2018年全国各地高考数学试题及解答分类汇编大全
2018年全国各地高考数学试题及解答分类汇编大全(17 计数原理、二项式定理)

2018年全国各地高考数学试题及解答分类汇编大全(17计数原理、二项式定理)一、选择题1.(2018全国新课标Ⅱ理)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A .112B .114C .115D .1181.【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有210C 45=种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为314515=,故选C .2.(2018全国新课标Ⅲ理)522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( ) A .10 B .20 C .40 D .802.答案:C 解答:25103552()()2r r r r r r C x C x x--=⋅⋅,当2r =时,1034r -=,此时系数22552240r r C C == .故选C.二、填空1. (2018上海)在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示)2.(2018浙江)二项式81)2x的展开式的常数项是___________. 14.答案:7 解答:通项1813181()()2r rr r T C x x --+=843381()2r r r C x -=. 84033r -=,∴2r =.∴常数项为2281187()7242C ⨯⋅=⨯=.3.(2018浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)3.答案:1260解答:224121353435337205401260C C A C C C A +=+=.4(2018天津理)在5(x 的展开式中,2x 的系数为 .4.【答案】52 【解析】结合二项式定理的通项公式有:35521551C2C r r r r r r r T x x --+⎛⎛⎫==- ⎪ ⎝⎭⎝, 令3522r -=可得2r =,则2x 的系数为2251151024C 2⎛⎫-=⨯= ⎪⎝⎭.5.(2018全国新课标Ⅰ理)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)5.答案:16解答:恰有1位女生,有122412C C =种;恰有2位女生,有21244C C =种,∴不同的选法共有12416+=种.三、解答题古今中外有学问的人,有成就的人,总是十分注意积累的。
2018年全国各地高考数学试题及解答分类汇编大全(13-立体几何-)

2018年全国各地高考数学试题及解答分类汇编大全(13-立体几何-)2018 年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、选择题1.(2018北京文、理)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C . 3D .41.【答案】C【解析】由三视图可得四棱锥P ABCD -, 在四棱锥P ABCD -中,2PD =,2AD =, 2CD =,1AB =,由勾股定理可知,22PA =,22PC =,3PB =,5BC =,则在四棱锥中,直角三角形有, PAD △,PCD △,PAB △共三个,故选C .2.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( ) A .2 B .4 C .6 D .83.答案:C解答:该几何体的立体图形为四棱柱, (12)2262V +⨯=⨯=.3 (2018上海)《九章算术》中,称底侧视图俯视图正视图2211所以231θθθ≤≤.5.(2018全国新课标Ⅰ文)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217 B .25 C .3 D .25. 答案:B解答:三视图还原几何体为一圆柱,如图, 将侧面展开,最短路径为,M N 连线的距离, 所以224225MN =+=,所以选B.6.(2018全国新课标Ⅰ文)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B .62 C .82 D .836. 答案:C 解答:连接1AC 和1BC ,∵1AC 与平面11BB C C 所成角为30,∴130AC B ∠=,∴11tan 30,23ABBC BC ==,∴122CC =,∴222282V =⨯⨯=,∴选C.7.(2018全国新课标Ⅰ理)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .33 B .23 C .324 D .327. 答案:A解答:由于截面与每条棱所成的角都相等,所以平 面α中存在平面与平面11AB D 平行(如图),而在与 平面11AB D 平行的所有平面中,面积最大的为由各 棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积12233362S =⨯⨯⨯⨯=.8.(2018全国新课标Ⅰ文)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π8. 答案:B解答:截面面积为8,所以高22h =,底面半径2r =,所以表面积为2(2)2222212S πππ=⋅⋅+⋅⋅=.9.(2018全国新课标Ⅰ理)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .172B .52C .3D .29. 答案:B解答:三视图还原几何体为一圆柱,如图,将侧面展开, 最短路径为,M N 连线的距离, 所以224225MN =+=,所以选B.10.(2018全国新课标Ⅱ文)在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A .2B .3C .5D .710.【答案】C【解析】在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan BE a EAB AB ∠===.故选C .11.(2018全国新课标Ⅱ理)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为()A .15B .5C .5D .211.【答案】C【解析】以D 为坐标原点,DA ,DC ,1DD 为x ,y ,z 轴建立空间直角坐标系,则()0,0,0D ,()1,0,0A ,()11,1,3B ,()10,0,3D ,()11,0,3AD ∴=-,()11,1,3DB =,1111115cos<,>25AD DB AD DB AD DB ⋅===⨯,∴异面直线1AD 与1DB 所成角的余弦值为5,故选C .12.(2018全国新课标Ⅲ文、理)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )12.答案:A解答:根据题意,A 选项符号题意;13.(2018全国新课标Ⅲ文、理)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54313.答案:B解答:如图,ABC ∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由93ABCS ∆=,得6AB =,取BC 的中点H ,∴sin 6033AH AB =⋅︒=,∴2233AG AH ==,∴球心O 到面ABC 的距离为224(23)2d =-=,∴三棱锥D ABC -体积最大值193(24)1833D ABCV -=⨯⨯+=.二、填空1.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .1.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为()21421233⨯⨯⨯=.2.(2018天津文)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.2.