湖南省师大附中2018届高三月考试卷(六)数学(理)试卷(含答案)

合集下载

【数学】湖南师大附中2018届高三(上)11月月考试卷(理)(解析版)

【数学】湖南师大附中2018届高三(上)11月月考试卷(理)(解析版)

月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.1.(5分)复数﹣(1+i)2的共轭复数是()A.1﹣3i B.1+3i C.﹣1﹣3i D.﹣1+3i2.(5分)已知集合A={x|y=log2(5﹣x)},B={y|y=2x﹣1},则A∪B=()A.[0,5)B.(0,5)C.R D.(0,+∞)3.(5分)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”,已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是()A.10日B.20日C.30日D.40日4.(5分)已知函数f(x)=(e为自然对数的底数)的图象与直线x=e、x轴围成的区域为E,直线x=e、y=1与x轴、y轴围成的区域为F,在区域F内任取一点,则该点落在区域E内的概率为()A.B.C.D.5.(5分)若双曲线+=1的渐近线方程为y=±x,则m的值为()A.1 B.C.D.56.(5分)执行如图所示的程序框图,若输出的S的值为2,则判断框中填入的条件可以是()A.n<98?B.n<99?C.n<100?D.n≤100?7.(5分)已知(1+x)(a﹣x)6=a0+a1x+a2x2+…+a7x7,a∈R,若a0+a1+a2+…+a6+a7=0,则a3的值为()A.35 B.20 C.5 D.﹣58.(5分)已知函数y=f(x)满足y=f(﹣x)和y=f(x+2)都是偶函数,且f(1)=1,则f(﹣1)+f(7)=()A.0 B.1 C.2 D.39.(5分)某几何体的三视图如图所示,则它的表面积是()A.7+B.5+C.D.7+210.(5分)已知D=,给出下列四个命题:P1:∀(x,y)∈D,x+y≥0;P2:∀(x,y)∈D,>0;P3:∃(x,y)∈D,x+y<1;P4:∃(x,y)∈D,x2+y2≤2;其中真命题是()A.P1,P2B.P2,P3 C.P2,P4 D.P3,P411.(5分)已知F为抛物线C:y2=4x的焦点,过F的直线l与C相交于A、B两点,线段AB的垂直平分线交x轴于点M,垂足为E,若|AB|=6,则|EM|的长为()A.2B.C.2 D.12.(5分)已知函数f(x)=x+e x﹣a,g(x)=ln(2x+1)﹣4e a﹣x,其中e为自然对数的底数,若存在实数x0,使f(x0)﹣g(x0)=4成立,则实数a的值为()A.ln 1﹣1 B.1﹣ln 2C.ln 2 D.﹣ln 2二、填空题,本大题共4小题,每小题5分,共20分.13.(5分)已知||=,||=1,且⊥(+2),则向量与向量的夹角是.14.(5分)已知sin(x+)=,则sin(﹣x)﹣cos(2x﹣)的值为.15.(5分)如图,圆锥的高PO=,底面⊙O的直径AB=2,C是圆上一点,且∠CAB=30°,D为AC的中点,则直线OC和平面P AC所成角的余弦值为.16.(5分)设函数f(x)=,数列{a n}是公比大于0的等比数列,且a5a6a7=1,若f(a1)+f(a2)+…+f(a10)=a1,则a1=.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边依次为a,b,c,满足a cos B+b cos A=2c cos C.(Ⅰ)求角C的大小;(Ⅱ)若△ABC的周长为3,求△ABC的内切圆面积S的最大值.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,侧面P AD为正三角形,且平面P AD⊥平面ABCD,E为PD中点,AD=2.(Ⅰ)求证:平面AEC⊥平面PCD.(Ⅱ)若二面角A﹣PC﹣E的平面角大小θ满足cosθ=,求四棱锥P﹣ABCD的体积.19.(12分)一只袋中放入了大小一样的红色球3个,白色球3个,黑色球2个.(Ⅰ)从袋中随机取出(一次性)2个球,求这2个球为异色球的概率;(Ⅱ)若从袋中随机取出(一次性)3个球,其中红色球、白色球、黑色球的个数分别为a、b、c,令随机变量ξ表示a、b、c的最大值,求ξ的分布列和数学期望.20.(12分)已知椭圆C:=1(a>b>0)的离心率为,以椭圆长、短轴四个端点为顶点的四边形的面积为4.(Ⅰ)求椭圆C的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A、B,当动点M在定直线x=4上运动时,直线AM、BM分别交椭圆于P、Q两点,求四边形APBQ面积的最大值.21.(12分)已知函数f(x)=e x﹣ax(其中e为自然对数的底数),g(x)=4ln(x+1).(Ⅰ)当a=1时,求f(x)的最小值;(Ⅱ)记h(x)=f(x)+g(x),请证明下列结论:①若a≤4,则对任意x>0,有h(x)>1;②若a≥5,则存在实数x>0,使h(x)<1.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)选修4﹣4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin2θ=2a cosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|P A|•|PB|=|AB|2,求a的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+6|﹣|m﹣x|(m∈R)(Ⅰ)当m=3时,求不等式f(x)≥5的解集;(Ⅱ)若不等式f(x)≤7对任意实数x恒成立,求m的取值范围.【参考答案】一、选择题1.B【解析】∵﹣(1+i)2=,∴复数﹣(1+i)2的共轭复数是1+3i.故选:B.2.C【解析】集合A={x|y=log2(5﹣x)}={x|5﹣x>0}={x|x<5},B={y|y=2x﹣1}={y|y>0},则A∪B=R.故选:C.3.C【解析】设此数列为等差数列{a n},a1=5,a n=1,S n=90.∴=90,解得n=30.故选:C.4.A【解析】y=f(x)的图象与x=e以及x轴所围成图形如图,则区域E的面积为=,区域F得面积为1×e=e,则该点落在区域E内的概率为故选:A.【解析】根据题意,分2种情况讨论:①双曲线的焦点在x轴上,有4﹣m>0,m﹣2<0,则m<2,双曲线的标准方程为:﹣=1,则其渐近线方程为y=±,又由双曲线+=1的渐近线方程为y=±x,则有=,解可得m=;②双曲线的焦点在y轴上,有4﹣m<0,m﹣2>0,则有m>4,双曲线的标准方程为:﹣=1,则其渐近线方程为y=±x,又由双曲线+=1的渐近线方程为y=±x,则有=,解可得m=;舍去;故m=;故选:B.6.B【解析】根据程序框图,运行结果如下:第1次循环n=1,S=lg2,不满足条件,第2次循环n=2,S=lg3,不满足条件,第3次循环n=3,S=lg4,不满足条件,第n次循环n=n,S=lg(n+1),不满足条件,…第98次循环n=98,S=lg99,不满足条件,第99次循环n=99,S=lg100=2,满足条件,故条件为n<99?,故选:B7.D【解析】(1+x)(a﹣x)6=a0+a1x+a2x2+…+a7x7中,令x=1得,a0+a1+…+a7=2•(a﹣1)6=0,解得a=1,而a3表示x3的系数,所以a3=•(﹣1)3+•(﹣1)2=﹣5.故选:D.8.C【解析】∵y=f(﹣x)和y=f(x+2)都是偶函数,由题意得:f(﹣x)=f(x),f(x+2)=f(﹣x+2)=f(x﹣2),故f(x)=f(x+4),∵f(1)=1,∴f(﹣1)=f(7)=f(1)=1,∴f(﹣1)+f(7)=2,故选:C.9.A【解析】此三视图的几何体如图,该几何体为三棱锥,DC⊥底面ABC,底面三角形是AB=AC的等腰三角形,由题意有,BC=CD=2,AB=AC=,BD=2,AD=3,S△ABC=S△BCD=2,S△ACD=,cos∠ABD==,sin∠ABD=,∴S△ABD=××2×=3,∴该几何体的表面积S=7+.故选:A.10.D【解析】不等式组D=的可行域如图,由A(﹣2,0)点,可得:﹣2+0+1=﹣1,故P1:∀(x,y)∈D,x+y≥0为假命题;P3:∃(x,y)∈D,x+y<1为真命题;由A(﹣2,0)点,可得=0,故P2:∀(x,y)∈D,>0错误;由(﹣1,1)点,x2+y2=2故p4:∃(x,y)∈D,x2+y2≤2为真命题.可得选项p3,p4正确.故选:D.11.B【解析】由已知得F(1,0),设直线l的方程为x=my+1,并与y2=4x联立得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),E(x0,y0),y1+y2=4m,则y0==2m,x0=2m2+1,所以E(2m2+1,2m),又|AB|=x1+x2+2=m(y1+y2)+4=4m2+4=6,解得m2=,线段AB的垂直平分线为y﹣2m=﹣m(x﹣2m2﹣1),令y=0,得M(2m2+3,0),从而|ME|==.故选:B.12.D【解析】f(x)﹣g(x)=x﹣ln(2x+1)+e x﹣a+4e a﹣x,令h(x)=x﹣ln(2x+1),则h′(x)=1﹣,∴h(x)在(﹣,0)上是减函数,在(0,+∞)上是增函数,所以h(x)min=h(0)=0,又e x﹣a+4e a﹣x≥2=4,∴f(x)﹣g(x)≥4,当且仅当时,取等号.解得x=0,a=﹣ln 2,故选:D.二、填空题13.【解析】∵⊥(+2),∴•(+2)=+2=0,∴=﹣=﹣1,∴cos<>==﹣,∴<>=.故答案为:π.14.【解析】∵sin(x+)=,则sin(﹣x)﹣cos(2x﹣)=sin[2π﹣(x+)]﹣cos2(x+)﹣π]=﹣sin(x+)+cos2(x+)=﹣sin(x+)+1﹣2=﹣+1﹣=,故答案为:.15.【解析】设点O到平面P AC的距离为d,设直线OC和平面P AC所成角为α,则由等体积法有:V O﹣P AC=V P﹣OAC,即S△P AC•d=•PO•S△OAC,在△AOC中,求得AC=,在△POD中,求得PD=,∴d==,∴sin α==,于是cos α==,故答案为.16.e【解析】若x>1,则0<<1;则f(x)=x ln x,=﹣x ln x,故f(x)+f()=0对任意x>0成立.又∵{a n}是公比大于0的等比数列,且a5a6a7=1,所以a6=1.故a2a10=a3a9=a4a8=a5a7=a6=1;故f(a2)+f(a3)+…+f(a10)=f(a2)+f(a10)+f(a3)+f(a9)+…+f(a5)+f(a7)+f(a6)=0,所以f(a1)+f(a2)+…+f(a10)=f(a1)=a1,若a1>1,则a1ln a1=a1,则a1=e;若0<a1<1,则<0,无解;故答案为:e.三、解答题17.解:(Ⅰ)因为a cos B+b cos A=2c cos C⇔sin A cos B+sin B cos A=2sin C cos C,即sin(A+B)=2sin C cos C,而sin(A+B)=sin C>0,则cos C=,又C∈(0,π),所以C=.(Ⅱ)令△ABC的内切圆半径为R,有ab sin=•3R,则R=ab,由余弦定理得a2+b2﹣ab=(3﹣a﹣b)2,化简得3+ab=2(a+b),而a+b≥2,故3+ab≥4,解得≥3或≤1.若≥3,则a,b至少有一个不小于3,这与△ABC的周长为3矛盾;若≤1,则当a=b=1=c时,R取最大值.综上,知△ABC的内切圆最大面积值为S max=π()2=.18.(Ⅰ)证明:取AD中点为O,BC中点为F,由侧面P AD为正三角形,且平面P AD⊥平面ABCD,得PO⊥平面ABCD,故FO⊥PO,又FO⊥AD,则FO⊥平面P AD,∴FO⊥AE,又CD∥FO,则CD⊥AE,又E是PD中点,则AE⊥PD,由线面垂直的判定定理知AE⊥平面PCD,又AE⊂平面AEC,故平面AEC⊥平面PCD;(Ⅱ)解:如图所示,建立空间直角坐标系O﹣xyz,令AB=a,则P(0,0,),A(1,0,0),C(﹣1,a,0).由(Ⅰ)知=()为平面PCE的法向量,令=(1,y,z)为平面P AC的法向量,由于=(1,0,﹣),=(2,﹣a,0)均与垂直,∴,解得,则,由cos θ=||=,解得a=.故四棱锥P﹣ABCD的体积V=S ABCD•PO=•2••=2.19.解:(Ⅰ)设事件A表示“从袋中随机取出(一次性)2个球,这2个球为异色球”,则P(A)=1﹣=;注:也可直接求概率P(A)==;(Ⅱ)根据题意,ξ的可能取值为1,2,3;计算P(ξ=3)==,P(ξ=2)==,P(ξ=1)==,则随机变量ξ的分布列为于是数学期望为Eξ=1×+2×+3×=.20.解:(Ⅰ)根据题意,椭圆C:=1(a>b>0)的离心率为,则有a=2c,以椭圆长、短轴四个端点为顶点的四边形的面积为4,则有2ab=4,又a2=b2+c2,解得a=2,b=,c=1,故椭圆C的方程为+=1;(Ⅱ)由于对称性,可令点M(4,t),其中t>0.将直线AM的方程y=(x+2)代入椭圆方程+=1,得(27+t2)x2+4t2x+4t2﹣108=0,由x A•x P=,x A=﹣2得x P=﹣,则y P=.再将直线BM的方程y=(x﹣2)代入椭圆方程+=1得(3+t2)x2﹣4t2x+4t2﹣12=0,由x B•x Q=,x B=2得x Q=,则y Q=.故四边形APBQ的面积为S=|AB||y P﹣y Q|=2|y P﹣y Q|=2(+)===.由于λ=≥6,且λ+在[6,+∞)上单调递增,故λ+≥8,从而,有S=≤6.当且仅当λ=6,即t=3,也就是点M的坐标为(4,3)时,四边形APBQ的面积取最大值6.21.解:(Ⅰ)当a=1时,f(x)=e x﹣x.则f′(x)=e x﹣1,当x<0时,f′(x)<0,即f(x)在(﹣∞,0)上单调递减;当x>0时,f′(x)>0,即f(x)在(0,+∞)上单调递增.故f(x)min=f(0)=1.(Ⅱ)h(x)=e x﹣ax+4ln(x+1),则h′(x)=e x+﹣a.①若a≤4,由(1)知f(x)=e x﹣x≥1,即e x≥x+1,于是h′(x)=e x+﹣a≥x+1+﹣a≥4﹣a≥0,所以h(x)在(0,+∞)上单调递增,则对任意x>0,有h(x)>h(0)=1;②若a≥5,令φ(x)=h′(x)=e x+﹣a.则φ′(x)=e x﹣在(0,+∞)上单调递增,且φ′(0)=﹣3<0,φ′(1)=e﹣1>0,故存在唯一的x0∈(0,1),使φ′(x0)=0,则当x∈(0,x0)时,φ′(x)<0,即φ(x)=h′(x)在(0,x0)上单调递减,故h′(x)<h′(0)=5﹣a≤0,从而h(x)在(0,x0)上单调递减,则h(x)<h(0)=1,即存在实数x∈(0,x0),使h(x)<1.22.解:(I)由ρsin2θ=2a cosθ(a>0)得ρ2sin2θ=2aρcosθ(a>0)∴曲线C的直角坐标方程为y2=2ax(a>0)直线l的普通方程为y=x﹣2(II)将直线l的参数方程代入曲线C的直角坐标方程y2=2ax中,得t2﹣2(4+a)t+8(4+a)=0设A、B两点对应的参数分别为t1、t2则有t1+t2=2(4+a),t1t2=8(4+a)∵|P A|⋅|PB|=|AB|2∴|t1t2|=(t1﹣t2)2,即(t1+t2)2=5t1t2∴[2(4+a)]2=40(4+a)化简得,a2+3a﹣4=0解之得:a=1或a=﹣4(舍去)∴a的值为1.23.解:(1)当m=3时,f(x)≥5即|x+6|﹣|x﹣3|≥5,①当x<﹣6时,得﹣9≥5,所以x∈ϕ;②当﹣6≤x≤3时,得x+6+x﹣3≥5,即x≥1,所以1≤x≤3;③当x>3时,得9≥5,成立,所以x>3;故不等式f(x)≥5的解集为{x|x≥1}.(Ⅱ)因为|x+6|﹣|m﹣x|≤|x+6+m﹣x|=|m+6|,由题意得|m+6|≤7,则﹣7≤m+6≤7,解得﹣13≤m≤1.。

