理科数学高考试题分类汇编

合集下载

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。

高考数学 真题分类汇编:专题(15)复数(理科)及答案

高考数学 真题分类汇编:专题(15)复数(理科)及答案

专题十五 复数1.【20xx 高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【20xx 高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【20xx 高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【20xx 高考新课标1,理1】设复数z 满足11z z+-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【20xx 高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【20xx 高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【20xx 高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.8.【20xx 高考安徽,理1】设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.【20xx 高考重庆,理11】设复数a +bi (a ,b ∈R ),则(a +bi )(a -bi )=________.【答案】3【解析】由a +得=,即223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【20xx 高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【20xx 江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【20xx 高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【20xx 高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i a b z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【20xx 高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。

函数-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版)

 函数-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版)
2013-2022十年全国高考数学真题分类汇编
专题02函数
一、选择题
1.(2022年全国乙卷理科·第12题)已知函数 的定义域均为R,且 .若 的图像关于直线 对称, ,则 ()
A. B. C. D.
2.(2022新高考全国II卷·第8题)已知函数 的定义域为R,且 ,则 ()
A. B. C.0D.1
A. B. C. D.
12.(2021年高考全国甲卷理科·第4题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足 .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( )
A.1.5B.1.2C.0.8D.0.6
27.(2018年高考数学课标Ⅱ卷(理)·第3题)函数 的图象大致为()
A. B. C. D.
24.(2019年高考数学课标全国Ⅰ卷理科·第5题)函数 在 的图象大致为()
25.(2018年高考数学课标Ⅲ卷(理)·第7题)函数 的图象大致为()
26.(2018年高考数学课标Ⅱ卷(理)·第11题)已知 是定义域为 的奇函数,满足 .若 ,则 ()
A. B.0C.2D.50
13.(2020年高考数学课标Ⅰ卷理科·第12题)若 ,则()
A. B. C. D.
14.(2020年高考数学课标Ⅰ卷理科·第5题)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()
3.(2021年新高考全国Ⅱ卷·第8题)已知函数 的定义域为 , 为偶函数, 为奇函数,则()

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 三角大题(精解精析)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 三角大题(精解精析)

2012-2021十年全国高考数学真题分类汇编 三角大题 (精解精析)1.(2020年高考数学课标Ⅱ卷理科)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A 。

(2)若BC =3,求ABC 周长地最大值.【结果】(1)23π。

(2)3+.思路:(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴周长地最大值为3+.【点睛】本题考查解三角形地相关知识,涉及到正弦定理角化边地应用,余弦定理地应用,三角形周长最大值地求解问题。

求解周长最大值地关键是能够在余弦定理构造地等式中,结合基本不等式构造不等关系求得最值.2.(2019年高考数学课标Ⅲ卷理科)ABC △地内角,,A B C 地对边分别为,,a b c ,已知sinsin 2A Ca b A +=.(1)求B 。

(2)若ABC △为锐角三角形,且1c =,求ABC △面积地取值范围.【结果】(1)3B π=;(2).【官方思路】.(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=,因为sin 0A ≠,所以sinsin 2A CB +=.由A BC 180++=︒,可得sin cos 22A C B +=,故B B Bcos 2sin cos 222=.因为B cos02≠,故B 1sin 22=,因此60=︒B .(2)由题设及(1)知△ABC 地面积=△ABC S a .由正弦定理得sin sin(120)1sin sin 2︒-===c A C a C C .由于△ABC 为锐角三角形,故090︒<<︒A ,090︒<<︒C .由(1)知120+=︒A C ,所以3090︒<<︒C ,故122<<a ,<<△ABC S .因此△ABC 面积地取值范围是.【点评】这道题考查了三角函数地基础知识,和正弦定理或者余弦定理地使用(此题也可以用余弦定理求解),最后考查△ABC 是锐角三角形这个款件地利用.考查地很全面,是一道很好地考题.3.(2019年高考数学课标全国Ⅰ卷理科)ABC △地内角,,A B C 地对边分别为,,a b c .设22(sin sin )sin sin sin B C A B C -=-.(1)求A 。

分类汇编【理科数学】2012-2021十年全国高考数学真题分类汇编 数列小题(原卷版)

分类汇编【理科数学】2012-2021十年全国高考数学真题分类汇编 数列小题(原卷版)

