A 12bit 3GS pipeline ADC with 0.4mm
ADC12041CIVX资料

ADC1204112-Bit Plus Sign 216kHz Sampling Analog-to-Digital ConverterGeneral DescriptionOperating from a single 5V power supply,the ADC12041is a 12bit +sign,parallel I/O,self-calibrating,sampling analog-to-digital converter (ADC).The maximum sampling rate is 216kHz.On request,the ADC goes through a self-calibration process that adjusts linearity,zero and full-scale errors.The ADC12041can be configured to work with many popular microprocessors/microcontrollers and DSPs including Na-tional’s HPC family,Intel386and 8051,TMS320C25,Mo-torola MC68HC11/16,Hitachi 64180and Analog Devices ADSP21xx.For complementary voltage references see the LM4040,LM4041or LM9140.Featuresn Fully differential analog inputn Programmable acquisition times and user-controllable throughput ratesn Programmable data bus width (8/13bits)n Built-in Sample-and-Holdn Programmable auto-calibration and auto-zero cyclesn Low power standby mode n No missing codesKey Specifications(f CLK =12MHz)n Resolution12-bits +sign n 13-bit conversion time 3.6µs,maxn 13-bit throughput rate216ksamples/s,minn Integral Linearity Error (ILE)±1LSB,max n Single supply +5V ±10%n V IN rangeGND to V A +n Power consumption —Normal operation 33mW,max —Stand-by mode75µw,maxApplicationsn Medical instrumentation n Process control systems n Test equipment n Data logging nInertial guidanceBlock DiagramTRI-STATE ®is a registered trademark of National Semiconductor Corporation.DS012441-1April 2000ADC1204112-Bit Plus Sign 216kHz Sampling Analog-to-Digital Converter©2000National Semiconductor Corporation Connection DiagramsOrdering InformationIndustrial Temperature Range−40˚C ≤T A ≤+85˚C NS Package NumberADC12041CIV PLCC ADC12041CIMSASSOP28-Pin SSOPDS012441-2Order Number ADC12041CIMSA See NS Package Number MSA2828-Pin PLCCDS012441-3Order Number ADC12041CIV See NS Package Number V28AA D C 12041 2Pin DescriptionsPLCC and PinSSOP Description Pin Number5 6V IN+V IN−The analog ADC inputs.V IN+is the non-inverting(positive)input and V IN−is the inverting(negative)input into the ADC.10V REF+Positive reference input.The operating voltage range for this input is1V≤V REF+≤V A+(see Figure 3and Figure4).This pin should be bypassed to AGND at least with a parallel combination of a10µF and a0.1µF(ceramic)capacitor.The capacitors should be placed as close to the part aspossible.9V REF−Negative reference input.The operating voltage range for this input is0V≤V REF−≤V REF+−1(see Figure3and Figure4).This pin should be bypassed to AGND at least with a parallel combination ofa10µF and a0.1µF(ceramic)capacitor.The capacitors should be placed as close to the part aspossible.4WMODE The logic state of this pin at power-up determines which edge of the write signal(WR)will latch in data from the data bus.If tied low,the ADC12041will latch in data on the rising edge of the WRsignal.If tied to a logic high,data will be latched in on the falling edge of the WR signal.The state ofthis pin should not be changed after power-up.27SYNC The SYNC pin can be programmed as an input or an output.The Configuration register’s bit b4controls the function of this pin.When programmed as an input pin(b4=1),a rising edge on thispin causes the ADC’s sample-and-hold to hold the analog input signal and begin conversion.Whenprogrammed as an output pin(b4=0),the SYNC pin goes high when a conversion begins andreturns low when completed.12–20 23–26D0–D8D9–D1213-bit Data bus of the ADC12041.D12is the most significant bit and D0is the least significant.TheBW(bus width)bit of the Configuration register(b3)selects between an8-bit or13-bit data bus width.When the BW bit is cleared(BW=0),D7–D0are active and D12–D8are always in TRI-STATE®.When