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B ,则1A O 是四棱锥的高,且2211111211222A O A C ==+=,111212BDD B S BD DD =⨯四边形,结合四棱锥体积公式可得其体积为11212333V Sh ===.3. (2018天津理)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .3.【答案】112【解析】由题意可得,底面四边形EFGH 为边长为22的正方形, 其面积2212EFGHS ==⎝⎭,顶点M 到底面四边形EFGH 的距离为12d =, 由四棱锥的体积公式可得111132212M EFGHV-=⨯⨯=.4.(2018全国新课标Ⅱ文)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.4.【答案】8π【解析】如下图所示,30SAO ∠=︒,90ASB ∠=︒,又211822SABS SA SB SA =⋅==△, 解得4SA =,所以122SO SA ==,2223AO SA SO =-=,所以该圆锥的体积为2183V OA SO =⋅π⋅⋅=π.5.(2018全国新课标Ⅱ理)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________. 5.【答案】402π【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 15,因为SAB △的面积为515,设母线长为l ,所以21155152l⨯=,280l ∴=,因SA 与圆锥底面所成角为45︒,所以底面半径为2cos 4l π=,因此圆锥的侧面积为22402rl l π=π.三、解答题1.(2018北京文)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点. (1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .1.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)PA PD =,且E 为AD 的中点, PE AD ∴⊥,底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥. (2)底面ABCD 为矩形,AB AD ∴⊥, 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接FG ,GD .F ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =, 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =, ED FG∴∥,且ED FG =,∴四边形EFGD 为平行四边形, EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD , EF ∴∥平面PCD . 2. (2018北京理)如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =5,AC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.2.【答案】(1)证明见解析(2)1B CDC --的余弦值为21-;(3)证明过程见解析. 【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥平面ABC , ∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点, AC EF ∴⊥,AB BC =,AC BE ∴⊥, AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥. 又1CC ⊥平面ABC ,EF ∴⊥平面ABC . BE ⊂平面ABC ,EF BE ∴⊥.如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G , ()=2,01CD ∴,,()=1,2,0CB ,设平面BCD 的法向量为(),a b c =,n , 0CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩n n ,20 20a c ab +=⎧∴⎨+=⎩, 令2a =,则1b =-,4c =-,∴平面BCD 的法向量(),又平面1CDC 的法向量为()=0,2,0EB ,21cos =EB EB EB⋅∴<⋅>=-n n n .由图可得二面角1B CDC --为钝角,所以二面角1B CDC --的余弦值为21-.(3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G ,()0,0,2F , ()=02,1GF ∴-,,2GF ∴⋅=-n ,∴n 与GF 不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交.3.(2018上海)已知圆锥的顶点为P ,底面圆心为O ,半径为2(1)设圆锥的母线长为4,求圆锥的体积; (2)设PO =4,OA ,OB 是底面半径, 且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.4.(2018江苏)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.4.【答案】(1)见解析;(2)见解析. 【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C . (2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥. 又因为1A B BC B =,1A B ⊂平面1A BC ,BC ⊂平面1A BC , 所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .5.(2018江苏)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.5.【答案】(1)310;(2)5.【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11A C 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以{}1,,OB OC OO 为基底,建立空间直角坐标系O xyz -.因为12AB AA ==, 所以()01,0A -,,()3,0,0B ,()0,1,0C ,()10,1,2A -,()13,0,2B ,()10,1,2C .(1)因为P 为11A B 的中点,所以31,,222P ⎛⎫- ⎪ ⎪⎝⎭,从而31,,222BP ⎛⎫=-- ⎪ ⎪⎝⎭,()10,2,2AC =, 故11114310cos ,522BP AC BP AC BP AC ⋅-+<>===⨯⋅. 因此,异面直线BP 与1AC 所成角的余弦值为31020. (2)因为Q 为BC 的中点,所以31,,022Q ⎛⎫ ⎪⎪⎝⎭, 因此33,,02AQ ⎛⎫= ⎪ ⎪⎝⎭,()10,2,2AC =,()10,0,2CC =.设(),,x y z =n 为平面1AQC 的一个法向量,则100AQ AC ⎧=⋅=⎨⎪⋅⎪⎩n n 即33022220x y y z ⎧+=+=⎪⎨⎪⎩,不妨取()3,1,1=-n ,设直线1CC 与平面1AQC 所成角为θ,则1115sin cos ,52CC CC CC θ⋅=<>===⨯⋅n n n, 所以直线1CC 与平面1AQC 所成角的正弦值为55.6.(2018浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.6.答案:(1)略;(2)3913 解答:(1)∵12AB B B ==,且1B B ⊥平面ABC ,∴1B B AB ⊥,∴122AB =.同理,222211(23)113AC AC C C =+=+=.过点1C 作1B B 的垂线段交1B B 于点G ,则12C G BC == 且11B G =,∴115B C =.在11AB C ∆中,2221111AB B C AC +=, ∴111AB B C ⊥,①过点1B 作1A A 的垂线段交1A A 于点H . 则12B H AB ==,12A H =,∴1122A B =. 