2012-2021十年全国高考数学真题分类汇编 数列小题(原卷版)一、选择题1.(2020年高考数学课标Ⅱ卷理科)0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( )A .11010B .11011C .10001D .110012.(2020年高考数学课标Ⅱ卷理科)数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k = ( )A .2B .3C .4D .53.(2020年高考数学课标Ⅱ卷理科)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石) ( )( )A .3699块B .3474块C .3402块D .3339块4.(2019年高考数学课标Ⅲ卷理科)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = ( )A .16B .8C .4D .25.(2019年高考数学课标全国Ⅰ卷理科)记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( )A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =-6.(2018年高考数学课标卷Ⅰ(理))记n S 为等差数列{}n a 的前n 项和,3243S S S =+,12a =.则5a =( )A .12-B .10-C .10D .127.(2017年高考数学新课标Ⅰ卷理科)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,,其中第一项是,接下来的两项是,,再接下来的三项是,,,依此类推.求满足如下条件的最小整数:且该数列的前项和为的整数幂.那么该款软件的激活码是 ( )A .B .C .D .8.(2017年高考数学新课标Ⅰ卷理科)记为等差数列的前项和.若,,则的公差为 ( )A .B .C .D .9.(2017年高考数学课标Ⅲ卷理科)等差数列的首项为,公差不为.若成等比数列,则前项的和为( )A .B .C .D .10.(2017年高考数学课标Ⅱ卷理科)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 ( ) A .1盏B .3盏C .5盏D .9盏11.(2016高考数学课标Ⅲ卷理科)定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,1,2,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个12.(2016高考数学课标Ⅰ卷理科)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a ( )(A )100(B )99(C )98(D )9713.(2015高考数学新课标2理科)已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( )A .21B .42C .63D .8420212021222N 100N >N 2440330220110n S {}n a n 4524a a +=648S ={}n a 1248{}n a 10236,,a a a {}n a 624-3-3814.(2013高考数学新课标2理科)等比数列{}n a 的前n 项和为n S ,已知321510,9S a a a =+=,则1a 等于( )A .13B .-13C .19D .-1915.(2013高考数学新课标1理科)设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,n =1,2,3,…若11b c >,1112b c a +=,n n a a =+1,21n n n a c b +=+,21nn n a b c +=+,则 ( ) A .{}n S 为递减数列B .{}n S 为递增数列C .21{}n S -为递增数列,2{}n S 为递减数列D .21{}n S -为递减数列,2{}n S 为递增数列16.(2013高考数学新课标1理科)设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m= ( )A .3B .4C .5D .617.(2012高考数学新课标理科)已知{}n a 为等比数列,472a a +=,,则 ( ) A .7B .5C .-5D .-7二、填空题18.(2019年高考数学课标Ⅲ卷理科)记n S 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________.19.(2019年高考数学课标全国Ⅰ卷理科)记n S 为等比数列{}n a 的前n 项和.若113a =,246a a =,则5S = .20.(2018年高考数学课标卷Ⅰ(理))记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S = . 21.(2017年高考数学课标Ⅲ卷理科)设等比数列满足,,则 . 22.(2017年高考数学课标Ⅱ卷理科)等差数列的前项和为,,,则. 23.(2016高考数学课标Ⅰ卷理科)设等比数列满足1310a a +=,245a a +=,则12...n a a a 的最大值568a a =-110a a +={}n a 121a a +=-133a a -=-4a ={}n a n n S 33a =410S =11nk kS ==∑为 .24.(2015高考数学新课标2理科)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.25.(2013高考数学新课标2理科)等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.26.(2013高考数学新课标1理科)若数列{n a }的前n 项和为2133n n S a =+,则数列{n a }的通项公式是n a =______.27.(2012高考数学新课标理科)数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为。

高考理科数学试题分类汇编17:几何证明

高考理科数学试题分类汇编17:几何证明

高考理科数学试题分类汇编17:几何证明一、填空题1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,090C ∠=,060,20A AB ∠==,过C 作ABC 的外接圆的切线CD ,BD CD ⊥,BD 与外接圆交于点E ,则DE 的长为__________【答案】52 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, △ABC 为圆的内接三角形, BD为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE= 6, BD = 5, 则线段CF 的长为______.【答案】833 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.【答案】4 .(2013年高考四川卷(理))设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:①若,,A B C 三个点共线,C 在线AB 上,则C 是,,A B C 的中位点;[来源:12999数学网].AED CBO第15题图②直角三角形斜边的点是该直角三角形三个顶点的中位点; ③若四个点,,,A B C D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区) 【答案】①④ 5 .(2013年高考陕西卷(理))B. (几何证明选做题) 如图, 弦AB 与CD 相交于O 内一点E , 过E 作BC的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE =_____.[来源:]【答案】.66 .(2013年高考湖南卷(理))如图2,O 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 的距离为____________.【答案】237 .(2013年高考湖北卷(理))如图,圆O 上一点C 在直线AB 上的射影为D ,点D 在半径OC 上的射影为E .若3AB AD =,则CEEO的值为___________.【答案】88 .(2013年高考北京卷(理))如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于 D.若PA=3,916PD DB =::,则PD=_________;AB=___________. OD EBA第15题图C【答案】95;4 二、解答题9 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—1几何证明选讲:如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,,E F 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,,,,B E F C 四点共圆. (Ⅰ)证明:CA 是△ABC 外接圆的直径;(Ⅱ)若DB BE EA ==,求过,,,B E F C 四点的圆的面积与△ABC 外接圆面积的比值.【答案】10.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))选修4-1:几何证明选讲如图,.AB O CD O E AD CD D 为直径,直线与相切于垂直于于,BC 垂直于CD 于C EF ,,垂直于F ,连接,AE BE .证明:(I);FEB CEB ∠=∠ (II)2.EF AD BC =【答案】11.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))A.[选修4-1:几何证明选讲]本小题满分10分.如图,AB 和BC 分别与圆O 相切于点D ,,C AC 经过圆心O ,且2BC OC = 求证:2AC AD =【答案】A 证明:连接OD,∵AB 与BC 分别与圆O 相切于点D 与C ∴090=∠=∠ACB ADO ,又∵A A ∠=∠ ∴ADO RT ∆~ACB RT ∆ ∴ADACOD BC = 又∵BC=2OC=2OD ∴AC=2AD 12.(2013年高考新课标1(理))选修4—1:几何证明选讲 如图,直线AB 为圆的切线,切点为B,点C 在圆上,∠ABC 的角平分线BE 交圆于点E,DB 垂直BE 交圆于D.(Ⅰ)证明:DB=DC; (Ⅱ)设圆的半径为1,BC=,延长CE 交AB 于点F,求△BCF 外接圆的半径.【答案】(Ⅰ)连结DE,交BC 与点G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE ,∴∠CBE=∠BCE,BE=CE, 又∵DB⊥BE,∴D E 是直径,∠DCE=090,由勾股定理可得DB=DC.(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG 是BC . 设DE 中点为O,连结BO,则∠BOG=o60,∠ABE=∠BCE=∠CBE=o30,∴CF⊥BF, ∴Rt△B CF。

