2020年高考数学试题分类汇编 应用题 精品
集合 高考数学真题分类题库2020解析版 考点1
考点一集合一、选择题1.(2020·全国卷Ⅰ高考文科·T1)已知集合A={x|x2-3x-4<0},B={-4,1,3,5},则A∩B=()A.{-4,1}B.{1,5}C.{3,5}D.{1,3}【命题意图】该题考查的是有关集合的问题,涉及的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.【解析】选D.由x2-3x-4<0解得-1<x<4,所以A=|-1<<4,又因为B=-4,1,3,5,所以A∩B=1,3.2.(2020·全国卷Ⅰ高考理科·T2)设集合A=|2-4≤0,B=|2+≤0,且A∩B=|-2≤≤1,则a=()A.-4B.-2C.2D.4【命题意图】本题主要考查一元二次不等式、一元一次不等式、集合的交集的基本运算.【解析】选B.解一元二次不等式x2-4≤0可得:A=|-2≤≤2,解一元一次不等式2x+a≤0可得B=|≤由于A∩B=|-2≤≤1,故-2=1,解得:a=-2.3.(2020·全国卷Ⅱ文科·T1)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.⌀B.{-3,-2,2,3)C.{-2,0,2}D.{-2,2}【命题意图】本题考查绝对值不等式的解法、集合交集运算,意在考查学生的运算求解能力.【解析】选D.因为A=<3,∈Z=-2,-1,0,1,2,B=>1,∈Z=>1或<-1,∈Z,所以∩B=2,-2.4.(2020·全国卷Ⅱ理科·T1)已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则U(A∪B)=()A.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-1,0,2,3}【命题意图】本题考查集合的并集和补集运算,意在考查学生的运算求解能力.【解析】选A.由已知得A∪B={-1,0,1,2},所以U(A∪B)={-2,3}.5.(2020·全国卷Ⅲ理科·T1)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6【命题意图】本题主要考查集合的交集运算,考查学生对交集定义的理解以及运算能力.【解析】选C.由题意,A∩B中的元素满足≥+=8,且x,y∈N*,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻的理解,善于抓住代表元素,通过观察集合之间的关系,借助数轴寻找元素之间的关系,使问题准确解决.6.(2020·全国卷Ⅲ文科·T1)已知集合A={1,2,3,5,7,11},B=3<<15,则A∩B中元素的个数为()A.2B.3C.4D.5【命题意图】本题主要考查集合的交集运算,考查学生对交集定义的理解.【解析】选B.由题意,A∩B={5,7,11},故A∩B中元素的个数为3.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻的理解,善于抓住代表元素,通过观察集合之间的关系,借助数轴寻找元素之间的关系,使问题准确解决.7.(2020·新高考全国Ⅰ卷)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}【命题意图】本题考查集合的并集运算,考查基本运算能力,体现了数学运算的核心素养.【解析】选C.因为A=[1,3],B=(2,4),所以A∪B=[1,4).8.(2020·北京高考·T1)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}【命题意图】考查集合的运算,容易题.【解析】选D.画数轴,或者逐个检验集合A中元素是否属于B,易得A∩B={1,2}.检索号219.(2020·天津高考·T1)设全集U={-3,-2,-1,0,1,2,3},集合A={-1,0,1,2},B={-3,0,2,3},则A∩(U B)=()A.{-3,3}B.{0,2}C.{-1,1}D.{-3,-2,-1,1,3}【命题意图】本题考查考生对集合的含义、表示方式及集合的补集、交集的理解与运算.【解题指南】可先求出B的补集,再求交集即可.【解析】选C.由题意结合补集的定义可知:U B={-2,-1,1},则A∩(U B)={-1,1}.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻的理解,善于抓住代表元素,通过观察集合之间的关系,借助Venn图或数轴寻找元素之间的关系,使问题准确解决.10.(2020·浙江高考·T1)已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|2<x≤3}D.{x|1<x<4}【命题意图】本题主要考查集合的交集运算,考查基本运算求解能力,体现直观想象与数学运算的核心素养.【解析】选B.因为P=(1,4),Q=(2,3),所以由数轴得P∩Q=(2,3).二、填空题11.(2020·江苏高考·T1)已知集合A=-1,0,1,2,B=0,2,3,则A∩B=.【命题意图】本题考查集合中的简单的交集计算.【解析】由集合A={-1,0,1,2},B={0,2,3},所以A∩B={0,2}.答案:0,2。
2020年全国各地高考数学试卷分类汇编—函数(含解析)全文
2020年全国各地⾼考真题分类汇编—函数1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<05.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b213.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69 16.(2020•北京)函数f(x)=+lnx的定义域是.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是.19.(2020•上海)若函数y=a•3x+为偶函数,则a=.20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为.21.(2020•上海)设a∈R,若存在定义域为R的函数f(x)同时满⾜下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的⽅程f(x)=a⽆实数解,则a的取值范围是.22.(2020•上海)已知⾮空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成⽴,则称函数f(x)具有A性质.(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.23.(2020•上海)在研究某市场交通情况时,道路密度是指该路段上⼀定时间内通过的⻋辆数除以时间,⻋辆密度是该路段⼀定时间内通过的⻋辆数除以该路段的⻓度,现定义交通流量为v=,x为道路密度,q为⻋辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求⻋辆密度q的最⼤值.24.(2020•上海)有⼀条⻓为120⽶的步⾏道OA,A是垃圾投放点ω1,若以O为原点,OA 为x轴正半轴建⽴直⻆坐标系,设点B(x,0),现要建设另⼀座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;(2)若可以通过f t(x)与坐标轴围成的⾯积来测算扔垃圾的便利程度,⾯积越⼩越便利.问:垃圾投放点ω2建在何处才能⽐建在中点时更加便利?参考答案与试题解析⼀.选择题(共15⼩题)1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)【解答】解:由x2﹣4x﹣5>0,得x<﹣1或x>5.令t=x2﹣4x﹣5,∵外层函数y=lgt是其定义域内的增函数,∴要使函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则需内层函数t=x2﹣4x﹣5在(a,+∞)上单调递增且恒⼤于0,则(a,+∞)⊆(5,+∞),即a≥5.∴a的取值范围是[5,+∞).故选:D.2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0是,y=f(x)>0,故排除B,故选:A.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解答】解:因为f(x)=x3﹣,则f(﹣x)=﹣x3+=﹣f(x),即f(x)为奇函数,根据幂函数的性质可知,y=x3在(0,+∞)为增函数,故y1=在(0,+∞)为减函数,y2=﹣在(0,+∞)为增函数,所以当x>0时,f(x)=x3﹣单调递增,故选:A.4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0【解答】解:⽅法⼀:由2x﹣2y<3﹣x﹣3﹣y,可得2x﹣3﹣x<2y﹣3﹣y,令f(x)=2x﹣3﹣x,则f(x)在R上单调递增,且f(x)<f(y),所以x<y,即y﹣x>0,由于y﹣x+1>1,故ln(y﹣x+1)>ln1=0.⽅法⼆:取x=﹣1,y=0,满⾜2x﹣2y<3﹣x﹣3﹣y,此时ln(y﹣x+1)=ln2>0,ln|x﹣y|=ln1=0,可排除BCD.故选:A.5.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.【解答】解:y=f(x)=x cos x+sin x,则f(﹣x)=﹣x cos x﹣sin x=﹣f(x),∴f(x)为奇函数,函数图象关于原点对称,故排除C,D,当x=π时,y=f(π)=πcosπ+sinπ=﹣π<0,故排除B,故选:A.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]【解答】解:∵定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,f(x)的⼤致图象如图:∴f(x)在(0,+∞)上单调递减,且f(﹣2)=0;故f(﹣1)<0;当x=0时,不等式xf(x﹣1)≥0成⽴,当x=1时,不等式xf(x﹣1)≥0成⽴,当x﹣1=2或x﹣1=﹣2时,即x=3或x=﹣1时,不等式xf(x﹣1)≥0成⽴,当x>0时,不等式xf(x﹣1)≥0等价为f(x﹣1)≥0,此时,此时1<x≤3,当x<0时,不等式xf(x﹣1)≥0等价为f(x﹣1)≤0,即,得﹣1≤x<0,综上﹣1≤x≤0或1≤x≤3,即实数x的取值范围是[﹣1,0]∪[1,3],故选:D.7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减【解答】解:由,得x.⼜f(﹣x)=ln|﹣2x+1|﹣ln|﹣2x﹣1|=﹣(ln|2x+1|﹣ln|2x﹣1|)=﹣f(x),∴f(x)为奇函数;由f(x)=ln|2x+1|﹣ln|2x﹣1|=,∵==.可得内层函数t=||的图象如图,在(﹣∞,)上单调递减,在(,)上单调递增,则(,+∞)上单调递减.⼜对数式y=lnt是定义域内的增函数,由复合函数的单调性可得,f(x)在(﹣∞,﹣)上单调递减.故选:D.8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:a=30.7,b=()﹣0.8=30.8,则b>a>1,log0.70.8<log0.70.7=1,∴c<a<b,故选:D.9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.【解答】解:因为a log34=2,则log34a=2,则4a=32=9则4﹣a==,故选:B.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:∵a=log 32=<=,b=log53=>=,c=,∴a<c<b.故选:A.11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:∵==log53•log58<=<1,∴a<b;∵55<84,∴5<4log58,∴log58>1.25,∴b=log85<0.8;∵134<85,∴4<5log138,∴c=log138>0.8,∴c>b,综上,c>b>a.故选:A.12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b2【解答】解:因为2a+log2a=4b+2log4b=22b+log2b;因为22b+log2b<22b+log22b=22b+log2b+1即2a+log2a<22b+log22b;令f(x)=2x+log2x,由指对数函数的单调性可得f(x)在(0,+∞)内单调递增;且f(a)<f(2b) a<2b;故选:B.13.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)【解答】解:若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则f(x)=|kx2﹣2x|有四个根,即y=f(x)与y=h(x)=|kx2﹣2x|有四个交点,当k=0时,y=f(x)与y=|﹣2x|=2|x|图象如下:两图象只有两个交点,不符合题意,当k<0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2<x1)图象如图所示,两图象有4个交点,符合题意,当k>0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2>x1)在[0,)内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2﹣2x在(,+∞)还有两个交点,即可,即x3=kx2﹣2x在(,+∞)还有两个根,即k=x+在(,+∞)还有两个根,函数y=x+≥2,(当且仅当x=时,取等号),所以,且k>2,所以k>2,综上所述,k的取值范围为(﹣∞,0)∪(2,+∞).故选:D.14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天【解答】解:把R0=3.28,T=6代⼊R0=1+rT,可得r=0.38,∴I(t)=e0.38t,当t=0时,I(0)=1,则e0.38t=2,两边取对数得0.38t=ln2,解得t=≈1.8.故选:B.15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69【解答】解:由已知可得=0.95K,解得e﹣0.23(t﹣53)=,两边取对数有﹣0.23(t﹣53)=﹣ln19,解得t≈66,故选:C.⼆.填空题(共6⼩题)16.(2020•北京)函数f(x)=+lnx的定义域是{x|x>0}.【解答】解:要使函数有意义,则,所以,所以x>0,所以函数的定义域为{x|x>0},故答案为:{x|x>0}.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是①②③.【解答】解:设甲企业的污⽔排放量W与时间t的关系为W=f(t),⼄企业的污⽔排放量W与时间t的关系为W=g(t).对于①,在[t1,t2]这段时间内,甲企业的污⽔治理能⼒为,⼄企业的污⽔治理能⼒为﹣.由图可知,f(t1)﹣f(t2)>g(t1)﹣g(t2),∴>﹣,即甲企业的污⽔治理能⼒⽐⼄企业强,故①正确;对于②,由图可知,f(t)在t2时刻的切线的斜率⼩于g(t)在t2时刻的切线的斜率,但两切线斜率均为负值,∴在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强,故②正确;对于③,在t3时刻,甲,⼄两企业的污⽔排放都⼩于污⽔达标排放量,∴在t3时刻,甲,⼄两企业的污⽔排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[t1,t2]的污⽔治理能⼒最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是﹣4.【解答】解:y=f(x)是奇函数,可得f(﹣x)=﹣f(x),当x≥0时,f(x)=x,可得f(8)=8=4,则f(﹣8)=﹣f(8)=﹣4,故答案为:﹣4.19.(2020•上海)若函数y=a•3x+为偶函数,则a=1.【解答】解:根据题意,函数y=a•3x+为偶函数,则f(﹣x)=f(x),即a•3(﹣x)+=a•3x+,变形可得:a(3x﹣3﹣x)=(3x﹣3﹣x),必有a=1;故答案为:1.20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为[,+∞).【解答】解:因为y=f﹣1(x)﹣a与y=f(x+a)互为反函数,若y=f﹣1(x)﹣a与y=f(x+a)有实数根,则y=f(x+a)与y=x有交点,所以,即a=x2﹣x+1=(x﹣)2+≥,故答案为:[,+∞).21.(2020•上海)设a∈R,若存在定义域为R的函数f(x)同时满⾜下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的⽅程f(x)=a⽆实数解,则a的取值范围是(﹣∞,0)∪(0,1)∪(1,+∞).【解答】解:根据条件(1)可得f(0)=0或f(1)=1,⼜因为关于x的⽅程f(x)=a⽆实数解,所以a≠0或1,故a∈(﹣∞,0)∪(0,1)∪(1,+∞),故答案为:(﹣∞,0)∪(0,1)∪(1,+∞).三.解答题(共3⼩题)22.(2020•上海)已知⾮空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成⽴,则称函数f(x)具有A性质.(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.【解答】解:(1)∵f(x)=﹣x为减函数,∴f(x)<f(x﹣1),∴f(x)=﹣x具有A性质;∵g(x)=2x为增函数,∴g(x)>g(x﹣1),∴g(x)=2x不具有A性质;(2)依题意,对任意t∈(0,1),f(x)≤f(x+t)恒成⽴,∴为增函数(不可能为常值函数),由双勾函数的图象及性质可得a≥1,当a≥1时,函数单调递增,满⾜对任意t∈(0,1),f(x)≤f(x+t)恒成⽴,综上,实数a的取值范围为[1,+∞).(3)∵D为整数集,具有A性质的函数均为常值函数,∴当t=﹣2,f(x)=f(x﹣2)恒成⽴,即f(2k)=p(k∈Z),f(2n﹣1)=q(n∈Z),由题意,p=q,则f(2k)=f(2n﹣1),当x=2k,f(x)=f(x+2n﹣2k﹣1),∴m=2n﹣2k﹣1(n,k∈Z),当x=2n﹣1,f(x)=f(x+2k﹣2n+1),∴m=2k﹣2n+1(n,k∈Z),综上,m为奇数.23.(2020•上海)在研究某市场交通情况时,道路密度是指该路段上⼀定时间内通过的⻋辆数除以时间,⻋辆密度是该路段⼀定时间内通过的⻋辆数除以该路段的⻓度,现定义交通流量为v=,x为道路密度,q为⻋辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求⻋辆密度q的最⼤值.【解答】解:(1)∵v=,∴v越⼤,x越⼩,∴v=f(x)是单调递减函数,k>0,当40≤x≤80时,v最⼤为85,于是只需令,解得x>3,故道路密度x的取值范围为(3,40).(2)把x=80,v=50代⼊v=f(x)=﹣k(x﹣40)+85中,得50=﹣k•40+85,解得k=.∴q=vx=,①当0<x<40时,令y=,则y'=,若0<x<<1,则y'>0,y单调递增,由于y>0,所以q=100x﹣135•<100;若<x<40,则y'<0,y单调递减,此时有q单调递增,所以q<100×40﹣135×≈4000>100.②当40≤x≤80时,q是关于x的⼆次函数,开⼝向下,对称轴为x=,此时q有最⼤值,为>4000.综上所述,⻋辆密度q的最⼤值为.24.(2020•上海)有⼀条⻓为120⽶的步⾏道OA,A是垃圾投放点ω1,若以O为原点,OA 为x轴正半轴建⽴直⻆坐标系,设点B(x,0),现要建设另⼀座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;(2)若可以通过f t(x)与坐标轴围成的⾯积来测算扔垃圾的便利程度,⾯积越⼩越便利.问:垃圾投放点ω2建在何处才能⽐建在中点时更加便利?【解答】解:(1)投放点ω1(120,0),ω2(60,0),f60(10)表示与B(10,0)距离最近的投放点(即ω2)的距离,所以f60(10)=|60﹣10|=50,同理分析,f60(80)=|60﹣80|=20,f60(95)=|120﹣95|=25,由题意得,f60(x)={|60﹣x|,|120﹣x|}min,则当|60﹣x|≤|120﹣x|,即x≤90时,f60(x)=|60﹣x|;当|60﹣x|>|120﹣x|,即x>90时,f60(x)=|120﹣x|;综上f60(x)=;(2)由题意得f t(x)={|t﹣x|,|120﹣x|}min,所以f t(x)=,则f t(x)与坐标轴围成的⾯积如阴影部分所示,所以S=t2+=t2﹣60t+3600,由题意,S<S(60),即t2﹣60t+3600<2700,解得20<t<60,即垃圾投放点ω2建在(20,0)与(60,0)之间时,⽐建在中点时更加便利.考点卡⽚1.函数的定义域及其求法【知识点的认识】函数的定义域就是使函数有意义的⾃变量的取值范围.求解函数定义域的常规⽅法:①分⺟不等于零;②根式(开偶次⽅)被开⽅式≥0;③对数的真数⼤于零,以及对数底数⼤于零且不等于1;④指数为零时,底数不为零.⑤实际问题中函数的定义域;【解题⽅法点拨】求函数定义域,⼀般归结为解不等式组或混合组.(1)当函数是由解析式给出时,其定义域是使解析式有意义的⾃变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如⻓度、⾯积必须⼤于零、⼈数必须为⾃然数等).(3)若⼀函数解析式是由⼏个函数经四则运算得到的,则函数定义域应是同时使这⼏个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)抽象函数的定义域:①对在同⼀对应法则f下的量“x”“x+a”“x﹣a”所要满⾜的范围是⼀样的;②函数g (x)中的⾃变量是x,所以求g(x)的定义域应求g(x)中的x的范围.【命题⽅向】⾼考会考中多以⼩题形式出现,也可以是⼤题中的⼀⼩题.2.函数的图象与图象的变换【函数图象的作法】函数图象的作法:通过如下3个步骤(1)列表;(2)描点;(3)连线.解题⽅法点拨:⼀般情况下,函数需要同解变形后,结合函数的定义域,通过函数的对应法则,列出表格,然后在直⻆坐标系中,准确描点,然后连线(平滑曲线).命题⽅向:⼀般考试是以⼩题形式出现,或⼤题中的⼀问,常⻅考题是,常⻅函数的图象,有时结合函数的奇偶性、对称性、单调性知识结合命题.【图象的变换】1.利⽤描点法作函数图象其基本步骤是列表、描点、连线.⾸先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最⼤值点、最⼩值点、与坐标轴的交点等),描点,连线.2.利⽤图象变换法作函数的图象(1)平移变换:y=f(x)a>0,右移a个单位(a<0,左移|a|个单位) y=f(x﹣a);y=f(x)b>0,上移b个单位(b<0,下移|b|个单位) y=f(x)+b.(2)伸缩变换:y=f(x)y=f(ωx);y=f(x)A>1,伸为原来的A倍(0<A<1,缩为原来的A倍) y=Af(x).(3)对称变换:y=f(x)关于x轴对称 y=﹣f(x);y=f(x)关于y轴对称 y=f(﹣x);y=f(x)关于原点对称 y=﹣f(﹣x).(4)翻折变换:y=f(x)去掉y轴左边图,保留y轴右边图,将y轴右边的图象翻折到左边 y=f(|x|);y=f(x)留下x轴上⽅图将x轴下⽅图翻折上去y=|f(x)|.解题⽅法点拨1、画函数图象的⼀般⽅法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数或解析⼏何中熟悉的曲线时,可根据这些函数或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利⽤图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(3)描点法:当上⾯两种⽅法都失效时,则可采⽤描点法.为了通过描少量点,就能得到⽐较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论.2、寻找图象与函数解析式之间的对应关系的⽅法(1)知图选式:①从图象的左右、上下分布,观察函数的定义域、值域;②从图象的变化趋势,观察函数的单调性;③从图象的对称性⽅⾯,观察函数的奇偶性;④从图象的循环往复,观察函数的周期性.