)在R上单调递增,所以f(x)无极值,不合题意.(ⅱ)当x1>x2,即0<a<1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.(ⅲ)当x1<x2,即a>1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极小值,即a>1满足题意.③当a<0时,令f′(x)=0得x1=,x2=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.综上所述,a的取值范围为(1,+∞).12.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=--1+=--.(i)若a≤2,则f′(x)≤0,当且仅当a=2,x=1时f′(x)=0,所以f(x)在(0,+∞)上单调递减.(ii)若a>2,令f′(x)=0得,x=--或x=-.当x∈--∪-时,f′(x)<0;当x∈---时,f′(x)>0.所以f(x)在--,-上单调递减,在---上单调递增.(2)由(1)知,f(x)存在两个极值点,当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x1<x2,则x2>1.由于--=--1+a--=-2+a--=-2+a--,所以--<a-2等价于-x2+2ln x2<0.设函数g(x)=-x+2ln x,由(1)知,g(x)在(0,+∞)上单调递减,又g(1)=0,从而当x ∈(1,+∞)时,g(x)<0.所以-x2+2ln x2<0,即--<a-2.13.【解析】(1)当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g′(x)<0,所以g(x)在(0,1)∪(1,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.(2)设函数h(x)=1-ax2e-x.f(x)在(0,+∞)上只有一个零点当且仅当h(x)在(0,+∞)上只有一个零点.(i)当a≤0时,h(x)>0,h(x)没有零点;(ii)当a>0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,h′(x)>0.所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-是h(x)在[0,+∞)上的最小值.①若h(2)>0,即a<,h(x)在(0,+∞)上没有零点;②若h(2)=0,即a=,h(x)在(0,+∞)上只有一个零点;③若h(2)<0,即a>,由于h(0)=1,所以h(x)在(0,2)上有一个零点,由(1)知,当x>0时,e x>x2,所以h(4a)=1-=1->1-=1->0.故h(x)在(2,4a)有一个零点,因此h(x)在(0,+∞)有两个零点.综上,f(x)在(0,+∞)只有一个零点时,a=.14.【解析】(1)当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.令f′(x)=0解得x=3-2或3+2.当x∈(-∞,3-2)或(3+2,+∞)时,f′(x)>0;当x∈(3-2,3+2)时,f′(x)<0.故f(x)在(-∞,3-2),(3+2,+∞)上单调递增,在(3-2,3+2)上单调递减.(2)由于x2+x+1>0,所以f(x)=0等价于-3a=0.设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)上单调递增.故g(x)至多有一个零点.又f(3a-1)=-6a2+2a-=-6--<0,f(3a+1)=>0,故f(x)有一个零点.综上,f(x)只有一个零点.15.【解析】(I)由已知,h(x)=a x-x ln a,有h′(x)=a x ln a-ln a.令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如表:所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(II)由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处的切线斜率为ln a.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线斜率为.因为这两条切线平行,故有ln a=,即x2(ln a)2=1.两边取以a为底的对数,得log a x2+x1+2log a(ln a)=0,所以x1+g(x2)=-. (III)曲线y=f(x)在点(x1,)处的切线l1:y-=ln a·(x-x1).曲线y=g(x)在点(x2,log a x2)处的切线l2:y-log a x2=(x-x2).要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(-∞,+∞),x2∈(0,+∞),使得l1和l2重合.即只需证明当a≥时,方程组有解,--由①得x2=,代入②,得-x1ln a+x1++=0③,因此,只需证明当a≥时,关于x1的方程③有实数解.设函数u(x)=a x-xa x ln a+x++,即要证明当a≥时,函数y=u(x)存在零点. u′(x)=1-(ln a)2xa x,可知x∈(-∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′[]=1-<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即1-(ln a)2x0=0.由此可得u(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减.u(x)在x=x0处取得极大值u(x0).因为a≥,故ln(ln a)≥-1,所以u(x0)=-x0ln a+x0++=+x0+≥≥0.下面证明存在实数t,使得u(t)<0.由(I)可得a x≥1+x ln a,当x>时,有u(x)≤(1+x ln a)(1-x ln a)+x++=-(ln a)2x2+x+1++,所以存在实数t,使得u(t)<0,因此,当a≥时,存在x1∈(-∞,+∞),使得u(x1)=0.所以,当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.