2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)

2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)

2012-2021十年全国高考数学真题分类汇编立体几何客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D解析:如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D2.(2021年高考全国甲卷理科)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()()A.B.C.D.【答案】D解析:由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D3.(2021年高考全国甲卷理科)已如A.B.C是半径为1的球O的球面上的三个点,且,1AC BC AC BC⊥==,则三棱锥O ABC-的体积为()A.212B.312C.24D.34【答案】A解析:,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则22d =,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A .【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.4.(2020年高考数学课标Ⅰ卷理科)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.(2020年高考数学课标Ⅰ卷理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()()A .514-B .512-C .514+D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得154b a =(负值舍去).故选:C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6.(2020年高考数学课标Ⅱ卷理科)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A .3B .32C .1D .32【答案】C解析:设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=-=,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.7.(2020年高考数学课标Ⅱ卷理科)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()()A .EB .FC .GD .H【答案】A解析:根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.(2020年高考数学课标Ⅲ卷理科)下图为某几何体的三视图,则该几何体的表面积是()()A .6+4B .C .D .【答案】C解析:根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.(2019年高考数学课标Ⅲ卷理科)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】取DC 中点E ,如图连接辅助线,在BDE △中,N 为BD 中点,M 为DE 中点,所以//MN BE ,所以BM ,EN 共面相交,选项C ,D 错误. 平面CDE ⊥平面ABCD ,EF CD ⊥,EF ∴⊥平面ABCD ,又DC CD ⊥,∴DC ⊥平面DCE ,从而EF FN ⊥,BC MC ⊥.所以MCB △与EFN△均为直角三角形.不妨设正方形边长为2,易知3,1MC EF NF ===,所以22(3)27BM =+=,22(3)12EN =+=,BM EN ∴≠,故选B .【点评】本题比较具有综合性,既考查了面面垂直、线面垂直等线面关系,还考查了三角形中的一些计算问题,是一个比较经典的题目.10.(2019年高考数学课标全国Ⅱ卷理科)设α、β为两个平面,则αβ//的充要条件是()()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ//的充分条件,由面面平行性质定理知,若αβ//,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ//的必要条件,故选B .【点评】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.11.(2019年高考数学课标全国Ⅰ卷理科)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A .B .C .D 【答案】D解析:三棱锥P ABC -为正三棱锥,取AC 中点M ,连接,PM BM ,则,AC PM AB BM ⊥⊥,PM BM M = ,可得AC ⊥平面PBM ,从而AC PB ⊥,又//,PB EF EF CE ⊥,可得PB CE ⊥,又AC CE C = ,所以PB ⊥平面PAC ,从而,PB PA PB PC ⊥⊥,从而正三棱锥P ABC -的三条侧棱,,PA PB PC 两两垂直,且PA PB PC ===,,PA PB PC 为棱的正方体,正方体的体对角线即为球O 的直径,即22R R ==,所以球O 的体积为343V R π==.12.(2018年高考数学课标Ⅲ卷(理))设,,,A B C D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A.B.C.D.【答案】B解析:设ABC △的边长为a,则21sin 6062ABC S a a =︒=⇒=△,此时ABC △外接圆的半径为112sin 60232a r =⋅=⨯︒,故球心O 到面ABC2==,故点D 到面ABC 的最大距离为26R +=,此时11633D ABC ABC D ABC V S d --=⋅=⨯=△,故选B.点评:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==,再由勾股定理得到OM ,进而得到结果,属于较难题型.13.(2018年高考数学课标Ⅲ卷(理))中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体.则咬合时带卯眼的木构件的俯视图可以是()()【答案】A解析:依题意,结合三视图的知识易知,带卯眼的木构件的俯视图可以是A 图.14.(2018年高考数学课标Ⅱ卷(理))在长方体1111ABCD A B C D -中,1AB BC ==,1AA =线1AD 与1DB 所成角的余弦值为()A .15B .56C .55D .22【答案】C解析:以D 为坐标原点,1,,DA DC DD DA 为,,x y z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),(0,0,3)D A B D ,所以11(1,0,3),(1,1,3)AD DB =-=因为111111135cos ,5||||25AD DB AD DB AD DB ⋅-+<>===⋅⨯所以异面直线1AD 与1DB 所成角的余弦值为55,故选C .15.(2018年高考数学课标卷Ⅰ(理))已知正方体的校长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面而积的最大值为()A .334B .233C .324D .32【答案】A【解析一】根据题意,平面α与正方体对角线垂直,记正方体为111ABCD A B C D -不妨设平面α与1AC 垂直,且交于点M .平面ABD 与平面11B D C 与1AC 分别交于,P Q .正方体中心为O ,则容易证明当M 从A 运动到P 时,截面为三角形且周长逐渐增大:当M 从P 运动到Q 时,截面为六边形且周长不变;当M 从Q 运动到1C 时,截面为三角形且周长还渐减小。