the BW bit is set(BW=1),D12–D0are active.28CLK The clock input pin used to drive the ADC12041.The operating range is0.05MHz to12MHz.1WR WR is the active low WRITE control input pin.A logic low on this pin and the CS will enable theinput buffers of the data pins D12–D0.The signal at this pin is used by the ADC12041to latch indata on D12–D0.The sense of the WMODE pin at power-up will determine which edge of the WRsignal the ADC12041will latch in data.See WMODE pin description.2RD RD is the active low read control input pin.A logic low on this pin and CS will enable the activeoutput buffers to drive the data bus.3CS CS is the active low Chip Select input ed in conjunction with the WR and RD signals tocontrol the active data bus input/output buffers of the data bus.11RDY RDY is an active low output pin.The signal at this pin indicates when a requested function hasbegun or ended.Refer to section Functional Description and the digital timing diagrams for moredetail.7V A+Analog supply input pin.The device operating supply voltage range is+5V±10%.Accuracy isguaranteed only if the V A+and V D+are connected to the same potential.This pin should bebypassed to AGND with a parallel combination of a10µF and a0.1µF(ceramic)capacitor.Thecapacitors should be placed as close to the supply pins of the part as possible.8AGND Analog ground pin.This is the device’s analog supply ground connection.It should be connectedthrough a low resistance and low inductance ground return to the system power supply.21V D+Digital supply input pins.The device operating supply voltage range is+5V±10%.Accuracy isguaranteed only if the V A+and V D+are connected to the same potential.This pin should bebypassed to DGND with a parallel combination of a10µF and a0.1µF(ceramic)capacitor.Thecapacitors should be placed as close to the supply pins of the part as possible.22DGND Digital ground pin.This is the device’s digital supply ground connection.It should be connectedthrough a low resistance and low inductance ground return to the system power supply.ADC120413Absolute Maximum Ratings (Notes 1,2)Supply Voltage (V A +and V D +) 6.0VVoltage at all Inputs −0.3V to V ++0.3V|V A +−V D +|300mV |AGND −DGND|300mV Input Current at Any Pin (Note 3)±30mA Package Input Current (Note 3)±120mAPower Dissipation (Note 4)at T A =25˚C500mWStorage Temperature −65˚C to +150˚CLead Temperature SSOP PackageVapor Phase (60sec.)210˚C Infared (15sec.)220˚C V Package,Infared (15sec.)300˚C ESD Susceptibility (Note 5)3.0kVOperating Ratings (Notes 1,2,6,7,8,9)Temperature Range (T min ≤T A ≤T max )−40˚C ≤T A ≤85˚CSupply Voltage V A +,V D + 4.5V to 5.5V|V A +−V D +|≤100mV |AGND −DGND|≤100mVV IN VoltageRange at all Inputs GND ≤V IN +≤V A +V REF +Input Voltage 1V ≤V REF +≤V A +V REF −Input Voltage 0≤V REF −≤V REF +−1VV REF +−V REF −1V ≤V REF ≤V A +V REF Common Mode (Note 16)0.1V A +≤V REFCM ≤0.6V A +Converter DC CharacteristicsThe following specifications apply to the ADC12041for V A +=V D +=5V,V REF +=4.096V,V REF −=0.0V,12-bit +sign con-version mode,f CLK =12.0MHz,R S =25Ω,source impedance for V REF +and V REF −≤1Ω,fully differential input with fixed 2.048V common-mode voltage (V INCM ),and minimum acquisition time,unless otherwise specified.Boldface limits apply for T A =T J =T MIN to T MAX ;all other limits T A =T J =25˚C SymbolParameterConditionsTypical Limits Units (Note 10)(Note 11)(Limit)Resolution with No Missing CodesAfter Auto-Cal 13Bits (max)ILE Positive and Negative Integral After Auto-Cal ±0.6±1LSB (max)Linearity Error(Notes 12,17)DNLDifferential Non-Linearity After Auto-Cal±1LSB (max)Zero ErrorAfter Auto-Cal (Notes 13,17)V INCM =5.0V ±5.5LSB (max)V INCM =2.048V ±2.0LSB (max)V INCM =0V±5.5LSB (max)Positive Full-Scale Error After