高考文科数学圆锥曲线专题复习

合集下载

(完整版)高三圆锥曲线知识点总结

(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。

高三数学11,22圆锥曲线专题复习

高三数学11,22圆锥曲线专题复习

高三数学11,22圆锥曲线专题复习(一)知识专题讲解专题一、利用圆锥曲线的定义求解: 专题详解:利用圆锥曲线的定义可以解决一大类的题目,所用的公式主要有: (1)椭圆:2PA PB a +=(22a c >); (2)双曲线:2PA PB a -=(22a c <); (3)抛物线:d PF =(d 为点P 到抛物线的准线的距离)。

【例1】椭圆221259x y -=上一点M 到焦点F 1的距离是2,N 时MF 1的中点。

求ON 的长(O 是坐标原点)。

图2-3-19解:由椭圆方程知,5,3a b ==,因为1210MF MF +=(F 2为另一个焦点坐标),又因为12MF =,所以28MF =,ON 是三角形MF 1F 2的中位线,所以2142ON MF == 即ON 的长是4。

点拨:本题用到椭圆的定义和三角形的中位线的性质,解答本题的关键是求出点M 到另一个焦点的距离。

【例2】双曲线221916x y -=的两个焦点为12,F F ,点P 在双曲线上,若12PF PF ⊥,求点P 的坐标。

解:由双曲线的方程知:3,4,5a b c ===,不妨设点P 在第一象限,坐标为(,)x y ,F 1为左焦点,那么:1222212126100PF PF PF PF F F ⎧-=⎪⎨+==⎪⎩ ①② 由①得:212()36PF PF -=,所以221212236PF PF PF PF +-=,1232PF PF =在直角三角形PF 1F 2中,121132PF PF F F y ==,所以165y =代入双曲线的方程得:x =P 的坐标是16()55,再根据双曲线的对称性得点P 的坐标还可以是16()55-,16()55-,16()55--。

点拨:本题除了应用双曲线的定义解题,用到的数学思想方法还有(1)整体思想:不是求未知数12,PF PF ,而是求1232PF PF =这一个整体未知数的值;(2)利用三角形的面积公式解题。

高三文科数学圆锥曲线综合复习讲义

高三文科数学圆锥曲线综合复习讲义

高三文科数学圆锥曲线综合复习讲义一、基础知识【理解去记】1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即 |PF i |+|PF 2|=2a (2a>|F i F 2|=2c).第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数 e(0<e<1)的点的轨迹(其中定点不在定直线上),即|PF | e (0<e<1).d2 .椭圆的方程,如果以椭圆的中心为原点,焦点所在的直线为坐标轴建立坐标系,由定义可求得它的标准方程,若焦点在x2 2若焦点在y 轴上,列标准方程为: 上21(a>b>0)。

a ba 称半长轴长,b 称半短轴长,c 称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(土a, 0 ), (0, ± b), ( ±ce 称为离心率,且 e 一,由c 2+b 2=a 2知0<e<1.a椭圆有两条对称轴,分别是长轴、短轴。

2y牙1(a>b>0), F 1 (-c, 0), F 2(c, 0)是它的两焦点。

若 P(x, y)是椭圆上的任意一b1)过椭圆上一点 P(x o , y o )的切线方程为:一字 1 ;a b2)斜率为k 的切线方程为y kx 、a 2k 2 b 2 ; 3)过焦点F 2(c, 0)倾斜角为B 的弦的长为l2ab 2 l 2 2 2。

a c cos6 •双曲线的定义,第一定义:满足 ||PF i |-|PF 2||=2a(2a<2c=|F 1F 2|, a>0)的点 P 的轨迹;第二定义:到定点的距离与到定直线距离之比为常数 e(>{的点的轨迹。

7.双曲线的方程:中心在原点,焦点在x 轴上的双曲线方程为 3 •椭圆中的相关概念,对于中心在原点,焦点在x 轴上的椭圆:2 x2ab 24 .椭圆的焦半径公式:对于椭圆 点,则 |PR|=a+ex, |PF 2|=a-ex. 5.补充知识点: 几个常用结论:2x~2a2 2x y——12 . 2a b第五步:把所要解决的问题转化为X1+X2、X1X2,然后代入、化简。