高考理科数学试题19个专题分类大汇编

高考理科数学试题19个专题分类大汇编

全国高考理科数学试题分类汇编1:集合一、选择题1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U=,集合{}=12A ,,{}=23B ,,则()=U AB ð( )A. {}134,,B. {}34,C. {}3D. {}4【答案】D2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A. ()01,B. (]02,C. ()1,2D. (]12, 【答案】D3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2},A = {x ∈R | x ≤1}, 则AB ⋂=(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1]【答案】D4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合对不是“保序同构”的是( ) A.*,A N B N==B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或C. {|01},A x x B R =<<=D. ,A Z B Q ==【答案】D5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( ) (A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞(D) [2,)+∞【答案】B.6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是 (A) 1 (B) 3 (C)5 (D)9【答案】C7 . (高考陕西卷(理))设全集为R , 函数()f x M , 则C M R 为(A) [-1,1] (B) (-1,1) (C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-【答案】D8 . (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为(A)3 (B)4 (C)5 (D)6 【答案】B9 . (高考四川卷(理))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A){2}- (B){2} (C){2,2}- (D)∅【答案】A10. (高考新课标1(理))已知集合{}{2|20,|A x x x B x x =->=<<,则( )A. A∩B=∅B. A∪B=RC. B ⊆AD. A ⊆B【答案】B.11. (高考湖北卷(理))已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R AC B =( )A. {}|0x x ≤B. {}|24x x ≤≤C. {}|024x x x ≤<>或D. {}|024x x x <≤≥或【答案】C12. (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知集合{}{}2|(1)4,,1,0,1,2,3M x x x R N =-<∈=-,则=N M(A){}2,1,0 (B){}2,1,0,1- (C){}3,2,0,1- (D){}3,2,1,0【答案】A13. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A .{}0B.{}0,2C.{}2,0-D.{}2,0,2-【答案】D14. (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )(A. (2,1]-B. ]4,(--∞C. ]1,(-∞D. ),1[+∞【答案】C15. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设整数4n ≥,集合{}1,2,3,,X n =. 令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉ B. (),,y z w S ∈,(),,x y w S ∈C.(),,y z w S ∉,(),,x y w S ∈D.(),,y z w S ∉,(),,x y w S ∈(一)必做题(9~13题) 【答案】B16. (高考北京卷(理))已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( )A. {0}B. {-1,0}C. {0,1}D. {-1,0,1} 【答案】B17. (上海市春季高考数学试卷(含答案))设全集U R =,下列集合运算结果为R 的是( ) (A)u ZN ð (B)u N N ð (C)()u u ∅痧 (D){0}u ð【答案】A 二、填空题18. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))集合}1,0,1{-共有___________个子集.【答案】8 三、解答题19. (普通高等学校招生统一考试重庆数学(理)试题(含答案))对正整数n ,记{}1,2,3,,m I n =,,m m m P I k I ⎫=∈∈⎬⎭. (1)求集合7P 中元素的个数;(2)若m P 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”. 求n 的最大值,使m P 能分成两人上不相交的稀疏集的并.【答案】全国高考理科数学试题分类汇编2:函数一、选择题20 . (高考江西卷(理))函数的定义域为A. (0,1)B. [0,1)C. (0,1]D. [0,1] 【答案】D21 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A. (),a b 和(),b c 内 B. (),a -∞和(),a b 内 C. (),b c 和(),c +∞内 D. (),a -∞和(),c +∞内【答案】A22 . (上海市春季高考数学试卷(含答案))函数12()f x x -=的大致图像是( )【答案】A23 . (高考四川卷(理))设函数()f x =a R ∈,e 为自然对数的底数). 若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( ) (A)[1,]e (B)1[,-11]e -, (C)[1,1]e + (D)1[-1,1]e e -+【答案】A24 . (高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A. (,0]-∞B. (,1]-∞C. [2,1]-D. [2,0]-【答案】D25 . (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x -(A)()1021x x >- (B)()1021xx ≠- (C)()21x x R -∈ (D)()210xx ->【答案】A26 . (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知y x ,为正实数,则A. y x yx lg lg lg lg 222+=+ B. y x y x lg lg )lg(222∙=+ C. y x yx lg lg lg lg 222+=∙ D. y x xy lg lg )lg(222∙=【答案】D27 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (A) 2- (B) 0 (C) 1 (D) 2【答案】A28 . (高考陕西卷(理))在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30] 【答案】C29. (普通高等学校招生统一考试重庆数学(理)试题(含答案))y =()63a -≤≤的最大值为( )A. 9B.92 C. 3【答案】B30. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为(A)()1,1- (B)11,2⎛⎫- ⎪⎝⎭ (C)()-1,0 (D)1,12⎛⎫⎪⎝⎭【答案】B31. (高考湖南卷(理))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A. 3B. 2C. 1D. 0 【答案】B32. (高考四川卷(理))函数231x x y =-的图象大致是( )【答案】C33. (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A)2216a a -- (B)2216a a +- (C)16- (D)16【答案】B34. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4 B. 3C. 2D. 1【答案】C35. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若函数3()=+b +f x x x c有极值点1x ,2x ,且11()=f x x ,则关于x 的方程213(())+2()+=0f x f x b 的不同实根个数是 (A)3 (B)4 (C) 5 (D)6 【答案】A36. (普通高等学校招生统一考试天津数学(理)试题(含答案))函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4 【答案】B37. (高考北京卷(理))函数f (x )的图象向右平移1个单位长度,所得图象与y =e x关于y 轴对称,则f (x )= A. 1ex + B. 1ex - C. 1ex -+ D. 1ex --【答案】D38. (上海市春季高考数学试卷(含答案))设-1()f x 为函数()f x =,下列结论正确的是( )(A) 1(2)2f -= (B) 1(2)4f -= (C) 1(4)2f -= (D) 1(4)4f -=【答案】B39. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,则a 的取值范围是 (A)[-1,0] (B)[1,)-+∞ (C)[0,3] (D)[3,)+∞【答案】D二、填空题40. (上海市春季高考数学试卷(含答案))函数2log (2)y x =+的定义域是_______________ 【答案】(2,)-+∞ 41. (高考上海卷(理))方程1313313x x-+=-的实数解为________ 【答案】3log 4x =.42. (高考上海卷(理))对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =【答案】02x =.43. (高考新课标1(理))若函数()f x =22(1)()xx ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______.【答案】16.44. (上海市春季高考数学试卷(含答案))方程28x=的解是_________________ 【答案】345. (高考湖南卷(理))设函数(),0,0.x x x f x a b c c a c b =+->>>>其中(1)记集合{}(,,),,M a b c a b c a =不能构成一个三角形的三条边长,且=b ,则(,,)a b c M ∈所对应的()f x 的零点的取值集合为____.(2)若,,a b c ABC ∆是的三条边长,则下列结论正确的是______. (写出所有正确结论的序号)①()(),1,0;x f x ∀∈-∞>②,,,x x x x R xa b c ∃∈使不能构成一个三角形的三条边长; ③若()()1,2,0.ABC x f x ∆∃∈=为钝角三角形,则使【答案】(1)]10(,(2)①②③ 46. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))已知)(x f 是定义在R 上的奇函数. 当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为___________.【答案】()()+∞-,50,547. (高考上海卷(理))设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________ 【答案】87a ≤-. 三、解答题48. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =(Ⅰ)求的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当时,求l 长度的最小值.【答案】解: (Ⅰ))1,0(0])1([)(22aa x x a a x x f +∈⇒>+-=. 所以区间长度为21a a+. (Ⅱ) 由(Ⅰ)知,aa a al 1112+=+=恒成立令已知k kk k k k a k k -1110-111.1-10),1,0(2>+∴>⇒>++≤≤<∈. 22)1(11)1(1111)(k kk k l k a a a a g -+-=-+-≥⇒-=+=⇒这时时取最大值在 所以2)1(111k kl k a -+--=取最小值时,当. 49. (上海市春季高考数学试卷(含答案))本题共有3个小题,第1小题满分5分,第2小题满分7分,第3小题满分6分.已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”.(1)将函数32()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标; (2)求函数22()log 4xh x x=- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对称图像”的充要条件为“存在实数a 和b,使得函数()y f x a b =+- 是偶函数”. 判断该命题的真假. 如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).【答案】(1)平移后图像对应的函数解析式为32(1)3(1)2y x x =+-++,整理得33y x x =-,由于函数33y x x =-是奇函数,由题设真命题知,函数()g x 图像对称中心的坐标是(12)-,. (2)设22()log 4xh x x=-的对称中心为( )P a b ,,由题设知函数()h x a b +-是奇函数. 设()(),f x h x a b =+-则22()()log 4()x a f x b x a +=--+,即222()log 4x a f x b a x +=---. 由不等式2204x aa x+>--的解集关于原点对称,得2a =.此时22(2)()log (2 2)2x f x b x x+=-∈--,,. 任取(2,2)x ∈-,由()()0f x f x -+=,得1b =,所以函数22()log 4xh x x=-图像对称中心的坐标是(2 1),. (3)此命题是假命题.举反例说明:函数()f x x =的图像关于直线y x =-成轴对称图像,但是对任意实数a 和b ,函数()y f x a b =+-,即y x a b =+-总不是偶函数. 修改后的真命题:“函数()y f x =的图像关于直线x a =成轴对称图像”的充要条件是“函数()y f x a =+是偶函数”.全国高考理科数学试题分类汇编3:三角函数一、选择题50 . (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43C. 43-D. 34-【答案】C51 . (高考陕西卷(理))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 【答案】B52 . (普通高等学校招生统一考试天津数学(理)试题(含答案))在△ABC 中,,3,4AB BC ABC π∠===则sin BAC ∠ =【答案】C53 . (普通高等学校招生统一考试山东数学(理)试题(含答案))将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A) 34π (B) 4π (C)0 (D) 4π-【答案】B54 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= A. 6π B. 3π C. 23π D. 56π【答案】A55 . (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称(C)()f x的最大值为2(D)()f x 既奇函数,又是周期函数 【答案】C56 . (普通高等学校招生统一考试山东数学(理)试题(含答案))函数cos sin y x x x =+的图象大致为【答案】D57 . (高考四川卷(理))函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π 【答案】A58 . (上海市春季高考数学试卷(含答案))既是偶函数又在区间(0 )π,上单调递减的函数是( )(A)sin y x = (B)cos y x = (C)sin 2y x = (D)cos 2y x =【答案】B59. (普通高等学校招生统一考试重庆数学(理)试题(含答案))04cos50tan 40-=( )1 【答案】C60. (高考湖南卷(理))在锐角中ABC ∆,角,A B 所对的边长分别为,a b . 若2sin ,a B A 则角等于A.12π B. 6π C. 4π D. 3π【答案】D61. (高考湖北卷(理))将函数()sin yx x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12π B.6π C.3π D.56π【答案】B 二、填空题62. (普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))ABC ∆中,090=∠C ,M是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________.【答案】63. (高考新课标1(理))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______【答案】. 64. (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图ABC ∆中,已知点D在BC 边上,AD ⊥AC,sin 3BAC AB AD ∠===则BD 的长为_______________【答案】65. (上海市春季高考数学试卷(含答案))函数2sin y x =的最小正周期是_____________【答案】2π66. (高考四川卷(理))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.【答案】67. (高考上海卷(理))若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y +=【答案】2sin()3x y +=.68. (高考上海卷(理))已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)【答案】1arccos3C π=- 69. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知α是第三象限角,1sin 3a =-,则cot a =____________.【答案】70. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))函数)42sin(3π+=x y 的最小正周期为___________.【答案】π71. (上海市春季高考数学试卷(含答案))在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B ===,,,则b=_______ 【答案】772. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设ABC ∆的内角,,A B C所对边的长分别为,,a b c . 若2b c a +=,则3sin 5sin ,A B =则角C =_____.【答案】π3273. (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=________.【答案】74. (高考江西卷(理))函数2sin2y x x =+的最小正周期为T 为_________.【答案】π75. (上海市春季高考数学试卷(含答案))函数4s i n 3c o s y x x =+的最大值是_______________ 【答案】5三、解答题76. (高考北京卷(理))在△ABC 中,a =3,b ,∠B =2∠A .(I)求cos A 的值; (II)求c 的值.【答案】解:(I)因为a =3,b =2,∠B =2∠A . 所以在△ABC 中,由正弦定理得3sin sin 2A A =. 所以2sin cos sin 3A A A =. 故cos 3A =.(II)由(I)知cos 3A =,所以s i n 3A ==. 又因为∠B=2∠A,所以21c o s 2c o s 13B A =-=. 所以sin 3B ==.在△ABC 中,sin sin()sin cos cos sin C A B A B A B =+=+=. 所以sin 5sin a Cc A==.77. (高考陕西卷(理))已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】解:(Ⅰ)()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x . 最小正周期ππ==22T . 所以),62sin()(π-=x x f 最小正周期为π.(Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f . 所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.78. (普通高等学校招生统一考试重庆数学(理)试题(含答案))在ABC 中,内角,,A B C 的对边分别是,,a b c ,且222a b c +=.(1)求C ; (2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,求tan α的值. 【答案】由题意得79. (普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】80. (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))设向量)()s i n ,s i n ,c o s ,s i n x ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x =求的最大值【答案】81. (高考上海卷(理))(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>;(1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.【答案】(1)因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2) ()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=. 82. (普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=. (I)求B(II)若1sin sin 4A C =,求C . 【答案】83. (高考四川卷(理))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-.(Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.【答案】解:()I 由()()232cos cos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a b A B =,所以,sin sin 2b A B a ==. 由题知a b >,则A B >,故4B π=.根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去).故向量BA 在BC方向上的投影为cos BA B =84. (普通高等学校招生统一考试山东数学(理)试题(含答案))设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.【答案】解:(Ⅰ)由余弦定理2222cos b a c ac B =+-,得()222(1cos )b ac ac B =+-+,又6a c +=,2b =,7cos 9B =,所以9ac =,解得3a =,3c =.(Ⅱ)在△ABC中,sin 9B ==,由正弦定理得sin sin 3a B A b ==,因为a c =,所以A 为锐角,所以1cos 3A ==因此sin()sin cos cos sin A B A B A B -=-=.85. (普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知函数()4co s s i n (0)4f x x x πϖϖϖ⎛⎫=⋅+>⎪⎝⎭的最小正周期为π.(Ⅰ)求ϖ的值; (Ⅱ)讨论()f x 在区间[]0,2上的单调性.【答案】解:(Ⅰ)2)42sin(2)12cos 2(sin 2)cos (sin cos 22++=++=+⇒πωωωωωωx x x x x x122=⇒=⇒ωπωπ. 所以1,2)42sin(2)(=++=ωπx x f (Ⅱ) ;解得,令时,当8242]4,4[)42(]2,0[ππππππππ==++∈+∈x x x x 所以.]28[]8,0[)(上单调递减,上单调递增;在在πππx f y =86. (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点.【答案】解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω=又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点87. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分. 已知(cos ,sin )(cos ,sin )a b ααββ==,,παβ<<<0. (1)若||2a b -=,求证:a b ⊥;(2)设(0,1)c =,若a b c +=,求βα,的值.【答案】解:(1)∵2||=-b a ∴2||2=-b a 即()22222=+-=-,又∵1sin cos ||2222=+==ααa a ,1sin cos ||2222=+==ββb b ∴222=-∴0=b a ∴b ⊥a(2)∵)1,0()sin sin ,cos (cos =++=+βαβα ∴⎩⎨⎧=+=+1sin sin 0cos cos βαβα即⎩⎨⎧-=-=βαβαsin 1sin cos cos 两边分别平方再相加得:βsin 221-= ∴21sin =β ∴21sin =α ∵παβ<<<0∴πβπα61,65==88. (普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知函数()co s 12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【答案】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+⎪⎝⎭cos 2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭. 89. (高考湖南卷(理))已知函数2()sin()cos().()2sin 632xf x x xg x ππ=-+-=.(I)若α是第一象限角,且()f α=求()g α的值; (II)求使()()f x g x ≥成立的x 的取值集合.【答案】解:(I)533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f . 51cos 12sin 2)(,54cos )2,0(,53sin 2=-===⇒∈=⇒ααααπααg 且(II)21)6sin(cos 21sin 23cos 1sin 3)()(≥+=+⇒-≥⇒≥πx x x x x x g x f Z k k k x k k x ∈+∈⇒++∈+⇒],322,2[]652,62[6ππππππππ90. (普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分. 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径. 