利⽤上述⽅法,排除错误选项,筛选正确的选项.(2)知式选图:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从函数的奇偶性,判断图象的对称性.④从函数的周期性,判断图象的循环往复.利⽤上述⽅法,排除错误选项,筛选正确选项.注意联系基本函数图象和模型,当选项⽆法排除时,代特殊值,或从某些量上寻找突破⼝.3、(1)利有函数的图象研究函数的性质从图象的最⾼点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的⾛向趋势,分析函数的单调性、周期性等.(2)利⽤函数的图象研究⽅程根的个数有关⽅程解的个数问题常常转化为两个熟悉的函数的交点个数;利⽤此法也可由解的个数求参数值.4、⽅法归纳:(1)1个易错点﹣﹣图象变换中的易错点在解决函数图象的变换问题时,要遵循“只能对函数关系式中的x,y变换”的原则,写出每⼀次的变换所得图象对应的解析式,这样才能避免出错.(2)3个关键点﹣﹣正确作出函数图象的三个关键点为了正确地作出函数图象,必须做到以下三点:①正确求出函数的定义域;②熟练掌握⼏种基本函数的图象,如⼆次函数、反⽐例函数、指数函数、对数函数、幂函数、形如y=x+的函数;③掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常⽤的⽅法技巧,来帮助我们简化作图过程.(3)3种⽅法﹣﹣识图的⽅法对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等⽅⾯来获取图中所提供的信息,解决这类问题的常⽤⽅法有:①定性分析法,也就是通过对问题进⾏定性的分析,从⽽得出图象的上升(或下降)的趋势,利⽤这⼀特征来分析解决问题;②定量计算法,也就是通过定量的计算来分析解决问题;③函数模型法,也就是由所提供的图象特征,联想相关函数模型,利⽤这⼀函数模型来分析解决问题.3.函数单调性的性质与判断【知识点的认识】⼀般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个⾃变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1>x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是减函数.若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这⼀区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.【解题⽅法点拨】证明函数的单调性⽤定义法的步骤:①取值;②作差;③变形;④确定符号;⑤下结论.利⽤函数的导数证明函数单调性的步骤:第⼀步:求函数的定义域.若题设中有对数函数⼀定先求定义域,若题设中有三次函数、指数函数可不考虑定义域.第⼆步:求函数f(x)的导数f′(x),并令f′(x)=0,求其根.第三步:利⽤f′(x)=0的根和不可导点的x的值从⼩到⼤顺次将定义域分成若⼲个⼩开区间,并列表.第四步:由f′(x)在⼩开区间内的正、负值判断f(x)在⼩开区间内的单调性;求极值、最值.第五步:将不等式恒成⽴问题转化为f(x)max≤a或f(x)min≥a,解不等式求参数的取值范围.第六步:明确规范地表述结论【命题⽅向】从近三年的⾼考试题来看,函数单调性的判断和应⽤以及函数的最值问题是⾼考的热点,题型既有选择题、填空题,⼜有解答题,难度中等偏⾼;客观题主要考查函数的单调性、最值的灵活确定与简单应⽤,主观题在考查基本概念、重要⽅法的基础上,⼜注重考查函数⽅程、等价转化、数形结合、分类讨论的思想⽅法.预测明年⾼考仍将以利⽤导数求函数的单调区间,研究单调性及利⽤单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能⼒.4.复合函数的单调性【知识点的认识】所谓复合函数就是由两个或两个以上的基本函数构成,这种函数先要考虑基本函数的单调性,然后再考虑整体的单调性.平常常⻅的⼀般以两个函数的为主.【解题⽅法点拨】求复合函数y=f(g(x))的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数;(3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.【命题⽅向】理解复合函数的概念,会求复合函数的区间并判断函数的单调性.5.函数奇偶性的性质与判断【知识点的认识】①如果函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.②如果函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.【解题⽅法点拨】①奇函数:如果函数定义域包括原点,那么运⽤f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运⽤f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内⼀般是⽤f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性⼀致,⽽偶函数的单调性相反.例题:函数y=x|x|+px,x∈R是()A.偶函数B.奇函数C.⾮奇⾮偶D.与p有关解:由题设知f(x)的定义域为R,关于原点对称.因为f(﹣x)=﹣x|﹣x|﹣px=﹣x|x|﹣px=﹣f(x),所以f(x)是奇函数.故选B.【命题⽅向】函数奇偶性的应⽤.本知识点是⾼考的⾼频率考点,⼤家要熟悉就函数的性质,最好是结合其图象⼀起分析,确保答题的正确率.6.奇偶性与单调性的综合【知识点的认识】对于奇偶函数综合,其实也并谈不上真正的综合,⼀般情况下也就是把它们并列在⼀起,所以说关键还是要掌握奇函数和偶函数各⾃的性质,在做题时能融会贯通,灵活运⽤.在重复⼀下它们的性质①奇函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=﹣f(x),其图象特点是关于(0,0)对称.②偶函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=f(x),其图象特点是关于y轴对称.【解题⽅法点拨】参照奇偶函数的性质那⼀考点,有:①奇函数:如果函数定义域包括原点,那么运⽤f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运⽤f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内⼀般是⽤f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性⼀致,⽽偶函数的单调性相反例题:如果f(x)=为奇函数,那么a=.解:由题意可知,f(x)的定义域为R,由奇函数的性质可知,f(x)==﹣f(﹣x) a=1【命题⽅向】奇偶性与单调性的综合.不管出什么样的题,能理解运⽤奇偶函数的性质是⼀个基本前提,另外做题的时候多多总结,⼀定要重视这⼀个知识点.7.抽象函数及其应⽤【知识点的认识】抽象函数是指没有给出函数的具体解析式,只给出了⼀些体现函数特征的式⼦的⼀类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之⼀.【解题⽅法点拨】①尽可能把抽象函数与我们数学的具体模型联系起来,如f (x +y )=f (x )+f (y ),它的原型就是y =kx ;②可通过赋特殊值法使问题得以解决例:f (xy )=f (x )+f (y ),求证f (1)=f (﹣1)=0令x =y =1,则f (1)=2f (1) f (1)=0令x =y =﹣1,同理可推出f (﹣1)=0③既然是函数,也可以运⽤相关的函数性质推断它的单调性;【命题⽅向】抽象函数及其应⽤.抽象函数是⼀个重点,也是⼀个难点,解题的主要⽅法也就是我上⾯提到的这两种.⾼考中⼀般以中档题和⼩题为主,要引起重视.8.指数函数的图象与性质【知识点的认识】1、指数函数y =a x (a >0,且a ≠1)的图象和性质:y =a xa >10<a <1图象定义域R 值域(0,+∞)性质过定点(0,1)当x >0时,y >1;x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R上是增函数在R上是减函数2、底数对指数函数的影响:①在同⼀坐标系内分别作函数的图象,易看出:当a>l时,底数越⼤,函数图象在第⼀象限越靠近y轴;同样地,当0<a<l时,底数越⼩,函数图象在第⼀象限越靠近x轴.②底数对函数值的影响如图.③当a>0,且a≠l时,函数y=a x与函数y=的图象关于y轴对称.3、利⽤指数函数的性质⽐较⼤⼩:若底数相同⽽指数不同,⽤指数函数的单调性⽐较:若底数不同⽽指数相同,⽤作商法⽐较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.9.对数的运算性质【知识点的认识】对数的性质:①=N;②log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.10.对数值⼤⼩的⽐较【知识点归纳】1、若两对数的底数相同,真数不同,则利⽤对数函数的单调性来⽐较.2、若两对数的底数和真数均不相同,通常引⼊中间变量(1,﹣1,0)进⾏⽐较3、若两对数的底数不同,真数也不同,则利⽤函数图象或利⽤换底公式化为同底的再进⾏⽐较.(画图的⽅法:在第⼀象限内,函数图象的底数由左到右逐渐增⼤)11.对数函数的图象与性质【知识点归纳】12.反函数【知识点归纳】【定义】⼀般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y的关系,⽤y 把x表示出,得到x=g(y).若对于y在中的任何⼀个值,通过x=g(y),x在A中都有唯⼀的值和它对应,那么,x=g(y)就表示y是⾃变量,x是因变量是y的函数,这样的函数y=g(x)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f(﹣1)(x)反函数y=f(﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了⻆⾊(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是⼀⼀映射;(3)⼀个函数与它的反函数在相应区间上单调性⼀致;(4)⼤部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C。
2020年高考数学·高考真题-分类汇编-第12讲-解三角形精选全文完整版
精选全文完整版专题四 三角函数与解三角形第十二讲 解三角形2020年1.(2020•北京卷)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S =选择条件②(Ⅰ)6(Ⅱ)sin C =, S =.2.(2020•全国2卷)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+3.(2020•全国3卷)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B.13C. 12 D. 23【答案】A4.(2020•江苏卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【答案】(1)5sin C =(2)2tan 11DAC ∠=.5.(2020•新全国1山东)在①3ac =sin 3c A =,③3=c b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析6.(2020•天津卷)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知22,5,13a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求sin 24A π⎛⎫+⎪⎝⎭的值. 【答案】(Ⅰ)4Cπ;(Ⅱ)13sin 13A =;(Ⅲ)172sin 2426A π⎛⎫+= ⎪⎝⎭.7.(2020•浙江卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin b A =.(I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II )13,22⎛⎤⎥ ⎝⎦2016-2019年1.(2019全国Ⅰ理17)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .2.(2019全国Ⅱ理15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.3.(2019全国Ⅲ理18)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.4.(2019江苏12)如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 .5.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b 2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 6.(2019浙江14)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____,cos ABD ∠=________.7.(2019北京15)在ABC △中,a =3,b -c =2 ,1cos 2B =- .(Ⅰ)求b ,c 的值; (Ⅱ)求sin(B -C ) 的值.8.(2019天津理15)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值.9.(2018全国卷Ⅱ)在△ABC 中,cos2=C 1=BC ,5=AC ,则=ABA .BCD .10.(2018全国卷Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .2π B .3π C .4π D .6π 11.(2017山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是A .2a b =B .2b a =C .2A B =D .2B A = 12.(2016年天津)在ABC ∆中,若AB BC =3,120C ∠= ,则AC =A .1B .2C .3D .413.(2016年全国III )在ABC △中,π4B,BC 边上的高等于13BC ,则cos AA B C .1010 D .3101014.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .15.(2018浙江)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b =,60A =,则sin B =___________,c =___________.16.(2017浙江)已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是___________,cos BDC ∠=__________.17.(2017浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。
2020高考数学全国真题及答案汇编
2020 年普通高等学校招生全国统一考试 理科数学 I
本试卷 5 页, 23 题 (含选考题). 全卷满分 150 分. 考试用时 120 分钟. 注意事项: 1. 答题前, 先将自己的姓名、准考证号填写在试卷和答题卡上, 并将准考证号条形码粘贴在答题卡上的指定 位置. 2. 选择题的作答: 每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑. 写在试卷、草稿纸和 答题卡上的非答题区域均无效. 3. 非选择题的作答: 用黑色签字笔直接答在答题卡上对应的答题区域内. 写在试卷、草稿纸和答题卡上的非 答题区域均无效. 4. 选考题的作答: 先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑. 答案写在答题卡上对应的答 题区域内, 写在试卷、草稿纸和答题卡上的非答题区域均无效. 5. 考试结束后, 请将本试卷和答题卡一并上交.
4
√ D: 5 + 1
2
题3图 4. 已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p =( ).
A: 2
B: 3
C: 6
D: 9
2020 年高考数学全国 I 卷理科真题
2
5. 某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: ◦C) 的关系, 在 20 个不同的温度条 件下进行种子发芽实验, 由实验数据 xi, yi (i = 1, 2, · · · , 20) 得到下面的散点图:
目录
2020 年高考数学全国 I 卷理科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 2020 年高考数学全国 I 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 2020 年高考数学全国 I 卷文科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 2020 年高考数学全国 I 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20 2020 年高考数学全国 II 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28 2020 年高考数学全国 II 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32 2020 年高考数学全国 II 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 2020 年高考数学全国 II 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44 2020 年高考数学全国 III 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 51 2020 年高考数学全国 III 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 55 2020 年高考数学全国 III 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63 2020 年高考数学全国 III 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 2020 年新高考数学 I 卷真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 74 2020 年新高考数学 I 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 79 2020 年新高考数学 II 卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 87 2020 年新高考数学 II 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 92 2020 年高考数学北京卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100 2020 年高考数学北京卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 104 2020 年高考数学天津卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 112 2020 年高考数学天津卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 116 2020 年高考数学上海卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124 2020 年高考数学上海卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 127 2020 年高考数学浙江卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 135 2020 年高考数学浙江卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 139 2020 年高考数学江苏卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 146 2020 年高考数学江苏卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 151
2020年高考数学试题分类汇编解析几何精品
、选择题2 2cA -1.(重庆理8)在圆x y 2x 6y 0内,过点E (0, 1)的最长弦和最短弦分别是AC 和BD,则四边形ABCDW面积为A. 5、. 2 B 10、. 2 C. 15.2 D. 20.2【答案】B2 2 2C1:3 4 1(a> b>0) C1:x2 *y- 12.(浙江理8)已知椭圆 a b 与双曲线 4 有公共的焦点,C1的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则2 13 -2 1a 2b 2A. 2 B, a 13 C, 2 D. b 2【答案】C3.(四川理10)在抛物线y x2 ax 5(aw0)上取横坐标为x1 4, x2 2的两点,过L 2 L 2这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x 5y 36相切,则抛物线顶点的坐标为A. ( 2, 9) B (0, 5) C (2, 9) D (1, 6)【答案】C【解析】由已知的割线的坐标(4,11 4a),(2,2 a 1),K 2 a,设直线方程为36 b22y (a 2)x b,则5 1 (2 a)五、解析几何2y x ax 5 ,b又y (a 2)x b6 a 4 ( 2, 9)4.(陕西理2)设抛物线的顶点在原点,准线方程为x 2,则抛物线的方程是2 2A, y 8x B . y 8x C. y2 4x D . y2 4x5. 理8 )已知双曲线2 2上工2 ,2a b1(a>0, b>0)的两条渐近线均和圆2x2或卫D. 3 2A. 5B. 2 y_5 C. 3 D. 66.(全国新课标理 7) 已知直线 l 过双曲线C 的一个焦点,且与 C 的对称轴垂直,l 与C 交于A, B 两点,1ABi为C 的实轴长的2倍,C 的离心率为 (A)短(B)由 (C) (D) 3 7.(全国大纲理 10)已知抛物线 2 C :y 4x的焦点为F,直线y 2x 4与C 交于A, B 两点.则cos AFB = A. 5 3B. 5C .8.(江西理 9)若曲线C 1 :点,则实数 m 的取值范围是A.( B .C.[ 9.(湖南理 5) 设双曲线 y 9 D .2xD.(与曲线C2:,0)U (0,y(y的渐近线方程为mx m ) 0有四个不同的交3x 2y0,则a 的值为A. 4 【答案】C D. 110.(湖北理 4)将两个顶点在抛物线 2 px(p 0)上, 另一个顶点是此抛物线焦点的正三角形个数记为 A. n=0 【答案】C 11.(福建理 n, 则 B. n=1 C .n=2D. n7) 设圆锥曲线 r 的两个焦点分别为F1, F2,若曲线r 上存在点P 满足PF 1 : F 1F 2 : PF2 1或3 A. 22=4:3:2 ,则曲线r 的离心率等于 B. 3 或 2【答案】A12 .(北京理8)设A 0,0 , B 4,0 , C t 4,4 , D t ,4 t R .记N t 为平行四边形 ABCg 部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数 的值域为C 22 c13 .(安徽理2)双曲线2x y8的实轴长是则线段AB 的中点到y 轴的距离为、填空题15 .(湖北理14)如图,直角坐标系 x O y 所在的平面为,直角坐标系xOy (其中y 轴一与射影C 的方程是 【答案】(2, 2) (x 1)2 y2 12 x 2116 .(浙江理17)设F1,F 2分别为椭圆 3的左、右焦点,点A,B 在椭圆上,若uuruurnF 1A 5F 2B;则点 A 的坐标是A. 9,10,11B.9,10,12 C.9,11,12D.10,11,12(A) 2(B) 2 2(C) 4(D) 4 214.(辽宁理已知F 是抛物线 y2=x 的焦点, A,B 是该抛物线上的两点, IAF BF =3(A)4(B) 1'轴重合)所在的平面为,xOx 45 。