湖南师大附中2018届高三高考模拟卷(一)(学生版)+数学(理)答案

湖南师大附中2018届高三高考模拟卷(一)(学生版)+数学(理)答案

^ -+ f b& ¡ -+&* 7 %"+- n_`"+ * , KP& , b_
- 槡 ) ) ;_ 槡 `"+ :b " * , KP?¢£if/! 0 & -+ 0 ! -+ # &
# * , *& *,0* ,-+(,0 槡 " 61 , '-
) 槡 ¤¥ -! ,0槡 #! (&
# # -. `? `( ) 6`M" " $ .! $0! # # $ " ) $!# 6 0" ) "0$  ?S WS' # $ 7 ) " * ?RS " ) 6 " * 6 * ) 0 $ # 6 $ $ 6 ' 0 ) 6 " " " " " " "6 *! "
-. MXYIJ MZ[ " \#0 * .! # ' # $! # # ! # 6 % 0 ]S %0# 6JM8 ^_` %0# $ 6 # $6 ' $6 #!' ! $6 # %0! %6 _`;% c>?defg DE .! ! 'a " b # hfgiS' !
" ,
# -
& .
' ,
( /
) -
* .
% -
+ " $ " " " # , . / ,

湖南师大附中2018届高三数学上学期月考试卷五理科有解析

湖南师大附中2018届高三数学上学期月考试卷五理科有解析

湖南师大附中2018届高三数学上学期月考试卷(五)理科有解析湖南师大附中2018届高三月考试卷(五)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是()A.B.C.1D.-1【答案】C【解析】,所以虚部为1.点睛:本题主要考查了求复数的虚部,属于易错题.对于复数,实部为,虚部为,不是.做错的原因是基础不牢靠.2.若集合,非空集合,若,则实数的取值范围是()A.B.C.D.【答案】D【解析】集合,由集合不为空集可得,即,由得,解得,故选D.3.若,命题甲:“为实数,且”;命题乙:“为实数,满足,且”,则甲是乙的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件【答案】B【解析】若为实数,且,则取时,不满足且,若为实数,满足,且,则,所以甲是乙的必要而不充分条件,故选 B.4.表示求除以的余数,若输入,,则输出的结果为()A.0B.17C.21D.34【答案】B【解析】模拟执行程序框图,可得,不满足条件,不满足条件,,满足条件,退出循环,输出的值为,故选B. 【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.5.已知椭圆的离心率为,双曲线的离心率为,抛物线的离心率为,,,,则之间的大小关系是()A.B.C.D.【答案】D【解析】依题意,,,又,,故选D.【方法点睛】本题主要考查函数的圆锥曲线的离心率、指数函数的性质、对数函数的性质及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6.若,则函数在区间内单调递增的概率是()A.B.C.D.【答案】B【解析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.7.下列选项中为函数的一个对称中心为()A.B.C.D.【答案】A【解析】函数,令,求得,可得函数的对称轴中心为,当时,函数的对称中心为,故选A.8.九章算术中一文:蒲第一天长3尺,以后逐日减半;莞第一天长1尺,以后逐日增加一倍,则_____天后,蒲、莞长度相等?参考数据:,,结果精确到0.1.(注:蒲每天长高前一天的一半,莞每天长高前一天的2倍.)A.2.8B.2.6C.2.4D.2.2【答案】B【解析】设蒲的长度组成等比数列,其,公比为,其前项和为,莞的长度组成等比数列,其,公比为,其前项和为,则,由题意可得,化为,解得(舍去),估计天后,蒲、莞长度相等,故选B.9.某学校有2500名学生,其中高一1000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法从本校学生中抽取100人,从高一和高三抽取样本数分别为.若直线与以为圆心的圆交于两点,且,则圆的方程为()A.B.C.D.【答案】C【解析】按照分层抽样的特点,高一高二高三抽取的人数分别为.所以,直线方程为,即,圆心到直线的距离,由于,所以圆的半径,故圆的方程为,选C.10.已知,实数满足约束条件,且的最小值为,则的值为()A.B.C.D.【答案】C【解析】画出不等式组表示的区域如图,因为的几何意义是区域内的动点与连线的斜率,所以结合图形可以看出点与定点连线的斜率最小,其最小值为,解之得:,所以,应选答案C。

湖南师大附中2018届高三上学期月考试卷(五)理科数学试

湖南师大附中2018届高三上学期月考试卷(五)理科数学试

湖南师大附中2018届高三月考试卷(五)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数的虚部是()A. B. C. 1 D. -1【答案】C【解析】,所以虚部为1.点睛: 本题主要考查了求复数的虚部,属于易错题. 对于复数 ,实部为 ,虚部为 , 不是.做错的原因是基础不牢靠.2. 若集合,非空集合,若,则实数的取值范围是()A. B. C. D.【答案】D【解析】集合,由集合不为空集可得,即,由得,解得,故选D.3. 若,命题甲:“为实数,且”;命题乙:“为实数,满足,且”,则甲是乙的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 即不充分也不必要条件【答案】B【解析】若为实数,且,则取时,不满足且,若为实数,满足,且,则,所以甲是乙的必要而不充分条件,故选B.4. 表示求除以的余数,若输入,,则输出的结果为()A. 0B. 17C. 21D. 34【答案】B【解析】模拟执行程序框图,可得,不满足条件,不满足条件,,满足条件,退出循环,输出的值为,故选B.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.5. 已知椭圆的离心率为,双曲线的离心率为,抛物线的离心率为,,,,则之间的大小关系是()A. B. C. D.【答案】D【解析】依题意,,,又,,故选D.【方法点睛】本题主要考查函数的圆锥曲线的离心率、指数函数的性质、对数函数的性质及比较大小问题,属于难题. 解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6. 若,则函数在区间内单调递增的概率是()A. B. C. D.【答案】B【解析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.7. 下列选项中为函数的一个对称中心为()A. B. C. D.【答案】A【解析】函数,令,求得,可得函数的对称轴中心为,当时,函数的对称中心为,故选A.8. 九章算术中一文:蒲第一天长3尺,以后逐日减半;莞第一天长1尺,以后逐日增加一倍,则_____天后,蒲、莞长度相等?参考数据:,,结果精确到0.1.(注:蒲每天长高前一天的一半,莞每天长高前一天的2倍.)A. 2.8B. 2.6C. 2.4D. 2.2【答案】B【解析】设蒲的长度组成等比数列,其,公比为,其前项和为,莞的长度组成等比数列,其,公比为,其前项和为,则,由题意可得,化为,解得(舍去),估计天后,蒲、莞长度相等,故选B.9. 某学校有2500名学生,其中高一1000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法从本校学生中抽取100人,从高一和高三抽取样本数分别为.若直线与以为圆心的圆交于两点,且,则圆的方程为()A. B.C. D.【答案】C【解析】按照分层抽样的特点,高一高二高三抽取的人数分别为.所以,直线方程为 ,即,圆心到直线的距离 ,由于,所以圆的半径 ,故圆的方程为 ,选C.10. 已知,实数满足约束条件,且的最小值为,则的值为()A. B. C. D.【答案】C【解析】画出不等式组表示的区域如图,因为的几何意义是区域内的动点与连线的斜率,所以结合图形可以看出点与定点连线的斜率最小,其最小值为,解之得:,所以,应选答案C。