一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C . 现有甲.乙两位游客从A 处下山,甲沿AC 匀速步行,速度为min /50m . 在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C . 假设缆车匀速直线运动的速度为min /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C . (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【答案】解:(1)∵1312cos =A ,53cos =C ∴),(、20π∈C A ∴135sin =A ,54sin =C∴[]6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(π 根据sinB sinC AC AB =得m C ACAB 1040sin sinB== (2)设乙出发t分钟后,甲.乙距离为d,则1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d ∴)507037(20022+-=t t d∵13010400≤≤t 即80≤≤t ∴3735=t 时,即乙出发3735分钟后,乙在缆车上与甲的距离最短.(3)由正弦定理sinBsinA ACBC =得50013565631260sin sinB ===A AC BC (m) 乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V min /m ,则350710500≤-v ∴3507105003≤-≤-v ∴14625431250≤≤v ∴为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎥⎦⎤⎢⎣⎡14625,431250范围内 CBA法二:解:(1)如图作BD ⊥CA 于点D , 设BD =20k ,则DC =25k ,AD =48k , AB =52k ,由AC =63k =1260m, 知:AB =52k =1040m.(2)设乙出发x 分钟后到达点M , 此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000, 其中0≤x ≤8,当x =3537 (min)时,MN 最小,此时乙在缆车上与甲的距离最短.(3)由(1)知:BC =500m,甲到C 用时:126050 =1265(min).若甲等乙3分钟,则乙到C 用时:1265 +3=1415 (min),在BC 上用时:865 (min) .此时乙的速度最小,且为:500÷865 =125043m/min.若乙等甲3分钟,则乙到C 用时:1265 -3=1115 (min),在BC 上用时:565 (min) .此时乙的速度最大,且为:500÷565 =62514 m/min.故乙步行的速度应控制在[125043 ,62514]范围内.91. (高考湖北卷(理))在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c . 已知()cos23cos 1A B C -+=.(I)求角A 的大小;(II)若ABC ∆的面积S =,5b =,求sin sin B C 的值.【答案】解:(I)由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒(II)1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A == 25sin sin 47bc B C R ∴== 92. (普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))△ABC 在内角CBADMN,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.【答案】93. (高考新课标1(理))如图,在△ABC中,∠ABC=90°,AB= 3 ,BC=1,P 为△ABC内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA【答案】(Ⅰ)由已知得,∠PBC=o 60,∴∠PBA=30o ,在△PBA 中,由余弦定理得2PA=o 1132cos3042+-=74; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得osin sin(30)αα=-,化简得4sin αα=, ∴tan αtan PBA ∠. 94. (上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记1n n n P AP θ+∠=,n N *∈. (1)若31arctan3θ=,求点A 的坐标; (2)若点A的坐标为(0,求n θ的最大值及相应n 的值.[解](1) (2)【答案】[解](1)设(0 )A t ,,根据题意,12n n x -=. 由31arctan 3θ=,知31tan 3θ=,而3443343223443()4tan tan()321x x t x x t t t OAP OAP x x t x x t t tθ--=∠-∠===+⋅++⋅, 所以241323t t =+,解得4t =或8t =. 故点A 的坐标为(0 4),或(0 8),. (2)由题意,点n P 的坐标为1(20)n -,,1tan n n OAP -∠=.111212tan tan()1n n n n n n n OAP OAP θ--+-=∠-∠===.n +≥,所以tan n θ≤=当且仅当2nn=,即4n =时等号成立. 易知0 tan 2n y x πθ<<=,在(0 )2π,上为增函数, 因此,当4n =时,n θ最大,其最大值为arctan4. 95. (高考江西卷(理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、集合与简易逻辑(2014)1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}(2012)1、已知集合A={1,2,3,4,5},B={(x ,y )|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数为(A )3 (B )6 (C )8 (D )10(2010)(1)已知集合{||2,}A x x R =≤∈},{|4,}B x x Z =≤∈,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2}2、平面向量(2014)3.设向量a,b 满足|a+b |a-b ,则a ⋅b = ( )A. 1B. 2C. 3D. 5(2013课标全国Ⅱ,理13)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__________. (2012)13、已知向量a ,b 夹角为45°,且1=a ,102=-b a ,则b =____________. (2011)(10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P3、复数(2014)2.设复数1z ,2z 在复平面内的对应点关于虚轴对称, 12z i =+,则12z z =( )A. – 5B. 5C. - 4+ ID. - 4 – i(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i(2012)3、下面是关于复数z=21i-+的四个命题 P1:z =2 P2: 2z =2iP3:z 的共轭复数为1+i P4 :z 的虚部为-1 其中真命题为(A ). P2 ,P3 (B ) P1 ,P2 (C )P2,P4 (D )P3,P4(2011)(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2010)(2)已知复数z =,z 是z 的共轭复数,则z z ∙= A.14 B.12C.1D.24、框图(2014)7.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( )A. 4B. 5C. 6D. 7(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++(2012)6、如果执行右边的程序图,输入正整数)2(≥N N 和实数n a a a ⋯,,21,输入A ,B ,则 (A )A+B 为的n a a a ⋯,,21和 (B )2A B+为n a a a ⋯,,21的算式平均数 (C )A 和B 分别是n a a a ⋯,,21中最大的数和最小的数 (D )A 和B 分别是n a a a ⋯,,21中最小的数和最大的数2011)(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120(B )720 (C )1440 (D )5040(2010)(7)如果执行右面的框图,输入5N =,则输出的数等于(A )54 (B )45(C )65(D )565、定积分(2011)(9)由曲线y =2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 (2010)(13)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点11(,)(1,2,)x y i N =…,,再数出其中满足11()(1,2,)y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分10()f x dx ⎰的近似值为 。