2020年高考数学试题分类汇编 专题排列组合、二项式定
2020年高考试题数学(理科)排列组合、二项式定理一、选择题:1.(2020年高考全国卷理科7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 (A)4种 (B)10种 (C)18种 (D)20种(A )-40 (B )-20 (C )20 (D )40解析 1.令x=1得a=1.故原式=511()(2)x x x x +-。
511()(2)x x x x+-的通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x ,选3个提出1x ;若第1个括号提出1x ,从余下的括号中选2个提出1x,选3个提出x.故常数项=223322335353111(2)()()(2)X C X C C C X X X X⋅⋅-+⋅-⋅=-40+80=40 3.(2020年高考天津卷理科5)在6x x ⎫⎝的二项展开式中,2x 的系数为( ) A .154-B .154C .38-D .38【答案】C【解析】因为1r T +=666((rr x C x-⋅⋅,所以容易得C 正确. 4.(2020年高考陕西卷理科4)6(42)()xx x R --∈的展开式中的常数项是(A )20- (B )15- (C )15 (D )20【分析】根据二项展开式的通项公式写出通项,再进行整理化简,由x 的指数为0,确定常数项是第几项,最后计算出常数项. 【答案】C【解】62(6)1231666(4)(2)222r x r x r r x r xr rx xr r T C C C -----+==⋅⋅=⋅, 令1230x xr -=,则4r =,所以45615T C ==,故选C .5.(2020年高考重庆卷理科4) ()13nx +(其中n N ∈且6a ≥)的展开式中5x 与6x 的系数相等,则n =(A )6 (B)7 (C) 8 (D)9 答案:B解析: ()13n x +的通项为()13rrr n T C x +=,故5x 与6x 的系数分别为553n C 和663n C ,令他们相等,得:()()56!!335!5!6!6!n n n n =--,解得n =712.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则mn= (A )415 (B )13 (C )25 (D )23答案:D解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 7.(2020年高考福建卷理科6)(1+2x )3的展开式中,x 2的系数等于A .80B .40C .20D .10【答案】B 二、填空题:1. (2020年高考山东卷理科14)若6(x 展开式的常数项为60,则常数a 的值为 . 【答案】4【解析】因为6162(rrr r a T C xx-+=⋅⋅-,所以r=2, 常数项为26a C ⨯=60,解得4a =.2. (2020年高考浙江卷理科13)(13)设二项式)0()(6>-a xa x 的展开式中3x 的系数为A,常数项为B ,若B=4A ,则a 的值是 。
专题06 三角函数及解三角形——2020年高考真题和模拟题理科数学分项汇编(解析版).docx
专题06三角函数及解三角形2020年高考真题1. [2020年高考全国I卷理数】设函数f(x) = cos(®x + -)在[-”,兀]的图像大致如下图,则/(%)的最小正6周期为9 64兀3兀C. —D.兰3 2【答案】C【解析】由图可得:函数图象过点( 4 兀1T \将它代入函数/(兀)可得:cosl一- •<« + —1 = 0,又[-普,o]是函数/(兀)图象与x轴负半轴的第一个交点,十.I 4兀兀兀5 e 3所以-亍0+丁丐,解得r •2K _ 2兀_ 4兀所以函数/(%)最小正周期为=T=T=T2故选C.【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.2. [2020 年高考全国I 卷理数】已知cc G (0,7i),且3COS2Q-8COSQ =5 ,贝0 sin^z =A. B.【答案】A又 a e (0, n),.'. sin a = Jl-cos? a =•故选:A. 【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解 能力,属于基础题.3.【2020年高考全国II 卷理数】若a 为第四象限角,则B. cos2a<0D. sin2a<0 【答案】D【解析】方法-:由。
为第四象限角,可得亍2炽“<2卄2炽从Z,所以 3兀 + 4k 兀 < 2a < 4兀 + 4-kn, e Z此时2a 的终边落在第三、四象限及V 轴的非正半轴上,所以sin2a<0,故选:D.兀方法二:当& =——时,cos 2a = cos 由a 在第四象限可得:sin a <0, cos a > 0 ,则由2 a 蕃1 aaz Qz < ,选项C 错误,选项D 正确; 故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转 化能力和计算求解能力.C. sin2a>0>0,选项B 错误;<0,选项A 错误;【解析】3cos2a-8cosa = 5 ,得6cos 2tz-8coscr-8 = 0 -【答案】A2【解析】在ABC中,cosC = —, AC = 4, BC = 3, 3根据余弦定理:AB2 =AC2+BC2-2AC BC COS C,7AB- =42+32-2X4X3X-,3可得AB2 = 9,即AB — 3 ,… AB2+BC2-AC2 9 + 9-16 1由cos B = ------------------------- = ------------ =—,2ABBC2x3x3 9故cos B =—.9故选:A.5. [2020年高考全国III卷理数】已知2tan^-tan(0+ —)=7,则tan^=A. -2B. -1【答案】D【解析】2 tan - tan | ^ + — | = 7 , z. 2tan^~ tan^ + ^ =7 ,I 4 丿 1 - tan令/ = tan&,/Hl,则2/—土 = 7,整理得严_4/ + 4 = 0,解得t = 2,即tan6» = 2.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(兀Day).历史上,求圆周率兀的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔•卡西的方法是:当正整数"充分大时,计算单位圆的内接正6“边形的周长和外切正6“边形(各边均与圆相切的正6“边形)的周长,将它们的算术平均数作为2兀的近似值.按照阿尔•卡西的方法,兀的近似值的表达式是2 71 、[/ — 71 -- 当“一 2571 6 _ 时,y = —1 二 2x^ + ^ = —+ 2^(^ e Z),3n < .30° 30°) 6n < .30° 30°) A. sin —— + tan ----- B. sin —— + tan ----- 1 n n 丿 I n n ) 3n (.60° 60°) 6n (.60° < 60°) c. sin ---- + tan ----- D. sin ----- + tan ----- I nn 丿 I nn ) 【答案】A 360° 60° 30° 【解析】单位圆内接正6〃边形的每条边所对应的圆周角为一 =——,每条边长为2sin —, nx6 n n 30° 所以,单位圆的内接正6〃边形的周长为12nsin ——, n30° 30° 单位圆的外切正6n 边形的每条边长为2tan —,其周长为12〃tan —, n n30° 30° 12nsin ----- 12ntan ---------.・.* 二 ----- n --------------- n _ 2( 30° 30°则 7i = 3n\ sin------ + tan --- I n n故选:A.【点睛】本题考查圆周率兀的近似值的计算,根据题意计算出单位圆内接正6〃边形和外切正6〃边形的 周长是解答的关键,考查计算能力,属于中等题.7. [2020年新高考全国I 卷】下图是函数y 二sin (亦+卩)的部分图像,贝!j sin (亦+卩)=【答案】BC=6“ sin 竺+ tan 竺, I n n ) A. sin(x + f)¥亠)【解析】由函数图像可知:- = -7T —— 2 3 71 _71 6~2 27T 则血=—=—=2,所以不选A, T 71 B.解得:cp 二 Ikn + 彳兀(£ e Z ),即函数的解析式为:y = sin| 2x + —TT + 2A ;7Z - | = sin| 2x + —+ —| = cos| 2x + — | = sin| — -2x I 3 丿(6 2丿(6丿(3 (\5/r而 cos I 2x + — I — - cos( — 2x) 故选:BC.【点睛】已知fix) =Asin(a}x +^)(A>0, e>0)的部分图象求其解析式时,A 比较容易看图得出,困难的 是求待定系数e 和0常用如下两种方法:竺即可求出e ;确定y 时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标xo,则令 exo+0 = O(或 a )xo+<p=7t'),即可求出 <p.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出co 和<p, 若对A, e 的符号或对°的范围有要求,则可用诱导公式变换使其符合要求.&【2020年高考全国I 卷理数】如图,在三棱锥P ABC 的平面展开图中,AC=1, AB = AD =也,佔丄AC, AB±AD, ZCAE=30°,贝0 cosZFCB= _______________ .【答案】4【解析】 AB 丄AC, AB = j3, AC = E由勾股定理得BC = V A B 2+AC 2 = 2 ‘71 F(P)同理得 BD =品,:.BF = BD = ^,在△4CE 中,AC = 1, AE = AD =运,ZCAE = 30 ,由余弦定理得 CF = 3+^2—240 AEcos30 =l + 3-2xlxV3x —= 1, 2:.CF = CE = 1,在 BCF 中,BC = 2, BF =愿,CF = 1,CF~ + BC 2 -BF 2由余弦定理得cos ZFCB = 七——2CFBC故答案为:—. 4【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.9.【2020年高考全国III 卷理数】16.关于函数f (x) =sinx ——-—有如下四个命题: sinx®f (%)的图像关于y 轴对称.®f (x)的图像关于原点对称.1T®f (X )的图像关于直线x=3对称.®f (X )的最小值为2.其中所有真命题的序号是 __________ .【答案】②③所以,函数/(x)的图象不关于y 轴对称,命题①错误;对于命题②,函数/(X )的定义域为[x\x^kn,k^Z^ ,定义域关于原点对称, / ( -x) = sin (-%) + —r = - sin x - -— = -fsinx + -^―] = -/(%),sin (—兀) sinx I sinx)所以,函数/(x)的图象关于原点对称,命题②正确;1 + 4-6 2x1x2 【解析】对于命题①,A 7C \ . (7C ] 1(2 丿(2 ) .(7i' 7' 7 sm —+ x12所以,函数/(x)的图象关于直线x = |对称,命题③正确;对于命题④,当一7i<x<0时,sinx<0,贝J f(x} = sinx + — <0< 2 , sinx命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.JT 210.【2020年高考江苏】已知sin2(-+ <?) = -,则sin2a 的值是▲.4 3【解析】Qsin2(—+ cr) = (-^cosa-\——sin a)2 = —(1 + sin 2a)4 2 2 21 2 1— (1 + sin 2a) = —sin 2a =—2 3 3故答案为:-3【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.11.【2020年高考北京】若函数/(x) = sin(x+^) + cosx的最大值为2,则常数0的一个取值为 _______________IT TT【答案辽(2唸+亍心均可)【解析】因为 (兀)=cos ©sin 兀 +(sin 0 + 1)cos 兀=Jcos? 0 +(sin 0 + 1)2 sin (兀+ 0), 所以Jcos?(p + (sin(p +1『=2,解得sin0 = l,故可取^ = ~-7T7T故答案为:-(2^ + -,^eZ 均可). 2 2【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数 学运算能力,属于基础题.1T12. [2020 年高考浙江】已知 tan& = 2,则 cos2& = _______ , tan(6>-一) = ______ .3 1【答案】V 巧cos 2 0-sin 2 0 _ 1-tan 2 _ 1 -22cos 2 ^ + sin 2 0 1 + tan 2 0 1 + 223 1故答案为: 【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.13. [2020年高考江苏】将函数y = 3sin(2x +^)的图象向右平移夕个单位长度,则平移后的图象中与y 轴最 4 6近的对称轴的方程是▲ • 【答案】2-峯 24V/ 'j I r jl【解析】y — 3sin[2(x ---- ) —] = 3 sin(2x ------ ) 6 4 12小 TC TC , , x 7 TT k/C 7 x2x ------ — —F k 兀G Z)x — ----------- 1 ---- (k G Z) 12 2 24 2当k = -1时兀=——• 24故答案为:x =———24 【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.14. [2020年新高考全国I 卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔 及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧与直线BC 的切点,四边 形 DEFG 为矩形,BC 丄DG,垂足为 C, tanZODC= - , BH//DG , EF=12 cm, DE=2 cm, A 到直线5DE 和EF 的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为 ___________ cm 2.【解析】cos 20 = cos 2 0 - sin 2 0 = tan <9-1 l + tan& 2-11 + 2【答案】4 + »兀 2【解析】设05 = OA=r,由题意AM = AN = 1, EF = \2,所以NF = 5,因为 AP = 5,所以 ZAGP = 45\因为 BH//DG,所以 ZAH0 = 45°,因为AG 与圆弧4B 相切于A 点,所以Q4丄4G,即AOAH 为等腰直角三角形;在直角△0QD 中,0Q = 5_^r ,DQ = l-—r ,2 2因为 tanZ0DC = -^ = |,所以 21- —r = 25-^r , DQ 5 22 解得 r = 2A /2 ;等腰直角MAH 的面积为恥》2屈2尽4;I 所以阴影部分的面积为S] + S?—㊁兀=4 +三-•故答案为:4 + T.扇形A0B 的面积S 2 = =3乃,【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.15.【2020 年高考全国II 卷理数】/XABC 中,sin2A —sin2B—sin2C= sinBsinC.(1)求A;(2)若BC=3,求zMBC周长的最大值.【解析】(1)由正弦定理和已知条件得BC2-AC2-AB2^AC AB,①由余弦定理得BC2 = AC2 +AB2- 2AC AB cos A,②由①,②得cos A =—.22兀因为0<4<兀,所以A =—.3(2)由正弦定理及(1)得上匕=少-=-?£ = 2巧,sin B sin C sin A从而AC = 2A/3 sin B , AB = 2^3 sin(兀一A - B) = 3 cos B一A/3 sin B.故BC + 4C + AB = 3 + 7^sinB + 3cosB = 3 + 2V^sin(B + ¥).X0<B<-,所以当B =-时,AABC周长取得最大值3 + 2^3-3 616.[2020年高考江苏】在A ABC中,角A, B, C的对边分别为°, b, c,已知a = 3,c =迈,B = 45。
2020年全国各地高中数学真题分类汇编—数列(含答案)
2020年全国各地⾼考真题分类汇编—数列1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b82.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.324.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.155.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.58.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=.11.(2020•浙江)已知数列{a n}满⾜a n=,则S3=.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=.15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.参考答案与试题解析⼀.选择题(共8⼩题)1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b8【解答】解:在等差数列{a n}中,a n=a1+(n﹣1)d,∴a2=a1+d,a4=a1+3d,a8=a1+7d,b n+1=S2n+2﹣S2n,∴b2=S4﹣S2=a3+a4,b4=S8﹣S6=a7+a8,b6=S12﹣S10=a11+a12,b8=S16﹣S14=a15+a16,A.2a4=a2+a6,根据等差数列的性质可得A正确,B.若2b4=b2+b6,则2(a7+a8)=a3+a4+a11+a12=(a3+a12)+(a4+a11),成⽴,B正确,C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合≤1,C正确;D.若b42=b2b8,则(a7+a8)2=(a3+a4)(a15+a16),即4a12+52a1d+169d2=4a12+68a1d+145d2,得16a1d=24d2,∵d≠0,∴2a1=3d,不符合≤1,D错误;故选:D.2.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项【解答】解:设等差数列{a n}的公差为d,由a1=﹣9,a5=﹣1,得d=,∴a n=﹣9+2(n﹣1)=2n﹣11.由a n=2n﹣11=0,得n=,⽽n∈N*,可知数列{a n}是单调递增数列,且前5项为负值,⾃第6项开始为正值.可知T1=﹣9<0,T2=63>0,T3=﹣315<0,T4=945>0为最⼤项,⾃T5起均⼩于0,且逐渐减⼩.∴数列{T n}有最⼤项,⽆最⼩项.故选:B.3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.32【解答】解:{a n}是等⽐数列,且a1+a2+a3=1,则a2+a3+a4=q(a1+a2+a3),即q=2,∴a6+a7+a8=q5(a1+a2+a3)=25×1=32,故选:D.4.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.15【解答】解:若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦,即有i=1,j=5,k=8;i=2,j=6,k=9;i=3,j=7,k=10;i=4,j=8,k=11;i=5,j =9,k=12,共5个;若k﹣j=4且j﹣i=3,则a i,a j,a k为原位⼩三和弦,可得i=1,j=4,k=8;i=2,j=5,k=9;i=3,j=6,k=10;i=4,j=7,k=11;i=5,j =8,k=12,共5个,总计10个.故选:C.5.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…【解答】解:对于A选项:序列1101011010C(1)=a i a i+1=(1+0+0+0+0)=,C(2)=a i a i+2=(0+1+0+1+0)=,不满⾜C(k)≤(k=1,2,3,4),故排除A;对于B选项:序列1101111011C(1)=a i a i+1=(1+0+0+1+1)=,不满⾜条件,排除;对于C选项:序列100011000110001C(1)=a i a i+1=(0+0+0+0+1)=,C(2)=a i a i+2=(0+0+0+0++0)=0,C(3)=a i a i+3=(0+0+0+0+0)=0,C(4)=a i a i+4=(1+0+0+0+0)=,符合条件,对于D选项:序列1100111001C(1)=a i a i+1=(1+0+0+0+1)=不满⾜条件.故选:C.6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣1【解答】解:设等⽐数列的公⽐为q,∵a5﹣a3=12,∴a6﹣a4=q(a5﹣a3),∴q=2,∴a1q4﹣a1q2=12,∴12a1=12,∴a1=1,∴S n==2n﹣1,a n=2n﹣1,∴==2﹣21﹣n,故选:B.7.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.5【解答】解:由a1=2,且a m+n=a m a n,取m=1,得a n+1=a1a n=2a n,∴,则数列{a n}是以2为⾸项,以2为公⽐的等⽐数列,则,∴a k+1+a k+2+…+a k+10==215﹣25,∴k+1=5,即k=4.故选:C.8.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块【解答】解:⽅法⼀:设每⼀层有n环,由题意可知从内到外每环之间构成等差数列,且公差d=9,a1=9,由等差数列的性质可得S n,S2n﹣S n,S3n﹣S2n成等差数列,且(S3n﹣S2n)﹣(S2n﹣S n)=n2d,则n2d=729,则n=9,则三层共有扇⾯形⽯板S3n=S27=27×9+×9=3402块,⽅法⼆:设第n环天⽯⼼块数为a n,第⼀层共有n环,则{a n}是以9为⾸项,9为公差的等差数列,a n=9+(n﹣1)×9=9n,设S n为{a n}的前n项和,则第⼀层、第⼆层、第三层的块数分别为S n,S2n﹣S n,S3n﹣S2n,∵下层⽐中层多729块,∴S3n﹣S2n=S2n﹣S n+729,∴﹣=﹣+729,∴9n2=729,解得n=9,∴S3n=S27==3402,故选:C.⼆.填空题(共6⼩题)9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.【解答】解:根据题意,等差数列{a n}满⾜a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=﹣d,所以====.故答案为:.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=25.