(优辅资源)湖南师大附中高三月考试卷(六)(教师版)数学(理)Word版含解析

(优辅资源)湖南师大附中高三月考试卷(六)(教师版)数学(理)Word版含解析

湖南师大附中2018届高三月考试卷(六)数 学(理科)命题人:吴锦坤 张汝波 审题人:黄祖军本试题卷包括选择题、填空题和解答题三部分,共10页.时量120分钟.满分150分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.(1)已知集合A ={x |x 2+x -2≤0,x ∈Z },B ={a ,1},A ∩B =B ,则实数a 等于(D) (A)-2 (B)-1 (C)-1或0 (D)-2或-1或0(2)设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是(A)(A)⎣⎡⎦⎤0,12 (B)⎝⎛⎭⎫0,12 (C)(-∞,0]∪⎣⎡⎭⎫12,+∞ (D)(-∞,0)∪⎝⎛⎭⎫12,+∞ 【解析】由p 得: 12<x ≤1 ,由q 得:a ≤x ≤a +1,又q 是p 的必要而不充分条件,所以a ≤12且a +1≥1,∴0≤a ≤12. (3)某学校的两个班共有100名学生,一次考试后数学成绩ξ(ξ∈N )服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为(A)(A)20 (B)10 (C)14 (D)21【解析】由题意知,P (ξ>110)=1-2P (90≤ξ≤100)2=0.2,∴该班学生数学成绩在110分以上的人数为0.2×100=20.(4)某几何体的三视图如图所示,则其体积为(C) (A)83 (B)2 (C)43 (D)23【解析】该几何体是:在棱长为2的正方体中,连接相邻面的中心,以这些线段为棱的一个正八面体.可将它分割为两个四棱锥,棱锥的底面为正方形且边长为2,高为正方体边长的一半,∴V =2×13(2)2×1=43.(5)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =2.5 (单位:升),则输入k 的值为(D)(A)4.5 (B)6 (C)7.5 (D)10【解析】模拟程序的运行,可得n =1,S =k , 满足条件n <4,执行循环体,n =2,S =k -k 2=k2,满足条件n <4,执行循环体, n =3,S =k 2-k 23=k3,满足条件n <4,执行循环体, n =4,S =k 3-k 34=k4,此时,不满足条件n <4,退出循环,输出S 的值为k4,根据题意可得:k4=2.5,计算得出:k =10.所以D 选项是正确的.(6)将函数f ()x =cosωx 2⎝⎛⎭⎫2sin ωx 2-23cos ωx 2+3,()ω>0的图像向左平移π3ω个单位,得到函数y =g ()x 的图像,若y =g ()x 在⎣⎡⎦⎤0,π4上为增函数,则ω的最大值为(B)(A)1 (B)2 (C)3 (D)4【解析】由题意,f ()x =2sin ⎝⎛⎭⎫ωx -π3()ω>0,先利用图像变换求出g ()x 的解析式:g ()x =f ⎝ ⎛⎭⎪⎫x +π3ω=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π3ω-π3,即g ()x =2sin ωx ,其图像可视为y =sin x 仅仅通过放缩而得到的图像.若ω最大,则要求周期T 取最小,由⎣⎡⎦⎤0,π4为增函数可得:x =π4应恰好为g ()x 的第一个正的最大值点,∴π4ω=π2ω=2.(7)已知x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,2x -y +2≥0,x +y -2≤0,若ax +y 取得最大值的最优解不唯一,则实数a 的值为(C)(A)12或-1 (B)2或12(C)-2或1 (D)2或-1【解析】由题中约束条件作可行域如右图所示:令z =ax +y ,化为y =-ax +z ,即直线y =-ax +z 的纵截距取得最大值时的最优解不唯一.当-a >2时,直线y =-ax +z 经过点A (-2,-2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =2时,直线y =-ax +z 与y =2x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-1<-a <2时,直线y =-ax +z 经过点B (0,2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =-1时,直线y =-ax +z 与y =-x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-a <-1时,直线y =-ax +z 经过点C (2,0)时纵截距最大,此时最优解仅有一个,故不符合题意.综上,当a =-2或a =1时最优解不唯一,符合题意.故本题正确答案为C.(8)若直线ax +by -2=0(a >0,b >0)始终平分圆x 2+y 2-2x -2y =2的周长,则12a +1b 的最小值为(D)(A)3-224 (B)3-222(C)3+222 (D)3+224【解析】直线平分圆周,则直线过圆心f (1,1),所以有a +b =2,12a +1b =12(a +b )⎝⎛⎭⎫12a +1b=12⎝⎛⎭⎫32+b 2a +a b ≥12⎝⎛⎭⎫32+2b 2a ·a b =3+224(当且仅当b =2a 时取“=”),故选D. (9)把7个字符a ,a ,a ,b ,b ,α,β排成一排,要求三个“a ”两两不相邻,且两个“b ”也不相邻,则这样的排法共有(B)(A)144种 (B)96种 (C)30种 (D)12种【解析】先排列b ,b ,α,β,若α,β不相邻,有A 22C 23种,若α,β相邻,有A 33种,共有6+6=12种,从所形成的5个空中选3个插入a ,a ,a ,共有12C 35=120种,若b ,b 相邻时,从所形成的4个空中选3个插入a ,a ,a ,共有6C 34=24,故三个“a ”两两不相邻,且两个“b ”也不相邻,这样的排法共有120-24=96种.(10)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足F A →·FB →=0,|FB |≤|F A |≤2|FB |,则椭圆C 的离心率的取值范围是(A)(A)⎣⎡⎦⎤22,53 (B)⎣⎡⎭⎫53,1 (C)⎣⎡⎦⎤22,3-1 (D)[3-1,1) 【解析】作出椭圆左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又F A →·FB →=0,即F A ⊥FB ,故平行四边形AFBF ′为矩形,所以|AB |=|FF ′|=2c .设AF ′=n ,AF =m ,则在直角三角形ABF 中m +n =2a ,m 2+n 2=4c 2 ①,得mn =2b 2 ②,①÷②得m n +n m =2c 2b 2,令m n =t ,得t +1t =2c 2b2.又由|FB |≤|F A |≤2|FB |得m n =t ∈[1,2],∴t +1t =2c 2b2∈⎣⎡⎦⎤2,52,故离心率的取值范围是⎣⎡⎦⎤22,53.(11)在△ABC 中,AB =2m ,AC =2n ,BC =210,AB +AC =8,E ,F ,G 分别为AB ,BC ,AC 三边中点,将△BEF ,△AEG ,△GCF 分别沿EF 、EG 、GF 向上折起,使A 、B 、C 重合,记为S ,则三棱锥S -EFG 的外接球面积最小为(D)(A)292π (B)233π (C)14π (D)9π【解析】根据题意,三棱锥S -EFG 的对棱分别相等,将三棱锥S -EFG 补充成长方体, 则对角线长分别为m ,n ,10, 设长方体的长宽高分别为x ,y ,z,则x 2+y 2=m ,y 2+z 2=10,x 2+z 2=n ,∴x 2+y 2+z 2=5+m +n2,∴三棱锥S -EFG 的外接球直径的平方为5+m +n2,而m +n =4,m +n 2≥⎝ ⎛⎭⎪⎫m +n 22=4,∴5+m +n2≥9, ∴三棱锥S -EFG 的外接球面积最小为4π·94=9π,所以D 选项是正确的.(12)已知函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0,若x 1<x 2且f (x 1)=f (x 2),则x 2-x 1的取值范围是(B)(A)⎝⎛⎦⎤23,ln 2 (B)⎝⎛⎦⎤23,ln 32+13 (C)⎣⎡⎦⎤ln 2,ln 32+13 (D)⎝⎛⎭⎫ln 2,ln 32+13【解答】作出函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0的图像如右,由x 1<x 2,且f (x 1)=f (x 2),可得0≤x 2<23,-32x 2+1=e -x 1-1,即为-x 1=ln ⎝⎛⎭⎫-32x 2+2, 可得x 2-x 1=x 2+ln ⎝⎛⎭⎫-32x 2+2,令g (x 2)=x 2+ln ⎝⎛⎭⎫-32x 2+2,0≤x 2<23, g ′(x 2)=1+-32-32x 2+2=3x 2-13x 2-4.当0≤x 2<13时,g ′(x 2)>0,g (x 2)递增;当13<x 2<23时,g ′(x 2)<0,g (x 2)递减.则g (x 2)在x 2=13处取得极大值,也为最大值ln 32+13,g (0)=ln 2,g ⎝⎛⎭⎫23=23,由23<ln 2,可得x 2-x 1的范围是⎝⎛⎦⎤23,ln 32+13.故选B. 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题,本大题共4小题,每小题5分,共20分. (13)将八进制数705(8)化为三进制的数是__121210(3)__.【解析】705(8)=7×82+0×8+5×80=453, 根据除k 取余法可得453=121210(3).(14)计算:2cos 10°-23cos (-100°)1-sin 10°=.(15)已知P 是双曲线x 216-y 28=1右支上一点,F 1,F 2分别是双曲线的左、右焦点,O 为坐标原点,点M ,N 满足F 1P →=λPM →()λ>0,PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|,PN →·F 2N →=0.若|PF 2→|=3,则以O 为圆心,ON 为半径的圆的面积为__49π__.【解析】由PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|知PN 是∠MPF 2的角平分线,又PN →·F 2N →=0,故延长F 2N 交PM 于K ,则PN 是△PF 2K 的角平分线又是高线,故△PF 2K 是等腰三角形,|PK |=|PF 2|=3,因为|PF 2→|=3,故|PF 1→|=11,故|F 1K →|=14,注意到N 还是F 2K 的中点,所以ON 是△F 1F 2K 的中位线,|ON →|=12|F 1K →|=7,所以以O 为圆心,ON 为半径的圆的面积为49π.(16)如图,在△ABC 中,BE 平分∠ABC ,sin ∠ABE =33,AB =2,点D 在线段AC 上,且AD →=2DC →,BD =433,则BE =56__.【解析】由条件得cos ∠ABC =13,sin ∠ABC =223.在△ABC 中,设BC =a ,AC =3b ,则9b 2=a 2+4-43a ①.因为∠ADB 与∠CDB 互补,所以cos ∠ADB =-cos ∠CDB ,4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6 ②,联立①②解得a =3,b =1,所以AC =3,BC =3. S △ABC =12·AC ·AB sin A =12×3×2×223=22,S △ABE =12·BE ·BA sin ∠EBA =12×2×BE ×33=33BE .S △BCE =12·BE ·BC sin ∠EBC =12×3×BE ×33=32BE .由S △ABC =S △ABE +S △BCE ,得22=33BE +32BE ,∴BE =456.70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)设数列{a n }满足a 2n =a n +1a n -1+λ(a 2-a 1)2,其中n ≥2,且n ∈N ,λ为常数.(Ⅰ)若{a n }是等差数列,且公差d ≠0,求λ的值;(Ⅱ)若a 1=1,a 2=2,a 3=4,且数列{b n }满足a n ·b n =n -7对任意的n ∈N *都成立. ①求数列{}b n 的前n 项之和S n ;②若m ·a n ≥n -7对任意的n ∈N *都成立,求m 的最小值.【解析】(Ⅰ)由题意,可得a 2n =(a n +d )(a n -d )+λd 2,(2分)化简得(λ-1)d 2=0,又d ≠0,所以λ=1.(3分)(Ⅱ)①将a 1=1,a 2=2,a 3=4代入条件,可得4=1×4+λ,解得λ=0,(4分) 所以a 2n =a n +1a n -1,则数列{}a n 是首项为1,公比q =2的等比数列,所以a n =2n -1,从而b n =n -72n -1,(6分)所以S n =-620+-521+-422+…+n -72n -1,12S n =-621+-522+-423+…+n -72n , 两式相减得:12S n =-620+121+122+…+12n -1-n -72n =-5+5-n 2n ;所以S n =-10+5-n2n -1.(8分)②m ·2n -1≥n -7,所以m ≥n -72n -1对任意n ∈N *都成立.由b n =n -72n -1,则b n +1-b n =n -62n -n -72n -1=8-n2n ,所以当n >8时,b n +1<b n ; 当n =8时,b 9=b 8; 当n <8时,b n +1>b n . 所以b n 的最大值为b 9=b 8=1128,所以m 的最小值为1128.(12分) (18)(本小题满分12分)阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)公司的团队开发.其主要工作原理是“深度学习”.2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜.围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平.为了激发广大中学生对人工智能的兴趣,某市教育局组织了一次全市中学生“人工智能”软件设计竞赛,从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按五个等级进行了统计,得到如下数据表:(Ⅰ)根据上面的统计数据,试估计从本市参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加比赛的学生(参赛人数很多)中任选3人,记X 表示抽到成绩等级为“A 或B ”的学生人数,求X 的分布列及其数学期望EX ;(Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于1分”的概率. 【解析】(Ⅰ)根据统计数据可知,从本地区参加比赛的30名中学生中任意抽取一人,其成绩等级为“A 或B ”的概率为:430+630=13,(2分)即从本地区参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率为13.(3分)(Ⅱ)由题意知随机变量X 可取0,1,2,3,则X ~B ⎝⎛⎭⎫3,13. P (x =k )=C k 3⎝⎛⎭⎫13k ⎝⎛⎭⎫233-k(k =0,1,2,3),(5分)所以X 的分布列为:(6分)则E (x )=3×13=1,所求期望值为1.(7分)(Ⅲ)设事件M :从这30名学生中,随机选取2人,这两个人的成绩之差大于1分. 设从这30名学生中,随机选取2人,记两个人的成绩分别为m ,n , 则基本事件的总数为C 230,不妨设m >n ,当m =5时,n =3,2,1,基本事件的个数为C 14(C 110+C 17+C 13); 当m =4时,n =2,1,基本事件的个数为C 16(C 17+C 13); 当m =3时,m =1,基本事件的个数为C 110C 13;P (M )=3487.(12分)(19)(本小题满分12分)如图,在四棱锥A -EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.(Ⅰ)求二面角F -AE -B 的余弦值;(Ⅱ)若点M 为线段AC 上异于点A 的一点,BE ⊥OM ,求a 的值. 【解析】(Ⅰ)因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF , 又因为平面AEF ⊥平面EFCB ,平面AEF ∩平面EFCB =EF , AO平面AEF ,所以AO ⊥平面EFCB ,取BC 的中点G ,连结OG ,由题设知四边形EFCB 是等腰梯形,所以OG ⊥EF , 由AO ⊥平面EFCB ,又GO平面EFCB ,所以AO ⊥GO ,建立如图所示空间直角坐标系,则E ()a ,0,0,A ()0,0,3a ,B ()2,3()2-a ,0,EA →=()-a ,0,3a , BE →=()a -2,3()a -2,0,设平面AEB 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0,()a -2x +3()a -2y =0.令z =1,则x =3,y =-1,于是n =()3,-1,1,又平面AEF 的一个法向量为p =()0,1,0,设二面角F -AE -B 为θ,所以cos θ=cos 〈n ,p 〉=n ·p |n ||p |=-55.(6分) (Ⅱ)由(Ⅰ)知AO ⊥平面EFCB ,又BE 平面EFCB ,所以AO ⊥BE ,又OM ⊥BE ,AO ∩OM =O ,所以BE ⊥平面AOC ,所以BE ⊥OC ,即BE →·OC →=0,因为BE →=()a -2,3()a -2,0,OC →=()-2,3()2-a ,0, 所以BE →·OC →=-2()a -2-3()a -22, 由BE →·OC →=0及0<a <2,解得a =43.(12分)(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.(Ⅰ)求椭圆C 的标准方程和圆A 的方程;(Ⅱ)不过原点的直线l 与椭圆C 相交于M ,N 两点,设直线OM ,直线l ,直线ON 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2成等比数列.①求k 的值;②是否存在直线l 使得满足OD →=λOM →+μON →(λ2+μ2=1,λ·μ≠0)的点D 在椭圆C 上?若存在,求出直线l 的方程;若不存在,请说明理由.【解析】(Ⅰ)如图,设T 为线段PQ 的中点,连接AT , 则AT ⊥PQ ,∵AP →·AQ →=0, 即AP ⊥AQ , 则|AT |=12|PQ |,又OP →=3OQ →,则|OT |=|PQ |, ∴|AT ||OT |=12,即b a =12, 由已知c =3,则a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1;(2分)又|AT |2+|OT |2=4,则|AT |2+4|AT |2=4|AT |=255,r =|AP |=2105, 故圆A 的方程为(x -2)2+y 2=85.(4分)(Ⅱ)①设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 2=1y =kx +m (1+4k 2)x 2+8kmx +4(m 2-1)=0,(5分) 则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2,(6分)由已知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m )(kx 2+m )x 1x 2=k 2+km (x 1+x 2)+m2x 1x 2,(7分)则km (x 1+x 2)+m 2=0,即-8k 2m 21+4k2+m 2=0k 2=14k =±12.(8分)②假设存在直线l 满足题设条件,且设D (x 0,y 0), 由OD →=λOM →+μON →,得x 0=λx 1+μx 2,y 0=λy 1+μy 2, 代入椭圆方程得:(λx 1+μx 2)24+(λy 1+μy 2)2=1,即:λ2⎝⎛⎭⎫x 214+y 21+μ2⎝⎛⎭⎫x 224+y 22+λμx 1x 22+2λμy 1y 2=1,则x 1x 2+4y 1y 2=0,即x 1x 2+4(kx 1+m )(kx 2+m )=0, 则(1+4k 2)x 1x 2+4km (x 1+x 2)+4m 2=0, 所以(1+4k 2)·4(m 2-1)1+4k 2-32k 2m 21+4k2+4m 2=0, 化简得:2m 2=1+4k 2,而k 2=14,则m =±1,(11分)此时,点M ,N 中有一点在椭圆的上顶点(或下顶点),与k 1,k ,k 2成等比数列相矛盾, 故这样的直线不存在.(12分) (21)(本小题满分12分)已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1). (Ⅰ)讨论函数f (x )的单调性;(Ⅱ)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 为自然对数的底数),求a 的取值范围.【解析】(Ⅰ)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a ,(1分) 当a >1时,ln a >0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减;(2分) 当0<a <1时,ln a <0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减.(3分)综上:x ∈(0,+∞)时,f (x )单调递增,x ∈(-∞,0)时,f (x )单调递减.(4分)(Ⅱ)不等式等价于:|f (x 1)-f (x 2)|max ≥e -1, 即f (x )max -f (x )min ≥e -1,(5分)由(Ⅰ)知,函数的最小值为f (0)=1,f (x )max =max {}f (-1),f (1), 而f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a -2ln a , 设g (a )=a -1a -2ln a ,则g ′(a )=1+1a 2-2a =⎝⎛⎭⎫1-1a 2>0,所以g (a )=a -1a -2ln a 在(0,+∞)单调递增,而g (1)=0,故a >1时,g (a )>0,即f (1)>f (-1);(7分) 0<a <1时,g (a )<0,即f (1)<f (-1).(8分) 所以当a >1时,原不等式即为:f (1)-f (0)≥e -1a -ln a ≥e -1,设h (a )=a -ln a (a >1),h ′(a )=1-1a =a -1a >0,故函数h (a )单调递增,又h (e)=e -1,则a ≥e ;(10分)当0<a <1时,原不等式即为:f (-1)-f (0)≥e -11a+ln a ≥e -1, 设m (a )=1a +ln a (0<a <1),m ′(a )=-1a 2+1a =a -1a 2<0,故函数m (a )单调递减,又m ⎝⎛⎭⎫1e =e -1,则0<a ≤1e.(11分) 综上,所求a 的取值范围是⎝⎛⎦⎤0,1e ∪[e ,+∞).(12分) 请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =2+t (t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=42cos ⎝⎛⎭⎫θ-π4.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)设曲线C 与直线l 的交点为A ,B, Q 是曲线上的动点,求△ABQ 面积的最大值.【解析】(Ⅰ)由⎩⎪⎨⎪⎧x =3-t ,y =2+t 消去t 得x +y -5=0,所以直线l 的普通方程为x +y -5=0.由ρ=42cos ⎝⎛⎭⎫θ-π4=4cos θ+4sin θ,得ρ2=4ρcos θ+4ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式,得x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8.所以曲线C 的直角坐标方程为(x -2)2+(y -2)2=8.(5分)(Ⅱ)由(Ⅰ)知,曲线C 是以(2,2)为圆心,22为半径的圆,直线l 过定点P (3,2),P 在圆内,将直线的参数方程代入圆的普通方程,得2t 2-2t -7=0,t 1+t 2=1,t 1·t 2=-72.所以|AB |=|t 1-t 2|=15,又因为圆心到直线的距离d =|2+2-5|2=22,故△ABQ 面积的最大值为S △ABQ =12×15×⎝⎛⎭⎫22+22=5304.(10分)(23)(本小题满分10分) 已知函数f (x )=|2x +1|+|2x -1|. (Ⅰ)求f (x )的值域;(Ⅱ)若对任意实数a 和b ,|2a +b |+|a |-12|a +b |·f (x )≥0,求实数x 的取值范围.【解析】(Ⅰ)∵f (x )=⎩⎪⎨⎪⎧-4x ,x ≤-12,2,-12<x <12,4x ,x ≥12,∴f (x )≥2.∴f (x )的值域为[2,+∞).(5分)(Ⅱ)当a +b =0,即a =-b 时,|2a +b |+|a |-12|a +b |f (x )≥0可化为2|b |-0·f (x )≥0,即2|b |≥0恒成立,∴x ∈R .当a +b ≠0时,∵|2a +b |+|a |=|2a +b |+|-a |≥|(2a +b )-a |=|a +b |, 当且仅当(2a +b )(-a )≥0,即(2a +b )a ≤0时,等号成立, 即当(2a +b )a ≤0时,|2a +b |+|a ||a +b |=1.∴|2a +b |+|a ||a +b |的最小值等于1.∵|2a +b |+|a |-12|a +b |·f (x )≥0|2a +b |+|a ||a +b |≥12f (x ),∴12f (x )≤1,即f (x )≤2. 由(Ⅰ)知f (x )≥2,∴f (x )=2.当且仅当-12≤x ≤12时,f (x )=2.综上所述,实数x 的取值范围是⎣⎡⎦⎤-12,12.(10分)。