在11A B A ∆中,2221111AA AB A B =+,∴111AB A B ⊥,②综合①②,∵11111A B B C B ⋂=,11A B ⊂平面111A B C ,11B C ⊂平面111A B C ,∴1AB ⊥平面111A B C . (2)过点B 作AB 的垂线段交AC 于点I ,以B 为原点,以AB 所在直线为x 轴,以BI 所在直线为y 轴,以1B B 所在直线为z 轴,建立空间直角坐标系B xyz -.则(0,0,0)B ,(2,0,0)A -,1(0,0,2)B ,1(1,3,1)C , 设平面1ABB 的一个法向量(,,)n a b c =, 则102020n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩,令1b =,则(0,1,0)n =, 又∵1(3,3,1)AC =,1339cos ,13113n AC <>==⨯.由图形可知,直线1AC 与平面1ABB 所成角为锐角, 设1AC 与平面1ABB 夹角为α.∴39sin 13α=.7.(2018天津文)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.7.【答案】(1)证明见解析;(2)1326;(3)34. 【解析】(1)由平面ABC ⊥平面ABD , 平面ABC 平面ABD AB =,AD AB ⊥, 可得AD ⊥平面ABC ,故AD BC ⊥. (2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN BC ∥.所以DMN ∠(或其补角)为异面直线BC 与MD 所成的角. 在Rt DAM △中,1AM =,故2213DM AD AM =+=. 因为AD ⊥平面ABC ,故AD AC ⊥.在Rt DAN △中,1AN =,故2213DN AD AN =+=.在等腰三角形DMN中,1MN=,可得1132cosMNDMNDM∠==.所以,异面直线BC与MD所成角的余弦值为13.(3)连接CM,因为ABC△为等边三角形,M为边AB的中点,故CM AB⊥,3CM=.又因为平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,CDM∠为直线CD与平面ABD所成的角.在Rt CAD△中,224CD AC AD=+=.在Rt CMD△中,3sinCMCDMCD∠==.所以,直线CD与平面ABD所成角的正弦值为3.8.(2018天津理)如图,AD BC∥且AD=2BC,AD CD⊥,EG AD∥且EG=AD,CD FG∥且CD=2FG,DG ABCD⊥平面,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:MN CDE∥平面;(II)求二面角E BC F--的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.8.【答案】(1)证明见解析;(210;(33.【解析】依题意,可以建立以D为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C ,()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫⎪⎝⎭,()1,0,2N . (1)依题意()0,2,0DC =,()2,0,2DE =.设()0,,x y z =n 为平面CDE 的法向量,则000DC DE ⎧⋅=⎪⎨⋅=⎪⎩n n 即20220y x z =+=⎧⎨⎩, 不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫=⎪⎝⎭-,可得00MN ⋅=n , 又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC =,()1,2,2BE =-,()0,1,2CF =-.设(),,x y z =n 为平面BCE 的法向量,则0BC BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x x y z -=-+=⎧⎨⎩, 不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则0BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩, 不妨令1z =,可得()0,2,1=m .因此有310cos ,⋅<>==m n m n m n ,于是10sin ,m n <>=. 所以,二面角––E BC F 10.(3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =--.易知,()0,2,0DC =为平面ADGE 的一个法向量,故2cos 5BP DC BP DC BP DCh ⋅<⋅>==+ 23sin 605h =︒=+,解得[]30,2h .所以线段DP 3.9.(2018全国新课标Ⅰ文)如图,在平行四边形ABCM中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.9. 答案:(1)见解析(2)1 解答:(1)证明:∵ABCM 为平行四边形且90ACM ∠=,∴AB AC ⊥,又∵AB DA ⊥,∴AB ⊥平面ACD ,∵AB ⊂平面ABC ,∴平面ABC ⊥平面ACD . (2)过点Q 作QH AC ⊥,交AC 于点H ,∵AB ⊥平面ACD ,∴AB CD ⊥,又∵CD AC ⊥,∴CD ⊥平面ABC ,∴13HQ AQ CD AD ==,∴1HQ =,∵32,32BC BC AM AD ====,∴22BP =,又∵ABC ∆为等腰直角三角形,∴12322322ABP S ∆=⋅⋅⋅=,∴1131133Q ABD ABD V S HQ -∆=⋅⋅=⨯⨯=.10.(2018全国新课标Ⅰ理)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.10.答案:(1)略;(2)34. 解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥, 又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF , BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD . (2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥, 设4AB =,则4EF =,2PF =,∴23PE =, 过P 作PH EF ⊥交EF 于H 点, 由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴2323PH ⋅==,而4PD =,∴3sin PH PDH PD ∠==, ∴DP 与平面ABFD 所成角的正弦值3.11.(2018全国新课标Ⅱ文)P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.11.【答案】(1)见解析;(2)455.【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且23OP =.连结OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==.由222OP OB PB +=知,OP OB ⊥.由OP OB ⊥,OP AC ⊥知PO ⊥平面ABC .(2)作CH OM ⊥,垂足为H .又由(1)可得OP CH ⊥,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知122OC AC ==,2423BC CM ==,45ACB ∠=︒. 所以25OM =sin 45C OC MC A M H CB O ⋅⋅∠==.所以点C 到平面POM 的45. 12.(2018全国新课标Ⅱ理)如图,在三棱锥P ABC -22AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.12.【答案】(1)见解析;(234. 【解析】(1)因为4AP CP AC ===,O 为AC 的中点, 所以OP AC ⊥,且23OP =连结OB .