【解答】解:因为等差数列{a n}中,a1=﹣2,a2+a6=2a4=2,所以a4=1,3d=a4﹣a1=3,即d=1,则S10=10a1=10×(﹣2)+45×1=25.故答案为:2511.(2020•浙江)已知数列{a n}满⾜a n=,则S3=10.【解答】解:数列{a n}满⾜a n=,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为3n2﹣2n.【解答】解:将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}是以1为⾸项、以6为公差的等差数列,故它的前n项和为n×1+=3n2﹣2n,故答案为:3n2﹣2n.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是4.【解答】解:因为{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),因为{a n}是公差为d的等差数列,设⾸项为a1;{b n}是公⽐为q的等⽐数列,设⾸项为b1,所以{a n}的通项公式a n=a1+(n﹣1)d,所以其前n项和S==n2+(a1﹣)n,当{b n}中,当公⽐q=1时,其前n项和S=nb1,所以{a n+b n}的前n项和S n=S+S=n2+(a1﹣)n+nb1=n2﹣n+2n﹣1(n∈N*),显然没有出现2n,所以q≠1,则{b n}的前n项和为S==+,所以S n=S+S=n2+(a1﹣)n+﹣=n2﹣n+2n﹣1(n∈N*),由两边对应项相等可得:解得:d=2,a1=0,q=2,b1=1,所以d+q=4,故答案为:4.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=7.【解答】解:由a n+2+(﹣1)n a n=3n﹣1,当n为奇数时,有a n+2﹣a n=3n﹣1,可得a n﹣a n﹣2=3(n﹣2)﹣1,…a3﹣a1=3•1﹣1,累加可得a n﹣a1=3[1+3+…+(n﹣2)]﹣=3•=;当n为偶数时,a n+2+a n=3n﹣1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+…+a16=92.∴a1+a3+…+a15=448.∴=448,∴8a1=56,即a1=7.故答案为:7.三.解答题(共8⼩题)15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,等⽐数列{b n}的公⽐为q,由a1=1,a5=5(a4﹣a3),则1+4d=5d,可得d=1,∴a n=1+n﹣1=n,∵b1=1,b5=4(b4﹣b3),∴q4=4(q3﹣q2),解得q=2,∴b n=2n﹣1;(Ⅱ)证明:法⼀:由(Ⅰ)可得S n=,∴S n S n+2=n(n+1)(n+2)(n+3),(S n+1)2=(n+1)2(n+2)2,∴S n S n+2﹣S n+12=﹣(n+1)(n+2)<0,∴S n S n+2<S n+12(n∈N*);法⼆:∵数列{a n}为等差数列,且a n=n,∴S n=,S n+2=,S n+1=,∴==<1,∴S n S n+2<S n+12(n∈N*);(Ⅲ),当n为奇数时,c n===﹣,当n为偶数时,c n==,对任意的正整数n,有c2k﹣1=(﹣)=﹣1,和c2k==+++…+,①,由①×可得c2k=++…++,②,①﹣②得c2k=+++…+﹣﹣,∴c2k=﹣,因此c2k=c2k﹣1+c2k=﹣﹣.数列{c n}的前2n项和﹣﹣.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.【解答】解:(1)设等⽐数列{a n}的公⽐为q(q>1),则,∵q>1,∴,∴.(2)a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1=23﹣25+27﹣29+…+(﹣1)n﹣1•22n+1,==.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.【解答】解:(1)k=1时,a n+1=S n+1﹣S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)﹣=,则an+1=S n+1﹣S n=(﹣)•(+)=•(+),因此+=•,即=,Sn+1=a n+1=(S n+1﹣S n),从⽽S n+1=4S n,⼜S1=a1=1,可得S n=4n﹣1,a n=S n﹣S n﹣1=3•4n﹣2,n≥2,综上可得a n=,n∈N*;(3)若存在三个不同的数列{a n}为“λ﹣3”数列,则S n+1﹣S n=λa n+1,则S n+1﹣3S n+1S n+3S n+1S n﹣S n=λ3a n+1=λ3(S n+1﹣S n),由a1=1,a n≥0,且S n>0,令p n=()>0,则(1﹣λ3)p n3﹣3p n2+3p n﹣(1﹣λ3)=0,λ=1时,p n=p n2,由p n>0,可得p n=1,则S n+1=S n,即a n+1=0,此时{a n}唯⼀,不存在三个不同的数列{a n},λ≠1时,令t=,则p n3﹣tp n2+tp n﹣1=0,则(p n﹣1)[p n2+(1﹣t)p n+1]=0,①t≤1时,p n2+(1﹣t)p n+1>0,则p n=1,同上分析不存在三个不同的数列{a n};②1<t<3时,△=(1﹣t)2﹣4<0,p n2+(1﹣t)p n+1=0⽆解,则p n=1,同上分析不存在三个不同的数列{a n};③t=3时,(p n﹣1)3=0,则p n=1,同上分析不存在三个不同的数列{a n}.④t>3时,即0<λ<1时,△=(1﹣t)2﹣4>0,p n2+(1﹣t)p n+1=0有两解α,β,设α<β,α+β=t﹣1>2,αβ=1>0,则0<α<1<β,则对任意n∈N*,=1或=α3(舍去)或=β3,由于数列{S n}从任何⼀项求其后⼀项均有两种不同的结果,所以这样的数列{S n}有⽆数多个,则对应的数列{a n}有⽆数多个.则存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0,综上可得0<λ<1.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.【解答】解:(1)设{a n}是公⽐q不为1的等⽐数列,a1为a2,a3的等差中项,可得2a1=a2+a3,即2a1=a1q+a1q2,即为q2+q﹣2=0,解得q=﹣2(1舍去),所以{a n}的公⽐为﹣2;(2)若a1=1,则a n=(﹣2)n﹣1,na n=n•(﹣2)n﹣1,则数列{na n}的前n项和为S n=1•1+2•(﹣2)+3•(﹣2)2+…+n•(﹣2)n﹣1,﹣2S n=1•(﹣2)+2•(﹣2)2+3•(﹣2)3+…+n•(﹣2)n,两式相减可得3S n=1+(﹣2)+(﹣2)2+(﹣2)3+…+(﹣2)n﹣1﹣n•(﹣2)n=﹣n•(﹣2)n,化简可得S n=,所以数列{na n}的前n项和为.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.【解答】解:(1)∵a2+a4=20,a3=8,∴+8q=20,解得q=2或q=(舍去),∴a1=2,∴a n=2n,(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,∴2n≤m,∴n≤log2m,故b1=0,b2=1,b3=1,b4=2,b5=2,b6=2,b7=2,b8=3,b9=3,b10=3,b11=3,b12=3,b13=3,b14=3,b15=3,b16=4,…,可知0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,…,由<100,>100可知b63=5,b64=b65=…=b100=6.∴数列{b m}的前100项和S100=0+1×2+2×4+3×8+4×16+5×32+6×37=480.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.【解答】解:(1)设公⽐为q,则由,可得a1=1,q=3,所以a n=3n﹣1.(2)由(1)有log3a n=n﹣1,是⼀个以0为⾸项,1为公差的等差数列,所以S n=,所以+=,m2﹣5m﹣6=0,解得m=6,或m=﹣1(舍去),所以m=6.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.【解答】(Ⅰ)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2﹣q﹣1=0,解得q=﹣(舍去),或q=,∴c n+1=•c n=•c n=•c n=•c n=4•c n,∴数列{c n}是以1为⾸项,4为公⽐的等⽐数列,∴c n=1•4n﹣1=4n﹣1,n∈N*.∴a n+1﹣a n=c n=4n﹣1,则a1=1,a2﹣a1=1,a3﹣a2=41,•••a n﹣a n﹣1=4n﹣2,各项相加,可得a n=1+1+41+42+…+4n﹣2=+1=.(Ⅱ)证明:依题意,由c n+1=•c n(n∈N*),可得b n+2•c n+1=b n•c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是⼀个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n==•=(1+)•=(1+)(﹣),⼜∵b1=1,d>0,∴b n>0,∴c1+c2+…+c n=(1+)(﹣)+(1+)(﹣)+…+(1+)(﹣)=(1+)(﹣+﹣+…+﹣)=(1+)(﹣)=(1+)(1﹣)<1+,∴c1+c2+…+c n<1+,故得证.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.【解答】解:(1)数列{a n}为公差为d的等差数列,S10=70,a1=1,可得10+×10×9d=70,解得d=,则a n=1+(n﹣1)=n﹣;(2)数列{a n}为公⽐为q的等⽐数列,a4=,a1=1,可得q3=,即q=,则a n=()n﹣1,S n==2﹣()n﹣1,S n>100a n,即为2﹣()n﹣1>100•()n﹣1,即2n>101,可得n≥7,即n的最⼩值为7.考点卡⽚1.数列的函数特性【知识点的认识】1、等差数列的通项公式:a n=a1+(n﹣1)d;前n项和公式S n=na1+n(n﹣1)d或者S n=2、等⽐数列的通项公式:a n=a1q n﹣1;前n项和公式S n==(q≠1)3、⽤函数的观点理解等差数列、等⽐数列(1)对于等差数列,a n=a1+(n﹣1)d=dn+(a1﹣d),当d≠0时,a n是n的⼀次函数,对应的点(n,a n)是位于直线上的若⼲个点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为S n,则S n=pn2+qn(p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可⽤⼆次函数的⽅法解决等差数列问题.(2)对于等⽐数列:a n=a1q n﹣1.可⽤指数函数的性质来理解.当a1>0,q>1或a1<0,0<q<1时,等⽐数列是递增数列;当a1>0,0<q<1或a1<0,q>1时,等⽐数列{a n}是递减数列.当q=1时,是⼀个常数列.当q<0时,⽆法判断数列的单调性,它是⼀个摆动数列.【典型例题分析】典例1:数列{a n}满⾜a n=n2+kn+2,若不等式a n≥a4恒成⽴,则实数k的取值范围是()A.[﹣9,﹣8]B.[﹣9,﹣7]C.(﹣9,﹣8)D.(﹣9,﹣7)解:a n=n2+kn+2=,∵不等式a n≥a4恒成⽴,∴,解得﹣9≤k≤﹣7,故选:B.典例2:设等差数列{a n}满⾜a1=1,a n>0(n∈N*),其前n项和为S n,若数列{}也为等差数列,则的最⼤值是()A.310B.212C.180D.121解:∵等差数列{a n}满⾜a1=1,a n>0(n∈N*),设公差为d,则a n=1+(n﹣1)d,其前n项和为S n=,∴=,=1,=,=,∵数列{}也为等差数列,∴=+,∴=1+,解得d=2.∴S n+10=(n+10)2,=(2n﹣1)2,∴==,由于为单调递减数列,∴≤=112=121,故选:D.2.等差数列的通项公式【知识点的认识】等差数列是常⻅数列的⼀种,数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,已知等差数列的⾸项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代⼊2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第⼀项这个数列是等差数列,但如果把⾸项放进去的话就不是等差数列,题中a n的求法是数列当中常⽤到的⽅式,⼤家可以熟记⼀下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为⾸项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的⼀个重要性质,即等差中项的特点,通过这个性质然后解⽅程⼀样求出⾸项和公差即可.【考点点评】求等差数列的通项公式是⼀种很常⻅的题型,这⾥⾯往往⽤的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.3.等差数列的前n项和【知识点的认识】等差数列是常⻅数列的⼀种,如果⼀个数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,这个数列就叫做等差数列,⽽这个常数叫做等差数列的公差,公差常⽤字⺟d表示.其求和公式为S n=na1+n(n﹣1)d或者S n=【例题解析】eg1:设等差数列的前n项和为S n,若公差d=1,S5=15,则S10=解:∵d=1,S5=15,∴5a1+d=5a1+10=15,即a1=1,则S10=10a1+d=10+45=55.故答案为:55点评:此题考查了等差数列的前n项和公式,解题的关键是根据题意求出⾸项a1的值,然后套⽤公式即可.eg2:等差数列{a n}的前n项和S n=4n2﹣25n.求数列{|a n|}的前n项的和T n.解:∵等差数列{a n}的前n项和S n=4n2﹣25n.∴a n=S n﹣S n﹣1=(4n2﹣25n)﹣[4(n﹣1)2﹣25(n﹣1)]=8n﹣29,该等差数列为﹣21,﹣13,﹣5,3,11,…前3项为负,其和为S3=﹣39.∴n≤3时,T n=﹣S n=25n﹣4n2,n≥4,T n=S n﹣2S3=4n2﹣25n+78,∴.点评:本题考查等差数列的前n项的绝对值的和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运⽤.其实⽅法都是⼀样的,要么求出⾸项和公差,要么求出⾸项和第n项的值.【考点点评】等差数列⽐较常⻅,单独考察等差数列的题也⽐较简单,⼀般单独考察是以⼩题出现,⼤题⼀般要考察的话会结合等⽐数列的相关知识考察,特别是错位相减法的运⽤.4.等⽐数列的性质【等⽐数列】(⼜名⼏何数列),是⼀种特殊数列.如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐等于同⼀个常数,这个数列就叫做等⽐数列,因为第⼆项与第⼀项的⽐和第三项与第⼆项的⽐相等,这个常数叫做等⽐数列的公⽐,公⽐通常⽤字⺟q表示(q≠0).注:q=1时,a n 为常数列.等⽐数列和等差数列⼀样,也有⼀些通项公式:①第n项的通项公式,a n=a1q n﹣1,这⾥a1为⾸项,q为公⽐,我们发现这个通项公式其实就是指数函数上孤⽴的点.②求和公式,S n=,表示的是前⾯n项的和.③若m+n=q+p,且都为正整数,那么有a m•a n =a p•a q.例:2,x,y,z,18成等⽐数列,则y=.解:由2,x,y,z,18成等⽐数列,设其公⽐为q,则18=2q4,解得q2=3,∴y=2q2=2×3=6.故答案为:6.本题的解法主要是运⽤了等⽐数列第n项的通项公式,这也是⼀个常⽤的⽅法,即知道某两项的值然后求出公⽐,继⽽可以以已知项为⾸项,求出其余的项.关键是对公式的掌握,⽅法就是待定系数法.【等⽐数列的性质】(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.5.等⽐数列的通项公式【知识点的认识】1.等⽐数列的定义如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐值等于同⼀个常数,那么这个数列叫做等⽐数列,这个常数叫做等⽐数列的公⽐,通常⽤字⺟q表示(q≠0).从等⽐数列的定义看,等⽐数列的任意项都是⾮零的,公⽐q也是⾮零常数.2.等⽐数列的通项公式设等⽐数列{a n}的⾸项为a1,公⽐为q,则它的通项a n=a1•q n﹣13.等⽐中项:如果在a与b中间插⼊⼀个数G,使a,G,b成等⽐数列,那么G叫做a与b的等⽐中项.G2=a•b(ab≠0)4.等⽐数列的常⽤性质(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.6.等⽐数列的前n项和【知识点的知识】1.等⽐数列的前n项和公式等⽐数列{a n}的公⽐为q(q≠0),其前n项和为S n,当q=1时,S n=na1;当q≠1时,S n==.2.等⽐数列前n项和的性质公⽐不为﹣1的等⽐数列{a n}的前n项和为S n,则S n,S2n﹣S n,S3n﹣S2n仍成等⽐数列,其公⽐为q n.7.数列的应⽤【知识点的知识】1、数列与函数的综合2、等差数列与等⽐数列的综合3、数列的实际应⽤数列与银⾏利率、产品利润、⼈⼝增⻓等实际问题的结合.8.数列的求和【知识点的知识】就是求出这个数列所有项的和,⼀般来说要求的数列为等差数列、等⽐数列、等差等⽐数列等等,常⽤的⽅法包括:(1)公式法:①等差数列前n项和公式:S n=na1+n(n﹣1)d或S n=②等⽐数列前n项和公式:③⼏个常⽤数列的求和公式:(2)错位相减法:适⽤于求数列{a n×b n}的前n项和,其中{a n}{b n}分别是等差数列和等⽐数列.(3)裂项相消法:适⽤于求数列{}的前n项和,其中{a n}为各项不为0的等差数列,即=().(4)倒序相加法:推导等差数列的前n项和公式时所⽤的⽅法,就是将⼀个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+a n).(5)分组求和法:有⼀类数列,既不是等差数列,也不是等⽐数列,若将这类数列适当拆开,可分为⼏个等差、等⽐或常⻅的数列,然后分别求和,再将其合并即可.【典型例题分析】典例1:已知等差数列{a n}满⾜:a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.分析:形如的求和,可使⽤裂项相消法如:.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.点评:该题的第⼆问⽤的关键⽅法就是裂项求和法,这也是数列求和当中常⽤的⽅法,就像友情提示那样,两个等差数列相乘并作为分⺟的⼀般就可以⽤裂项求和.【解题⽅法点拨】数列求和基本上是必考点,⼤家要学会上⾯所列的⼏种最基本的⽅法,即便是放缩也要往这⾥⾯考.9.数列递推式【知识点的知识】1、递推公式定义:如果已知数列{a n}的第1项(或前⼏项),且任⼀项a n与它的前⼀项a n﹣1(或前⼏项)间的关系可以⽤⼀个公式来表示,那么这个公式就叫做这个数列的递推公式.2、数列前n项和S n与通项a n的关系式:a n=.在数列{a n}中,前n项和S n与通项公式a n的关系,是本讲内容⼀个重点,要认真掌握.注意:(1)⽤a n=S n﹣S n﹣1求数列的通项公式时,你注意到此等式成⽴的条件了吗?(n≥2,当n=1时,a1=S1);若a1适合由a n的表达式,则a n不必表达成分段形式,可化统⼀为⼀个式⼦.(2)⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式a n=S n﹣S n﹣1,先将已知条件转化为只含a n或S n的关系式,然后再求解.3、数列的通项的求法:(1)公式法:①等差数列通项公式;②等⽐数列通项公式.(2)已知S n(即a1+a2+…+a n=f(n))求a n,⽤作差法:a n=.⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式,先将已知条件转化为只含或的关系式,然后再求解.(3)已知a1•a2…a n=f(n)求a n,⽤作商法:a n,=.(4)若a n+1﹣a n=f(n)求a n,⽤累加法:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1(n≥2).(5)已知=f(n)求a n,⽤累乘法:a n=(n≥2).(6)已知递推关系求a n,有时也可以⽤构造法(构造等差、等⽐数列).特别地有,①形如a n=ka n﹣1+b、a n=ka n﹣1+b n(k,b为常数)的递推数列都可以⽤待定系数法转化为公⽐为k的等⽐数列后,再求a n.②形如a n=的递推数列都可以⽤倒数法求通项.(7)求通项公式,也可以由数列的前⼏项进⾏归纳猜想,再利⽤数学归纳法进⾏证明.10.等差数列与等⽐数列的综合【知识点的知识】1、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与⾸末两端“等距离”的两项和相等,并且等于⾸末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第⼆项开始起,每⼀项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(⾸项不⼀定选a1).2、等⽐数列的性质.(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.31。
2020高考数学分类汇编解析版(1)