湖南师大附中2018届高三月考试卷(七)(教师版)数学(理)含解析

湖南师大附中2018届高三月考试卷(七)(教师版)数学(理)含解析

湖南师大附中2018届高三月考试卷(七)数 学(理科)命题人:周正安 杨章远 审题人:李昌平本试题卷包括选择题、填空题和解答题三部分,共10页.时量120分钟.满分150分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.(1)已知集合A ={}x |(x -1)2+y 2=1,x ∈R ,B ={}y |y =1-x 2,x ∈R ,则A ∩B =(B) (A)[]0,2 (B)[]0,1 (C)(-∞,0] (D)[1,+∞) 【解析】A =[]0,2,B =(-∞,1]A ∩B =[]0,1.(2)已知复数z 满足(1-i)z =2i ,且z +ai(a ∈R )为实数,则a =(C) (A)1 (B)2 (C)-1 (D)-2【解析】由(1-i)z =2i ,解得z =-1+i ,故z +ai =-1+(a +1)i 为实数时,a =-1. (3)已知S n 为等差数列{}a n 的前n 项和,若a 7=1,a 1-S 4=9,则数列{}S n 中的最小项为(B) (A)S 1 (B)S 5,S 6 (C)S 4 (D)S 7【解析】令等差数列{}a n 的公差为d ,则⎩⎨⎧a 1+6d =1,a 1-4a 1-6d =9,解得a 1=-5,d =1,有a n =n -6,S n =n (n -11)2,则当n =5或6时,S n 最小.(4)已知⎝⎛⎭⎫x -1x n的展开式中第3项与第6项的二项式系数相等,记展开式中系数最大的项为第k 项,则k =(A)(A)5 (B)4 (C)4或5 (D)5或6【解析】⎝⎛⎭⎫x -1x n的展开式中第3项与第6项的二项式系数相等,∴n =2+5=7,第r +1项的系数为T r +1=C r7(-1)r ,r =4时T r +1最大,故展开式中系数最大的项为第5项.(5)执行如右图所示的程序框图,若输入a =7,b =1,则输出S 的结果是(D) (A)16 (B)19 (C)34 (D)50【解析】第一次a =7,b =1,S =7, 第二次a =6,b =2,S =19,第三次a =5,b =3,S =34,第四次a =4,b =4,S =50后,程序结束.(6)从1,2,3,4,5,6,7,8,9这九个数字中任意取出两个数字作和,则使得和为偶数的概率值为(C)(A)13 (B)23 (C)49 (D)59【解析】p =C 24+C 25C 29=49. (7)为得到函数y =cos ⎝⎛⎭⎫2x +π3的图象,只需将函数y =sin 2x 的图象(C)(A)向左平移56π个长度单位 (B)向右平移56π个长度单位(C)向左平移512π个长度单位 (D)向右平移512π个长度单位【解析】∵y =sin 2x =f(x)=cos ⎝⎛⎭⎫2x -π2,∴f ⎝⎛⎭⎫x +512π=cos ⎝⎛⎭⎫2x +π3. (8)一个三棱锥的正视图和俯视图如右图所示,则该三棱锥的侧视图可能为(D)【解析】分析三视图可知,该几何体为如下图所示的三棱锥,其中平面ACD ⊥平面BCD.(9)已知A 是双曲线x 2a 2-y 2b2=1(a>0,b>0)的左顶点,F 1、F 2分别为双曲线的左、右焦点,P为双曲线上一点,G 是△PF 1F 2的重心,若存在实数λ使得GA →=λPF 1→,则双曲线的离心率为(A)(A)3 (B)2 (C)4 (D)与λ的取值有关【解析】由题意,PG =2GO ,GA ∥PF 1,∴2OA =AF 1,∴2a =c -a ,∴c =3a ,∴e =3.(10)已知对任意的x ∈(0,+∞),函数f(x)满足:0<f(x)<xf′(x)<2f(x),则f (2)f (1)的取值范围是(A)(A)(2,4) (B)(1,2) (C)(0,1) (D)(0,2)【解析】令g(x)=f (x )x (x ∈(0,+∞)),则g′(x)=xf′(x )-f (x )x 2>0,于是g(x)在(0,+∞)上单调递增,故有g(2)>g(1),即f (2)2>f (1)1,也就是f (2)f (1)>2;再令h(x)=f (x )x 2(x ∈(0,+∞)),则h′(x)=xf′(x )-2f (x )x 3<0,于是h(x)在(0,+∞)上单调递减,故有h(2)<h(1),即f (2)22<f (1)1,也就是f (2)f (1)<4.(11)已知平面上四点A 、B 、C 、D 满足||DA →=||DB→=1,DA →·DB →=0,DB →·DC →=λ,DC →·DA →=-1-λ2,其中λ∈[]-1,1,则△ABC 面积的最大值为(C)(A)32 (B)1 (C)2+12 (D)3+12【解析】由已知条件可建立直角坐标系如图所示, D(0,0),A(1,0),B(0,1),令∠BDC =θ, 则∠ADC =270°-θ或90°-θ,有⎩⎨⎧λ2=(DB →·DC →)2=||DC →2cos 2θ,1-λ2=(DC →·DA →)2=||DC→2sin 2θ, 故有||DC →=1,又因为DC →·DA →=-1-λ2<0,故点C 在以D 为圆心,1为半径的左半圆上,从而,当点C 在优弧AB 上且该处圆的切线与AB 平行时,△ABC 面积取到最大值,此最大值为2+12.(12)已知只有50项的数列{}a n 满足下列三个条件: ①a i ∈{}-1,0,1,i =1,2,…,50; ②a 1+a 2+…+a 50=9;③101≤(a 1+1)2+(a 2+1)2+…+(a 50+1)2≤111.对所有满足上述条件的数列{}a n ,a 21+a 22+…+a 250共有k 个两两不同的值,则k =(C)(A)10 (B)11 (C)6 (D)7【解析】设a 1,a 2,…,a 50中有s 项取值0,由条件(2)知,取值1的项数为50-s -92+9,取值-1的项数为50-s -92,再由条件③得101≤s +4⎝⎛⎭⎫50-s -92+9≤111,解得7≤s ≤17,又易知s 必为奇数,故s =7,9,11,13,15,17.它们对应6个不同的值a 21+a 22+…+a 250=50-s.第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题,本大题共4小题,每小题5分,共20分.(13)计算sin 20°cos 10°-cos 160°sin 370°=__12__.(14)将1,2,3,4,5这五个数字任意排成一排即成一个五位数,若该五位数为偶数且2与3相邻,则这样的五位数的个数为__18__.【解析】第1类,个位数为2,有A 33=6个;第2类,个位数为4,有A 22A 33=12个.(15)已知实数x ,y 满足⎩⎨⎧y ≤1,x -y -1≤0,x +y -1≥0,则x 2+2y 2的取值范围是__⎣⎡⎦⎤23,6__.【解析】作出可行域为以A(1,0),B(2,1),C(0,1)为顶点的△ABC 的边界及内部.对任意固定的y ∈[]0,1,下面分别求x 2+2y 2的最小值与最大值:x 2+2y 2≥(1-y)2+2y 2=3⎝⎛⎭⎫y -132+23≥23,x 2+2y 2≤(1+y)2+2y 2=3y 2+2y +1≤6.(16)若存在x 0∈(0,1),使得(3-x 0)eax 0≥3+x 0(其中e 为自然对数的底数),则实数a 的取值范围是__⎝⎛⎭⎫23,+∞__. 【解析】∵存在x 0∈(0,1),使得(3-x 0)eax 0≥3+x 0,即ax 0-ln(3+x 0)+ln(3-x 0)≥0. 令f(x)=ax -ln(3+x)+ln(3-x)(x ∈(0,1)),由于f(0)=0,f ′(x)=a -69-x 2,69-x 2∈⎝⎛⎭⎫23,34, 若a ≤23,则f′(x)≤0,f(x)递减,有f(x)<f(0)=0,不合题意;若a ≥34,则f′(x)≥0,f(x)递增,有f(x)>f(0)=0,符合题意;若23<a<34,则存在t ∈(0,1),使得f′(t)=0,又f′(x)在(0,1)上单调递减,故存在x ∈(0,t),使得f ′(x)>0,即f(x)在(0,t)上递增,有f(x)>f(0)=0,符合题意.综上,a ∈⎝⎛⎭⎫23,+∞. 三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}a n 的前n 项和为S n ,且a n -2S n =1. (Ⅰ)求数列{}a n 的通项公式;(Ⅱ)设b n =⎝ ⎛⎭⎪⎫n 2+2n +1n (n +1)·a n,求数列{b n }的前n 项和T n .【解析】(Ⅰ)a n -2S n =1中令n =1得a 1=-1,由a n -2S n =1可得,a n +1=S n +1-S n =a n +1-12-a n -12,整理得a n +1=-a n ,所以{}a n 是首项为-1,公比为-1的等比数列,故a n =()-1n.(5分)(Ⅱ)由题意,b n =⎝⎛⎭⎪⎫n 2+2n +1n (n +1)·()-1n=(-1)n ·n 2+(-1)n ·2n +1n (n +1) =(-1)n ·n 2+(-1)n ·⎣⎡⎦⎤1n +1(n +1).当n 为偶数时,T n =()-1+22-32+42-…-(n -1)2+n 2-⎝⎛⎭⎫11+12+⎝⎛⎭⎫12+13-…-⎝⎛⎭⎫1n -1+1n +⎝⎛⎭⎫1n +1n +1=()1+2+3+…+n -1+1n +1=n (n +1)2-n n +1;(9分)当n 为奇数时,T n =T n -1+b n =n (n -1)2-n -1n -n 2-⎝⎛⎭⎫1n +1n +1=-n (n +1)2-n +2n +1,综上所述,T n=⎩⎪⎨⎪⎧n (n +1)2-nn +1,n 为偶数,-n (n +1)2-n +2n +1,n 为奇数.(12分)(18)(本小题满分12分)如图(1),在边长为2的正方形ABCD 中,E 是边AB 的中点.将△ADE 沿DE 折起,如图(2),F 是折叠后AC 的中点.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)若平面ADE ⊥平面BCDE ,求BF 与平面ABD 所成角的正弦值.【解析】(Ⅰ)取AD 中点G ,连结EG ,FG ,∵F 为AC 中点, ∴FG 綊12CD ,BE 綊12CD∴FG 綊BE ,从而四边形EBFG 是平行四边形.(3分) ∴BF ∥EG ,又BF 平面ADE ,EG 平面ADE , ∴BF ∥平面ADE.(5分)(Ⅱ) 如图所示以B 为坐标原点,建立空间直角坐标系,在图(1)中作AH ⊥DE 于H ,易求得EH =15,AH =25,作HN ⊥AE 于N ,HM ⊥BC 于M ,则HN =25,HM =65,所以A ⎝⎛⎭⎫25,65,25.(7分)而B(0,0,0),D(2,2,0),则BA →=⎝⎛⎭⎫25,65,25,BD →=(2,2,0).