因为2AB BC AC ==,所以ABC △为等腰 直角三角形,且OB AC ⊥,122OB AC ==, 由222OPOB PB +=知PO OB ⊥, 由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .PA OCBM(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()0,0,0O ,()2,0,0B ,()0,2,0A -,()0,2,0C ,()0,0,23P ,()0,2,23AP =,取平面PAC 的法向量()2,0,0OB =,设()(),2,002M a a a -<≤,则(),4,0AM a a =-,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=n ,0AM ⋅=n , 得()223040y z ax a y ⎧+=⎪⎨+-=⎪⎩,可取()()34,3,a a a =--n , ()()222234cos ,2343a OB a a a -∴<>=-++n ,由已知得3cos ,OB <>=n ,()22223432343a a a a -∴=-++,解得4a =-(舍去),43a =, 83434,,3⎛⎫∴=-- ⎪ ⎪⎝⎭n ,又()0,2,23PC =-,所以3cos ,PC <>=n .所以PC 与平面PAM 所成角的正弦值为3.13.(2018全国新课标Ⅲ文)如图,矩形所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.13.答案:见解答 解答:(1)∵正方形ABCD ⊥半圆面CMD ,∴AD⊥半圆面CMD,∴AD⊥平面MCD.∵CM在平面MCD内,∴AD CM⊥,又∵M是半圆弧CD上异于,C D的点,∴CM MD⊥.又∵AD DM D =,∴CM⊥平面ADM,∵CM在平面BCM内,∴平面BCM⊥平面ADM.(2)线段AM上存在点P且P为AM中点,证明如下:连接,BD AC交于点O,连接,,PD PB PO;在矩形ABCD中,O是AC中点,P是AM的中点;∴//OP MC,∵OP在平面PDB内,MC不在平面PDB内,∴//.MC平面PDB14.(2018全国新课标Ⅲ理)如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.14.答案:见解答解答:(1)∵正方形ABCD⊥半圆面CMD,∴AD⊥半圆面CMD,∴AD⊥平面MCD.∵CM在平面MCD内,∴AD CM⊥,又∵M是半圆弧CD上异于,C D的点,∴CM MD⊥.又∵AD DM D=,∴CM⊥平面ADM,∵CM 在平面BCM 内,∴平面BCM ⊥平面ADM .(2)如图建立坐标系: ∵ABCS ∆面积恒定, ∴MO CD ⊥,M ABCV -最大.(0,0,1)M ,(2,1,0)A -,(2,1,0)B ,(0,1,0)C ,(0,1,0)D -,设面MAB 的法向量为111(,,)m x y z =,设面MCD 的法向量为222(,,)n x y z =,(2,1,1)MA =--,(2,1,1)MB =-, (0,1,1)MC =-,(0,1,1)MD =--, 11111120(1,0,2)20x y z m x y z --=⎧⇒=⎨+-=⎩, 同理(1,0,0)n =,,∴5cos 5θ==,∴ 25sin θ=.。
2018全国各地高考数学试题汇编(附答案解析)

2018年普通高等学校招生全国统一考试(XX 卷)数学Ⅰ1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B = ▲ .[答案]{1,8}2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为 ▲ . [答案]23.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .[答案]904.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .[答案]85.函数2()log 1f x x -的定义域为 ▲ .[答案][)∞+,26.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ . [答案]1037.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . [答案]6-π8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F 到一条渐近线的距离为32c ,则其离心率的值是 ▲ . [答案]29.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤ 则((15))f f 的值为 ▲ .[答案]22 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .[答案]34 11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ . [答案]-312.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . [答案]313.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 与点D ,且1BD =,则4a c +的最小值为 ▲ .[答案]914.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . [答案]2715.在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.[答案]16.已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-.(1)求cos 2α的值; (2)求tan()αβ-的值. [答案]17.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN 构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室大棚,大△,要求,A B均在线段MN上,,C D均在棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP圆弧上.设OC与MN所成的角为θ.△的面积,并确定sinθ的取值X围;(1)用θ分别表示矩形ABCD和CDP(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.[答案]18.如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F . (1)求椭圆C 与圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程.[答案]19.记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,XX 数a 的值;(3)已知函数2()f x x a =-+,e ()x b g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.[答案]20.设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值X 围; (2)若*110,,(1,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值X 围(用1,,b m q 表示). [答案]2018 年普通高等学校招生全国统一考试(全国I卷)文科数学注意事项:1.答卷前,考生务必将自己的XX、XX号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2018年全国各地高考数学试题及解答分类汇编大全(10平面向量)