2020 高考数学分类汇编解析版( 1)专题 01 集合与常用逻辑用语专题 02函数的概念与基本初等函数 I专题 03导数及其应用专题 04立体几何专题 05平面解析几何专题 01 集合与常用逻辑用语1.【2020 年高考全国Ⅰ卷理数】已知集合 M = {x | -4 < x < 2}, N = {x | x 2 - x - 6 < 0},则 M I N =A . {x -4 < x < 3}C . {x -2 < x < 2}B .{x -4 < x <- 2}D .{x 2 < x < 3}【答案】C【解析】由题意得 M = {x | -4 < x < 2}, N = {x | x 2 - x - 6 < 0} = {x | -2 < x < 3}, 则 M I N = {x | -2 < x < 2}.故选 C .2.【2020 年高考全国Ⅱ卷理数】设集合 A ={x |x 2–5x +6>0},B ={x |x –1<0},则 A ∩B =A .(–∞,1)C .(–3,–1) B .(–2,1)D .(3,+∞){ }【【解析】∵ ðU A = { - 1,3} ,∴ ð A I B = {-1} .【答案】A【解析】由题意得, A = {x | x 2 - 5x + 6 > 0} = {x | x < 2 或 x > 3}, B = {x | x -1 < 0} = {x | x < 1} ,则A IB = {x | x < 1} = (-∞,1).故选 A .3.【2020 年高考全国Ⅲ卷理数】已知集合 A = {-1,0,1,2}, B = {x | x 2 ≤ 1} ,则 A I B =A . {-1,0,1}C . {-1,1}B . {0,1}D . {0,1,2}【答案】A【解析】∵ x 2 ≤ 1, ∴ -1 ≤ x ≤ 1 ,∴ B = x -1 ≤ x ≤ 1 ,又 A = {-1,0,1,2} ,∴ A I B = {-1,0,1}.故选 A .4. 2020 年高考天津理数】设集合 A = {-1,1,2,3,5}, B = {2,3,4}, C = {x ∈ R |1 ≤ x < 3},则 ( A I C ) U B =A . {2}C . {-1,2,3}B . {2,3}D . {1,2,3,4 }【答案】D【解析】因为 A I C = {1,2} ,所以 ( A I C ) U B = {1,2,3,4} .故选 D .5.【2020 年高考浙江】已知全集U = {-1,0,1,2,3 },集合 A = {0,1,2}, B = {-1,0,1},则 (ð A) I B =UA . {-1}C . {-1,2,3}B . {0,1}D . {-1,0,1,3}【答案】A( )U故选 A.6.【2020 年高考浙江】若 a >0,b >0,则“a +b ≤4”是“ab ≤4”的A .充分不必要条件B .必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当a>0,b>0时,a+b≥2ab,则当a+b≤4时,有2ab≤a+b≤4,解得a b≤4,充分性成立;当a=1,b=4时,满足ab≤4,但此时a+b=5>4,必要性不成立,综上所述,“a+b≤4”是“ab≤4”的充分不必要条件.故选A.7.【2020年高考天津理数】设x∈R,则“x2-5x<0”是“|x-1|<1”的A.充分而不必要条件C.充要条件B.必要而不充分条件D.既不充分也不必要条件【答案】B【解析】由x2-5x<0可得0<x<5,由|x-1|<1可得0<x<2,易知由0<x<5推不出0<x<2,由0<x<2能推出0<x<5,故0<x<5是0<x<2的必要而不充分条件,即“x2-5x<0”是“|x-1|<1”的必要而不充分条件.故选B.8.【2020年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行C.α,β平行于同一条直线B.α内有两条相交直线与β平行D.α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是α∥β的充分条件;由面面平行的性质定理知,若α∥β,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是α∥β的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B.uuur uu u uuur uuur uuur 9.【2020年高考北京理数】设点A,B,C不共线,则“AB与AC的夹角为锐角”是“|AB+AC|>|BC|”rv vvuuuv v的A .充分而不必要条件C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件【答案】Cuuuv uuu uuur uuuv uuu uuuv uuuv 【解析】∵A 、B 、C 三点不共线,∴| AB + AC |>| BC | ⇔ | AB + AC |>| AC - AB |uuuv uuu uuuv uuuv uuur uuur uuuv ⇔ | AB + AC |2>| AC - AB |2 ⇔ AB · AC >0 ⇔ AB 与 AC 的夹角为锐角,uuuv uuuv uuuv uuu uuur 故“ AB 与 AC 的夹角为锐角”是“| AB + AC |>| BC |”的充分必要条件.故选 C.10.【2020 年高考江苏】已知集合 A = {-1,0,1,6} , B = {x | x > 0, x ∈ R } ,则 A I B = ▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知, A I B = {1,6} .专题 02函数的概念与基本初等函数 I1.【2020 年高考全国Ⅰ卷理数】已知 a = log 0.2,b = 20.2,c = 0.2 0.3 ,则2A . a < b < cC . c < a < b【答案】B【解析】 a = log 2 0.2 < log 2 1 = 0, b = 20.2 > 20 = 1,0 < c = 0.20.3 < 0.20 = 1, 即 0 < c < 1,则 a < c < b .故选 B .2.【2020 年高考天津理数】已知 a = log 2 , b = log5A . a < c < bC . b < c < a【答案】AB . a < c < bD . b < c < a0.50.2 , c = 0.50.2,则 a, b , c 的大小关系为B . a < b < cD . c < a < b21 lg 1 ,其中星等为 m 的星的亮度为 E (k=1,2).已知太阳的星等是 26.7,天狼星2 Elg 1 , 5 5【解析】因为 alog 2log5155,b log 0.2 log 0.25 2 ,0.50.51 0.5 c 0.50.2 0.5 ,即c 1,2所以 ac b .故选 A.3.【2020 年高考全国Ⅱ卷理数】若 a>b ,则A .ln(a b)>0C .a 3 b 3>0B .3a <3 bD .│a│>│b│【答案】C【解析】取 a2,b 1 ,满足 ab ,但 ln(a b) 0 ,则 A 错,排除 A ;由 9 3231 3 ,知 B 错,排除 B ;取 a 1,b 2 ,满足 a b ,但 |1|| 2 |,则 D 错,排除 D ;因为幂函数 yx 3是增函数, a b ,所以 a 3 b 3 ,即 a 3 b 3>0 ,C 正确.故选 C .4.【2020 年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足 m 2 m 1=5 E 2k k的星等是 1.45,则太阳与天狼星的亮度的比值为A .1010.1C .lg10.1【答案】AB .10.1D .10 10.1【解析】两颗星的星等与亮度满足 m令 m 21.45,m26.7,12 m15E 2 E2则 lg EE 122 2m m2 1( 1.45 26.7) 10.1,从而 1 = 1010.1 .【解析】由 f (- x ) = sin(- x) + (- x) 2 1 + 2 = 4 + 2π > 1, f (π) =又 f ( ) =( )2πEE2故选 A.5.【2020 年高考全国Ⅰ卷理数】函数 f (x )= sinx + xcosx + x 2在 [-π, π] 的图像大致为A .B .C .D .【答案】D- sin x - x== - f ( x ) ,得 f ( x ) 是奇函数,其图象关于原点对称. cos(- x )+ (- x ) cos x + x 2π 2 π22π π -1 + π 2 > 0 ,可知应为 D 选项中的图象.故选 D .6.【2020 年高考全国Ⅲ卷理数】函数 y =2 x3 2x + 2- x在 [-6,6]的图像大致为A .B .2 且单调递增,函数 y = log a x +C .D .【答案】B【解析】设 y = f ( x ) = 2 2 x 3 x + 2- x ,则 f (- x ) = 2(- x )3 2 x 3=-2- x + 2x 2x + 2- x= - f ( x ) ,所以 f ( x ) 是奇函数,图象关于原点成中心对称,排除选项 C .又 f (4) = 2 ⨯ 43 24 + 2-4> 0, 排除选项 D ;f (6) = 2 ⨯ 63 26 + 2-6≈ 7 ,排除选项 A ,故选 B .7.【2020 年高考浙江】在同一直角坐标系中,函数 y =1a x,1y = log ( x + ) (a >0,且 a ≠1)的图象可能是a【答案】D【解析】当 0 < a < 1 时,函数 y = a x 的图象过定点 (0,1) 且单调递减,则函数 y =1的图象过定点 (0,1)a x⎛ ⎝1 ⎫ 1 ⎪ 的图象过定点 ( ,0) 且单调递减,D 选项符合;2 ⎭ 2当 a > 1 时,函数 y = ax 的图象过定点(0,1) 且单调递增,则函数 y =1的图象过定点 (0,1) 且单调递减,a x函数 y = log x + ⎪ 的图象过定点 ( ,0)且单调递增,各选项均不符合.R ,L 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,满足方程:(R + r ) R C . 3D . 3 因为M2 2⎛ 1 ⎫ 1a ⎝ 2 ⎭ 2综上,选 D.8.【2020 年高考全国Ⅱ卷理数】2020 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日 L 点的轨 2道运行. L 2 点是平衡点,位于地月连线的延长线上.设地球质量为 M 1,月球质量为 M 2,地月距离为2 M 1 2 + M r 22 = (R + r ) M1 . 3r设 α = ,由于 α 的值很小,因此在近似计算中R3α 3 + 3α 4 + α 5 (1+ α )2≈ 3α 3 ,则 r 的近似值为A .MM2 R1B .M2R2M13M2 R M1【答案】D【解析】由 α = r,得 r = α R ,RM M1 +2 = ( R + r ) 1 ,( R + r )2 r 2 R 3M2 R 3M1所以M M M1 + = (1+ α ) 1 , R2 (1+ α )2 α 2 R 2 R 2即 M M 2 = α 2[(1+ α ) -11 α 5 + 3α 4 + 3α 3] = ≈ 3α 3 , (1+ α ) (1+ α )2解得 α = 3M2 , 3M1所以 r = α R =故选 D.3M2 R. 3M1A . f (log 3 )> f ( 2- 2 )> f ( 2- 3 )B . f (log 3 )> f ( 2- 3 )> f ( 2- 2 )C . f ( 2- 2 )> f ( 2- 3 )> f (log 3 )D . f ( 2- 3 )> f ( 2- 2 )> f (log 3 )-22-Q log 4 > log 3 = 1,1 = 2 > 2 > 2 ,∴ l og 4 > 2> 2 ,∴ f (log 4) < f 2- 3 ⎪ < f 2- 2 ⎪ ,⎝ ⎭ ⎝ ⎭ 即 f 2 2 ⎪ > f 2 3 ⎪ > f log 3 4 ⎭f (x) = x(x - 1) .若对任意 x ∈ (-∞, m ] ,都有 f ( x ) ≥ - ,则 m 的取值范围是A . -∞, ⎥B . -∞, ⎥C . -∞, ⎥ 2⎦D . -∞,⎥9 ⎤4 ⎦x ∈ (1,2] 时, x -1∈ (0,1], f ( x) = 2 f ( x - 1) = 2( x - 1)(x - 2) ∈ ⎢- ,0 ⎥ ;9.【2020 年高考全国Ⅲ卷理数】设 f (x )是定义域为 R 的偶函数,且在 (0,+ ∞)单调递减,则1 32 41 2 34 3 21 42 31 4【答案】C【解析】Q f (x ) 是定义域为 R 的偶函数,∴ f (log 3 - 33 333又 f (x )在(0,+∞)上单调递减,⎛ 2 ⎫ ⎛ 3 ⎫31 ⎫⎛ - 3 ⎫ ⎛ - 2 ⎫ ⎛ ⎪ .⎝ ⎭ ⎝ ⎭⎝ 1 42 3) = f (log 4) .3- 3 2故选 C .10.【2020 年高考全国Ⅱ卷理数】设函数 f ( x ) 的定义域为 R ,满足 f (x + 1) = 2 f (x) ,且当 x ∈ (0,1] 时,8 9 ⎛ ⎛ 7 ⎤ ⎝ ⎝3 ⎦ ⎛ 5 ⎤ ⎛ 8 ⎤ ⎝ ⎝3 ⎦【答案】B【解析】∵ f (x + 1) = 2 f (x) ,∴ f ( x ) = 2 f ( x - 1) .∵ x ∈ (0,1] 时, f (x) = x(x - 1) ∈[- 1 4,0] ;∴⎡ 1 ⎤⎣ 2 ⎦9 3 3-∞, ⎥ .11.2020 年高考浙江】已知 a, b ∈ R ,函数 f ( x ) = ⎨1 1.若函数 y = f ( x ) - ax - b ⎩当 x ≥0 时,y =f (x )﹣ax ﹣b = 1x 3 (a +1)x 2+ax ﹣ax ﹣b = 1x 3(a +1)x 2﹣b ,∴ x ∈ (2,3] 时, x -1∈ (1,2], f ( x ) = 2 f ( x -1) = 4( x - 2)(x - 3) ∈[-1,0] ,如图:当 x ∈ (2,3] 时,由 4( x - 2)( x - 3) = - 8 解得 x = 1 7 8, x = ,28 7若对任意 x ∈ (-∞, m ] ,都有 f ( x ) ≥ - ,则 m ≤ .9 3⎛ 则 m 的取值范围是⎝7 ⎤ 3 ⎦故选 B.⎧ x , x < 0 ⎪【 ⎪ 3 x 3 - 2 (a + 1)x 2 + ax, x ≥ 0恰有 3 个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当 x <0 时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得 x =b 1a,则 y =f (x )﹣ax ﹣b 最多有一个零点; 11 32 32y ' = x 2 - (a + 1)x ,当 a +1≤0,即 a ≤﹣1 时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则 y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;bb>0<0且{16(a+1)3,当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:∴1a(a+1)31(a+1)(a+1)232,b<0解得b<0,1﹣a>0,b>1则a>–1,b<0.故选C.12.【2020年高考江苏】函数y=7+6x-x2的定义域是▲.【答案】[-1,7]【解析】由题意得到关于x的不等式,解不等式可得函数的定义域.由已知得7+6x-x2≥0,即x2-6x-7≤0,解得-1≤x≤7,故函数的定义域为[-1,7].13.【2020年高考全国Ⅱ卷理数】已知f(x)是奇函数,且当x<0时,f(x)=-e ax.若f(ln2)=8,则a= __________.【答案】-3【解析】由题意知f(x)是奇函数,且当x<0时,f(x)=-e ax,又因为ln2∈(0,1),f(ln2)=8,( )( )所以 -e -a ln 2 = -8 ,两边取以 e 为底数的对数,得 -a ln 2 = 3ln 2 ,所以 -a = 3 ,即 a = -3 .14.【2020 年高考北京理数】设函数 f (x ) = e x + a e - x (a 为常数).若f (x )为奇函数,则a =________;若 f (x )是 R 上的增函数,则 a 的取值范围是___________.【答案】 -1(-∞,0 ]【解析】首先由奇函数的定义得到关于 a 的恒等式,据此可得 a 的值,然后利用 f '( x ) ≥ 0 可得 a 的取 值范围.若函数 f (x ) = e x + a e - x 为奇函数,则 f (- x ) = - f (x ), 即 e - x + a e x = - e x + a e - x ,即 (a + 1) e x + e - x = 0 对任意的 x 恒成立,则 a +1 = 0 ,得 a = -1 .若函数 f (x ) = e x + a e - x 是 R 上的增函数,则 f '( x ) = e x - ae - x ≥ 0 在 R 上恒成立,即 a ≤ e 2x 在 R 上恒成立,又 e 2 x > 0 ,则 a ≤ 0 ,即实数 a 的取值范围是 (-∞,0 ].15.【2020 年高考浙江】已知 a ∈ R ,函数 f ( x ) = ax 3 - x ,若存在 t ∈ R ,使得 | f (t + 2) - f (t ) |≤则实数 a 的最大值是___________.4 【答案】32 3,【解析】存在 t ∈ R ,使得 | f (t + 2) - f (t ) |≤ 2 3,即有 | a(t + 2)3 - (t + 2) - at 3 + t |≤化为 | 2a (3t 2+ 6t + 4)- 2 |≤2,32 3,- ≤ 2a (3t 2 + 6t + 4)- 2 ≤ 即 2 ≤ a (3t 2 + 6t + 4)≤因为 y ⎫= 15 ,所以 x 的最大值为15 . ⎝8⎭ 2,且 f ( x ) 是奇函数 .当 x ∈ (0, 2] 时, f ( x ) = 1 - ( x - 1)2 , g ( x ) = ⎨ 1,其中 k >0. ⎪⎩ 2可得 2 2 3 3,4 3 3,由 3t 2 + 6t + 4 = 3(t + 1)2 + 1 ≥ 1 ,可得 0 < a ≤ 43.则实数 a 的最大值是43.16.【2020 年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为 60 元/盒、65 元/盒、80 元/盒、90 元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到 120 元,顾客就少付 x 元.每笔订单顾客网上支付成功后,李明会得到支付款的 80%.①当 x =10 时,顾客一次购买草莓和西瓜各 1 盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则 x 的最大值为__________.【答案】①130;②15【解析】① x = 10 时,顾客一次购买草莓和西瓜各一盒,需要支付 (60 + 80)-10 = 130 元.②设顾客一次购买水果的促销前总价为 y 元,当 y < 120 元时,李明得到的金额为 y ⨯ 80% ,符合要求;当 y ≥ 120 元时,有 (y - x )⨯ 80% ≥ y ⨯ 70% 恒成立,即 8 ( y - x ) ≥ 7 y , x ≤ y8,min综上,①130;②15.17.【2020 年高考江苏】设 f ( x ), g ( x ) 是定义在 R 上的两个周期函数, f ( x ) 的周期为 4, g ( x ) 的周期为⎧k ( x + 2),0 < x ≤ 1 ⎪- ,1 < x ≤ 23 4 ⎭⎪∴ ≤ k < ,综上可知,满足 f ( x ) = g ( x ) 在(0,9]上有 8 个不同的实数根的 k 的取值范围为 ⎢ , ⎪ .⎪若在区间(0,9]上,关于 x 的方程 f ( x ) = g ( x ) 有 8 个不同的实数根,则 k 的取值范围是▲ .⎡ 1 2 ⎫【答案】 ⎢ , ⎪ ⎣【解析】作出函数 f ( x ) , g ( x ) 的图象,如图:由图可知,函数 f ( x ) = 1 - ( x - 1)2 的图象与 g ( x ) = -12(1< x ≤ 2,3 < x ≤ 4,5 < x ≤ 6,7 < x ≤ 8) 的图象仅有 2 个交点,即在区间(0,9]上,关于 x 的方程 f ( x ) = g ( x ) 有 2 个不同的实数根,要使关于 x 的方程 f ( x ) = g ( x ) 有 8 个不同的实数根,则 f ( x ) = 1 - ( x - 1)2 , x ∈ (0,2] 与 g ( x ) = k ( x + 2), x ∈ (0,1]的图象有 2 个不同的交点,由 (1,0) 到直线 kx - y + 2k = 0 的距离为 1,可得 | 3k | = 1 ,解得 k = 2 (k > 0) , k 2 + 1 4∵两点 ( - 2,0),(1,1)连线的斜率 k = 13,1 2 3 4⎡ 1 2 ⎫ ⎣ 3 4 ⎭专题 03导数及其应用1.【2020 年高考全国Ⅲ卷理数】已知曲线在点(1,a e )处的切线方程为 y =2x +b ,则A . a = e ,b = -1B .a=e ,b =1x>1.若关于x的不等式f(x)≥0【1-x=-(1-x-1)21-x=-(1-x)2-2(1-x)+1=- 1-x+11-x-2⎪≤-2(1-x)⋅-2⎪⎪=0,1-x,即x=0时取等号,当x>1时,f(x)=x-a ln x≥0,即a≤xln x,则h'(x)=C.a=e-1,b=1D.a=e-1,b=-1【答案】D【解析】∵y'=ae x+ln x+1,∴切线的斜率k=y'|x=1=ae+1=2,∴a=e-1,将(1,1)代入y=2x+b,得2+b=1,b=-1.故选D.⎧x2-2ax+2a,x≤1, 2.2020年高考天津理数】已知a∈R,设函数f(x)=⎨⎩x-a ln x,在R上恒成立,则a的取值范围为A.[0,1] C.[0,e]B.[0,2] D.[1,e]【答案】C【解析】当x=1时,f(1)=1-2a+2a=1>0恒成立;当x<1时,f(x)=x2-2ax+2a≥0⇔2a≥x2x-1恒成立,令g(x)=x2x-1,则g(x)=-x21-x⎛⎫⎛1⎫⎝⎭⎝1-x⎭当1-x=1∴2a≥g(x)max=0,则a>0.ln x恒成立,令h(x)=x ln x-1(ln x)2,3. 2020 浙江)已知a, b ∈ R ,函数 f ( x ) = ⎨ 1 1 .若函数 y = f ( x ) - ax - b 恰有 ⎩当 x ≥0 时,y =f (x )﹣ax ﹣b = 1x 3 (a +1)x 2+ax ﹣ax ﹣b = 1x 3(a +1)x 2﹣b ,当 x > e 时, h '( x ) > 0 ,函数 h( x ) 单调递增,当 0 < x < e 时, h '( x ) < 0 ,函数 h( x ) 单调递减,则 x = e 时, h( x ) 取得最小值 h(e) = e ,∴ a ≤ h( x)min = e ,综上可知, a 的取值范围是 [0,e] .故选 C.⎧ x , x < 0 ⎪(⎪ 3 x 3 - 2 (a + 1)x 2 + ax, x ≥ 03 个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当 x <0 时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得 x =b 1a,则 y =f (x )﹣ax ﹣b 最多有一个零点; 11 32 32y ' = x 2 - (a + 1)x ,当 a +1≤0,即 a ≤﹣1 时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则 y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当 a +1>0,即 a >﹣1 时,令 y ′>0 得 x ∈(a +1,+∞),此时函数单调递增,令 y ′<0 得 x ∈[0,a +1),此时函数单调递减,则函数最多有 2 个零点.根据题意,函数 y =f (x )﹣ax ﹣b 恰有 3 个零点⇔函数 y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有 2 个零点,如图:1+解得b<0,1﹣a>0,b>(a+1)3,0)设斜率为-1的直线与曲线y=x+(x>0)切于00(x,x+),由1-4=-1得x=2(x=-2舍去),∴b1a <0且{b(a>01)31(a+1)(a+1)232,b<016则a>–1,b<0.故选C.4.【2020年高考全国Ⅰ卷理数】曲线y=3(x2+x)e x在点(0,处的切线方程为____________.【答案】3x-y=0【解析】y'=3(2x+1)e x+3(x2+x)e x=3(x2+3x+1)e x,所以切线的斜率k=y'|x=0=3,则曲线y=3(x2+x)e x在点(0,0)处的切线方程为y=3x,即3x-y=0.5.【2020年高考江苏】在平面直角坐标系xOy中,P是曲线y=x+线x+y=0的距离的最小值是▲.【答案】444【解析】由y=x+(x>0),得y'=1-,x x244x xx20004x(x>0)上的一个动点,则点P到直则曲线 y = ln x 在点 A 处的切线为 y - y = ( x - x ) ,即 y - ln x =x- 1 , x 将点 (-e, -1)代入,得 -1 - ln x∴曲线 y = x + 4 x( x > 0) 上,点 P( 2,3 2) 到直线 x + y = 0 的距离最小,最小值为2 +3 212 + 12 = 4 .故答案为 4 .6.【2020 年高考江苏】在平面直角坐标系 xOy 中,点 A 在曲线 y =ln x 上,且该曲线在点 A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点 A 的坐标是▲ .【答案】 (e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点 A (x , y 0 01 又 y ' =,x) ,则 y= ln x .当 x = x 时, y ' = 01 x 0,1 x0 = -e x- 1 ,即 x 0 ln x 0 = e ,考察函数 H (x ) = x ln x ,当 x ∈ (0,1)时, H (x ) < 0 ,当 x ∈ (1, +∞)时, H (x ) > 0 ,且 H ' (x ) = ln x + 1 ,当 x > 1 时, H ' (x ) > 0, H (x )单调递增,注意到 H (e ) = e ,故 x 0 ln x 0 = e 存在唯一的实数根 x 0 = e ,此时 y 0 = 1 ,若函数 f (x ) = e x + a e - x 为奇函数,则 f (- x ) = - f (x ), 即 e - x + a e x = - e x + a e - x , ( )(1) f '( x ) 在区间 (-1, ) 存在唯一极大值点;当 x ∈ -1, ⎪ 时, g' ( x) 单调递减,而 g' (0) > 0, g' ( ) < 0 ,可得 g' ( x) 在 -1, ⎪ 有唯一零点,⎪ 时, g' ( x) < 0 .