浅谈高速铁路的LTE无线网网络覆盖

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈高速铁路的LTE无线网网络覆盖

一、高铁4G无线网覆盖背景

高速铁路,简称“高铁”,是指通过改造原有线路(直线化、轨距标准化),使最高营运速率达到不小于每小时200公里,或者专门修建新的“高速新线”,使营运速率达到每小时至少250公里的铁路系统。高速铁路除了在列车在营运达到一定速度标准外,车辆、路轨、操作都需要配合提升。

随着环境问题的日益严峻,交通运输各行业中,从单位运量的能源消耗、对环境资源的占用、对环境质量的保护、对自然环境的适应以及运营安全等方面来综合分析,铁路的优势最为明显。然而高铁将通过中国大部分,把中国变成一个“中国村”。

图1-1 CRH(China Railway High-speed),即中国高速铁路与传统的高速公路和航空运输相比,高铁的主要优势有:载客量高、输送力强、速度较快、安全性好、正点率高、舒适方便、能耗较低。高铁作为一种高效经济的城际交通方式,日渐成为人们中长距离出行的首选。随着智能终端及移动互联网业务的高速发展,用户搭乘高铁出行时,有越来越多的移动办公和网络娱乐需求,如电话会议、视频点播、互动游戏、上网等。由于高端商务客户云集,高铁通信逐步成为各运营商品牌展示、获取可观经济利润及拉升高端客户黏合度的新竞争领域。如何在高速运行、客流集中、业务容量高、部署场景复杂的高铁内提供高质量的网络覆盖,成为运营商和设备商面临的重大挑战。

图1-2 2020年中国高速铁路网络

二、高铁无线网络覆盖面临的问题

1、穿透损耗大,高速铁路的新型列车采用全封闭车厢结构,车箱体为不锈钢或铝

合金等金属材料,车窗玻璃为较厚的玻璃材料,导室外无线信号在高速列车内

的穿透损耗较大,给车体内的无线覆盖带来较大困难。不同的入射角对应的穿

透损耗不同,当信号垂直入射时的穿透损耗最小。当基站的垂直位置距离铁道

较近时,覆盖区边缘信号进入,车厢的入射角小,穿透损耗大。实际测试表明,

当入射角小于10度以后,穿透损耗增加的斜率变大。

图2-1 各型列车对无线信号的穿透损耗

2、多普勒频偏,列车高速运动将引起多普勒频偏,导致接收端接收信号频率发生

变化,且频率变化的大小和快慢与列车的速度相关。高速引起的大频偏对于接

收机解调性能提升是一个极大的挑战。

多普勒频移计算方法:

其中v为车速,c为光速,f为工作频率;

改变基站与铁路的间距,可得多普勒频偏与d的关系如下

3、切换频繁,由于单站覆盖范围有限,列车高速移动将在短时间内穿越多个小区

的覆盖范围,引起频繁的小区间切换,进而影响网络的整体性能。

由于高铁列车的穿透损耗,为满足覆盖设计目标单RRU覆盖范围不会太大若在无多RRU小区合并的情况下,假设列车以300km/h速度运行,则列车每10秒左右将进行一次小区间切换,频繁的小区切换将极大降低网络的性能。

三、LTE无线网覆盖关键技术

1、各设备厂商对抗多普勒频移费的方法

中兴公司的自适应频率补偿技术:高铁覆盖由于属于高速运行环境,多普勒效应明显,甚至在基站上将产生二倍频偏,严重影响基站的解调性能,直接导致信号质量急剧下降。采用自适应频率补偿技术对抗多普勒频移,相对于静止状态,高速状态下频偏值为1500Hz时仅存在0.2dB左右的性能损失,避免了信号失真。

华为公司的AFC算法:AFC是针对铁路快速移动的特点设计的基站频率校正算法,通过快速测算由于高速所带来的频率偏移,补偿多普勒效应,改善无线链路的稳定性,从而提高解调性能;AFC算法是—唯一通过430公里时速验证的系统;在综合考虑了协议要求、高铁频偏模型、隧道覆盖模型、实际高速场景(外场实测信号)的基础上,根据不同业务信道结构特征,设计了性能优异的AFC算法,支持450 Km/h的终端运动速度。

2、超级小区方案降低切换和重选次数

不同基站的射频模块采用相同的频率及参数设置,在逻辑上设置为同一小区。通过将相邻的射频模块设置为同一小区,可以有效避免传统覆盖方案中切换过于频繁的问题,同时可缓解小区间的干扰问题。超级小区方案还可增加高铁专网单个小区的覆盖面积,不仅减少了专网的切换次数,提升了网络指标,还可以有效减少站点需求数,减少配套、土建等投资。

3、成熟的网优手段有效提升高铁覆盖性能

和普通覆盖场景相比,高铁覆盖的参数优化更加复杂和敏感。通讯凭借多年的网络优化经验,摸索出一套成熟的高铁网优手段,可有效提升高铁覆盖的网络性能。高铁移动速度快,导致终端在一个小区驻留时间内可能无法完成小区选择,通过优化手段可排除一些不需要或重复的系统信息,简化邻区关系,降低重选时间;还可以合理设置重叠覆盖区,保证小区重选成功率;优化切换参数,缩短切换时延;优化呼叫流程,缩短呼叫时延;合理设置计时器参数。

4、LTE回传方案

为了进一步提升高铁覆盖性能,一些设备厂家提出了LTE回传方案。LTE回传方案在高铁内部署LTE机载台,在高铁外部署LTE机载台天线,机载台将接收到的LTE信号经过解调和放大再传输给下一层部署的LTE室内微基站或WiFi信号转发器(见图1)。这样做可极大提升高铁内部网络覆盖质量。

简述回传技术对于高铁覆盖的意义

1.网络架构创新,从根本上解决无线信号穿透车体所带来的损耗;

2.利用车体穿透损耗,避免车厢外的公网信号给车厢内分布网络带来的无线干扰;

3.车载天线可选用高增益天线以改善车载台与基站之间的无线链路;

4.为车厢内部用户提供相对静止的无线传播环境,提升网络服务性能。

四、LTE网络规划设计注意要点

1、高铁组网规划

高铁采用双通道RRU进行覆盖组网,利用MIMO提升网络数据业务速率;同时采用多RRU小区合并,减少小区间切换,从而提升网络性能。

图4-1 单杆双RRU背靠背双向覆盖方案

1)双通道RRU组网体积小,方便部署,同时可结合双通道天线实现MIMO可实现多个RRU 级联,降低工程实施难度。

2)多RRU小区合并组网高铁场景下,最大可支持6个RRU进行小区合并多个子站合并为一个小区,列车经过无需进行小区切换,提高性能。

3)方案优势:RRU光纤拉远,适合高铁线性覆盖,便于光纤铺设;BBU集中放置,便于站址获取,集中管理和维护多RRU小区合并,减少小区间切换,提升网络性能。

2、高铁切换重叠带设计

合理的重叠覆盖区域规划是实现网络业务连续的基础,重叠覆盖区域过小会导致切换失败,过大则会导致干扰增加,进而影响用户业务感知,因此高铁覆盖规划中要合理设计重叠覆盖区域

图4-2 重叠覆盖带设计

相关文档
最新文档