2018年全国各地高考数学试题及解答分类汇编大全(10平面向量)一、选择题1.(2018浙江)已知a ,b ,e 是平面向量,e 是单位向量.假设非零向量a 与e的夹角为π3,向量b 知足b 2−4e ·b +3=0,那么|a −b |的最小值是( )A .3−1B .3+1C .2D .2−31.答案:A解答:设(1,0)e =,(,)b x y =,则222430430b e b x y x -⋅+=⇒+-+=22(2)1x y ⇒-+=如下图,a OA =,b OB =,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min131a bCD -=-=-.(其中CD OA ⊥.)2.(2018天津文)在如图的平面图形中, 已知 1.2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为( )(A )15- (B )9- (C )6- (D )02.【答案】C【解析】如下图,连结MN ,由2BM MA =,2CN NA = 可知点M ,N 别离为线段AB ,AC 上靠近点A 的三等分点,那么()33BC MN ON OM ==-,由题意可知:2211OM ==,12cos1201OM ON ⋅=⨯⨯︒=-, 结合数量积的运算法那么可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-.故选C .3.(2018天津理)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 假设点E 为边CD 上的动点,那么⋅AE BE 的最小值为 ( )(A)2116 (B) 32 (C) 2516(D) 33.【答案】A【解析】成立如下图的平面直角坐标系,则10,2A ⎛⎫- ⎪⎝⎭,3,02B ⎛⎫ ⎪ ⎪⎝⎭,30,2C ⎛⎫⎪⎝⎭,3,02D ⎛⎫- ⎪ ⎪⎝⎭,点E 在CD 上,那么()01DE DC λλ=≤≤,设(),E x y ,那么:333,,222x y λ⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即332232x y λλ⎧⎪+=⎨=⎪⎪⎪⎩, 据此可得333,222E λλ⎛⎫- ⎪ ⎪⎝⎭,且3331,2222AE λλ⎛⎫=-+ ⎪ ⎪⎝⎭,333,22BE λλ⎛⎫=- ⎪ ⎪⎝⎭, 由数量积的坐标运算法那么可得:3333313222222AE BE λλλλ⎛⎫⎛⎫⎛⎫⋅=--+⨯+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 整理可得:()()23422014AE BE λλλ⋅=-+≤≤,结合二次函数的性质可知,当14λ=时,AE BE ⋅取得最小值2116,应选A .4.(2018全国新课标Ⅰ文、理)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,那么EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +4.答案:A解答:由题可知11131[()]22244EB EA AB AD AB AB AC AB AB AC =+=-+=-++=-.5.(2018全国新课标Ⅱ文、理)已知向量a ,b 知足||1=a ,1⋅=-a b ,那么(2)⋅-=a a b ( )A .4B .3C .2D .05.【答案】B 【解析】因为()()222221213⋅-=-⋅=--=+=a a b a a b a ,因此选B .二、填空1.(2018北京文)设向量()10=,a ,()1,m =-b ,若()m ⊥-a a b ,那么m =_________. 1.【答案】1-【解析】()10=,a ,()1m =-,b ,()()()011m m m m m ∴-=--=+-,,,a b , 由()m ⊥-a a b 得,()0m ⋅-=a a b ,()10m m ∴⋅-=+=a a b ,即1m =-.2. (2018上海)在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y轴上的两个动点,且|EF |=2,那么AE ·BF 的最小值为______3.(2018江苏)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .假设0AB CD ⋅=,那么点A 的横坐标为 ▲ .3.【答案】3【解析】设()(),20A a a a >,那么由圆心C 为AB 中点得5,2a C a +⎛⎫⎪⎝⎭, 易患()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1D x =,因此()1,2D .因此()5,2AB a a =--,51,22a CD a +⎛⎫=-- ⎪⎝⎭, 由0AB CD ⋅=得()()()5512202a a a a +⎛⎫--+--= ⎪⎝⎭,2230a a --=,3a =或1a =-,因为0a >,因此3a =.4.(2018全国新课标Ⅲ文、理)已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若()2+c a b ,那么λ=________. 4.答案:12解答:2(4,2)a b +=,∵//(2)c a b +,∴1240λ⨯-⨯=,解得12λ=.三、解答题。
2018年全国各地高考数学试题及解答分类汇编大全(15 概率、统计、统计案例、推理与证明)

2018年全国各地高考数学试题及解答分类汇编大全 (15概率、统计、统计案例、推理与证明)一、选择题1.(2018全国新课标Ⅰ文、理)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半1。
答案:A解答:由图可得,A 选项,设建设前经济收入为x ,种植收入为0.6x .建设后经济收入则为2x ,种植收入则为0.3720.74x x ⨯=,种植收入较之前增加.另解:假设建设前收入为a ,则建设后收入为2a ,所以种植收入在新农村建设前为60%a ,新农村建设后为37%2a ⋅;其他收入在新农村建设前为4%a ⋅,新农村建设后为5%2a ⋅,养殖收入在新农村建设前为30%a ⋅,新农村建设后为30%2a ⋅ 故不正确的是A.2.(2018全国新课标Ⅱ文)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A .0.6B .0.5C .0.4D .0.32.【答案】D【解析】设2名男同学为1A ,2A ,3名女同学为1B ,2B ,3B ,从以上5名同学中任选2人总共有12A A ,11A B ,12A B ,13A B ,21A B ,22A B ,23A B ,12B B ,13B B ,23B B 共10种可能,选中的2人都是女同学的情况共有共12B B ,13B B ,23B B 三种可能则选中的2人都是女同学的概率为30.310P ==,故选D .3.(2018全国新课标Ⅲ文)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.73.答案:B解答:由题意10.450.150.4P =--=.故选B.二、填空1.(2018江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .1.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为8989909191905++++=.2.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .2.【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.3. (2018上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)4.(2018全国新课标Ⅲ文)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________. 14.答案:分层抽样解答:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法.三、解答题1.(好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加01.,哪类电影的好评率减少01.,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)1.【答案】(1)0025.;(2)0814.;(3)增加第五类电影的好评率,减少第二类电影的好评率. 【解析】(1)由题意知,样本中电影的总部数是140503002008005102000+++++=.第四类电影中获得好评的电影部数是20002550⨯=.,故所求概率为5000252000=..(2)设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有14006500830008520007580008510091628⨯+⨯+⨯+⨯+⨯+⨯=......