⎛2 ⎭单调递减,故 g ( x) 在 -1, ⎪ 存在唯一极大值点,即 f ' ( x) ⎛故点 A 的坐标为 (e,1).7.【2020 年高考北京理数】设函数 f (x ) = e x + a e - x (a 为常数).若 f (x )为奇函数,则 a =________;若 f (x )是 R 上的增函数,则 a 的取值范围是___________.【答案】 -1(-∞,0 ]【解析】首先由奇函数的定义得到关于 a 的恒等式,据此可得 a 的值,然后利用 f '( x ) ≥ 0 可得 a 的取值范围.()即 (a + 1) e x + e - x = 0 对任意的 x 恒成立,则 a +1 = 0 ,得 a = -1 .若函数 f (x ) = e x + a e - x 是 R 上的增函数,则 f '( x ) = e x - ae - x ≥ 0 在 R 上恒成立,即 a ≤ e 2x 在 R 上恒成立,又 e 2 x > 0 ,则 a ≤ 0 ,即实数 a 的取值范围是 (-∞,0 ].8.【2020 年高考全国Ⅰ卷理数】已知函数 f ( x ) = sin x - ln(1+ x) , f '( x ) 为 f ( x ) 的导数.证明:π2(2) f ( x ) 有且仅有 2 个零点.【答案】(1)见解析;(2)见解析.【解析】(1)设 g ( x ) = f ' ( x ) ,则 g ( x ) = cos x -11 + x 1 , g' ( x ) = - sin x + .(1+ x)2⎛ π⎫ π ⎛ π⎫⎝2 ⎭2⎝2 ⎭设为 α .则当 x ∈ (-1,α ) 时, g' ( x) > 0 ;当 x ∈ α , ⎝π⎫ 2 ⎭所以 g ( x) 在 (-1,α ) 单调递增,在 α , ⎝π⎫ ⎪⎛ π⎫ ⎝ 2 ⎭在 -1, ⎪ 存在唯一极大值点.(ii )当 x ∈ 0, ⎥ 时,由( 1)知, f ' ( x) 在 (0, α ) 单调递增,在 α , ⎪ 单调递减,而 f ' (0)=0 ,f ' ⎪ < 0 ,所以存在 β ∈ α , ⎪ ,使得 f ' (β ) = 0 ,且当 x ∈ (0, β ) 时, f ' ( x) > 0 ;当 x ∈ β , ⎪⎪ 单调递减.⎛又 f (0)=0 , f = 1 - ln 1 + > 0 ,所以当 x ∈ 0, ⎥ 时, f ( x) > 0 .从而, f ( x) 在 0, ⎥ 没有⎝ 2 ⎭⎝2 ⎭⎝ 2 ⎦ ⎝ 2 ⎦, π⎥ 时,f ' ( x) < 0 ,所以 f ( x) 在 , π ⎪ 单调递减.而 (iii )当 x ∈f ⎪ > 0 ,f (π) < 0 ,所以 f ( x) 在 ⎛π , π⎥ 有唯一零点.9.【2020 年高考全国Ⅱ卷理数】已知函数 f (x ) = ln x - x + 1⎛ π⎫ ⎝2 ⎭(2) f ( x ) 的定义域为 (-1,+∞) .(i )当 x ∈ (-1,0] 时,由(1)知, f ' ( x ) 在 ( - 1,0) 单调递增,而 f ' (0) = 0 ,所以当 x ∈ (-1,0) 时,f ' ( x ) < 0 ,故 f ( x ) 在 ( - 1,0) 单调递减,又 f (0)=0 ,从而 x = 0 是 f ( x ) 在 (-1,0] 的唯一零点.⎛ π⎤ ⎛ π⎫ ⎝ 2 ⎦⎝2 ⎭⎛π⎫ ⎛ π⎫ ⎛ π⎫ ⎝ 2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭时, f ' ( x) < 0 .故 f ( x) 在 (0, β ) 单调递增,在 β , ⎝π⎫ 2⎭⎛π⎫ ⎛ π⎫ ⎛ π⎤ ⎛ π⎤ ⎪ ⎪零点.⎛π ⎤ ⎛π ⎫ ⎝ 2⎦⎝ 2⎭⎛π⎫ ⎝ 2 ⎭⎤⎝ 2 ⎦(iv )当 x ∈ (π, +∞) 时, ln( x + 1) > 1 ,所以 f ( x ) <0,从而 f ( x ) 在 (π, +∞) 没有零点.综上, f ( x ) 有且仅有2个零点.x - 1 .(1)讨论 f (x )的单调性,并证明 f (x )有且仅有两个零点;(2)设 x 0 是 f (x )的一个零点,证明曲线 y =ln x 在点 A (x 0,ln x 0)处的切线也是曲线 y = e x 的切线.【答案】(1)函数 f ( x ) 在 (0,1) 和 (1, +∞) 上是单调增函数,证明见解析;(2)见解析.【解析】(1)f (x )的定义域为(0,1) U (1,+∞).因为 f ' ( x ) = 1 +> 0 ,所以 f ( x ) 在(0,1),(1,+∞)单调递增. e + 1 e2 + 1 e 2 -3 < 0 , f (e 2 ) = 2 - 即 f (x )=0.又 0 << 1 , f () = - ln x + 1 = - f ( x ) = 0 ,故 (x )在(0,1)有唯一零点 .xxx - 1 xx + 1 = e - ln x 0,故点 B (–ln x , )在曲线 y =e x 上. x xx + 1 xx x - 1 1 由题设知 f ( x ) = 0 ,即 ln x = ,故直线 AB 的斜率 k = = 0 = . - x x x - 1曲线 y =e x 在点 B(- ln x ,1x )处切线的斜率是 ,曲线 y = ln x 在点 A( x ,ln x )处切线的斜率也是 b = -1 b =1若 a >0 , 则 当 x ∈ (-∞,0) U, +∞ ⎪ 时 , f '( x) > 0 ; 当 x ∈ 0, ⎪ 时 , f '( x) < 0 . 故 f ( x) 在 (-∞,0), , +∞ ⎪ 单调递增,在 0, ⎪ 单调递减;2 x ( x - 1)2因为 f (e )=1 - =e -1 e 2 - 1 e 2 - 1> 0 ,所以 f (x )在(1,+∞)有唯一零点 x 1,11 1 1 1综上,f (x )有且仅有两个零点.(2)因为 1 1 0 0 011 x + 1- ln x- 00 0 0 0 0 0 x - 1 - ln x - xx + 1 0 0 0 - 0 00 00 0 11x0 0 x0 0,所以曲线 y = ln x 在点 A( x 0 ,ln x 0 ) 处的切线也是曲线 y =e x 的切线.10.【2020 年高考全国Ⅲ卷理数】已知函数 f ( x ) = 2 x 3 - ax 2 + b .(1)讨论 f ( x ) 的单调性;(2)是否存在 a, b ,使得 f ( x ) 在区间 [0,1] 的最小值为 -1且最大值为 1?若存在,求出 a, b 的所有值; 若不存在,说明理由.⎧a = 0 ⎧a = 4【答案】(1)见解析;(2) ⎨ 或 ⎨⎩ ⎩.【解析】(1) f '( x ) = 6 x 2 - 2ax = 2 x (3x - a) .令 f '( x ) = 0 ,得 x =0 或 x = a 3.⎛ a ⎫ ⎛a ⎫ ⎝ 3⎭⎝ 3 ⎭⎛ a ⎫ ⎛ a ⎫ ⎝ 3 ⎭ ⎝ 3 ⎭U (0,+∞) 时 , f '( x) > 0 ; 当 x ∈ ,0 ⎪ 时 , f '( x) < 0 . 故 f ( x) 在 3 ⎭ ⎝ 3 ⎭⎛ -∞, ⎪ ,(0, +∞) 单调递增,在 ,0 ⎪ 单调递减.3 ⎭ ⎝⎝ 3 ⎭ a ⎫ (iii )当 0<a <3 时,由(1)知, f ( x) 在[0,1]的最小值为 f ⎪ =- 令 f '( x ) = 1 ,即 x 2 - 2 x + 1 = 1,得 x = 0 或 x = .若 a =0, f ( x ) 在 (-∞, +∞) 单调递增;若 a <0 , 则 当 x ∈ -∞, ⎝a ⎫ ⎛ a ⎫ ⎪⎛ ⎛ a ⎫(2)满足题设条件的 a ,b 存在.(i )当 a ≤0 时,由(1)知, f ( x ) 在[0,1]单调递增,所以 f ( x ) 在区间[0,l]的最小值为 f (0)=b ,最大值为 f (1) = 2 - a + b .此时 a ,b 满足题设条件当且仅当 b = -1 , 2 - a + b = 1,即 a =0, b = -1 .(ii )当 a ≥3 时,由(1)知, f ( x ) 在[0,1]单调递减,所以 f ( x ) 在区间[0,1]的最大值为 f (0)=b ,最小值为 f (1) = 2 - a + b .此时 a ,b 满足题设条件当且仅当 2 - a + b = -1 ,b =1,即 a =4,b =1.⎛ a ⎫⎝ 3 ⎭a 3 27 +b ,最大值为 b 或 2 - a + b .若 -若 - a 3 27a 3 27+ b = -1 ,b =1,则 a = 3 3 2 ,与 0<a <3 矛盾.+ b = -1 , 2 - a + b = 1,则 a = 3 3 或 a = -3 3 或 a =0,与 0<a <3 矛盾.综上,当且仅当 a =0, b = -1 或 a =4,b =1 时, f ( x ) 在[0,1]的最小值为-1,最大值为 1.11.【2020 年高考北京理数】已知函数 f ( x ) =14x 3 - x 2 + x .(Ⅰ)求曲线 y = f ( x ) 的斜率为 1 的切线方程;(Ⅱ)当 x ∈ [-2, 4] 时,求证: x - 6 ≤ f ( x ) ≤ x ;(Ⅲ)设 F ( x ) =| f ( x ) - ( x + a) | (a ∈ R) ,记 F ( x ) 在区间 [-2,4] 上的最大值为 M (a ).当 M (a ) 最小时,求 a 的值.【答案】(Ⅰ) y = x 与 y = x - 6427;(Ⅱ)见解析;(Ⅲ) a = -3 .1 3【解析】(Ⅰ)由 f ( x ) =x 3 - x 2 + x 得 f '( x ) = x 2 - 2 x + 1. 4 43 84 3令g'(x)=0得x=0或x=.(0,270Z](Ⅱ)当x∈⎢,⎥时,证明f(x)+g(x) -x⎪≥0;42(Ⅲ)设x为函数u(x)=f(x)-1在区间 2nπ+⎝,2nπ+⎪内的零点,其中n∈N,证明又f(0)=0,f(8)=3827,所以曲线y=f(x)的斜率为1的切线方程是y=x与y-88=x-,273即y=x与y=x-64 27.(Ⅱ)令g(x)=f(x)-x,x∈[-2,4].由g(x)=13x3-x2得g'(x)=x2-2x. 4483g'(x),g(x)的情况如下:x g'(x)-2(-2,0)08)3-+838(,4)3+4g(x)-60-64Z所以g(x)的最小值为-6,最大值为0.故-6≤g(x)≤0,即x-6≤f(x)≤x.(Ⅲ)由(Ⅱ)知,当a<-3时,M(a)≥F(0)=|g(0)-a|=-a>3;当a>-3时,M(a)≥F(-2)=|g(-2)-a|=6+a>3;当a=-3时,M(a)=3.综上,当M(a)最小时,a=-3.12.【2020年高考天津理数】设函数f(x)=e x cos x,g(x)为f(x)的导函数.(Ⅰ)求f(x)的单调区间;⎡ππ⎤⎛π⎫⎣⎦⎝2⎭n ⎛ππ⎫42⎭2 sin x - cos x【答案】(Ⅰ) f ( x) 的单调递增区间为 ⎢2k π - , 2k π + ⎦π 5π ⎤ ⎥⎦ (k ∈ Z) .(Ⅱ)见解析;(Ⅲ)见解析. ⎣【解析】(Ⅰ)由已知,有 f ' ( x) = e x (cos x - sin x) .因此,当 x ∈ 2k π +, 2k π + ⎪ (k ∈ Z) 时, 有 sin x > cos x , 得 f ' ( x) < 0 , 则 f (x ) 单 调 递 减;当 x ∈ 2k π - , 2k π + ⎪ (k ∈ Z) 时 , 有 所以, f (x )的单调递增区间为 ⎢2k π - , 2k π + ⎥ (k ∈ Z), f ( x) 的单调递减区间为 π 5π ⎤ ⎥⎦ (k ∈ Z) .⎣(Ⅱ)证明:记 h( x) = f ( x) + g ( x) ⎛π - x ⎪.依题意及(Ⅰ),有 g ( x) = e x (cos x - sin x) ,从而 g' ( x) = -2e x sin x .当 x ∈ , ⎪ 时, g'( x) < 0 ,故 h'( x) = f ' ( x) + g' ( x) - x ⎪ + g ( x)(-1) = g' ( x) - x ⎪ < 0 .因此, h (x ) 在区间 ⎢ , ⎥ 上单调递减,进而 h( x) ≥ h ⎪ = f ⎪ = 0 .所以,当 x ∈ ⎢ , ⎥ 时, f ( x) + g ( x) - x ⎪ ≥ 0 .4 2 = 1 .记 y = x - 2n π ,则 y ∈ , ⎪ ,⎝ 4 2 ⎭π e -2n π2n π + - x <n 0.⎡ 3π π ⎤ ⎣ 4 4 ⎥ (k ∈ Z), f ( x ) 的单调递减区间为⎡ ⎢2k π + , 2k π + 4 4⎛ ⎝π 5π ⎫ 4 4 ⎭sin x < cos x ,得 f ' ( x ) > 0 ,则 f (x )单调递增.⎛⎝3π π⎫ 4 4 ⎭⎡⎣3π π⎤ 4 4 ⎦⎡ ⎢2k π +, 2k π + 4 4⎫ ⎝ 2 ⎭⎛π π⎫ ⎝ 4 2 ⎭⎛π ⎫ ⎛π ⎫ ⎝ 2 ⎭ ⎝ 2 ⎭⎡π π⎤ ⎛π⎫ ⎛π⎫ ⎣ 4 2 ⎦⎝ 2 ⎭ ⎝ 2 ⎭⎡π π⎤ ⎛π ⎫ ⎣ ⎦⎝ 2⎭(Ⅲ)证明:依题意,u (x n ) = f (x )-1 = 0 ,即 e x n cos x nn n n n ⎛π π⎫且 f (y n) = e y n cos y = e x n -2n π cos (x - 2n π) = e -2n π (n ∈ N ) .n nf(y)=e-2nπ≤1=f(y)及(Ⅰ),得y≥y.由(Ⅱ)知,当x∈ ,⎪时,g'(x)<0,所⎝42⎭以g(x)在⎢,⎥上为减函数,因此g(y)≤g(y)<g ⎪=0.又由(Ⅱ)知,⎣42⎦⎝4⎭f(y)+g(y) -y⎪≥0,故⎝2n⎭-y≤-=-≤=<2g(y)g(y)g(y)e y0(sin y-cos y)sin x-cos x2sin x-cos xf(y)4⎦【解析】(1)当a=-3f'(x)=-3由n0n0⎛ππ⎫⎡ππ⎤⎛π⎫n0⎛π⎫n nπe-2nπe-2nπe-2nπe-2nπnnn n00000πe-2nπ所以,2nπ+-x<.n00.13.【2020年高考浙江】已知实数a≠0,设函数f(x)=a ln x+x+1,x>0.(1)当a=-34时,求函数f(x)的单调区间;(2)对任意x∈[1e2,+∞)均有f(x)≤x2a,求a的取值范围.注:e=2.71828…为自然对数的底数.【答案】(1)f (x)的单调递增区间是(3,+∞),单调递减区间是(0,3);(2)⎛0,⎝3时,f(x)=-ln x+1+x,x>0.442⎤⎥.1(1+x-2)(21+x+1)+=4x21+x4x1+x,所以,函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f(1)≤12a2,得0<a≤.4当0<a≤2x x21+x时,f(x)≤等价于-42a a2a-2ln x≥0.令t=1a,则t≥22.设g(t)=t2x-2t1+x-2ln x,t≥22,x (t - 1 + )2 - (i )当 x ∈ ⎢ , +∞ ⎪ 时, 1 + 1 p'( x ) = 2 71(1, +∞)7 单调递减极小值p (1)(ii )当 x ∈ ⎢ , ⎪ 时, g (t )…g 1 + ⎪⎪ =⎣ e 2 7 ⎭x ⎭ 2 x, ⎥ ,则 q' ( x) =令 q ( x) = 2 x ln x + ( x + 1), x ∈ ⎢ ⎣ e 7 ⎦故 q ( x) 在 ⎢⎡ 1 1 ⎤ e 2 7 ⎥⎦q ⎪ .由(i )得, q ⎪ =- p ⎪ < - p (1)= 0 .则 g (t ) = 11 + x- 2ln x .x x⎡ 1⎫⎣ 7 ⎭ x≤ 2 2 ,则g (t ) ≥ g (2 2) = 8 x - 4 2 1 + x - 2ln x .记 p ( x ) = 4 x - 2 2 1 + x - ln x, x ≥17,则21 2 x x + 1 - 2 x - x + 1- - = x x + 1 x x x + 1= ( x - 1)[1+ x ( 2 x + 2 - 1)]x x + 1( x + 1)( x + 1 + 2 x )故.x1 71( ,1)p'( x )-+p ( x )1 p ( )单调递增所以, p ( x ) ≥ p (1) = 0 .因此, g (t ) ≥ g (2 2) = 2 p ( x ) ≥ 0 .⎡ 1 1 ⎫⎛ 1 ⎫ -2 x ln x - ( x + 1)⎝.⎡1 1 ⎤2 ln x + 2 x+ 1 > 0 ,⎣,上单调递增,所以 q ( x )…⎛ 1 ⎫ ⎝ 7 ⎭⎛ 1 ⎫ ⎝ 7 ⎭所以, q (x)<0 .2 7 ⎛ 1 ⎫ 2 7 7 ⎝ 7 ⎭ 7⎪⎪ x ⎭ ⎛ 由(i )(ii )知对任意 x ∈ ⎢ , +∞ ⎪ , t ∈ [2 2, +∞ ), g (t )…0 ,, +∞ ⎪ ,均有 f ( x)… 即对任意 x ∈ ⎢综上所述,所求 a 的取值范围是 0,⎥ . 从而 f ' ( x) = 3(x - b ) x - .令 f ' ( x ) = 0 ,得 x = b 或 x = 3 ⎭ 3因此g (t )…g 1 + ⎝1 ⎫ q ( x )=- > 0 . 2 x⎡ 1 ⎫ ⎣ e 2⎭⎡ 1 ⎫ ⎣ e 2⎭x 2a.⎛ 2 ⎤ ⎝4 ⎦14.【2020 年高考江苏】设函数 f ( x ) = ( x - a)( x - b )( x - c), a, b , c ∈ R 、 f ' (x) 为 f (x )的导函数.(1)若 a =b =c ,f (4)=8,求 a 的值;(2)若 a ≠b ,b =c ,且 f (x )和 f ' (x) 的零点均在集合{ - 3,1,3} 中,求 f (x )的极小值;(3)若 a = 0,0 < b … 1,c = 1 ,且 f (x )的极大值为 M ,求证:M ≤ 4 27.【答案】(1) a = 2 ;(2)见解析;(3)见解析.【解析】(1)因为 a = b = c ,所以 f ( x ) = ( x - a)( x - b )( x - c) = ( x - a)3 .因为 f (4) = 8 ,所以 (4 - a)3 = 8 ,解得 a = 2 .(2)因为 b = c ,所以 f ( x ) = ( x - a)( x - b )2 = x 3 - (a + 2b ) x 2 + b (2a + b ) x - ab 2 ,⎛ ⎝2a + b ⎫ 2a + b⎪.因为 a, b ,2a + b 3都在集合{-3,1,3}中,且 a ≠ b ,2a + b所以 = 1,a = 3, b = -3 .3此时 f ( x ) = ( x - 3)(x + 3)2 , f ' ( x ) = 3( x + 3)( x - 1) .令 f ' ( x ) = 0 ,得 x = -3 或 x = 1 .列表如下:xf ' ( x )(-∞, -3)+ -30 (-3,1)–1(1, +∞)+33,x=极大值极小值=[3x2-2(b+1)x+b] 1-⎝3()b+1⎫2b2-b+1b(b+1) -x+9⎭99⎪(b-b+1)≤b(b+1)f(x)Z极大值]极小值Z所以f(x)的极小值为f(1)=(1-3)(1+3)2=-32.(3)因为a=0,c=1,所以f(x)=x(x-b)(x-1)=x3-(b+1)x2+bx,f'(x)=3x2-2(b+1)x+b.因为0<b≤1,所以∆=4(b+1)2-12b=(2b-1)2+3>0,则f'(x)有2个不同的零点,设为x,x12(x1<x).2b+1-b2-b+1b+1+b2-b+1由f'(x)=0,得x=.12列表如下:x f'(x)(-∞,x)1+x1(x,x)12–x2(x,+∞)2+f(x)Z]Z所以f(x)的极大值M=f (x).1解法一:M=f(x)=x3-(b+1)x2+bx111111⎛x1=-2(b2-b+1)(b+1)b(b+1)2++2792723 b(b+1)2(b-1)2(b+1)2=-+(b(b-1)+1)3 272727244+≤.因此M≤.27272727解法二:因为0<b≤1,所以x∈(0,1).1当x∈(0,1)时,f(x)=x(x-b)(x-1)≤x(x-1)2.令 g ( x) = x( x - 1)2, x ∈ (0,1) ,则 g' ( x) = 3 x - ⎪ ( x - 1) .极大值 1 ⎛ 1 ⎫ 4max = g ⎪=所以当 x ∈ (0,1) 时, f ( x ) ≤ g ( x ) ≤4, ∴V = πR 3 = π⨯ = 6π , 2⎛ 1 ⎫ ⎝3 ⎭1令 g' ( x ) = 0 ,得 x = 3xg' ( x ).列表如下:1 (0, )3+1 31( ,1) 3–g ( x )Z ]所以当 x = 时, g ( x ) 取得极大值,且是最大值,故 g ( x ) 3 ⎝ 3 ⎭ 27.4,因此 M ≤ . 27 27专题 04立体几何1.【2020 年高考全国Ⅰ卷理数】已知三棱锥 P ABC 的四个顶点在球 O 的球面上,PA =PB =PC △, ABC 是边长为 2 的正三角形,E ,F 分别是 PA ,AB 的中点,∠CEF =90°,则球 O 的体积为A . 8 6πC . 2 6πB . 4 6πD . 6π【答案】D【解析】解法一:Q P A = PB = PC, △ABC 为边长为 2 的等边三角形,∴ P - ABC 为正三棱锥,∴ P B ⊥ AC ,又 E , F 分别为 P A , AB 的中点,∴ EF ∥PB ,∴ EF ⊥ AC ,又 EF ⊥ CE ,CE I AC = C , ∴ EF ⊥ 平面 PAC ,∴ PB ⊥ 平面 PAC ,∴∠ APB = 90︒,∴ P A = PB = PC =2 ,∴ P - ABC 为正方体的一部分, R =2 + 2 + 2 = 6 ,即 R =故选 D .6 4 4 6 62 3 3 8△AEC中,由余弦定理可得cos∠EAC=x2+4-(3-x2)∴2x2+1=2,x2=,x=Q\∴∴V=4解法二:设P A=PB=PC=2x,E,F分别为P A,AB的中点,∴EF∥PB,且EF=1PB=x,2Q△ABC为边长为2的等边三角形,∴C F=3,又∠CEF=90︒,∴C E=3-x2,AE=12P A=x,2⨯2⨯x,作PD⊥AC于D,P A=PC,D为AC的中点,cos∠EAC=12,∴P A=PB=PC=2,∴22AD1x2+4-3+x21 =,=P A2x4x2x,又AB=BC=AC=2,∴P A,PB,PC两两垂直,∴2R=2+2+2=6,∴R=6 2466πR3=π⨯=6π,故选D.338,2.【2020年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是α∥β的充分条件,由面面平行性质定理知,若α∥β,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是α∥β的必要条件,故选B.3.【2020年高考全国Ⅲ卷理数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【答案】B【解析】如图所示,作EO⊥CD于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF⊥OD于F,连接BF,Q平面CDE⊥平面ABCD,EO⊥CD,EO⊂平面CDE,∴E O⊥平面ABCD,MF⊥平面ABCD,≥?MFB与△EON均为直角三角形.设正方形边长为2,易知EO=3,ON=1,EN=2,MF=35,∴BM=7,∴B M≠EN,故选B.22,BF=。
2020年高考山东数学卷试题与答案解析(Word域、极致精编版)