高考文科数学圆锥曲线专题复习

高考文科数学圆锥曲线专题复习

高考文科数学圆锥曲线专题复习圆锥曲线专题复习______________________________________________________________________________ ________________________(一)椭圆1. 椭圆的性质:由椭圆方程2?2?1(a?b?0)(1)范围:?a?x?a,-b?x?a,椭圆落在x??a,y??b组成的矩形中。

(2)对称性:图象关于y轴对称。

图象关于x轴对称。

图象关于原点对称。

原点叫椭圆的对称中心,简称中心。

x轴、y轴叫椭圆的对称轴。

从椭圆的方程中直接可以看出它的范围,对称的截距。

(3 椭圆共有四个顶点:A(?a,0),A2(a,0),B(0,?b),B2(0,b)。

加两焦点F1(?c,0),F2(c,0)共有六个特殊点。

A1A2叫椭圆的长轴,B1B2叫椭圆的短轴。

长分别为2a,2b。

a,b分别为椭圆的长半轴长和短半轴长。

椭圆的顶点即为椭圆与对称轴的交点。

(4)离心率:椭圆焦距与长轴长之比。

e??e??()2。

0?e?1。

aa椭圆形状与e的关系:e?0,c?0,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在e?0时的特例。

e?1,c?a,椭圆变扁,直至成为极限位置线段F1F2,此时也可认为是椭圆在e?1时的特例。

2. 椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个(0,1)内常数e,那么这个点的轨迹叫做椭圆。

其中定点叫做焦点,定直线叫做准线,常数e就是离心率。

3. 椭圆的准线方程x2y2a2a2对于2?2?1,左准线l1:x??;右准线l2:x?______________________________________________________________________________ ________________________y2x2a2a2对于2?2?1,下准线l1:y??;上准线l2:y?ccaba2a2?c2b2?c??焦点到准线的距离p?(焦参数) ccc(二)双曲线的几何性质: 1. (1)范围、对称性由标准方程2?2?1,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。

高二文科圆锥曲线专题复习(含答案)

高二文科圆锥曲线专题复习(含答案)

圆锥曲线文科专题复习知识回顾:一、圆锥曲线的两个定义:1、椭圆:第一定义:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,(当常数等于时,轨迹是线段FF;当常数小于时,无轨迹)第二定义:与定点和直线的距离之比为定值e的点的轨迹.(0<e<1)2、双曲线:第一定义:双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F-F|,(定义中的“绝对值”与<|F-F|不可忽视。

若=|FF|,则轨迹是以F,F为端点的两条射线;若﹥|FF|,则轨迹不存在;若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

)第二定义:与定点和直线的距离之比为定值e的点的轨迹.(e>1)3、抛物线:与定点和直线的距离相等的点的轨迹.二、圆锥曲线的标准方程(1)椭圆:焦点在轴上时()(为参数),焦点在轴上时=1()(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。

(3)抛物线:开口向右时, 开口向左时,开口向上时, 开口向下时。

三:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。

如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:)(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

【特别提醒】在椭圆中,最大,,在双曲线中,最大,。

四、圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,(越小,椭圆越圆;越大,椭圆越扁。

)(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤两条渐近线:⑥离心率:,双曲线,(越小,开口越小,越大,开口越大;)(3)抛物线(以为例)-----的几何意义是:焦点到准线的距离:①范围:;②焦点:一个焦点,③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。