设平面ABD 的法向量为n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·BA →=0,n ·BD →=0⎩⎪⎨⎪⎧25x +65y +25z =0,2x +2y =0,解得一个法向量为n =(-5,5,-2).(9分)又C(2,0,0),∴F ⎝⎛⎭⎫65,35,15,∴BF →=⎝⎛⎭⎫65,35,15,∵cos 〈n ,BF →〉=n ·BF →||n ·||BF→=-3514.∴BF 与平面ABD 所成角的正弦值为3514.(12分) (19)(本小题满分12分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次,在A 处每投进一球得3分,在B 处每投进一球得2分,没有投进得0分;如果前两次得分之和超过3分,即停止投篮,否则投三次,且假设所有人在A 处的命中率为14,在B 处的命中率为q ⎝⎛⎭⎫14<q<1.已知同学甲选择只在B 处投球.(Ⅰ)若q =35,求同学甲最终得分的分布列与期望;(Ⅱ)若同学乙选择先在A 处投一球,以后都在B 处投,试判断甲、乙两位同学,哪位同学最终得分超过3分的概率更大一些?并说明理由.【解析】(Ⅰ)用X 表示同学甲投篮结束后所得的总分,则X 的可能取值为0,2,4,则P(X =0)=⎝⎛⎭⎫253=8125,P(X =2)=C 13×⎝⎛⎭⎫252×35=36125,P(X =4)=⎝⎛⎭⎫352+2×⎝⎛⎭⎫352×25=81125, 随机变量X数学期望为:E(X)=0×8125+2×36125+4×81125=396125.(6分)(Ⅱ)设在A 处投中为事件A ,在B 处投中为事件B ,则事件A 、B 相互独立,记同学甲最终得分超过3分为事件C ,则P(C)=P(BB)+P(B B -B)+P(B -BB)=q 2(3-2q),记同学乙最终得分超过3分为事件D ,则P(D)=P(AB)+P(A -BB)+P(A B -B)=14q +34q 2+14q(1-q)=12q(1+q),而P(C)-P(D)=-2q 3+52q 2-12q =-12q(4q -1)(q -1)>0,故同学甲最终得分超过3分的概率更大一些.(12分) (20)(本小题满分12分)设x ,y ∈R ,向量i ,j 分别为平面直角坐标内x ,y 轴正方向上的单位向量,若向量a =(x +1)i +y j ,b =(x -1)i +y j ,且|a |+|b |=4.(Ⅰ)求点M(x ,y)的轨迹C 的方程;(Ⅱ)记轨迹C 与x 轴的左、右交点分别为A ,B ,点S 是C 上位于x 轴上方的动点,直线AS ,BS 与直线l :x =-4分别交于M ,N 两点,当线段MN 的长度最小时,在轨迹C 上是否存在点T 使得△TSA 的面积为14?若存在,确定点T 的个数;若不存在,说明理由.【解析】(Ⅰ)∵a =(x +1)i +y j ,b =(x -1)i +y j ,且|a |+|b |=4.∴(x +1)2+y 2+(x -1)2+y 2=4,即点M(x ,y)到两个定点F 1(-1,0),F 2(1,0)的距离之和为4.(2分) ∴ 点M 的轨迹C 是以F 1、F 2为焦点的椭圆,设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a>b>0),则:a =2,c =1,∴b 2=a 2-c 2=3,故所求轨迹C 的方程为x 24+y 23=1.(4分)(Ⅱ)易知A ,B 的坐标为A(-2,0),B(2,0),直线AS 的斜率k 显然存在,且k>0, 故可设直线AS 的方程为y =k(x +2),从而M(-4,-2k). 由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0,设S(x 1,y 1),则(-2)x 1=16k 2-123+4k 2,得x 1=6-8k 23+4k 2,从而y 1=12k 3+4k 2,即S ⎝ ⎛⎭⎪⎫6-8k 23+4k 2,12k 3+4k 2.又B(2,0),故直线BS 的方程为y =-34k(x -2),由⎩⎪⎨⎪⎧y =-34k (x -2),x =-4得⎩⎪⎨⎪⎧x =-4,y =92k,所以N ⎝⎛⎭⎫-4,92k . 故||MN =⎪⎪⎪⎪-2k -92k =2k +92k ≥22k·92k=6, 当且仅当2k =92k 时,即k =32时等号成立,所以k =32时,线段MN 的长度取最小值6.(8分)此时直线AS 的方程为3x -2y +6=0,S ⎝⎛⎭⎫-1,32, 所以||AS =132,要使△TSA 的面积为14,只需点T 到直线AS 的距离等于1313,所以点T 在平行于AS 且与AS 距离等于1313的直线l′上,设l′:3x -2y +t =0,则由||t -613=1313,解得t =7或t =5.①当t =7时,由⎩⎪⎨⎪⎧x 24+y 23=1,3x -2y +7=0得12x 2+42x +37=0,由于Δ=-12<0,故直线l′与椭圆C 无交点;②当t =5时,由⎩⎪⎨⎪⎧x 24+y 23=1,3x -2y +5=0得12x 2+30x +13=0,由于Δ=276>0,故直线l′与椭圆C 有两个交点,综上所求点T 的个数是2个.(12分) (21)(本小题满分12分)已知函数f(x)=a +sin xe x,a ∈R ,e 为自然对数的底数.(Ⅰ)若函数f(x)存在单调递增区间,求实数a 的取值范围;(Ⅱ)若a =0,试讨论方程f(x)=cos x x 在⎣⎡⎦⎤π4,π2上解的个数;(Ⅲ)证明:对任意的a ≥0,x ∈[]-1,1,恒有e 1-3x >2f ′(x)成立.【解析】(Ⅰ)由已知得f′(x)=cos x -a -sin xe x,因为函数f(x)存在单调递增区间,所以f′(x)>0有解. 即cos x -a -sin x>0有解,所以a<()cos x -sin x max,又cos x -sin x =-2sin ⎝⎛⎭⎫x -π4,所以a< 2.(4分)(Ⅱ)由题意,只需讨论g(x)=e x cos x -xsin x 在⎣⎡⎦⎤π4,π2上的零点个数,而g′(x)=e x cos x -e x sin x -sin x -xcos x =e x(cos x -sin x)-(sin x +xcos x),因为x ∈⎣⎡⎦⎤π4,π2,所以cos x -sin x ≤0,sin x +xcos x>0,所以g′(x)<0,故g(x)在⎣⎡⎦⎤π4,π2上单调递减,而g ⎝⎛⎭⎫π4=22⎝⎛⎭⎫e π4-π4,令h(x)=e x -x -1,则h′(x)=e x -1,由h′(x)<0得x<0,所以h(x)在(-∞,0)单调递减,由h′(x)>0得x>0,所以h(x)在(0,+∞)单调递增,故h(x)≥h(0)=0,从而e x ≥x +1>x.于是g ⎝⎛⎭⎫π4=22⎝⎛⎭⎫e π4-π4>0, 而g ⎝⎛⎭⎫π2=-π2<0,且函数g(x)的图象在⎣⎡⎦⎤π4,π2上是连续不断的,因此,函数g(x)在⎣⎡⎦⎤π4,π2上有且只有一个零点.(8分) (Ⅲ)由于f′(x)=cos x -a -sin x ex,即证:e 1-2x +2sin x -2cos x +2a>0对a ≥0,x ∈[]-1,1成立,只需证:e 1-2x +22sin ⎝⎛⎭⎫x -π4>0对x ∈[]-1,1恒成立,由(Ⅱ)可知,e x ≥x +1,所以有:e 1-2x ≥2-2x(当且仅当x =12时取等) ①只需证:2-2x +22sin ⎝⎛⎭⎫x -π4≥0对x ∈[]-1,1恒成立, 令函数φ(x)=2-2x +22sin ⎝⎛⎭⎫x -π4,x ∈[]-1,1,则φ′(x)=-2+22cos ⎝⎛⎭⎫x -π4=22⎣⎡⎦⎤cos ⎝⎛⎫x -π4-22, 当x ∈[]0,1时,x -π4∈⎣⎡⎦⎤-π4,1-π4,φ′(x)≥0,即φ(x)在[]0,1上是增函数,当x ∈[)-1,0时,x -π4∈⎣⎡⎭⎫-1-π4,-π4,φ′(x)<0,即φ(x)在x ∈[)-1,0上是减函数,所以,在[]-1,1上,φ()x ≥φ()0=0,所以φ()x ≥0.所以2-2x +22sin ⎝⎛⎭⎫x -π4≥0(当且仅当x =0时取等) ②因为①②不能同时取等号,所以:e 1-2x +22sin ⎝⎛⎭⎫x -π4>0对x ∈[]-1,1恒成立,所以对任意的a ≥0,x ∈[]-1,1,恒有e 1-3x >2f ′(x)成立.(12分)请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a +acos β,y =asin β(a>0,β为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π6=32.(Ⅰ)若曲线C 上的点到直线l 的距离的最小值为1,求实数a 的值;(Ⅱ)若A ,B 为曲线C 上的两点,且∠AOB =π3,求△OAB 的周长的最大值.【解析】(Ⅰ)曲线C 是以()a ,0为圆心,以a 为半径的圆; 直线l 的直角坐标方程为x +3y -3=0.(2分)若曲线C 上的点到直线l 的距离的最小值为1,则有||a -32=a +1,解得:a =13.故所求实数a 的值为13.(5分)(Ⅱ)由题意,曲线C 的极坐标方程为ρ=2acos θ,θ∈⎣⎡⎭⎫-π2,π2,设A 的极角为θ,B的极角为θ+π3,则:||OA =||2acos θ,||OB =⎪⎪⎪⎪2acos ⎝⎛⎭⎫θ+π3,由正弦定理得:||AB sin π3=2a ,所以||AB =3a ,所以△ABO 的周长为C △ABO =||OA +||OB +||AB =a ⎣⎡⎦⎤3+2||cos θ+2⎪⎪⎪⎪cos ⎝⎛⎭⎫θ+π3,而cos ⎝⎛⎫θ+π3+cos θ=-32sin θ+32cos θ=-3sin ⎝⎛⎭⎫θ-π3≤3,所以当θ=-π6时,cos ⎝⎛⎭⎫θ+π3+cos θ取得最大值 3.所以△OAB 的周长的最大值为33a.(10分) (23)(本小题满分10分)选修4-5:不等式选讲 设函数f(x)=|2x -1|,x ∈R . (Ⅰ)解不等式f(x)+f(x +1)≤2;(Ⅱ)已知不等式f(x)≤f(x +2)-||x -a 的解集为M ,若⎝⎛⎭⎫12,1M ,求实数a 的取值范围. 【解析】(Ⅰ)原不等式等价于||2x -1+||2x +1≤2,而||2x -1+||2x +1≥2当且仅当()2x -1(2x +1)≤0时取等,即-12≤x ≤12,故不等式的解集为⎣⎡⎦⎤-12,12.(5分) (Ⅱ)因为⎝⎛⎭⎫12,1M ,则当x ∈⎝⎛⎭⎫12,1时,f(x)≤f(x +2)-||x -a 恒成立, 等价于||2x -1-||2x +3+||x -a ≤0在x ∈⎝⎛⎭⎫12,1恒成立,即||x -a ≤4在x ∈⎝⎛⎭⎫12,1恒成立,即x -4≤a ≤x +4在x ∈⎝⎛⎭⎫12,1恒成立,所以()x -4max≤a ≤()x +4min,故所求a 的取值范围是⎣⎡⎦⎤-3,92. (10分)。