2020年普通高等学校招生全国统一考试——山东数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}答案:C解析:A ∪B ={x |1≤x ≤3}∪{x |2<x <4}={x |1≤x <4}.2.2-i 1+2i=( ) A .1 B .−1 C .i D .−i答案:D解析:2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=-5i5=-i .3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种答案:C解析:首先从6名同学中选1名去甲场馆,方法数有C ;然后从其余5名同学中选2名去乙场馆,方法数有C ;最后剩下的3名同学去丙场馆.故不同的安排方法共有C ·C =60种.4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°答案:B解析:画出截面图如下图所示,其中CD 是赤道所在平面的截线,l 是点A 处的水平面的截线,m 是晷面的截线,AB 是晷针所在直线.依题意可知OA ⊥l ,m ∥CD ,AB ⊥m .由于∠AOC =40º,所以晷针与点A 处的水平面所成角∠BAE =90º-∠GAE =∠OAG =AOC =40º.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%答案:C解析:记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A ∪B ,“该中学学生既喜欢足球又喜欢游泳”为事件A ∩B .由题得P (A )=0.6,P (B )=0.82,P (A +B )=0.96,所以P (A ∩B )=P (A )+P (B )+P (A ∪B )=0.6+0.82-0.96=0.46.所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)( )A .1.2天B .1.8天C .2.5天D .3.5天答案:B解析:因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28-16=0.38,所以I (t )=e rt =e 0.38t .设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天,则e 0.38(t+t 1)=2e 0.38t ,即e 0.38t 1=2,所以t 1=ln20.38≈1.8.7.已知P 是边长为2的正六边形ABCDEF 内的一点,则·的取值范用是( )A .(-2,6)B .(-6,2)C .(-2,4)D .(-4,6)答案:A解析:设P 在AB 上的投影为P',易得AP'∈(-1,3).由向量数量积的定义,可知·=AP'·AB =2AP'∈(-2,6).8.若定义在R 的奇函数f (x )在(-∞,0)上单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是( )A .[-1,1]∪[3,+∞)B .[-3,-1]∪[0,1]C .[-1,0]∪[1,+∞)D .[-1,0]∪[1,3]答案:D解析:因为定义在R 上的奇函数f (x )在(-∞,0)上单调递减,且f (2)=0,所以f (x )在(0,+∞)上也是单调递减,且f (-2)=0,f (0)=0.所以当x ∈(-∞,-2)∪(0,2)时,f (x )>0;当x ∈(-2,0)∪(2,+∞)时,f (x )<0.于是,由xf (x -1)≥0,得⎩⎨⎧x <0,-2≤x -1≤0或x -1≥2或⎩⎨⎧x >0,x -1≤-2或0≤x -1≤2或x =0,解得-1≤x ≤0或1≤x ≤3.因此,满足xf (x -1)≥0的x 的取值范围是[-1,0]∪[1,3].二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知曲线C :mx 2+ny 2=1.( )A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线 答案:ACD解析:对于A ,若m >n >0,则曲线C :mx 2+ny 2=1是椭圆,易得1m <1n ,所以焦点在y 轴上,故A 正确;对于B ,若m =n >0,则曲线C 是圆,半径为1n,故B 不正确; 对于C ,若mn <0,则曲线C 是双曲线,由mx 2+ny 2=0,得渐近线方程为y =±-mnx ,故C 正确;对于D ,若m =0,n >0,则曲线C 可化为y =±1n,表示两条直线,故D 正确.10.下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=( )A .sin(x +π3)B .sin(π3-2x )C .cos(2x +π6)D .cos(5π6-2x )答案:BC解析:由函数图像可知T 2=2π3-π6=π2,则ω=2πT=2.当x 2π3+π62=5π12时,y =-1,即2×5π12+φ=3π2+2kπ(k ∈Z ),解得φ=2π3+2kπ(k ∈Z ).故函数的解析式为y =sin(2x +2π3+2kπ)=sin(2x +2π3).由诱导公式易知sin(2x +2π3)=sin(π3-2x )=cos(2x +π6).11.已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D .a +b ≤ 2答案:ABD解析:对于A ,由基本不等式得a 2+b 2≥(a +b )22=12,当且仅当a =b =12时取等号,故A 正确;对于B ,因为a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2(a +b 2)2=log 214=-2,当且仅当a =b =12时取等号,故C 不正确;对于D ,由基本不等式得(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时取等号,故D 正确;12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且P (X =i )=p i >0(i =1,2,…,n ),i =1n ∑p i =1,定义X 的信息熵H (X )=-i =1n∑p i log 2p i .( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着p 1的增大而增大C .若p i =1n(i =1,2,…,n ),则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y ) 答案:AC解析:对于A ,若n =1,则i =1,p 1=1,所以H (X )=-1×log 21=0,所以A 正确.对于B ,若n =2,则i =1,2,p 2=1-p 1,所以H (X )=-i =1n∑[p 1log 2p 1+(1-p 1)log 2(1-p 1)],当p 1=14或34时,H (X )相等,所以B 错误.对于C ,若p i =1n (i =1,2,…,n ),则H (X )=-i =1n∑1nlog 21n =-(1n log 21n )×n =-log 21n =log 2n ,则H (X )随着n 的增大而增大,所以C 正确.对于D ,若n =2m ,随机变量Y 的所有可能的取值为1,2,…,m ,且()21j m j P Y j p p +-==+(1,2,,j m =).()2222111log log mmi i i i i iH X p p p p ===-⋅=⋅∑∑122221222122121111log log log log m m m m p p p p p p p p --=⋅+⋅++⋅+⋅.()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++12222122212221221121111log log log log m m m m m m p p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++由于()01,2,,2i p i m >=,所以2111ii m i p p p +->+,所以222111log log i i m i p p p +->+,所以222111log log i i i i m i p p p p p +-⋅>⋅+,所以()()H X H Y >,所以D 选项错误.三、填空题:本题共4小题,每小题5分,共20分.13.斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________. 答案:163解析:易得抛物线的焦点为F (1,0),所以直线AB 的方程为y =3(x -1),代入抛物线方程,消去y 并化简得3x 2-10x +3=0,设A (x 1,y 1),B (x 2,y 2).法一:解得x 1=13,x 2=3,所以AB =1+k 2·|x 1-x 2|=2|13-3|=163.法二:Δ=64>0,则x 1+x 2=103,焦点弦长AB =x 1+x 2+p =103+2=163.14.将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________. 答案:3n 2-2n解析:因为数列{2n -1}是以1为首项,以2为公差的等差数列,数列{3n -2}是以1首项,以3为公差的等差数列,所以它们的公共项数列{a n }是以1为首项,以6为公差的等差数列.易得{a n }的前n 项和为3n 2-2n .15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH∥DG ,EF =12cm ,DE =2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2. 答案:4+5π2解析:设OA =OB =r .由题意得AM =AN =7,EF =12,所以NF =5,因为DE =2,所以AP =5,因此∠AGP =∠AHO =45º,故△OAH 为等腰直角三角形.在Rt △OQD 中,易得OQ =5-22r ,DQ =7-22r ,于是tan ∠ODC =5-22r7-22r=35,解得r =22.于是,等腰直角△OAH 的面积为S 1=12×22×22=4,扇形AOB 的面积S 2=12×(22)2×3π4=3π,所以阴影部分的面积为S 1+S 2-π2=4+5π2.16.已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案:22π. 解析:如图,取B 1C 1的中点为E ,BB 1的中点为F ,CC 1的中点为G .因为∠BAD =60°,直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,所以△B 1C 1D 1为等边三角形,因此D 1E =3,D 1E ⊥B 1C 1.又四棱柱ABCD -A 1B 1C 1D 1为直四棱柱,所以BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥D 1E .因为BB 1∩B 1C 1=B 1,所以D 1E ⊥侧面BCC 1B 1.设P 为侧面BCC 1B 1与球面的交线上的任一点,则D 1E ⊥EP .因为球的半径为5,D 1E =3,所以EP =2,因此侧面BCC 1B 1与球面的交线上的任一点到E 的距离为2,所以侧面BCC 1B 1与球面的交线是以E 为圆心,EF 为半径的圆上的一段弧.因为∠B 1EF =∠C 1EG =π4,所以∠FEG =π2.所以根据弧长公式可得=π2×2=22π.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,______?注:如果选择多个条件分别解答,按第一个解答计分.解:由sin A =3sin B ,可得ab=3,不妨设a =3m ,b =m (m >0).则c 2=a 2+b 2-2ab cos C =3m 2+m 2-2×3m ×m ×32=m 2,故c =m . 若选择条件①:则ac =3m 2=3,即m =1,此时c =m =1. 若选择条件②:则cos A =b 2+c 2-a 22bc =-12,故sin A =32,于是c sin A =32m =3,得c =m =23.若选择条件③:则c =3b ,与b =m =c 矛盾,则问题中的三角形不存在.18.已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.解析:(1)由于数列{a n }是公比大于1的等比数列,设首项为a 1,公比为q .依题意有a 2+a 4=a 1q +a 1q 3=20,a 3=a 1q 2=8,解得a 1=2,q =2或a 1=32,q =12(舍).所以a n =2n .(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b 1=0; 易得b 2=b 3=1,即有2个1; b 4=b 5=b 6=b 7=2,即有22个2; b 8=b 9=…=b 15=3,即有23个3; b 16=b 17=…=b 31=4,即有24个4; b 32=b 33=…=b 63=5,即有25个5; b 64=b 65=…=b 100=6,即有37个6;所以S 100=1×2+2×22+…+5×25+6×37=480.19.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和SO 2浓度(单位:μg /m 3),得下表:(1)2150”的概率; (2)根据所给数据,完成下面的2×2列联表:(3)根据(2)PM 2.5浓度与SO 2浓度有关? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),解析:(1)由表格可知,该市100天中,空气中的PM 2.5浓度不超过75,且SO 2浓度不超过10的天数有32+6+18+8=64天,所以该市一天中,空气中的PM 2.5浓度不超过75,且SO 2浓度不超过150的概率为64100=0.64.(2)由所给数据,可得2×2列联表为:(3)根据2×2K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(64×10-16×10)280×20×74×26=3600481≈7.4844>6.635,所以有99%的把握认为该市一天空气中PM 2.5浓度与SO 2浓度有关.20.如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.(1)证明:在正方形ABCD 中,AD ∥BC .因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ∥平面PBC . 又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l ,所以AD ∥l .在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,因此l ⊥DC . 因为PD ⊥平面ABCD ,AD平面ABCD ,所以AD ⊥PD ,因此l ⊥PD .因为CD ∩PD =D ,所以l ⊥平面PDC .(2)解:以DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系D -xyz .因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0).设Q (m ,0,1),则有=(0,1,0),=(m ,0,1),=(1,1,-1).设平面QCD 的法向量为n =(x ,y ,z ),则令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ).所以cos <n ,>=n ·|n |·||=1+0+m 3·m 2+1.PB 与平面QCD 所成角的正弦值为|cos <n ,>|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号.所以直线PB 与平面QCD 所成角的正弦值的最大值为63.21.已知函数f (x )=ae x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.解析:(1)求导得f'(x )=e x -1x,所以k =f'(1)=e -1.又f (1)=e +1,所以f (x )在点(1,f (1))处的切线方程为y -e -1=(e -1)(x -1),即y =(e -1)x +2. 该切线与坐标轴交点分别为(0,2),(-2e -1,0),所求三角形面积为12×2×|-2e -1|=2e -1.(2)法一:因为f (x )=ae x -1-ln x +ln a ,所以f'(x )=ae x -1-1x,且a >0.设g (x )=f'(x ),因为g'(x )=ae x -1+1x 2>0,所以g (x )在(0,+∞)上单调递增,即f'(x )在(0,+∞)上单调递增.当a =1时,f'(1)=0,易得f (x )min =f (1)=1,满足f (x )≥1恒成立.当a >1,即1a <1时,有e 1a -1<1,所以f'(1a )f'(1)=a (e 1a -1-1)(a -1)<0,因此存在唯一的x 0∈(1a,1),使得f'(x 0)=ae -1x 0=0,即ae =1x 0,所以ln a +x 0-1=-ln x 0.在(0,x 0)上,f'(x )<0,f (x )递减;在(x 0,+∞)上,f'(x )>0,f (x )递增. 因此f (x )min =f (x 0)=ae -ln x 0+ln a =1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0·x 0=2ln a +1>1,满足f (x )≥1恒成立.当0<a <1时,f (1)=a +ln a <a <1,不满足f (x )≥1恒成立. 综上所述,实数a 的取值范围是[1,+∞).法二:f (x )=ae x -1-ln x +ln a =e ln a+x -1-ln x +ln a ≥1,等价于e ln a+x -1+ln a +x -1≥ln x +x =e ln x +ln x ,令g (x )=e x +x ,上述不等式等价于g (ln a +x -1)≥g (ln x ).显然g (x )为单调增函数,所以又等价于ln a +x -1≥ln x ,即ln a ≥ln x -x +1. 令h (x )=ln x -x +1,则h'(x )=1x -1=1-x x.在(0,1)上,h'(x )>0,h (x )单调递增;在(1,+∞)上h'(x )<0,h (x )单调递减.所以h (x )max =h (1)=0.所以ln a ≥0,解得a ≥1,所以a 的取值范围是[1,+∞).22.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.解析:(1)由题意可得⎩⎪⎨⎪⎧c a =22,4a 2+1b 2=1,a 2=b 2+c 2,解得a 2=6,b 2=c 2=3,故椭圆方程为x 26+y23=1.(2)设点M (x 1,y 1),N (x 2,y 2).当直线MN 的斜率存在时,如图1,设方程为y =kx +m ,代入椭圆方程,消去y并整理得(1+2k 2)x 2+4km x +2m 2-6=0,x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2. 因为AM ⊥AN ,所以·=0,即(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0.将y 1=kx 1+m ,y 2=kx 2+m 代入,得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0, 亦即(k 2+1)2m2-61+2k 2+(km -k -2)(-4km1+2k2)+(m -1)2+4=0, 整理得(2k +m -1)(2k +3m +1)=0,所以2k +m -1=0或2k +3m +1=0.当2k +m -1=0,直线MN :y =kx +1-2k 过定点A (2,1),不合题意; 当2k +3m +1=0,直线MN :y =k (x -23)-13过定点E (23,-13).当直线MN 的斜率不存在时,可得N (x 1,-y 1),如图2,代入(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,得(x 1-2)2+1-y =0,又x 216+y 213=1,解得x 1=2(舍)或23,此时直线MN 也过点E (23,-13).由于AE 为定值,且△ADE 为直角三角形,所以AE 的中点Q 满足|QD |为定值,为AE 长度的一半12(2-23)2+(1+13)2=423,由于A (2,1),E (23,-13),故中点Q (43,13).所以存在点Q (43,13),使得|DQ |为定值.2020年普通高等学校招生全国统一考试——山东数学一、选择题:本题共8小题,每小题5分,共40分. 1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}2.2-i 1+2i=( ) A .1B .−1C .iD .−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)( )A .1.2天B .1.8天C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则→AP ·→AB 的取值范用是( )A .(-2,6)B .(-6,2)C .(-2,4)D .(-4,6)8.若定义在R 的奇函数f (x )在(-∞,0)上单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是( )A .[-1,1]∪[3,+∞)B .[-3,-1]∪[0,1]C .[-1,0]∪[1,+∞)D .[-1,0]∪[1,3]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.已知曲线C :mx 2+ny 2=1.( )A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线10.下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=( )A .sin(x +π3)B .sin(π3-2x )C .cos(2x +π6)D .cos(5π6-2x )11.已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D .a +b ≤ 212.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且P (X =i )=p i >0(i =1,2,…,n ),i =1n∑p i =1,定义X 的信息熵H (X )=-i =1n∑p i log 2p i .( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着p 1的增大而增大C .若p i =1n(i =1,2,…,n ),则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )三、填空题:本题共4小题,每小题5分,共20分.13.斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.14.将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH ∥DG ,EF =12cm ,DE =2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.16.已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,______?注:如果选择多个条件分别解答,按第一个解答计分.18.已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.19.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和SO 2浓度(单位:μg /m 3),得下表:(1)2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与SO 2浓度有关? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),20.如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.21.已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.22.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,且过点A(2,1).(1)求C的方程:(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.。
2020年高考数学真题汇编12 平面向量 文(解析版)