(完整)文科圆锥曲线大题复习

(完整)文科圆锥曲线大题复习

(完整)文科圆锥曲线大题复习高三数学圆锥曲线专题一.知识要点1、直线的斜率公式:k = tan a= 土二4(x丰x)(a为直线的倾斜角)x - x i 221两种常用的直线方程:(1)点斜式(2)斜截式2、直线与圆的位置关系有:相交、相切、相离三种,其判断方法有:①几何法(常用方法)若圆心到直线的距离为d,圆的半径为r,则:d = r o直线与圆相切d < r o直线与圆相交d > r o直线与圆相离②代数法由直线方程与圆的方程联立方程组,消元得到一个一元二次方程,则:A = 0o直线与圆相切A< 0 o直线与圆相离A> 0 o直线与圆相交3、圆的弦长若圆心到弦的距离为d,圆的半径为r,弦长是/,则l = 2工;r2 —d 2 .4、圆锥曲线的定义(包括长轴,短轴,实轴,虚轴,离心率,双曲线的渐近线等)(1)椭圆:(2)双曲线:(3)抛物线:x2 y2 x2 y25、点P(x , y)和椭圆——+ — = K a > b > 0)的关系:(1)点P(x , y)在椭圆外o -0- +与> 1 ;(2)点P(x , y)0 0 a2 b2 0 0 a2 b2 0 0在椭圆上o x0- +,=1;⑶点P(x , y)在椭圆内o x e- +,< 1a2 b2 0 0a2 b26、直线与圆锥曲线的位置关系:由直线方程与圆锥曲线联立方程组,消元得到一个一元二次方程,则:(1)相交:A> 0 o直线与椭圆相交;A> 0 n直线与双曲线相交,但直线与双曲线相交不一定有A> 0 , 当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故A> 0是直线与双曲线相交的充分条件,但不是必要条件;A> 0 n直线与抛物线相交,但直线与抛物线相交不一定有A> 0,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故A> 0也仅是直线与抛物线相交的充分条件,但不是必要条件。

高考文科数学圆锥曲线专题训练

高考文科数学圆锥曲线专题训练

高考文科数学圆锥曲线专题训练用时:60分钟一、选择题1. θ是任意实数,则方程4sin 22=+θy x 所表示的曲线不可能是 A. 椭圆 B. 双曲线 C. 抛物线 D. 圆2. 已知椭121)(1222=-+t y x 的一条准线方程是8=y ,则实数t 的值是 A. 7或-7B. 4或12C. 1或15D. 03. 双曲线1422=+ky x 的离心率)2,1(∈e ,则k 的取值范围为 A. )0,(-∞ B. (-12,0) C. (-3,0) D. (-60,-12)4. 以112422=-y x 的焦点为顶点,顶点为焦点的椭圆方程为 A.1121622=+y xB.1161222=+y x C.141622=+y xD.116422=+y x 5. 抛物线28mx y =的焦点坐标为 A. )0,81(mB. )321,0(mC. )321,0(m±D. )0,321(m±6. 已知点A (-2,1),x y 42-=的焦点为F ,P 是x y 42-=的点,为使PF PA +取得最小值,P 点的坐标是 A. )1,41(-B. )22,2(-C. )1,41(-- D. )22,2(-- 7. 已知双曲线的渐近线方程为043=±y x ,一条准线方程为095=-y ,则双曲线方程为A.116922=-x yB.116922=-y x C.125922=-x yD.125922=-y x8. 抛物线2x y =到直线42=-y x 距离最近的点的坐标为 A. )45,23(B. )1,1(C. )49,23(D. )4,2(9. 动圆的圆心在抛物线x y 82=上,且动圆与直线02=+x 相切,则动圆必过定点 A. (4,0) B. (2,0) C. (0,2) D. (0,-2)10.中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 12575D. 17525C.1252752B. 1752252A.22222222=+=+=+=+y x y x y x y x二、填空题11. 到定点(2,0)的距离与到定直线8=x 的距离之比为22的动点的轨迹方程为_______. 12.双曲线2222=-my mx 的一条准线是1=y ,则=m ___________.13. 已知点(-2,3)与抛物线)0(22>=p px y 的焦点距离是5,=p ____________. 14.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_______________. 三、解答题15. 已知双曲线的中心在原点,过右焦点F (2,0)作斜率为53的直线,交双曲线于M 、N 两点,且MN =4,求双曲线方程。