湖南师大附中2018届高三月考试卷

湖南师大附中2018届高三月考试卷

湖南师大附中2018届高三月考试卷(一)数 学(理科)命题人:黄祖军 徐凡训 审题:高三备课组(考试范围:高考全部内容(除选考部分))得分:一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.(1)设全集U =R ,集合A ={x |1〈x 〈4},集合B ={x |2≤x 〈5},则A ∩( U B )=(B) (A){x |1≤x 〈2} (B){x |1〈x 〈2} (C){x |x 〈2} (D){x |x ≥5}【解析】A UB ={x |x 〈2或x ≥5},故A ∩((A U B )={x |1〈x 〈2},故选B. (2)若a 〉b 〉0,c <d <0,则一定有(B) (A)a d 〉b c (B)a d 〈b c (C)a c 〉b d (D)a c 〈b d【解析】∵c <d <0,∴1d <1c <0,∴-1d >-1c >0,而a >b >0,∴-a d >-b c >0,∴a d <bc,故选B. (3)一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为(C)(A)48 cm 2 (B)144 cm 2 (C)80 cm 2 (D)64 cm 2【解析】三视图复原的几何体是正四棱锥,斜高是5 cm ,底面边长是8 cm ,侧面积为12×4×8×5=80(cm 2).故选C.(4)命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题(D)(A)与原命题同为假命题 (B)与原命题的否命题同为假命题 (C)与原命题的逆否命题同为假命题 (D)与原命题同为真命题 【解析】原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.故选D.(5)函数f (x )=ln(x 2+2)的图象大致是(D)【解析】由已知,函数为偶函数,所以C 错;函数的定义域为R ,所以B 错;令x =0,f (0)=ln 2≠0,所以A 错;故选D.(6)设函数f (x )=错误!则满足f (x )≤2的x 的取值范围是(C) (A)[-1,2] (B)[0,2] (C)[0,+∞) (D)[1,+∞)【解析】当x ≤1时,21-x ≤2,解得x ≥0,又因为x ≤1,所以0≤x ≤1;当x 〉1时,1-log 2x ≤2,解得x ≥12,又因为x 〉1,所以x 〉1.故x 的取值范围是[0,+∞).故选C.(7)m ∈(-∞,-2)是方程x 2m -5+y 2m 2-m -6=1表示的图形为双曲线的(A)(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件【解析】当m 〈-2时,m -5〈0,m 2-m -6=(m -3)(m +2)〉0,所以此方程表示焦点在y 轴上的双曲线;反之,若此方程表示双曲线,则m 〈-2不成立.如m =4也表示双曲线.所以m ∈(-∞,-2)是方程x 2m -5+y 2m 2-m -6=1表示的图形为双曲线的充分不必要条件.(8)122-1+132-1+142-1+…+1(n +1)2-1的值为(C) (A)n +12(n +2)(B)34-n +12(n +2)(C)34-12⎝⎛⎭⎫1n +1+1n +2 (D)32-1n +1+1n +2 【解析】∵1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, ∴122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2=34-12⎝⎛⎭⎫1n +1+1n +2. (9)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b =c ,且满足sin B sin A =1-cos B cos A ,若点O 是△ABC 外一点,∠AOB =θ(0〈θ〈π),OA =2OB =2,则平面四边形OACB 面积的最大值是(A)(A)2+534 (B)1+534 (C)3 (D)2+52【解析】由已知得sin(A +B )=sin A sin C=sin A c =a ,又b =c ,∴△ABC 为等边三角形,∴AB 2=5-4cos θ,S OACB =12×1×2sin θ+34AB 2=sin θ-3cos θ+534=2sin ⎝⎛⎭⎫θ-π3+534≤2+534,选A. (10)△ABC 中,∠A =90°,AB =2,AC =1,设点P 、Q 满足AP =λAB ,AQ =(1-λ)AC ,λ∈R .若BQ ·CP =-2,则λ=(A)(A)13 (B)23 (C)43(D)2 【解析】以点A 为坐标原点,以AB 为x 轴的正方向,AC 为y 轴的正方向,建立平面直角坐标系,由题知B (2,0),C (0,1),P (2λ,0),Q (0,1-λ),BQ =(-2,1-λ),CP =(2λ,-1),∵BQ ·CP =-2,∴1+3λ=2,解得λ=13,故选A.(11)已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下依次与上述两曲线交于点A ,B ,C ,D (如图所示),则有|AB |·|CD |(A)(A)等于1 (B)最小值是1 (C)等于4(D)最大值是4【解析】设直线l :x =ty +1,代入抛物线方程,得y 2-4ty -4=0.设A (x 1,y 1),D (x 2,y 2),根据线定义得|AF |=x 1+1,|DF |=x 2+1,故|AB |=x 1,|CD |=x 2,所以|AB |·|CD |=x 1x 2=y 214·y 224=(y 1y 2)216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A.(12)已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是(D)(A)⎣⎡⎭⎫0,12 (B)⎣⎡⎭⎫12,+∞ (C)⎣⎡⎭⎫0,13 (D)⎝⎛⎦⎤0,12【解析】方程f (x )-mx -m =0有两个不同的根 f (x )=m (x +1)有两个不同的根 y =f (x )与函数y =m (x +1)的图象有两个不同的交点,当x ∈(-1,0)时,x +1∈(0,1),f (x )+1=1f (x +1)=1x +1,∴f (x )=1x +1-1, 所以f (x )=错误!在同一坐标系内作出y =f (x ),x ∈(-1,1]与y =m (x +1)的图象,由图象可知,当两个函数图象有两个不同公共点时,m 的取值范围为⎝⎛⎦⎤0,12. 二、填空题,本大题共4小题,每小题5分,共20分.(13)设{a n }是由正数..组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则其公比q 等于 12.【解析】∵{a n }是由正数组成的等比数列,且a 2a 4=1, ∴设{a n }的公比为q ,则q 〉0,且a 23=1,即a 3=1. ∵S 3=7,∴a 1+a 2+a 3=1q 2+1q +1=7,即6q 2-q -1=0.故q =12或q =-13(舍去),∴q =12.(14)某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站 5 公里处.【解析】设x 为仓库与车站距离,由已知y 1=20x ,y 2=0.8x .费用之和y =y 1+y 2=0.8x +20x≥2 0.8x ·20x =8,当且仅当0.8x =20x,即x =5时“=”成立.(15)已知函数f (x )=x 2-x ,x ,y 满足条件错误!若目标函数z =ax +y (其中a 为常数)仅在⎝⎛⎭⎫12,12处取得最大值,则a 的取值范围是 (-1,1) .【解析】由已知得错误!即错误!目标函数z =ax +y (其中a 为常数)仅在⎝⎛⎭⎫12,12处取得最大值,即y =-ax +z 在过点⎝⎛⎭⎫12,12时在y 轴的截距最大,如图,知所求a 的取值范围是(-1,1). (16)给定集合A ={a 1,a 2,a 3,…,a n }(n ∈N ,n ≥3),定义a i +a j (1≤i 〈j ≤n ,i ,j ∈N )中所有不同值的个数为集合A 两元素和的容量,用L (A )表示. ①若A ={2,4,6,8},则L (A )= 5 ;②若数列{a n }是等差数列,设集合A ={a 1,a 2,a 3,…,a m }(其中m ∈N *,m 为常数),则L (A )关于m 的表达式为 2m -3 .【解析】①∵2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,∴L (A )=5. ②不妨设数列{a n }是递增等差数列可知a 1〈a 2〈a 3〈…〈a m ,则a 1+a 2〈a 1+a 3〈…〈a 1+a m 〈a 2+a m 〈…〈a m -1+a m ,故a i +a j (1≤i 〈j ≤m )中至少有2m -3个不同的数.又据等差数列的性质:当i +j ≤m 时,a i +a j =a 1+a i +j -1; 当i +j 〉m 时,a i +a j =a i +j -m +a m ,因此每个和a i +a j (1≤i 〈j ≤m )等于a 1+a k (2≤k ≤m )中一个, 或者等于a l +a m (2≤l ≤m -1)中的一个.故L (A )=2m -3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第(17)~(21)题为必考题,每个试题考生都必须作答.第(22),(23)题为选考题,考生根据要求作答.(一)必考题:60分. (17)(本小题满分12分)已知函数f (x )=a sin x +b cos x ,a ≠0,x ∈R ,f ⎝⎛⎭⎫2π3=1,f (x )的最大值是2. (Ⅰ) 求a 、b 的值;(Ⅱ) 先将f (x )的图象上每点的横坐标缩小为原来的12,纵坐标不变,再将其向右平移π6个单位得到函数g (x )的图象,已知g ⎝⎛⎭⎫α+π4=1013,α∈⎝⎛⎭⎫π6,π2,求cos 2α的值. 【解析】(Ⅰ)由已知有:错误!解之得:错误!3分 (Ⅱ) 由(Ⅰ)有f (x )=3sin x +cos x =2sin ⎝⎛⎭⎫x +π6,5分 因为将f (x )的图象上每点的横坐标缩小为原来的12,纵坐标不变,再将其向右平移π6个单位得到函数g (x )的图象,则g (x )=2sin ⎝⎛⎭⎫2x -π6,7分 由g ⎝⎛⎭⎫α+π4=1013,α∈⎝⎛⎭⎫π6,π2得sin ⎝⎛⎭⎫2α+π3=513,且2α+π3∈⎝⎛⎭⎫2π3,π, 则cos ⎝⎛⎭⎫2α+π3=-1213,10分 cos 2α=cos ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=cos ⎝⎛⎭⎫2α+π3cos π3+sin ⎝⎛⎭⎫2α+π3sin π3 =-1213×12+513×32=53-1226.12分(18)(本小题满分12分)如图,平行四边形ABCD 中,∠DAB =60°,AB =2AD =2,M 为CD 边的中点,沿BM 将△CBM 折起使得平面BMC ⊥平面ABMD .(Ⅰ)求证:平面AMC ⊥平面BMC ;(Ⅱ)求四棱锥C -ADMB 的体积;(Ⅲ)求折后直线AB 与平面ADC 所成的角的正弦值.【解析】(Ⅰ)∵ 平面BMC ⊥平面ABMD ,平面BMC ∩平面ABMD =MB , 由题易知AM ⊥MB ,且AM 平面ABMD , ∴ AM ⊥平面BMC , 而AM 平面AMC , ∴平面AMC ⊥平面BMC . 3分(Ⅱ)由已知有△CMB 是正三角形,取MB 的中点O , 则CO ⊥MB . 又平面BMC ⊥平面ABMD 于MB , 则CO ⊥平面ABMD ,且CO =32,5分 易求得S 梯形ABMD =334, ∴V C -ABDM =13×334×32=38.7分(Ⅲ)作Mz ∥CO ,由(Ⅰ)知可如图建系,则A (3,0,0),B (0,1,0),C ⎝⎛⎭⎫0,12,32,AB =(-3,1,0).又MD =12BA 得D ⎝⎛⎭⎫32,-12,0,CA =⎝⎛⎭⎫3,-12,-32,CD =⎝⎛⎭⎫32,-1,-32.9分设平面ACD 的法向量n =(x ,y ,z ),则错误!得n =(1,-错误!,3). 设折后直线AB 与平面ADC 所成的角为θ,则sin θ=|n ·AB ||n ||AB |=3913.12分 (19)(本小题满分12分)一商家诚邀甲、乙两名围棋高手进行一场网络围棋快棋比赛.每比赛一局商家要向每名棋手支付2 000元对局费,同时商家每局从转让网络转播权及广告宣传中获利14 000元.从两名棋手以往的比赛中得知: 甲每局获胜的概率为35,乙每局获胜的概率为25,两名棋手约定:最多下五局,先连胜两局者获胜,比赛结束,比赛结束后,商家为获胜者颁发5 000元的奖金,若没有决出获胜者则各颁发2 500元.(Ⅰ)求下完五局且甲获胜的概率是多少?(Ⅱ)商家从这场网络棋赛中获得的收益的数学期望是多少? 【解析】(Ⅰ)设下完五局且甲获胜为事件A ,则5局的胜负依次为: 乙胜、甲胜、乙胜、甲胜、甲胜.P (A )=⎝⎛⎭⎫353·⎝⎛⎭⎫252=1083 125.4分(Ⅱ) 设ξ表示比赛的局数,η表示商家相应的的收益. 则η=(14 000-2×2 000)ξ-5 000=10 000ξ-5 000, 根据题意ξ可取2,3,4,5. P (ξ=2)=⎝⎛⎫352+⎝⎛⎭⎫252=1325; P (ξ=3)=25×⎝⎛⎭⎫352+35×⎝⎛⎭⎫252=625;P (ξ=4)=25×⎝⎛⎭⎫353+35×⎝⎛⎭⎫253=78625;P (ξ=5)=2×⎝⎛⎭⎫252×⎝⎛⎭⎫352=72625或P (ξ=5)=1-[P (ξ=2)+P (ξ=3)+P (ξ=4)]=72625.10分 ∴Eξ=2×1325+3×625+4×78625+5×72625=1 772625,Eη=10 000Eξ-5 000=28 352-5 000=23 352.商家从这场网络棋赛中获得的收益的数学期望是23 352元. 12分或单设ξ为收益,可取15 000,25 000,35 000,45 000.相应的概率与上同,再求Eξ. (20)(本小题满分12分)已知抛物线的方程x 2=2y ,F 是其焦点,O 是坐标原点,由点P (m ,-3)(m 可为任何实数)向抛物线作两条切线,切点分别是A (x 1,y 1),B (x 2,y 2).(Ⅰ)求证:OA ·OB =3;(Ⅱ)证明直线AB 过定点并求△ABO 与△AFO 面积之和的最小值.【解析】(Ⅰ)由y =x 22得y ′=x ,设由点P (m ,-3)向抛物线作切线的切点的坐标是⎝⎛⎭⎫x ,x 22, 则切线的斜率等于点P 与切点连线的斜率,即:x =x 22-(-3)x -m ,2分得x 2-2mx -6=0,设切点A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222,则x 1x 2=-6, 故OA ·OB =x 1x 2+x 212·x 222=-6+(-6)24=3.5分另法:设切线方程:y +3=k (x -m )与x 2=2y 联立得:x 2-kx +mk +3=0,其判别式k 2-4(mk +3)=0,得两条切线的斜率之积k 1k 2=-12,切点横坐标x =k 2,两切点的横坐标之积x 1x 2=k 12·k 22=-6,再后同上.(Ⅱ)设直线AB 的方程为:y =kx +b ,代入x 2=2y 整理得:x 2-2kx -2b =0, 设A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222,则x 1x 2=-2b =-6,即b =3, 即直线AB :y =kx +3过定点D (0,3).8分 因为x 1x 2=-6<0,不妨设x 1〈0〈x 2, S △ABO +S △AFO =12|OD |(|x 1|+|x 2|)+12|OF ||x 1|=32(x 2-x 1)-14x 1=32x 2+212x 2≥232x 2·212x 2=37, 当且仅当32x 2=212x 2即x 2=7时取等号.此时面积之和取最小值37.12分(21)(本小题满分12分)(Ⅰ)已知函数f (x )=x (1-x 2)x 2+1,x ∈⎣⎡⎦⎤12,1,求f (x )的最大值; (Ⅱ)已知函数g (x )=ax +b x 2+c 是定义在R 上的奇函数,且当x =1时取得极大值1.(ⅰ)求g (x )的表达式;(ⅱ)若x 1=12,x n +1=g (x n ),n ∈N +,求证:(x 2-x 1)2x 1x 2+(x 3-x 2)2x 2x 3+…+(x n +1-x n )2x n x n +1≤310. 【解析】(Ⅰ)f ′(x )=(1-3x 2)(x 2+1)-2x (x -x 3)(x 2+1)2=1-4x 2-x 4(x 2+1)2=5-(x 2+2)2(x 2+1)2.易知当x ∈⎣⎡⎦⎤12,1时,恒有f ′(x )〈0,∴f max (x )=f ⎝⎛⎭⎫12=310.3分 (Ⅱ)(ⅰ)由已知有g (0)=0 b =0,则g (x )=axx 2+c ,g ′(x )=a (x 2+c )-2ax 2(x 2+c )2=ac -ax 2(x 2+c )2,∵当x =1时g (x )取得极大值1,则g ′(1)=0 a (c -1)=0, 又a ≠0(否则有g (x )=0,不合题意,则c =1. 而g (1)=a 1+1=1 a =2,则g (x )=2xx 2+1.7分 (ⅱ)由x 1=12及x n +1=g (x n )=2x n x 2n +1易知x n 〉0 x n +1=2x nx 2n +1=2x n +1x n≤1x n +1-x n =x n (1-x 2n )x 2n +1≥0{x n }是满足x n +1≥x n 且x n ∈⎣⎡⎦⎤12,1,n ∈N +,则由(Ⅰ)知 x n +1-x n =x n (1-x 2n )x 2n +1≤310,9分∴(x n +1-x n )2x n x n +1=(x n +1-x n )(x n +1-x n )x n x n +1≤310·(x n +1-x n )x n x n +1=310⎝⎛⎭⎫1x n -1x n +1,∴(x 2-x 1)2x 1x 2+(x 3-x 2)2x 2x 3+…+(x n +1-x n )2x n x n +1≤310⎝⎛⎭⎫1x 1-1x 2+1x 2-1x 3+…+1x n -1x n +1 =310⎝⎛⎭⎫1x 1-1x n +1, 而x 1=12且x n +1∈⎣⎡⎦⎤12,1,则1x 1-1x n +1∈[0,1], ∴(x 2-x 1)2x 1x 2+(x 3-x 2)2x 2x 3+…+(x n +1-x n )2x n x n +1≤310⎝⎛⎭⎫1x 1-1x n +1≤310 得证.12分(二)选做题:共10分.请考生在(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分.(22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C :错误!(α为参数,a ∈R 且a 〉1),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos ⎝⎛⎭⎫θ+π4=-3. (Ⅰ)若曲线C 上存在点P 其极坐标(ρ,θ)满足2ρcos ⎝⎛⎭⎫θ+π4=-3,求a 的取值范围; (Ⅱ)设M 是曲线C 上的动点,当a =3时,求点M 到直线l 的的距离的最小值. 【解析】(Ⅰ)曲线C 的方程可化为:x 2a 2+y 2=1(a 〉1),直线l 的方程化为直角坐标方程是:x -y +3=0,2分 据题意直线l 与曲线C 有公共点,联立它们的方程并代入整理得:(a 2+1)x 2+6a 2x +8a 2=0, 则其判别式Δ=36a 4-32a 2(a 2+1)≥0,解之得:a ≥22,即a ∈[22,+∞).5分(Ⅱ)设M (3cos α,sin α),点M 到直线l 的的距离为d , 则d =|3cos α-sin α+3|2=⎪⎪⎪⎪2cos ⎝⎛⎭⎫α+π6+32, d min =12=22.10分 (23)(本小题满分12分)已知函数f (x )=|x +a -1|+|x -2a |,x ∈R ,a ≥1. (Ⅰ)求证:f (x )≥2;(Ⅱ)若f (3)≤5,求a 的取值范围.【解析】(1)f (x )=|x +a -1|+|x -2a |≥|x +a -1-x +2a |=|3a -1|, 又a ≥1,所以f (x )≥2;5分 (2)f (3)≤5即|a +2|+|2a -3|≤5,解之得:0≤a ≤2,又a ≥1,故所求的a 的取值范围是[1,2].10分。

湖南师大附中2005--2006学年度高三年级月考试题数学(理)

湖南师大附中2005--2006学年度高三年级月考试题数学(理)