2020高考试题分类汇编:12:平面向量一、选择题1.【2020高考全国文9】ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r【答案】D【解析】如图,在直角三角形中,521===AB CA CB ,,,则52=CD ,所以5454422=-=-=CD CA AD ,所以54=AB AD ,即5454)(5454-=-==,选D. 2.【2020高考重庆文6】设x R ∈ ,向量(,1),(1,2),a x b ==-r r 且a b ⊥r r ,则||a b +=r r(A 5 (B 10(C )5(D )10 【答案】B【解析】因为⊥,所以有02=-x ,解得2=x ,即)2,1(),1,2(-==b a ,所以)1,3(-=+10=+b a ,选B.3.【2020高考浙江文7】设a ,b 是两个非零向量。
A.若|a+b|=|a|-|b|,则a ⊥b B.若a ⊥b ,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa ,则|a+b|=|a|-|b| 【答案】C【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实 数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立.4.【2020高考四川文7】设a r 、b r 都是非零向量,下列四个条件中,使||||a ba b =r rr r 成立的充分条件是( )A 、||||a b =r r且//a b r r B 、a b =-r r C 、//a b r r D 、2a b =r r【答案】D【解析】A.可以推得||||a ba b =r rr r ==为既不充分也不必要条件;C同A;D.为充分不必要条件.故选D.5.【2020高考陕西文7】设向量a r =(1.cos θ)与b r=(-1, 2cos θ)垂直,则cos2θ等于 ( )A2 B 12C .0 D.-1 【答案】C.【解析】02cos 0cos 212=⇔=+-⇔⊥θθ,故选C.6.【2020高考辽宁文1】已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x = (A) —1 (B) —12 (C) 12(D)1 【答案】D【解析】21,1a b x x ⋅=-=∴=Q ,故选D【点评】本题主要考查向量的数量积,属于容易题。
2020年高考数学真题汇编答案及解析
2020年高考数学真题汇编答案及解析(本栏目内容,学生用书中以活页形式单独装订成册!)一、选择题(每小题6分,共36分)1.集合A={1,2,a},B={2,3,a2},C={1,2,3,4},a∈R,则集合(A∩B)∩C不可能是( )A.{2} B.{1,2}C.{2,3} D.{3}【解析】若a=-1,(A∩B)∩C={1,2};若a=3,则(A∩B)∩C={2,3}若a≠-1且a≠3,则(A∩B)∩C={2},故选D.【答案】 D2.(2020全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( )A.3个B.4个C.5个D.6个【解析】A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U(A∩B)={3,5,8},故选A.【答案】 A3.(2020年广东卷)已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k=1,2,…}的关系的韦恩(Venn)图如右图所示,则阴影部分所示的集合的元素共有( )A.3个B.2个C.1个D.无穷多个【解析】M={x|-1≤x≤3},M∩N={1,3},有2个.【答案】 B4.给出以下集合:①M={x|x2+2x+a=0,a∈R};②N={x|-x2+x-2>0};③P={x|y=lg(-x)}∩{y|y=lg(-x)};④Q={y|y=x2}∩{y|y=x-4},其中一定是空集的有( )A.0个B.1个C.2个D.3个【解析】在集合M中,当Δ=4-4a≥0时,方程有解,集合不是空集;而Q={y|y=x2}∩{y|y=x-4}={y|y≥0}∩{y|y∈R}={y|y≥0},所以不是空集;在P中,P={x|y=lg(-x)}∩{y|y=lg(-x)}={x|x<0}∩R={x|x<0},不是空集;在N中,由于不等式-x2+x-2>0⇔x2-x+2<0,Δ=-7<0,故无解,因此,只有1个一定是空集,所以选B.【答案】 B5.如右图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分所表示的集合.若x,y∈R,A={x|y= },B={y|y=3x,x>0},则A#B=( )A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2} D.{x|0≤x≤1或x>2}【解析】依据定义,A#B就是将A∪B除去A∩B后剩余的元素所构成的集合.对于集合A,求的是函数y=2x-x2的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1},依据定义得:A#B={x|0≤x≤1或x>2}.【答案】 D6.定义一种集合运算A⊗B={x|x∈(A∪B),且x∉(A∩B)},设M={x||x|<2},N={x|x2-4x+3<0},则M⊗N所表示的集合是( )A.(-∞,-2]∪[1,2)∪(3,+∞)B.(-2,1]∪[2,3)C.(-2,1)∪(2,3)D.(-∞,-2]∪(3,+∞)【解析】M={x|-2<x<2},N={x|1<x<3},所以M∩N ={x|1<x<2},M∪N={x|-2<x<3},故M⊗N=(-2,1]∪[2,3).【答案】 B二、填空题(每小题6分,共18分)7.已知集合A={x∈R|ax2+2x+1=0,a∈R}只有一个元素,则a的值为________.。
2020年全国高考数学试卷分类汇编(第二部份:全国1,2,3卷)【解析几何分类汇编】题目+答案版
2020年全国高考数学试卷分类汇编全国卷I,II,III卷解析几何分类汇编【2020年全国统一高考数学试卷(理科)(新课标Ⅱ)第5题】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A. √55B. 2√55C. 3√55D. 4√55【2020年全国统一高考数学试卷(理科)(新课标Ⅱ)第8题】设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D、E两点,若ODE的面积为8,则C的焦距的最小值为()A. 4B. 8C. 16D. 32【2020年全国统一高考数学试卷(理科)(新课标Ⅱ)第19题】已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与的C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.【2020年全国统一高考数学试卷(文科)(新课标Ⅱ)第8题】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A. √55B. 2√55C. 3√55D. 4√55【2020年全国统一高考数学试卷(文科)(新课标Ⅱ)第9题】设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D、E两点,若ODE的面积为8,则C的焦距的最小值为()A. 4B. 8C. 16D. 32【2020年全国统一高考数学试卷(文科)(新课标Ⅱ)第19题】已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.【2020年全国统一高考数学试卷(理科)(新课标I)第4题】已知A为抛物线C:=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A. 2B. 3C. 6D. 9【2020年全国统一高考数学试卷(理科)(新课标I)第11题】已知M:+−2x−2y−2=0,直线l:2x+y+2=0,P为l上的动点,过点P作M的切线PA,PB,且切点为A,B,当|PM||AB|最小时,直线AB的方程为()A. 2x−y−1=0B. 2x+y−1=0C. 2x−y+1=0D. 2x+y+1=0【2020年全国统一高考数学试卷(理科)(新课标I)第15题】已知F为双曲线C:−=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点且BF垂直于x轴.若AB的斜率为3,则C的离心率为__________.【2020年全国统一高考数学试卷(理科)(新课标I)第20题】已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,= 8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.【2020年全国统一高考数学试卷(文科)(新课标I)第11题】设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则ΔPF1F2的面积为()A. 72B. 3 C. 52D. 2【2020年全国统一高考数学试卷(文科)(新课标I)第21题】已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,= 8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.【2020年全国统一高考数学试卷(理科)(新课标III)第5题】设O 为坐标原点,直线x =2与抛物线C:=2px(p >0)交于D ,E 两点,若OD OE ,则C 的焦点坐标为( )A. (,0)B. (,0)C. (1,0)D. (2,0)【2020年全国统一高考数学试卷(理科)(新课标III )第10题】 若直线l 与曲线y =和圆+=都相切,则l 的方程为( )A. y =2x +1B. y =2x +C. y =x +1D. y =x +【2020年全国统一高考数学试卷(理科)(新课标III )第11题】 设双曲线C:−=1(a >0,b >0)的左、右焦点分别为,,离心率为.P 是C上一点,且PP.若的面积为4,则a =( )A. 1B. 2C. 4D. 8【2020年全国统一高考数学试卷(理科)(新课标III )第20题】 已知椭圆C:的离心率为,A ,B 分别为C 的左右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP|=|BQ|,BPBQ ,求APQ 的面积.【2020年全国统一高考数学试卷(文科)(新课标III )第6题】在平面内,A,B 是两个定点,C 是动点,若AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1,则点C 的轨迹为( )A. 圆B. 椭圆C. 抛物线D. 直线【2020年全国统一高考数学试卷(文科)(新课标III)第7题】设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A. (14,0) B. (12,0) C. (1,0) D. (2,0)【2020年全国统一高考数学试卷(文科)(新课标III)第14题】设双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线为y=√2x,则C的离心率为______.【2020年全国统一高考数学试卷(文科)(新课标III)第21题】已知椭圆C:x225+y2m2=1(0<m<5)的离心率为√154,A,B分别为C的左、右顶点.(1)求C的方程:(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求ΔAPQ的面积.【答案版】【2020年全国统一高考数学试卷(理科)(新课标Ⅱ)第5题】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A. √55B. 2√55C. 3√55D. 4√55【答案】B【解析】【分析】本题考查直线与圆的位置关系及点到直线的距离计算,属基础题.由圆与坐标轴相切,可得圆心坐标及半径,再用点到直线的距离公式求解即可.【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(2−a)2+(1−a)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是d=2√55.故选B.【2020年全国统一高考数学试卷(理科)(新课标Ⅱ)第8题】设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D、E两点,若ODE的面积为8,则C的焦距的最小值为()A. 4B. 8C. 16D. 32【答案】B【解析】【分析】本题主要考查双曲线的几何性质及双曲线的渐近线,属于中档题.【解答】解:双曲线C的两条渐近线分别为y=±bax,由于直线x=a与双曲线的两条渐近线分别交于D、E两点,则易得到|DE|=2b,则S△ODE=ab=8,c2=a2+b2⩾2ab=16,即c⩾4,所以焦距2c⩾8.故选B.【2020年全国统一高考数学试卷(理科)(新课标Ⅱ)第19题】已知椭圆C1:x2a +y2b=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与的C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.【答案】解:(1)∵F为椭圆C1的右焦点,且AB垂直x轴,∴F(c,0),|AB|=2b2a,设抛物线C2方程为y2=2px(p>0),∵F为抛物线C2的焦点,且CD垂直x轴,∴F(p2,0),|CD|=2p,∵|CD|=43|AB|,C1与C2的焦点重合,∴{c=p22p=43×2b2a整理得4c=8b23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,解得e=12或e=−2(舍)故椭圆C1的离心率为12(2)由(1)知a=2c,b=√3c,p=2c,∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍),从而|MF|=23c+c=53c=5,解得c=3所以C1与C2的标准方程分别为x236+y227=1,y2=12x【解析】本题主要考查椭圆和抛物线的简单几何性质、直线与椭圆的位置关系、直线与抛物线的位置关系,属于中档题(1)根据题意,列出椭圆a,b,c之间的齐次方程,求出离心率;(2)由(1)可设C1与C2的标准方程,联立求出M的坐标,即可求出c的值,从而得到C1与C2的标准方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题1.(四川理9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z= A .4650元 B .4700元 C .4900元 D .5000元 【答案】C【解析】由题意设派甲,乙,x y 辆,则利润450350z x y =+,得约束条件08071210672219x y x y x y x y ≤≤⎧⎪≤≤⎪⎪+≤⎨⎪+≥⎪+≤⎪⎩画出可行域在12219x y x y +≤⎧⎨+≤⎩的点75x y =⎧⎨=⎩代入目标函数4900z =2.(湖北理10)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。
假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:300()2tM t M -=,其中M 0为t=0时铯137的含量。
已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M (60)= A .5太贝克 B .75In2太贝克 C .150In2太贝克 D .150太贝克 【答案】D 3.(北京理)。
根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为⎪⎪⎩⎪⎪⎨⎧≥<=Ax Ac A x x c x f ,,,)((A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么C 和A 的值分别是 A .75,25 B .75,16 C .60,25 D .60,16 【答案】D 4.(陕西理)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米。
开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米)。
【答案】2000 5.(湖北理)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。
【答案】67666.(湖北理)提高过江大桥的车辆通行能力可改善整个城市的交通状况。
在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数。
当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0200x ≤≤时,求函数()v x 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()().f x x v x =可以达到最大,并求出最大值(精确到1辆/小时)本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。
(满分12分)解:(Ⅰ)由题意:当020,()60x v x ≤≤=时;当20200,()x v x ax b ≤≤=+时设再由已知得1,2000,32060,200.3a a b a b b ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩解得故函数()v x 的表达式为60,020,()1(200),202003x v x x x ≤≤⎧⎪=⎨-≤≤⎪⎩(Ⅱ)依题意并由(Ⅰ)可得60,020,()1(200),202003x x f x x x x ≤<⎧⎪=⎨-≤≤⎪⎩当020,()x f x ≤≤时为增函数,故当20x =时,其最大值为60×20=1200;当20200x ≤≤时,211(200)10000()(200)[]3323x x f x x x +-=-≤=当且仅当200x x =-,即100x =时,等号成立。
所以,当100,()x f x =时在区间[20,200]上取得最大值10000.3综上,当100x =时,()f x 在区间[0,200]上取得最大值1000033333≈。
即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时。
7.(湖南理20)。
如图6,长方体物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为v (v >0),雨速沿E 移动方向的分速度为()c c R ∈。
E 移动时单位时间内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与v c-×S成正比,比例系数为110;(2)其它面的淋雨量之和,其值为12,记y 为E 移动过程中的总淋雨量,当移动距离d=100,面积S=32时。
(Ⅰ)写出y 的表达式 (Ⅱ)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少。
解:(I )由题意知,E 移动时单位时间内的淋雨量为31||202v c -+, 故100315(||)(3||10)202y v c v c v v =-+=-+,(II )由(I )知当0v c <≤时,55(310)(3310)15;c y c v v v +=-+=- 当55(103c)10,y (3v 3c 10)15.v v c v -<≤=-+=+时故(310)15,0,5(103)15,10.c v c vy c c v v 5+⎧-<≤⎪⎪=⎨-⎪+<≤⎪⎩(1)当1003c <≤时,y 是关于v 的减函数, 故当min 310,20.2cv y ==-时 (2)当1053c <≤时,在(]0,c 上,y 是关于v 的减函数, 在(],10c 上,y 是关于v 的增函数,故当min 50,.v c y c ==时8.(江苏17)请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm(1)某广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)某广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。
本小题主要考查函数的概念、导数等基础知识,考查数学建模能力、空间想象力、数学阅读能力及解决实际问题的能力。
满分14分. 解:设馐盒的高为h (cm ),底面边长为a (cm ),由已知得.300),30(22260,2<<-=-==x x xh x a(1),1800)15(8)30(842+--=-==x x x ah S所以当15=x 时,S 取得最大值. (2)).20(26),30(22222x x V x x h a V -='+-==由00=='x V 得(舍)或x=20.当)20,0(∈x 时,.0)30,20(;0<'∈>'V x V 时当 所以当x=20时,V 取得极大值,也是最小值.此时1122h a =即装盒的高与底面边长的比值为1.29.(福建理18)。
某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中3<x<6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
(I )求a 的值(II )若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大。
本小题主要考查函数、导数等基础知识,考查运算求解能力、应用意识,考查函数与方程思想、数形结合思想、化归与转化思想,满分13分。
解:(I )因为x=5时,y=11,所以1011, 2.2aa +==(II )由(I )可知,该商品每日的销售量2210(6),3y x x =+--所以商场每日销售该商品所获得的利润222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-从而,2'()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+--=--'(),()f x f x 由上表可得,x=4是函数在区间(3,6)内的极大值点,也是最大值点; 所以,当x=4时,函数()f x 取得最大值,且最大值等于42。
答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大。
10.(山东理21)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元,设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .解:(I )设容器的容积为V ,由题意知23480,,33V r l r V πππ=+=又故322248044203()333V r l r r r r r ππ-==-=-由于2l r ≥ 因此0 2.r <≤所以建造费用2224202342()34,3y rl r c r r r c r ππππ=⨯+=⨯-⨯+因此21604(2),0 2.y c r r r ππ=-+<≤(II )由(I )得3221608(2)20'8(2)(),0 2.2c y c r r r r r c πππ-=--=-<<-由于3,20,c c >->所以当3320200,.22r r c c -==--时令320,2m c =-则0m > 所以2228(2)'()().c y r m r rm m r π-=-++(1)当9022m c <<>即时, ∈∈当r=m 时,y'=0;当r (0,m)时,y'<0;当r (m,2)时,y'>0.所以r m =是函数y 的极小值点,也是最小值点。
(2)当2m ≥即932c <≤时, 当(0,2),'0,r y ∈<时函数单调递减,所以r=2是函数y 的最小值点,综上所述,当932c<≤时,建造费用最小时2;r=当92c>时,建造费用最小时。