高考文科数学圆锥曲线专题复习.doc

高考文科数学圆锥曲线专题复习.doc

圆锥曲线专题复习知识归纳: 名称椭圆图 象平面内到两定点F 1 ,F 2 的距离的和为常数(大于 F 1F 2 )的动点的轨迹叫椭 圆即 MF 1MF 2 2a定 义c 时,轨迹是椭圆,当 2 a ﹥ 2 当 2 a = 2 c 时 , 轨 迹 是 一 条 线 段F 1 F 2当 2 a ﹤ 2 c 时,轨迹不存在双曲线平面内到两定点F 1, F 2 的距离的差的绝对值为常数(小于F 1 F 2 )的动点的轨迹叫双曲线即MF 1 MF 2 2a当 2 a ﹤ 2 c 时,轨迹是双曲线当 2 a = 2 c 时,轨迹是两条射线当 2 a ﹥ 2 c 时,轨迹不存在焦点在 x 轴上时:x 2y 2ab1x 2y222焦点在 x 轴上时:1a 2b 2标 准 焦点在 y 轴上时: y 2 x2方 程1焦点在 y 轴上时: y2x 2a2b21注:根据分母的大小来判断焦点在哪一a 2b 2坐标轴上常 数a,b,ca 2 c 2b 2 , a b 0 ,c 2a 2b 2 ,c a 0的 关 a 最大, cb, c b, cbc 最大,可以 a b, ab,ab系焦点在 x 轴上时:xy渐 近a b线焦点在 y 轴上时:yx 0a b抛物线:图形yOFl yxFO xl方 22 px( p0)y22 px( p0) x 22 py( p 0)x 22 py( p 0)y 程焦p,0) ( p,0)(0, p)(0, p )(点2222 准px pypyp x2222线(一)椭圆1. 椭圆的性质:由椭圆方程x 2y 2 ab 0)a1(2b 2( 1)范围:a xa ,- bx a ,椭圆落在 xa yb 组成的矩形中。

,( 2)对称性 : 图象关于 y 轴对称。

图象关于 x 轴对称。

图象关于原点对称。

原点叫椭圆的对称中心,简称中心。

x 轴、 y 轴叫椭圆的对称轴。

从椭圆的方程中直接可以看出它的范围,对称的截距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考文科数学圆锥曲线专题复习Last revision date: 13 December 2020.高三文科数学专题复习之圆锥曲线(一)椭圆1. 椭圆的性质:由椭圆方程)0(12222>>=+b a by a x(1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。

(2)对称性:图象关于y 轴对称。

图象关于x 轴对称。

图象关于原点对称。

原点叫椭圆的对称中心,简称中心。

x 轴、y 轴叫椭圆的对称轴。

从椭圆的方程中直接可以看出它的范围,对称的截距。

(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。

加两焦点)0,(),0,(21c F c F -共有六个特殊点。

21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。

长分别为b a 2,2。

b a ,分别为椭圆的长半轴长和短半轴长。

椭圆的顶点即为椭圆与对称轴的交点。

(4)离心率:椭圆焦距与长轴长之比。

a ce =⇒2)(1ab e -=。

10<<e 。

椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例。

,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为是椭圆在1=e 时的特例。

2. 椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆。

其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。

椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式 3. 椭圆的准线方程对于12222=+b y a x ,左准线c a x l 21:-=;右准线c a x l 22:=对于12222=+b x a y ,下准线c a y l 21:-=;上准线c a y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) (二)双曲线的几何性质:1. (1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x =-a,x =a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。

双曲线不封闭,但仍称其对称中心为双曲线的中心。

(2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a,a 叫做实半轴长。

虚轴:21B B 长为2b ,b 叫做虚半轴长。

双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。

(3)渐近线过双曲线12222=-b y a x 的渐近线x a b y ±=(0=±bya x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率 范围:e>1双曲线形状与e 的关系:1122222-=-=-==e ac a a c a b k ,e 越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。

由此可知,双曲线的离心率越大,它的开口就越阔。

2. 等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线。

等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e 。

3. 共渐近线的双曲线系如果已知一双曲线的渐近线方程为x ab y ±=)0(>±=k x ka kb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222b y a x 。

4. 共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。

区别:三量a,b,c 中a,b 不同(互换)c 相同。

共用一对渐近线。

双曲线和它的共轭双曲线的焦点在同一圆上。

确定双曲线的共轭双曲线的方法:将1变为-1。

5. 双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c ace 的点的轨迹是双曲线。

其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线。

常数e 是双曲线的离心率。

6. 双曲线的准线方程:对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=,相对于右焦点)0,(2c F 对应着右准线ca x l 22:=;焦点到准线的距离cb p 2=(也叫焦参数)。

对于12222=-b x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 21:-=;相对于上焦点),0(2c F 对应着上准线ca y l 22:=。