部.由古典概型概率公式得()162808142000P B ==..(3)增加第五类电影的好评率,减少第二类电影的好评率.2.(2018北京理)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(Ⅰ)当n =3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.2(共14分)解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M (α,α)=12 [(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2,M (α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x 1,x 2,x 3,x 4)∈B ,则M (α,α)= x 1+x 2+x 3+x 4. 由题意知x 1,x 2,x 3,x 4∈{0,1},且M (α,α)为奇数, 所以x 1,x 2,x 3,x 4中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}. 将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M (α,β)=1. 所以每组中的两个元素不可能同时是集合B 的元素. 所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件, 所以集合B 中元素个数的最大值为4.(Ⅲ)设S k =( x 1,x 2,…,x n )|( x 1,x 2,…,x n )∈A ,x k =1,x 1=x 2=…=x k –1=0)(k =1,2,…,n ),S n +1={( x 1,x 2,…,x n )| x 1=x 2=…=x n =0}, 则A =S 1∪S 1∪…∪S n +1.对于S k (k =1,2,…,n –1)中的不同元素α,β,经验证,M (α,β)≥1. 所以S k (k =1,2 ,…,n –1)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过n +1.取e k =( x 1,x 2,…,x n )∈S k 且x k +1=…=x n =0(k =1,2,…,n –1).令B =(e 1,e 2,…,e n –1)∪S n ∪S n +1,则集合B 的元素个数为n +1,且满足条件. 故B 是一个满足条件且元素个数最多的集合.3.(2018江苏)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).3.【答案】(1)2,5;(2)5n ≥时,()2222n n n f --=.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有()123=0τ,()132=1τ,()213=1τ,()231=2τ,()312=2τ,()321=3τ,所以()301f =,()()33122f f ==.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,()()()()433322105f f f f =++=.(2)对一般的()4n n ≥的情形,逆序数为0的排列只有一个:12n ,所以()01n f =.逆序数为1的排列只能是将排列12n 中的任意相邻两个数字调换位置得到的排列,所以()11n f n =-.为计算()12n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置.因此,()()()()()122102n n n n n f f f f f n +=++=+.当5n ≥时,()()()()()()()()11254422222222n n n n n f f f f f f f f ---=-+-++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()24212422n n n n f --=-+-+++=,因此,5n ≥时,()2222n n n f --=.4.(2018天津文)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 4.【答案】(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人;(2)①答案见解析;②521.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.②由(1),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种. 所以,事件M 发生的概率为()521P M =.5.(2018全国新课标Ⅰ文)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:((2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)5.答案:略 解答:(1)(2)由题可知用水量在[0.3,0.4]的频数为10,所以可估计在[0.3,0.35)的频数为5,故用水量小于30.35m 的频数为1513524+++=,其概率为240.4850P ==.(3)未使用节水龙头时,50天中平均每日用水量为: 31(0.0510.1530.2520.3540.4590.55260.657)0.50650m ⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 一年的平均用水量则为30.506365184.69m ⨯=. 使用节水龙头后,50天中平均每日用水量为: 31(0.0510.1550.25130.35100.45160.555)0.3550m ⨯+⨯+⨯+⨯+⨯+⨯=, 一年的平均用水量则为30.35365127.75m ⨯=, ∴一年能节省3184.69127.7556.94m -=.6.(2018全国新课标Ⅱ文、理) 下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.6.【答案】(1)模型①226.1亿元,模型②2565.亿元;(2)模型②,见解析. 【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 30.413.5192ˆ26.1y=-+⨯=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 ˆ9917592565y =+⨯=..(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t =-+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆ99175y t =+.可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.7.(2018全国新课标Ⅲ文、理)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m(3附:22()()()()()n ad bc K a b c d a c b d -=++++,2()0.0500.0100.0013.8416.63510.828P K k k ≥.7.答案:见解析解答:(1)第一种生产方式的平均数为184x =,第二种生产方式平均数为274.7x =,∴12x x >,所以第一种生产方式完成任务的平均时间大于第二种,∴第二种生产方式的效率更高.(2)由茎叶图数据得到80m =,∴列联表为(3)222()40(151555)10 6.635()()()()20202020n ad bc K a b c d a c b d -⨯-⨯===>++++⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异.。
2018年全国各地高考数学试题及解答分类大全(不等式)

取得最大值, zmax 3 2 2 0 6 .
第 2页 (共 3页)
5.(2018
天津文、理)已知 a,b∈R,且
a–3b+6=0,则
2a+
1 8b
的最小值为__________.