【解析】(Ⅰ)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1,因此f(0)=0,f′(0)=-1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(Ⅱ)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3-9)x-+9t2.故f′(x)=3x2-6t2x+3-9.令f′(x)=0,解得x=t2-,或x=t2+.当x变化时,f′(x),f(x)的变化情况如表:所以函数f(x)的极大值为f(t2-)=(-)3-9×(-)=6;函数极小值为f(t2+)=()3-9×=-6.(III)曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于关于x的方程(x-t2+d)(x-t2)(x-t2-d)+(x-t2)+6=0有三个互异的实数解,令u=x-t2,可得u3+(1-d2)u+6=0.设函数g(x)=x3+(1-d2)x+6,则曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于函数y=g(x)有三个零点.g′(x)=3x2+(1-d2).当d2≤1时,g′(x)≥0,这时g′(x)在R上单调递增,不合题意.当d2>1时,g′(x)=0,解得x1=--,x2=-.易得,g(x)在(-∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增,g(x)的极大值g(x1)=g-=-+6>0,g(x)的极小值g(x2)=g-=--+6.若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.若g(x2)<0,即(d2-1>27,也就是|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且-2|d|<x1,g(-2|d|)=-6|d|3-2|d|+6<-62+6<0,从而由g(x)的单调性,可知函数y=g(x)在区间(-2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意.所以d的取值范围是(-∞,-)∪(,+∞)17.【解析】(1)设PO的延长线交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40-40sinθ)=1600(cosθ-sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈.当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是.答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ-sinθcosθ),sinθ的取值范围是.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ-sinθcosθ) =8000k(sinθcosθ+cosθ),θ∈.设f(θ)=sinθcosθ+cosθ,θ∈,则f′(θ)=cos2θ-sin2θ-sinθ=-(2sin2θ+sinθ-1)=-(2sinθ-1)(sinθ+1).令f′(θ)=0,得θ=,当θ∈时,f′(θ)>0,所以f(θ)为增函数;当θ∈时,f′(θ)<0,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.18.【解析】(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)=g′(x),得-此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数f(x)=ax2-1,g(x)=ln x,则f′(x)=2ax,g′(x)=.设x0为f(x)与g(x)的“S”点,由f(x0)=g(x0)且f′(x0)=g′(x0),得-即-(*)得ln x0=-,即x0=-,则a=-=.当a=时,x0=-满足方程组(*),即x0为f(x)与g(x)的“S”点.因此,a的值为.(3)f′(x)=-2x,g′(x)=-,(x≠0),由f′(x0)=g′(x0),得b=-->0,得0<x0<1,由f(x0)=g(x0),得-+a==--,得a=--,令h(x)=x2---a=---,(a>0,0<x<1),设m(x)=-x3+3x2+ax-a,(a>0,0<x<1),则m(0)=-a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.19.【解析】(Ⅰ)函数f(x)的导函数f′(x,由f′(x1)=f′(x2)得-=-,因为x1≠x2,所以+=.由基本不等式得=+≥2.因为x1≠x2,所以x1x2>256.由题意得f(x1)+f(x2)=-ln x1+-ln x2=-ln(x1x2).设g(x)=-ln x,则g′(x)=(-4),所以所以g(x)在(256,+∞)上单调递增,故g(x1x2)>g(256)=8-8ln2,即f(x1)+f(x2)>8-8ln2.(Ⅱ)令m=e-(|a|+k),n=+1,则f(m)-km-a>|a|+k-k-a≥0,f(n)-kn-a<n-≤n<0,所以,存在x0∈(m,n)使f(x0)=kx0+a,所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a得k=--.设h(x)=--,则h′(x)=--=--,其中g(x)=-ln x.由(Ⅰ)可知g(x)≥g(16),又a≤3-4ln2,故-g(x)-1+a≤-g(16)-1+a=-3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)-kx-a=0至多1个实根.综上,当a≤3-4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。
全国卷Ⅲ2018年理数高考试题解析(word档含答案解析)

为 9 3 ,则三棱锥 D ABC 体积的最大值为
A .0.7
B. 0.6
C. 0.4
D. 0.3
9.△ ABC 的内角 A ,B ,C 的对边分别为
a2 a ,b , c ,若 △ ABC 的面积为
b2
c2 ,则 C
4
A. π 2
B. π 3
C. π 4
D. π 6
10.设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三角形且其面积
项是符合题目要求的.