(三)抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y )满足不等式x ≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。

(2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴。

(3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y =0时,x =0,因此抛物线()022>=p px y 的顶点就是坐标原点。

(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示。

由抛物线的定义可知,e =1。

【典型例题】例1. 根据下列条件,写出椭圆方程 (1)中心在原点、以对称轴为坐标轴、离心率为1/2、长轴长为8; (2)和椭圆9x2+4y2=36有相同的焦点,且经过点(2,-3);(3)中心在原点,焦点在x 轴上,从一个焦点看短轴两端的视角为直角,焦点到长轴上较近顶点的距离是510-。

分析:求椭圆的标准方程,首先要根据焦点位置确定方程形式,其次是根据a2=b2+c2及已知条件确定a2、b2的值进而写出标准方程。

解:(1)焦点位置可在x 轴上,也可在y 轴上因此有两解:112x 16y 112y 16x 2222=+=+或 (2)焦点位置确定,且为(0,5±),设原方程为22221y x a b+=,(a>b>0),由已知条件有⎪⎩⎪⎨⎧=+=-14952222b ab a 10,1522==⇒b a ,故方程为110x 15y 22=+。

(3)设椭圆方程为12222=+by a x ,(a>b>0)由题设条件有⎩⎨⎧-=-=510c a cb 及a2=b2+c2,解得b =10,5=a故所求椭圆的方程是15y 10x 22=+。

例2. 直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点,当a 为何值时,A 、B 在双曲线的同一支上?当a 为何值时,A 、B 分别在双曲线的两支上? 解:把1+=kx y 代入1322=-y x整理得:022)3(22=---ax x a (1)当3±≠a 时,2424a -=∆由∆>0得6a 6<<-且3±≠a 时,方程组有两解,直线与双曲线有两个交点若A 、B 在双曲线的同一支,须32221-=a x x >0,所以3〈-a 或3>a 。

故当36-<<-a 或63<<a 时,A 、B 两点在同一支上;当33<<-a 时,A 、B 两点在双曲线的两支上。

例3. 已知抛物线方程为)1x (p 2y 2+=(p>0),直线m y x l =+:过抛物线的焦点F 且被抛物线截得的弦长为3,求p 的值。

解:设l 与抛物线交于1122(,),(,),|| 3.A x y B x y AB =则 由距离公式|AB|=|y y |2|y y |k11)y y ()x -(x 21212221221-=-+=-+ 则有2129().2y y -=由02y x ,)1(221222=-+⎪⎩⎪⎨⎧+=+-=+p py ,x p y p y x 得消去从而212212214)()(y y y y y y -+=- 即294)2(22=+-p p 由于p>0,解得43=p 例4. 过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y=21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程. 解法一:由e=22=a c ,得21222=-ab a ,从而a2=2b2,c=b. 设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上.则x12+2y12=2b2,x22+2y22=2b2,两式相减得, (x12-x22)+2(y12-y22)=0,.)(221212121y y x x x x y y ++-=--设AB 中点为(x0,y0),则kAB=-2y x , 又(x0,y0)在直线y=21x 上,y0=21x0,于是-2y x =-1,kAB=-1, 设l 的方程为y=-x+1.右焦点(b,0)关于l 的对称点设为(x ′,y ′由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=89,1692=a .∴所求椭圆C 的方程为2291698y x + =1,l 的方程为y=-x+1.解法二:由e=21,22222=-=ab a ac 得,从而a2=2b2,c=b. 设椭圆C 的方程为x2+2y2=2b2,l 的方程为y=k(x -1),将l 的方程代入C 的方程,得(1+2k2)x2-4k2x+2k2-2b2=0, 则x1+x2=22214k k +,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-2212k k +.直线l :y=21x 过AB 的中点(2,22121y y x x ++),则2222122121kk k k +⋅=+-, 解得k=0,或k=-1.若k=0,则l 的方程为y=0,焦点F(c,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k=0舍去,从而k=-1,直线l 的方程为y=-(x -1),即y=-x+1,以下同解法一. 解法3:设椭圆方程为)1()0(12222>>=+b a b y a x直线l 不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过21=中点矛盾。

相关文档
最新文档