5.【答案】 1 4
【解析】由 a 3b 6
0 可知 a
3b
6
,且 2a
1 8b
2a
2 3b
,因为对于任意
y y
4,
则目标函数
1,
z
3x
5
y
的最大值为
y 0,
()
(A)6 (B)19 (C)21 (D)45
2.【答案】C
【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标
函数在点
A
处取得最大值,联立直线方程:
x y x
5 y 1
,可得点
A
的坐标为
A
2,
3
,
据此可知目标函数的最大值为 zmax 3x 5 y 3 2 5 3 21 .故选 C.
二、填空
1.(2018 北京文)能说明“若 a b ,则 1 1 ”为假命题的一组 a , b 的值依次为_________. ab
1.【答案】1, 1 (答案不唯一)
第 1页 (共 3页)
【解析】使“若 a b ,则 1 1 ”为假命题,则“若 a b ,则 1 1 ”为真命题即可,只需取 a 1,b 1
x ,2x
0 恒成立,结
合均值不等式的结论可得: 2a 23b 2 2a 23b 2 26 1 . 4
当且仅当
2a
23b
a 3b 6
2018年全国各地高考数学试题及解答分类汇编大全(数列)

2018年全国各地高考数学试题及解答分类汇编大全一、选择题1.(2018北京文、理)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为( )AB .C .D . 【答案】D【解析】因为每一个单音与前一个单音频率比为,()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f ===,故选D .2.(2018浙江)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( ) A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <.3.(2018全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a ( ) A .12- B .10- C .10 D .12答案:B 解答:11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-,∴51424(3)10a a d =+=+⨯-=-.二、填空1.(2018北京理)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 【答案】63n a n =-【解析】13a =,33436d d ∴+++=,6d ∴=,()36163n a n n ∴=+-=-.2.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有 元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . 【答案】27 【解析】设=2k n a , 则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k k k k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解, 此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥, 得满足条件的n 最小值为27.3.(2018上海)记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
2018年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)

2018年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=x y -的焦点坐标是( )A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)1..答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2. (2018上海)设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2(B )2(C )2(D )43.(2018天津文、理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )(A )22139x y -= (B )22193x y -=(C )221412x y -= (D )221124x y -= 3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --=+,22222bc b bc b d c a b ++==+, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率:2229112c b e a a a==++,据此可得23a =,则双曲线的方程为22139x y -=.故选A .4.(2018全国新课标Ⅰ文)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( ) A .13B .12C .22D .2234、答案:C解答:知2c =,∴2228a b c =+=,22a =,∴离心率22e =.5.(2018全国新课标Ⅰ理)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .23D .45. 答案:B解答:渐近线方程为:2203x y -=,即33y x =±,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴3NM k =,直线MN 方程为3(2)y x =-.联立333(2)y x y x ⎧=-⎪⎨⎪=-⎩∴33(,)22N -,即3ON =,∴3MON π∠=,∴3MN =,故选B.6.(2018全国新课标Ⅰ理)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .86. 答案:D解答:由题意知直线MN 的方程为2(2)3y x =+,设1122(,),(,)M x y N x y ,与抛物线方程联立有22(2)34y x y x⎧=+⎪⎨⎪=⎩,可得1112x y =⎧⎨=⎩或2244x y =⎧⎨=⎩,∴(0,2),(3,4)FM FN ==,∴03248FM FN ⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c c e a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==, 由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5 B .2C .3D .211.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1||6||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,∴222222222224(6)464463322b c a bb c a b c a c a b c c+-=⇒+-=⇒-=-⋅ 223c a ⇒=3e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>5,则a =_________. 2.【答案】4【解析】在双曲线中,2224c a b a =++,且5c e a ==245a +,22454a a +=,216a ∴=,04a a >∴=.3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.3.【答案】31-;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为23113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m me m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国各地高考数学试题及解答分类汇编大全 (08三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,»AB ,»CD,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( )A .»AB B .»CDC .»EFD .¼GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦, 则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由()022,4k x k k π+π≤+≤π+π∈Z 得()322,44k x k k ππ-+π≤≤+π∈Z ,因此[]π3π,,44a a ⎡⎤-⊂-⎢⎥⎣⎦,π,4a a a ∴-<-≥-,3π4a ≤,π04a ∴<≤,从而a 的最大值为π4,故选A .7.(2018全国新课标Ⅲ文、理)若1sin 3α=,则cos2α=( ) A .89B .79C .79-D .89-7.答案:B解答:227cos 212sin 199αα=-=-=.