6、排列组合、二项式定理(2014)13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) (2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ). A .-4 B .-3 C .-2 D .-1(2012)2、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有(A )12种 (B )10种 (C )9种 (D )8种(2011)(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )407、不等式(2014) 9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A .14B .12 C .1 D .22012)14、设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x 则y x z 2-=的取值范围为__________.(2011)(13)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 。

8、概率(2014)5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.4514.(2013课标全国Ⅱ,理14)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =__________. (2011)(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B )12 (C )23 (D )34(2010)(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为(A )100 (B )200 (C )300 (D )4009、三角函数(2014)4.钝角三角形ABC 的面积是12,AB=1, ,则AC=( )A. 5B.C. 2D. 1(2014)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________. (2013课标全国Ⅱ,理15)设θ为第二象限角,若π1tan 42θ⎛⎫+= ⎪⎝⎭,则sin θ+cos θ=__________. (2013课标全国Ⅱ,理17)(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值.(2012)9、已知w >0,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是(A )]45,21[ (B )]43,21[ (C )]21,0( (D )(0,2](2012)17、(本小题满分12分)已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a 。

(Ⅰ)求A ;(Ⅱ)若2=a ,ABC △的面积为3,求b ,c 。

(2011)(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ= (A )45-(B )35- (C )35 (D )45(2011)(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增(2011)(16)在ABC ∆中,60,B AC ==2AB BC +的最大值为 。

(2010)(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0,),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为(2010)(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2(D) -2(2010)(16)在△ABC 中,D 为边BC 上一点,BD=12DC ,∠ADB=120°,AD=2,若△ADC的面积为3,则∠BAC=_______10、数列(2014)17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112n a a a ++<…+ (2013课标全国Ⅱ,理3)等比数列{a n }的前n项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-(2013课标全国Ⅱ,理16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n的最小值为__________.(2012)5、已知{n a }为等比数列,214=+a a ,865-=⋅a a ,则=+101a a (A )7 (B )5 (C )-5 (D )-7(2012)16、数列{}n a 满足12)1(1-=-++n a a n nn ,则{}n a 的前60项和为________。

相关文档
最新文档