1.已知集合 A x | x 1≥ 0 , B 0,1,2 ,则 A B
A. 0
B. 1
C. 1,2
D. 0,1,2
2. 1 i 2 i
A. 3 i
B. 3 i
C. 3 i
D. 3 i
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图
中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长
2018 年普通高等学校招生全国统一考试
理科数学
注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
方体,则咬合时带卯眼的木构件的俯视图可以是
4.若 sin A. 8 9
1 ,则 cos 2
3
B. 7 9
2018年全国各地高考数学试题及解答分类汇编大全08-13

2018年全国各地高考数学试题及解答分类汇编大全 (08三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .AB B .CD C .EF D .GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 2cos 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 2cos 4f x x x x π⎛⎫=-=+ ⎪⎝⎭错误!未找到引用源。
2018全国各地高考数学试题汇编附解析

2018全国各地高考数学试题汇编(附解析)2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ1.已知集合{0,1,2,8}B=-,那么A B=▲.A=,{1,1,6,8}[答案]{1,8}2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲.[答案]23.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.[答案]904.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲.[答案]85.函数()f x=的定义域为▲.[答案][)∞+,26.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ . [答案]1037.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . [答案]6-π8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F 到一条渐近线,则其离心率的值是 ▲ . [答案]29.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤ 则((15))f f 的值为 ▲ .[答案]2210.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .[答案]3411.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ . [答案]-312.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . [答案]313.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 与点D ,且1BD =,则4a c +的最小值为 ▲ . [答案]914.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . [答案]2715.在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.[答案]16.已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值. [答案]17.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,A B 均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDP△的面积,并确定sinθ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.[答案]18.如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.[答案]19.记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()x b g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. [答案]20.设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). [答案]2018 年普通高等学校招生全国统一考试(全国I卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)方法一:由(1)得 f x ax2 a 1 x 1 ex ax 1 x 1 ex .
若
a
1 ,则当
x
1 a
,1
时,
f
x
0
;当
x
1,
时,
f
x
0
.
所以 f x 在 x 1处取得极小值.
若 a 1,则当 x 0,1 时, ax 1 x 1 0 , f x 0 . 所以 1 不是 f x 的极小值点. 综上可知, a 的取值范围是 1, .
第 4页 (共 12页)
4.(2018 浙江)已知函数 f(x)= x −lnx. (Ⅰ)若 f(x)在 x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2; (Ⅱ)若 a≤3−4ln2,证明:对于任意 k>0,直线 y=kx+a 与曲线 y=f(x)有唯一公共点.
2
2
所以 2 不是 f x 的极小值点.
综上可知,
a
的取值范围是
1 2
,
.
3.(2018 江苏)记 f (x), g(x) 分别为函数 f (x), g(x) 的导函数.若存在 x0 R ,满足 f (x0 ) g(x0 ) 且 f (x0 ) g(x0 ) ,则称 x0 为函数 f (x) 与 g(x) 的一个“S 点”.
4..答案:(1)略;(2)略.
解答:(1)
f
( x)
1 2x
1 x
,不妨设
f
( x1 )
f
(x2 )
t ,即 x1, x2 是方程
1 2x
1 x
t 的两
根,即
x1 ,
x2
是方程 tx2
x 2
1
0 的根,
所以 1 4t 0 ,得 0 t 1 ,且
4
16
x1
x2
1 2t
,
x1
x2
1
由
f
x
g
x且
f
x
gx
,得
x
1
x2 2x 2x 2
2
,此方程组无解,
因此, f x 与 g x 不存在“ S ”点.
(2)函数 f x ax2 1, g x ln x ,则 f x 2ax , g x 1 .
x
设 x0 为 f x 与 g x 的“ S ”点,由 f x0 与 g x0 且 f x0 与 g x0 ,
第 1页 (共 12页)
【解析】 Q
y
x
2
1
,
k
2 0 1
2 , y
2x .
5.(2018 全国新课标Ⅲ理)曲线 y ax 1ex 在点 0,1 处的切线的斜率为 2 ,则 a ________.
5.答案: 3 解答: y aex (ax 1)ex ,则 f (0) a 1 2 , 所以 a 3.
方法二: f x ax 1 x 1ex .
(1)当 a 0 时,令 f x 0 得 x 1 , f x , f x 随 x 的变化情况如下表:
x
,1
1
1,
f x
0
f x
Z
极大值
]
f x 在 x 1处取得极大值,不合题意.
(2)当 a
0 时,令
f
x
0
得
x1
1 a
,
x2
1.
①当 x1 x2 ,即 a 1时, f x x 12 ex 0 , f x 在 R 上单调递增,
得
ax02 1
2ax0
ln x0 1 x0
,即
ax022ax102ln1
x0
,(*)
得 ln
x0
1 2
,即
x0
1
e2
,则 a
1 e. 1 2 2
2e 2
当a
e 2
时,
x0
1
e2
满足方程组(*),即
x0 为
f
x 与
g
x 的“
S
”点.
因此, a 的值为 e . 2
(3)对任意 a 0 ,设 h x x3 3x2 ax a .