故选B.8.(2018全国新课标Ⅲ文)函数2tan ()1tan xf x x=+的最小正周期为( )A .4π B .2π C .πD .2π8.答案:C解答:22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x=====+++,∴()f x 的周期22T ππ==.故选C.二、填空1.(2018北京理)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.1.【答案】23【解析】()π4f x f ⎛⎫≤ ⎪⎝⎭Q 对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,()ππ2π46k k ω∴-=∈Z ,()283k k ω∴=+∈Z ,0ω>Q ,∴当0k =时,ω取最小值为23.2.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .2.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.3.(2018全国新课标Ⅰ文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15B C D .13.答案:B解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得tan 5α=±;当tan 5α=时,可得15a =,25b =,即5a =,5b =,此时5a b -=;当tan 5α=-时,仍有此结果.4.(2018全国新课标Ⅰ理)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.4.答案: 解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-.∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π=∴5()3f π=.()3f π=,(0)(2)0f f π==,()0f π=∴()f x 最小值为5.(2018全国新课标Ⅱ文)已知5π1tan()45α-=,则tan α=__________.5.【答案】32【解析】5tan tan5tan 114tan 541tan 51tan tan 4αααααπ-π-⎛⎫-=== ⎪π+⎝⎭+⋅,解方程得3tan 2α=.6.(2018全国新课标Ⅱ理)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.6.【答案】12-【解析】sin cos 1αβ+=Q ,cos sin 0αβ+=,()()221sin cos 1αα∴-+-=,1sin 2α∴=,1cos 2β=,因此()22111111sin sin cos cos sin cos 1sin 1224442αβαβαβαα+=+=⨯-=-+=-+=-.7.(2018全国新课标Ⅲ理)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.7.答案:3解答:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.三、解答题1.(2018北京文)已知函数()2sin cos f x x x x =+. (1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.1.【答案】(1)π;(2)π3.【解析】(1)()1cos 211122cos 2sin 222262x f x x x x x -π⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.2. (2018上海)设常数a R ∈,函数f x ()22?asin x cos x =+(1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=+,求方程12f x =-()在区间ππ-[,]上的解。
3.(2018江苏)已知,αβ为锐角,4tan 3α=,5cos()αβ+=.(1)求cos2α的值; (2)求tan()αβ-的值.3.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos 22cos 125αα=-=-.(2)因为α,β为锐角,所以()0,παβ+∈. 又因为()5cos αβ+=,所以()()225sin 1cos αβαβ+=-+=, 因此()tan 2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,()()()()tan 2tan 2tan tan 21tan 2tan 11ααβαβααβααβ-+-=-+==-⎡⎤⎣⎦++.4.(2018江苏)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.4.【答案】(1)1,41⎡⎫⎪⎢⎣⎭;(2)当π6θ=时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO 并延长交MN 于H ,则PH MN ⊥,所以10OH =. 过O 作OE BC ⊥于E ,则OE MN ∥,所以COE θ∠=, 故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为()()240cos 40sin 108004sin cos cos θθθθθ⨯+=+,CDP △的面积为()()1240cos 4040sin 1600cos sin cos 2θθθθθ⨯⨯-=-.过N 作GN MN ⊥,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==.令0GOK θ∠=,则01sin 4θ=,0π0,6θ⎛⎫∈ ⎪⎝⎭.当0π2,θθ⎡⎫∈⎪⎢⎣⎭时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1,41⎡⎫⎪⎢⎣⎭.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4:3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为()30k k >,则年总产值为()()48004sin cos cos 31600cos sin cos k k θθθθθθ⨯++⨯-()8000sin cos cos k θθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭.设() sin cos cos f θθθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭,则()()()()222cos sin sin 2sin sin 12sin 1sin 1f θθθθθθθθ'=--=-+-=--+.令()=0f θ',得π6θ=,当0π6,θθ⎛⎫∈ ⎪⎝⎭时,()>0f θ',所以()f θ为增函数; 当ππ,62θ⎛⎫∈ ⎪⎝⎭时,()<0f θ',所以()f θ为减函数,因此,当π6θ=时,()f θ取到最大值.5.(2018浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=513,求cos β的值.5 .答案:(1)45;(2)5665-或1665. 解答:(1)445sin()sin 15απα-+=-=-=.(2)∵()βαβα=+-,∴cos cos[()]βαβα=+-,∵5sin()13αβ+=,∴12cos()13αβ+=±,又∵4sin 5α=-,且α终边在第三象限,∴3cos 5α=-.①当12cos()13αβ+=时,cos cos()cos sin()sin βαβααβα=+++ 12354362056()()1351356565--=⨯-+⨯-==-. ②当12cos()13αβ+=-时,cos cos()cos sin()sin βαβααβα=+++1235416()()()13513565=-⨯-+⨯-=.6(2018天津文)在△ABC 中,内角A ,B ,C 所对的边分别为a,b,c .已知b sin A =a cos(B –π6).(Ⅰ)求教B 的大小;(Ⅱ)设a =2,c =3,求b 和sin(2A –B )的值.6.【答案】(1)3B π=;(2)b =,()sin 2A B -=【解析】(1)在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由sin cos 6b A a B π⎛⎫=- ⎪⎝⎭,得sin cos 6a B a B π⎛⎫=- ⎪⎝⎭,即sin cos 6B B π⎛⎫=- ⎪⎝⎭,可得tan B .又因为()0,B ∈π,可得3B π=.(2)在ABC △中,由余弦定理及2a =,3c =,3B π=,有2222cos 7b a c ac B =+-=,故b =.由sin cos 6b A a B π⎛⎫=- ⎪⎝⎭,可得sin A =.因为a c <,故cos A =因此sin 22sin cos A A A ==21cos22cos 17A A =-=.所以,()11sin 2sin 2cos cos2sin 27A B A B A B -=--。