湖 南 师 大 附 中2005—2006学年度高三年级月考试题数学(理科)说明:本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试时间120分钟,满分150分.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中有且只有一项是符合题目要求的.1.若复数i a a a a z )2()2(22--+-=的纯虚数,则( )A .12≠≠a a 或B .12≠≠a a 且C .a =0D .a =2或a =0 2.若|)|1)(1(,x x R x -+∈那么是正数的充要条件是( )A .1||<xB .1<xC .1||>xD .111<<--<x x 或3.设全集I=R ,.}0)(|{},0)(|{R Q P x g x Q x f x P ≠≠≠⊂⊂⊂>=<=φ且满足则集合}0)(0)(|{≤≥=x g x f x M 且等于( )A .C I PB .C I QC .φD .(C I P )∪(C I Q )4.已知随机变量p n D E p n B 与则且,4.2,12),,(~==ξξξ的值分别是 ( )A .15与0.8B .16与0.8C .20与0.4D .12与0.65.在等差数列{a n }中,若a 2+ a 6+ a 16为一个确定的常数,则下列各个和中也为确定的常数的是 ( ) A .S 8 B .S 10 C .S 15 D .S 176.已知实数),(,2|1|)3()1(,22y x P y x y x y x 则点满足条件++=-+-的运动轨迹是( )A .抛物线B .双曲线C .椭圆D .圆7.已知f (x )是奇函数,且当x >0时,)(,0),1()(x f x x x x f 时那么当<+=的解析式是( )A .)1(x x --B .)1(x x -C .)1(x x +-D .)1(x x +8.设函数f (x )是可导函数,并且='=∆-∆-→∆)(,2)()2(lim0000x f xx f x x f x 则( )A .21B .-2C .0D .-19.设函数)12(),()(1-==-x f y x f x f y 现将函数的反函数为的图象向左平移2个单位,再关于x 轴对称后,所对应的函数的反函数是( )A .2)(31x f y --=B .2)(31x f y ---=C .2)(31x f y -+-=D .2)(31x f y -+=10.给出下列4个命题: ①若sin2A=sin2B ,则△ABC 是等腰三角形; ②若sinA=cosB ,则△ABC 是直角三角形; ③若cosAcosBcosC<0,则△ABC 是钝角三角形;④若cos(A -B)cos(B -C)cos(C -A)=1,则△ABC 是等边三角形.其中正确的命题是( )A .①③B .③④C .①④D .②③第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分. 11.函数21)|lg(|xx x y --=的定义域为 .12.已知,)1(x e f x =+则函数)(x f 的解析式是)(x f = . 13.已知函数=-+-++≠>+=)41()21()41()21(),10(11)(f f f f a a a x f x 则且 .14.设向量||3||),sin ,(cos ),sin ,(cos a b y y b x x a =+==若,则=-)c o s (y x .15.求值:= 2222 .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(12分)已知βα,为锐角,且试求,02sin 22sin 3,1sin 2sin 322=-=+βαβα)23c o s (βαπ++的值.17.(12分)已知双曲线2112222+>=-e by a x 的离心率,左、右焦点分别为F 1、F 2,左准线为l ,试推断在双曲线上的左支上是否存在点P ,使得|PF 1|是点P 到l 的距离d 与|PF 2|的等比中项?若存在,请求出点P 的坐标;若不存在,请说明理由.18.(14分)一袋中装有大小相同的8个小球,其中5个红球,3个黑球,现从中随机摸出3个球.(Ⅰ)求至少摸到一个红球的概率;(Ⅱ)求摸到黑球个数ξ的概率分布和数学期望.19.(14分)在三棱锥P —ABC 中,底面△ABC 是以B 为直角顶点的等腰直角三角形,点P 在底面ABC 上的射影H 在线段AC 上且靠近C 点,AC=4,14 PA ,PB 和底面所成角为45°.(Ⅰ)求点P 到底面ABC 的距离. (Ⅱ)求二面角P —AB —C 的正切值.20.(14分)已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x +1.(Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围.21.(14分)已知数列{a n }满足:*).(02,2,81241N n a a a a a n n n ∈=+-==++且 (Ⅰ)求数列{a n }的通项公式;(Ⅱ)求和2221224232221n n a a a a a a -++-+-- ;(Ⅲ)设n n n n b b b T N n a n b +++=∈-=21*),()12(1,若存在整数m ,使对任意n∈N*,均有32mT n >成立,求m 的最大值.高三数学(文)参考答案一、选择题:1.C2.D3.B4.A5.C6.A7.B8.D9.C 10.B 二、填空题11.(-1,0) 12.)1ln(-x 13.2 14.823 15.2 三、解答题:16.解:由⎩⎨⎧==βαβα2sin 22sin 32cos sin 32∵.02sin ,02sin ,2,20,2,0≠≠∴<<∴<<βαπβαπβα①÷② .2c o t t a nβα= 即 .2cot )2cot(βαπ=- …………6分 又∵220παπ<-<,∴.0)2cot(2cot >-=απβ∴22,22,220πβαβαππβ=+∴=-∴<<. …………10分∴.23)32cos()23cos(-=+=++ππβαπ…………12分 17.设在左支上存在P 点使|PF 1|2=|PF 2|·d ,则,||||||121PF PF d PF = ① ②又||||,||121PF e PF e dPF =∴= ① …………4分 又|PF 2|-|PF 1|=2a ②由①、②得.12||,12||21-=-=e aePF e a PF …………8分 因在△PF 1F 2中有 |PF 1|+|PF 2|≥2c ,∴c e aee a 21212≥-+- ③ …………10分 利用,ace =代入③得.2121,0122+≤≤-∴≤--e e e212111+>+≤<∴>e e e 与 矛盾.∴符合条件的点P 不存在. …………12分18.(1)至少摸到一个红球的概率 56551383505=-=C C C P …………4分 (2)ξ表示摸到黑球个数,则2815)1(;285)0(382513383503======C C C P C C C P ξξ; …………6分 561)3(;5615)2(38535381523======C C C P C C C P ξξ. …………8分 ∴摸到黑球个数ξ的概率分布为:∴E ξ=.8…………14分19.(1)∵P 在底面ABC 上的射影H 在线段AC 上,过P 作PH ⊥底面ABC ,则H 在AC上且靠近C 点,∴面PAC ⊥面ABC …………2分 在等腰Rt △ABC 中,连结BH 取AC 中点O ,连BO. 设PH=h ,由已知∠PBH=45°,则BH=h.…………4分在△OHB 中BO ⊥AC ,OB=222,221-==h OH AC 在Rt △PAH 中,PA 2=HA 2+PH 2. ∴5,14)24(222=∴=+-+h h h∴P 到底面ABC 之距离为5 ………7分(2)在H h OH h ∴=-==,12,522时是CO 中点.……9分在△ABC 中,过点H 作HM ⊥AB 于垂足为M ,连PM.则∠PMH 为二面角P —AB —C …………12分 ∵.3102235tan ,223224343==∠∴=⋅==PMH BC HM …………14分 20.(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得过))1(,1()(f P x f y 上点=的切线方程为:).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即 …………2分而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上 故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即 ∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a =2,b=-4,c=5.∴.542)(23+-+=x x x x f ………………5分(2)).2)(23(443)(2+-=-+='x x x x x f 当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时 13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 …………8分 又)(,4)1(x f f ∴=在[-3,1]上最大值是13. …………9分(3)y=f (x )在[-2,1]上单调递增,又,23)(2b ax x x f ++='由①知2a +b=0. 依题意)(x f '在[-2,1]上恒有)(x f '≥0,即.032≥+-b bx x ……10分 ① ②①当6,03)1()(,16min ≥∴>+-='='≥=b b b f x f b x 时; ②当φ∈∴≥++=-'='-≤=b b b f x f b x ,0212)2()(,26min 时; ③当.60,01212)(,1622min ≤≤≥-='≤≤-b b b x f b 则时 …………13分 综上所述,参数b 的取值范围是),0[+∞ …………14分21.(1)∵n n n n n n n a a a a a a a -=-=-=+++++1121202即∴数列{a n }成等差数列. ………………2分 由n a a a d a a n 210,232,81441-=∴-=-===得公差 ……4分 (2)2221224232221n n a a a a a a -++-+--)())(())(())((212432121221243432121n n n n n n a a a a a a d a a a a a a a a a a a a ++++++-=-++++-++-=--- ).29(42)(2221n n a a n n -=+⋅= …………9分 (3)∵).111(21)1(21)12(1+-=+=-=n n n n a n b n n …………10分 ∴n n b b b T +++= 21]1113121211[21+-++-+-=n n =.)1(2)111(21+=+-n n n …………11分 ∴0)1)(2(21)111(21)211(211>++=+--+-=-+n n n n T T n n ∴{T n }是递增数列. ∴411=T 是T n 的最小值. …………13分由83241<⇒>m m ∴满足条件的最大整数m=7 …………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南师大附中2018届高三月考试卷(六)数 学(理科)命题人:吴锦坤 张汝波 审题人:黄祖军本试题卷包括选择题、填空题和解答题三部分,共10页.时量120分钟.满分150分. 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.(1)已知集合A ={x |x 2+x -2≤0,x ∈Z },B ={a ,1},A ∩B =B ,则实数a 等于(D)(A)-2 (B)-1 (C)-1或0 (D)-2或-1或0(2)设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是(A)(A)⎣⎡⎦⎤0,12 (B)⎝⎛⎭⎫0,12 (C)(-∞,0]∪⎣⎡⎭⎫12,+∞ (D)(-∞,0)∪⎝⎛⎭⎫12,+∞ 【解析】由p 得: 12<x ≤1 ,由q 得:a ≤x ≤a +1,又q 是p 的必要而不充分条件,所以a ≤12且a +1≥1,∴0≤a ≤12.(3)某学校的两个班共有100名学生,一次考试后数学成绩ξ(ξ∈N )服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为(A)(A)20 (B)10 (C)14 (D)21【解析】由题意知,P (ξ>110)=1-2P (90≤ξ≤100)2=0.2,∴该班学生数学成绩在110分以上的人数为0.2×100=20.(4)某几何体的三视图如图所示,则其体积为(C) (A)83 (B)2(C)43(D)23【解析】该几何体是:在棱长为2的正方体中,连接相邻面的中心,以这些线段为棱的一个正八面体.可将它分割为两个四棱锥,棱锥的底面为正方形且边长为2,高为正方体边长的一半,∴V =2×13(2)2×1=43.(5)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =2.5 (单位:升),则输入k 的值为(D)(A)4.5 (B)6 (C)7.5 (D)10【解析】模拟程序的运行,可得n =1,S =k , 满足条件n <4,执行循环体,n =2,S =k -k 2=k2,满足条件n <4,执行循环体, n =3,S =k 2-k 23=k3,满足条件n <4,执行循环体, n =4,S =k 3-k 34=k4,此时,不满足条件n <4,退出循环,输出S 的值为k4,根据题意可得:k4=2.5,计算得出:k =10.所以D 选项是正确的.(6)将函数f ()x =cos ωx2⎝⎛⎭⎫2sin ωx 2-23cos ωx 2+3,()ω>0的图像向左平移π3ω个单位,得到函数y=g ()x 的图像,若y =g ()x 在⎣⎡⎦⎤0,π4上为增函数,则ω的最大值为(B)(A)1 (B)2 (C)3 (D)4【解析】由题意,f ()x =2sin ⎝⎛⎭⎫ωx -π3()ω>0,先利用图像变换求出g ()x 的解析式:g ()x =f ⎝ ⎛⎭⎪⎫x +π3ω=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π3ω-π3,即g ()x =2sin ωx ,其图像可视为y =sin x 仅仅通过放缩而得到的图像.若ω最大,则要求周期T 取最小,由⎣⎡⎦⎤0,π4为增函数可得:x =π4应恰好为g ()x 的第一个正的最大值点,∴π4ω=π2ω=2.(7)已知x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,2x -y +2≥0,x +y -2≤0,若ax +y 取得最大值的最优解不唯一,则实数a 的值为(C)(A)12或-1 (B)2或12(C)-2或1 (D)2或-1【解析】由题中约束条件作可行域如右图所示:令z =ax +y ,化为y =-ax +z ,即直线y =-ax +z 的纵截距取得最大值时的最优解不唯一. 当-a >2时,直线y =-ax +z 经过点A (-2,-2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =2时,直线y =-ax +z 与y =2x +2重合时纵截距最大,此时最优解不唯一,故符合题意; 当-1<-a <2时,直线y =-ax +z 经过点B (0,2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =-1时,直线y =-ax +z 与y =-x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-a <-1时,直线y =-ax +z 经过点C (2,0)时纵截距最大,此时最优解仅有一个,故不符合题意.综上,当a =-2或a =1时最优解不唯一,符合题意.故本题正确答案为C.(8)若直线ax +by -2=0(a >0,b >0)始终平分圆x 2+y 2-2x -2y =2的周长,则12a +1b 的最小值为(D)(A)3-224 (B)3-222(C)3+222 (D)3+224【解析】直线平分圆周,则直线过圆心f (1,1),所以有a +b =2,12a +1b =12(a +b )⎝⎛⎭⎫12a +1b =12⎝⎛⎭⎫32+b 2a +a b ≥12⎝⎛⎭⎫32+2b 2a ·a b =3+224(当且仅当b =2a 时取“=”),故选D. (9)把7个字符a ,a ,a ,b ,b ,α,β排成一排,要求三个“a ”两两不相邻,且两个“b ”也不相邻,则这样的排法共有(B)(A)144种 (B)96种 (C)30种 (D)12种【解析】先排列b ,b ,α,β,若α,β不相邻,有A 22C 23种,若α,β相邻,有A 33种,共有6+6=12种,从所形成的5个空中选3个插入a ,a ,a ,共有12C 35=120种,若b ,b 相邻时,从所形成的4个空中选3个插入a ,a ,a ,共有6C 34=24,故三个“a ”两两不相邻,且两个“b ”也不相邻,这样的排法共有120-24=96种.(10)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足F A →·FB→=0,|FB |≤|F A |≤2|FB |,则椭圆C 的离心率的取值范围是(A)(A)⎣⎡⎦⎤22,53 (B)⎣⎡⎭⎫53,1 (C)⎣⎡⎦⎤22,3-1 (D)[3-1,1) 【解析】作出椭圆左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又F A →·FB →=0,即F A ⊥FB ,故平行四边形AFBF ′为矩形,所以|AB |=|FF ′|=2c .设AF ′=n ,AF =m ,则在直角三角形ABF 中m +n =2a ,m 2+n 2=4c 2 ①,得mn =2b 2 ②,①÷②得m n +n m =2c 2b 2,令m n =t ,得t +1t =2c 2b2.又由|FB |≤|F A |≤2|FB |得m n =t ∈[1,2],∴t +1t =2c 2b 2∈⎣⎡⎦⎤2,52,故离心率的取值范围是⎣⎡⎦⎤22,53.(11)在△ABC 中,AB =2m ,AC =2n ,BC =210,AB +AC =8,E ,F ,G 分别为AB ,BC ,AC 三边中点,将△BEF ,△AEG ,△GCF 分别沿EF 、EG 、GF 向上折起,使A 、B 、C 重合,记为S ,则三棱锥S -EFG 的外接球面积最小为(D)(A)292π (B)233π (C)14π (D)9π【解析】根据题意,三棱锥S -EFG 的对棱分别相等,将三棱锥S -EFG 补充成长方体, 则对角线长分别为m ,n ,10, 设长方体的长宽高分别为x ,y ,z, 则x 2+y 2=m ,y 2+z 2=10,x 2+z 2=n ,∴x 2+y 2+z 2=5+m +n2,∴三棱锥S -EFG 的外接球直径的平方为5+m +n2,而m +n =4,m +n 2≥⎝ ⎛⎭⎪⎫m +n 22=4,∴5+m +n2≥9, ∴三棱锥S -EFG 的外接球面积最小为4π·94=9π,所以D 选项是正确的.