因为 h0 a 0 , h1 1 3 a a 2 0 ,且 h x 的图象是不间断的,
所以存在
x0
0,1
,使得
hx0ຫໍສະໝຸດ 0,令be x0
2 x03
1
x0
,则
b
0
.
函数 f x x2 a , g x bex ,
x
则
f
x
2x
,
gx
bex
x
x2
1
.
由 f x g x 且 f x g x ,得
在区间 (0, ) 内存在“S 点”,并说明理由.
3.【答案】(1)见解析;(2) a 的值为 e ; 2
(3)对任意 a 0 ,存在 b 0 ,使函数 f x 与 g x 在区间 0, 内存在“ S 点”.
【解析】(1)函数 f x x , g x x2 2x 2 ,则 f x 1, g x 2x 2 .
f
(x2 )
8 8ln 2
.
(2)设 h(x) (kx a) f (x) kx x ln x a , 则当 x 充分小时 h(x) 0 ,充分大时 h(x) 0 ,所以 h(x) 至少有一个零点,
则 h(x) 1 1 k k 1 ( 1 1 )2 ,
x 2x
16 x 4
所以 f x f 0 , f x min f 1, f 1 f 1 ,
max
min
f
x
max
f
x min
f
0
f
1 1 4 3 .
2.(2018 天津文)已知函数 f(x)=exlnx,f ′(x)为 f(x)的导函数,则 f ′(1)的值为__________.
2.【答案】 e
① k 1 ,则 h(x) 0 , h(x) 递增, h(x) 有唯一零点, 16
② 0 k 1 ,则令 h(x) ( 16
1 x
1)2 k 1
4
16
0 ,得 h(x) 有两个极值点 x1, x2 (x1 x2 ) ,
∴
1 x1
1 4
,∴ 0
x1
16 .
可知 h(x) 在 (0, x1) 递增, (x1, x2 ) 递减, (x2 , ) 递增,
x
,1 a
1 a
1 a
,1
1
f x
0
0
1,
f x
Z
极大值
]
极小值
Z
f x 在 x 1处取得极小值,即 a 1满足题意.
(3)当
a
0
时,令
f
x
0
得
x1
1 a
,
x2
1,
f
x
,
f
x
随
x
的变化情况如下表:
x
,1 a
1 a
1 a
,1
1,
f x
0
0
f x
]
极小值
Z
f x 在 x 1处取得极大值,不合题意. 综上所述, a 的取值范围为 1, .
2018 年全国各地高考数学试题及解答分类大全 (导数及其应用)
一、选择题
1.(2018 全国新课标Ⅰ文、理)设函数 f x x3 a 1 x2 ax .若 f x 为奇函数,则曲线 y f x
在点 0 ,0 处的切线方程为( )
A. y 2x B. y x C. y 2x
D. y x
三、解答题
1.(2018 北京文)设函数 f x ax2 3a 1 x 3a 2 ex .
(1)若曲线 y f x 在点 2,f 2 处的切线斜率为 0,求 a ;
(2)若 f x 在 x 1 处取得极小值,求 a 的取值范围.
1.【答案】(1) 1 ;(2) 1, .
2
【解析】(1) Q f x ax2 3a 1 x 3a 2 e x , f x ax2 a 1 x 1 ex , f 2 2a 1e2 ,由题设知 f 2 0 ,即 2a 1e2 0 ,解得 a 1 .
极大值
]
2.(2018北京理)设函数 f (x) =[ ax2 (4a 1)x 4a 3 ] ex . (Ⅰ)若曲线y= f(x)在点(1, f (1) )处的切线与 x 轴平行,求a;
(Ⅱ)若 f (x) 在x=2处取得极小值,求a的取值范围.
2.【答案】(1)
a
的值为
1;(2)
a
的取值范围是
f x 无极值,不合题意.
②当 x1 x2 ,即 0 a 1 时, f x , f x 随 x 的变化情况如下表:
x
,1
1
1,1a
1 a
f x
0
0
f x
Z
极大值
]
极小值
1 a
,
Z
第 2页 (共 12页)
f x 在 x 1处取得极大值,不合题意. ③当 x1 x2 ,即 a 1时, f x , f x 随 x 的变化情况如下表:
5.(2018 天津文)设函数 f (x)=(x t1)(x t2 )(x t3) ,其中 t1,t2,t3 R ,且 t1,t2,t3 是公差为 d 的等
差数列.
(I)若 t2 0, d 1, 求曲线 y f (x) 在点 (0, f (0)) 处的切线方程; (II)若 d 3,求 f (x) 的极值; (III)若曲线 y f (x) 与直线 y (x1 t2 ) 6 3 有三个互异的公共点,求 d 的取值范围.