(12)已知函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0,若x 1<x 2且f (x 1)=f (x 2),则x 2-x 1的取值范围是(B)(A)⎝⎛⎦⎤23,ln 2 (B)⎝⎛⎦⎤23,ln 32+13 (C)⎣⎡⎦⎤ln 2,ln 32+13 (D)⎝⎛⎭⎫ln 2,ln 32+13【解答】作出函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0的图像如右,由x 1<x 2,且f (x 1)=f (x 2),可得0≤x 2<23,-32x 2+1=e -x 1-1,即为-x 1=ln ⎝⎛⎭⎫-32x 2+2, 可得x 2-x 1=x 2+ln ⎝⎛⎭⎫-32x 2+2,令g (x 2)=x 2+ln ⎝⎛⎭⎫-32x 2+2,0≤x 2<23, g ′(x 2)=1+-32-32x 2+2=3x 2-13x 2-4.当0≤x 2<13时,g ′(x 2)>0,g (x 2)递增;当13<x 2<23时,g ′(x 2)<0,g (x 2)递减.则g (x 2)在x 2=13处取得极大值,也为最大值ln 32+13,g (0)=ln 2,g ⎝⎛⎭⎫23=23,由23<ln 2, 可得x 2-x 1的范围是⎝⎛⎦⎤23,ln 32+13.故选B. 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题,本大题共4小题,每小题5分,共20分.(13)将八进制数705(8)化为三进制的数是__121210(3)__.【解析】705(8)=7×82+0×8+5×80=453, 根据除k 取余法可得453=121210(3). (14)计算:2cos 10°-23cos (-100°)1-sin 10°=__22__.(15)已知P 是双曲线x 216-y 28=1右支上一点,F 1,F 2分别是双曲线的左、右焦点,O 为坐标原点,点M ,N 满足F 1P →=λPM →()λ>0,PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|,PN →·F 2N →=0.若|PF 2→|=3,则以O 为圆心,ON 为半径的圆的面积为__49π__.【解析】由PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|知PN 是∠MPF 2的角平分线,又PN →·F 2N →=0,故延长F 2N 交PM 于K ,则PN 是△PF 2K 的角平分线又是高线,故△PF 2K 是等腰三角形,|PK |=|PF 2|=3,因为|PF 2→|=3,故|PF 1→|=11,故|F 1K →|=14,注意到N 还是F 2K 的中点,所以ON 是△F 1F 2K 的中位线,|ON →|=12|F 1K →|=7,所以以O 为圆心,ON 为半径的圆的面积为49π.(16)如图,在△ABC 中,BE 平分∠ABC ,sin ∠ABE =33,AB =2,点D 在线段AC 上,且AD →=2DC →,BD =433,则BE =__456__.【解析】由条件得cos ∠ABC =13,sin ∠ABC =223.在△ABC 中,设BC =a ,AC =3b ,则9b 2=a 2+4-43a ①.因为∠ADB 与∠CDB 互补,所以cos ∠ADB =-cos ∠CDB ,4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6 ②,联立①②解得a =3,b =1,所以AC =3,BC =3. S △ABC =12·AC ·AB sin A =12×3×2×223=22,S △ABE =12·BE ·BA sin ∠EBA =12×2×BE ×33=33BE .S △BCE =12·BE ·BC sin ∠EBC =12×3×BE ×33=32BE .由S △ABC =S △ABE +S △BCE ,得22=33BE +32BE ,∴BE =456. 三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)设数列{a n }满足a 2n =a n +1a n -1+λ(a 2-a 1)2,其中n ≥2,且n ∈N ,λ为常数.(Ⅰ)若{a n }是等差数列,且公差d ≠0,求λ的值;(Ⅱ)若a 1=1,a 2=2,a 3=4,且数列{b n }满足a n ·b n =n -7对任意的n ∈N *都成立. ①求数列{}b n 的前n 项之和S n ; ②若m ·a n ≥n -7对任意的n ∈N *都成立,求m 的最小值.【解析】(Ⅰ)由题意,可得a 2n =(a n +d )(a n-d )+λd 2,(2分) 化简得(λ-1)d 2=0,又d ≠0,所以λ=1.(3分)(Ⅱ)①将a 1=1,a 2=2,a 3=4代入条件,可得4=1×4+λ,解得λ=0,(4分) 所以a 2n =a n +1a n -1,则数列{}a n 是首项为1,公比q =2的等比数列, 所以a n =2n -1,从而b n =n -72n -1,(6分)所以S n =-620+-521+-422+…+n -72n -1,12S n =-621+-522+-423+…+n -72n , 两式相减得:12S n =-620+121+122+…+12n -1-n -72n =-5+5-n 2n ;所以S n =-10+5-n2n -1.(8分)②m ·2n -1≥n -7,所以m ≥n -72n -1对任意n ∈N *都成立. 由b n =n -72n -1,则b n +1-b n =n -62n -n -72n -1=8-n2n ,所以当n >8时,b n +1<b n ;当n =8时,b 9=b 8; 当n <8时,b n +1>b n . 所以b n 的最大值为b 9=b 8=1128,所以m 的最小值为1128.(12分) (18)(本小题满分12分)阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)公司的团队开发.其主要工作原理是“深度学习”.2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜.围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平.为了激发广大中学生对人工智能的兴趣,某市教育局组织了一次全市中学生“人工智能”软件设计竞赛,从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按五个等级进行了统计,得到如下数据表:(Ⅰ),其成绩等级为“A 或B ”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加比赛的学生(参赛人数很多)中任选3人,记X 表示抽到成绩等级为“A 或B ”的学生人数,求X 的分布列及其数学期望EX ;(Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于1分”的概率.【解析】(Ⅰ)根据统计数据可知,从本地区参加比赛的30名中学生中任意抽取一人,其成绩等级为“A 或B ”的概率为:430+630=13,(2分) 即从本地区参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率为13.(3分)(Ⅱ)由题意知随机变量X 可取0,1,2,3,则X ~B ⎝⎛⎭⎫3,13. P (x =k )=C k 3⎝⎛⎭⎫13k ⎝⎛⎭⎫233-k(k =0,1,2,3),(5分)所以X 的分布列为:X 0 1 2 3 P8274929127(6分)则E (x )=3×13=1,所求期望值为1.(7分)(Ⅲ)设事件M :从这30名学生中,随机选取2人,这两个人的成绩之差大于1分. 设从这30名学生中,随机选取2人,记两个人的成绩分别为m ,n , 则基本事件的总数为C 230,不妨设m >n ,当m =5时,n =3,2,1,基本事件的个数为C 14(C 110+C 17+C 13);当m =4时,n =2,1,基本事件的个数为C 16(C 17+C 13);当m =3时,m =1,基本事件的个数为C 110C 13; P (M )=3487.(12分)(19)(本小题满分12分)如图,在四棱锥A -EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.(Ⅰ)求二面角F -AE -B 的余弦值;(Ⅱ)若点M 为线段AC 上异于点A 的一点,BE ⊥OM ,求a 的值.【解析】(Ⅰ)因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF , 又因为平面AEF ⊥平面EFCB ,平面AEF ∩平面EFCB =EF , AO 平面AEF ,所以AO ⊥平面EFCB ,取BC 的中点G ,连结OG ,由题设知四边形EFCB 是等腰梯形,所以OG ⊥EF ,由AO ⊥平面EFCB ,又GO 平面EFCB ,所以AO ⊥GO ,建立如图所示空间直角坐标系,则E ()a ,0,0,A ()0,0,3a ,B ()2,3()2-a ,0,EA →=()-a ,0,3a , BE →=()a -2,3()a -2,0,设平面AEB 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0,()a -2x +3()a -2y =0.令z =1,则x =3,y =-1,于是n =()3,-1,1,又平面AEF 的一个法向量为p =()0,1,0,设二面角F -AE -B 为θ, 所以cos θ=cos 〈n ,p 〉=n ·p |n ||p |=-55.(6分) (Ⅱ)由(Ⅰ)知AO ⊥平面EFCB ,又BE平面EFCB ,所以AO ⊥BE ,又OM ⊥BE ,AO ∩OM =O ,所以BE ⊥平面AOC ,所以BE ⊥OC ,即BE →·OC →=0,因为BE →=()a -2,3()a -2,0,OC →=()-2,3()2-a ,0, 所以BE →·OC →=-2()a -2-3()a -22, 由BE →·OC →=0及0<a <2,解得a =43.(12分)(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.(Ⅰ)求椭圆C 的标准方程和圆A 的方程;(Ⅱ)不过原点的直线l 与椭圆C 相交于M ,N 两点,设直线OM ,直线l ,直线ON 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2成等比数列.①求k 的值;②是否存在直线l 使得满足OD →=λOM →+μON →(λ2+μ2=1,λ·μ≠0)的点D 在椭圆C 上?若存在,求出直线l 的方程;若不存在,请说明理由.【解析】(Ⅰ)如图,设T 为线段PQ 的中点,连接AT , 则AT ⊥PQ ,∵AP →·AQ →=0, 即AP ⊥AQ , 则|AT |=12|PQ |,又OP →=3OQ →,则|OT |=|PQ |, ∴|AT ||OT |=12,即b a =12, 由已知c =3,则a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1;(2分)又|AT |2+|OT |2=4,则|AT |2+4|AT |2=4|AT |=255,r =|AP |=2105, 故圆A 的方程为(x -2)2+y 2=85.(4分)(Ⅱ)①设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 2=1y =kx +m(1+4k 2)x 2+8kmx +4(m 2-1)=0,(5分) 则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2,(6分)由已知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m )(kx 2+m )x 1x 2=k 2+km (x 1+x 2)+m 2x 1x 2,(7分)则km (x 1+x 2)+m 2=0,即-8k 2m 21+4k 2+m 2=0k 2=14k =±12.(8分)②假设存在直线l 满足题设条件,且设D (x 0,y 0),由OD →=λOM →+μON →,得x 0=λx 1+μx 2,y 0=λy 1+μy 2, 代入椭圆方程得:(λx 1+μx 2)24+(λy 1+μy 2)2=1, 即:λ2⎝⎛⎭⎫x 214+y 21+μ2⎝⎛⎭⎫x 224+y 22+λμx 1x 22+2λμy 1y 2=1, 则x 1x 2+4y 1y 2=0,即x 1x 2+4(kx 1+m )(kx 2+m )=0,则(1+4k 2)x 1x 2+4km (x 1+x 2)+4m 2=0,所以(1+4k 2)·4(m 2-1)1+4k 2-32k 2m 21+4k 2+4m 2=0, 化简得:2m 2=1+4k 2,而k 2=14,则m =±1,(11分) 此时,点M ,N 中有一点在椭圆的上顶点(或下顶点),与k 1,k ,k 2成等比数列相矛盾, 故这样的直线不存在.(12分)(21)(本小题满分12分)已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1).(Ⅰ)讨论函数f (x )的单调性;(Ⅱ)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 为自然对数的底数),求a 的取值范围.【解析】(Ⅰ)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a ,(1分)当a >1时,ln a >0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增,x ∈(-∞,0),f ′(x )<0,f (x )单调递减;(2分)当0<a <1时,ln a <0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增,x ∈(-∞,0),f ′(x )<0,f (x )单调递减.(3分)综上:x ∈(0,+∞)时,f (x )单调递增,x ∈(-∞,0)时,f (x )单调递减.(4分)(Ⅱ)不等式等价于:|f (x 1)-f (x 2)|max ≥e -1,即f (x )max -f (x )min ≥e -1,(5分)由(Ⅰ)知,函数的最小值为f (0)=1,f (x )max =max {}f (-1),f (1),而f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a-2ln a , 设g (a )=a -1a -2ln a ,则g ′(a )=1+1a 2-2a=⎝⎛⎭⎫1-1a 2>0, 所以g (a )=a -1a-2ln a 在(0,+∞)单调递增,而g (1)=0, 故a >1时,g (a )>0,即f (1)>f (-1);(7分)0<a <1时,g (a )<0,即f (1)<f (-1).(8分)所以当a >1时,原不等式即为:f (1)-f (0)≥e -1a -ln a ≥e -1,设h (a )=a -ln a (a >1),h ′(a )=1-1a =a -1a>0,故函数h (a )单调递增,又h (e)=e -1,则a ≥e ;(10分)当0<a <1时,原不等式即为:f (-1)-f (0)≥e -11a+ln a ≥e -1, 设m (a )=1a +ln a (0<a <1),m ′(a )=-1a 2+1a =a -1a 2<0,故函数m (a )单调递减, 又m ⎝⎛⎭⎫1e =e -1,则0<a ≤1e.(11分) 综上,所求a 的取值范围是⎝⎛⎦⎤0,1e ∪[e ,+∞).(12分) 请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分.(22)(本小题满分10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =2+t (t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=42cos ⎝⎛⎭⎫θ-π4. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)设曲线C 与直线l 的交点为A ,B, Q 是曲线上的动点,求△ABQ 面积的最大值.【解析】(Ⅰ)由⎩⎪⎨⎪⎧x =3-t ,y =2+t 消去t 得x +y -5=0,所以直线l 的普通方程为x +y -5=0. 由ρ=42cos ⎝⎛⎭⎫θ-π4=4cos θ+4sin θ,得ρ2=4ρcos θ+4ρsin θ. 将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式,得x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8. 所以曲线C 的直角坐标方程为(x -2)2+(y -2)2=8.(5分)(Ⅱ)由(Ⅰ)知,曲线C 是以(2,2)为圆心,22为半径的圆,直线l 过定点P (3,2),P 在圆内,将直线的参数方程代入圆的普通方程,得2t 2-2t -7=0,t 1+t 2=1,t 1·t 2=-72. 所以|AB |=|t 1-t 2|=15,又因为圆心到直线的距离d =|2+2-5|2=22, 故△ABQ 面积的最大值为S △ABQ =12×15×⎝⎛⎭⎫22+22=5304.(10分) (23)(本小题满分10分)已知函数f (x )=|2x +1|+|2x -1|.(Ⅰ)求f (x )的值域;(Ⅱ)若对任意实数a 和b ,|2a +b |+|a |-12|a +b |·f (x )≥0,求实数x 的取值范围.【解析】(Ⅰ)∵f (x )=⎩⎪⎨⎪⎧-4x ,x ≤-12,2,-12<x <12,4x ,x ≥12,∴f (x )≥2.∴f (x )的值域为[2,+∞).(5分) (Ⅱ)当a +b =0,即a =-b 时,|2a +b |+|a |-12|a +b |f (x )≥0可化为2|b |-0·f (x )≥0, 即2|b |≥0恒成立,∴x ∈R .当a +b ≠0时,∵|2a +b |+|a |=|2a +b |+|-a |≥|(2a +b )-a |=|a +b |, 当且仅当(2a +b )(-a )≥0,即(2a +b )a ≤0时,等号成立,即当(2a +b )a ≤0时,|2a +b |+|a ||a +b |=1.∴|2a +b |+|a ||a +b |的最小值等于1. ∵|2a +b |+|a |-12|a +b |·f (x )≥0|2a +b |+|a ||a +b |≥12f (x ),∴12f (x )≤1,即f (x )≤2. 由(Ⅰ)知f (x )≥2,∴f (x )=2.当且仅当-12≤x ≤12时,f (x )=2. 综上所述,实数x 的取值范围是⎣⎡⎦⎤-12,12.(10分)。

相关文档
最新文档