Auto-Cal (Notes 12,17)±1.0±2.5LSB (max)Negative Full-Scale Error After Auto-Cal (Notes 12,17)±1.0±2.5LSB (max)DC Common Mode ErrorAfter Auto-Cal (Note 14)±2±5.5LSB (max)TUETotal Unadjusted ErrorAfter Auto-Cal (Note 18)±1LSBPower Supply CharacteristicsThe following specifications apply to the ADC12041for V A +=V D +=5V,V REF +=4.096V,V REF −=0.0V,12-bit +sign conver-sion mode,f CLK =12.0MHz,R S =25Ω,source impedance for V REF +and V REF −1Ω,fully differential input with fixed 2.048V common-mode voltage,and minimum acquisition time,unless otherwise specified.Boldface limits apply for T A =T J =T MIN to T MAX ;all other limits T A =T J =25˚C Symbol ParameterConditionsTypical Limits Unit (Note 10)(Note 11)(Limit)PSSPower Supply Sensitivity V D +=V A +=5.0V ±10%(Note 15)Zero Error V REF +=4.096V ±0.1LSB Full-Scale Error V REF −=0V±0.5LSB Linearity Error±0.1LSBI D +V D +Digital Supply CurrentStart Command (Performing a conversion)with SYNC configured as an input and driven with a 214kHz signal.Bus width set to 13.f CLK =12.0MHz,Reset Mode 850µA f CLK =12.0MHz,Conversion2.452.6mA (max)A D C 12041 4ADC12041 Power Supply Characteristics(Continued)The following specifications apply to the ADC12041for V A+=V D+=5V,V REF+=4.096V,V REF−=0.0V,12-bit+sign conver-sion mode,f CLK=12.0MHz,R S=25Ω,source impedance for V REF+and V REF−1Ω,fully differential input with fixed2.048V common-mode voltage,and minimum acquisition time,unless otherwise specified.Boldface limits apply for T A=T J=T MIN to T MAX;all other limits T A=T J=25˚CSymbol Parameter Conditions Typical Limits Unit(Note10)(Note11)(Limit)I A+V A+Analog Supply Current Start Command(Performing a conversion)with SYNC configured as an input and drivenwith a214kHz signal.Bus width set to13.f CLK=12.0MHz,Reset Mode 2.3mAf CLK=12.0MHz,Conversion 2.3 4.0mA(max)I ST Standby Supply Current Standby Mode(I D++I A+)f CLK=Stopped515µA(max)f CLK=12.0MHz100120µA(max) Analog Input CharacteristicsThe following specifications apply to the ADC12041for V A+=V D+=5V,V REF+=4.096V,V REF−=0.0V,12-Bit+sign conver-sion mode,f CLK=12.0MHz,R S=25Ω,source impedance for V REF+and V REF+≤1Ω,fully differential input with fixed2.048V common-mode voltage,and minimum acquisition time,unless otherwise specified.Boldface limits apply for T A=T J=T MIN to T MAX;all other limits T A=T J=25˚CSymbol Parameter Conditions Typical Limits Unit(Note10)(Note11)(Limit)I IN V IN+and V IN−Input Leakage Current V IN+=5V±0.05 2.0µA(max)V IN−=0VR ON ADC Input On Resistance V IN=2.5V1000ΩRefer to section titled INPUT CURRENT.CV IN ADC Input Capacitance10pFReference InputsThe following specifications apply to the ADC12041for V A+=V D+=5V,V REF+=4.096V,V REF−=0.0V,12-bit+sign con-version mode,f CLK=12.0MHz,R S=25Ω,source impedance for V REF+and V REF−≤1Ω,fully differential input with fixed2.048V common-mode voltage,and minimum acquisition time,unless otherwise specified.Boldface limits apply for T A=T J=T MIN to T MAX;all other limits T A=T J=25˚CSymbol Parameter Conditions Typical Limits Unit(Note10)(Note11)(Limit)I REF Reference Input Current V REF+4.096V,V REF−=0VAnalog Input Signal:1kHz145µA(Note20)80kHz136µAC REF Reference Input Capacitance85pF Digital Logic Input/Output CharacteristicsThe following specifications apply to the ADC12041for V A+=V D+=5V,V REF+=4.096V,V REF−=0.0V,12-bit+sign con-version mode,f CLK=12.0MHz,R S=25Ω,source impedance for V REF+and V REF−≤1Ω,fully differential input with fixed2.048V common-mode voltage,and minimum acquisition time,unless otherwise specified.Boldface limits apply for T A=T J=T MIN to T MAX;all other limits T A=T J=25˚CSymbol Parameter Conditions Typical Limits Unit(Note10)(Note11)(Limit)V IH Logic High Input Voltage V A+=V D+=5.5V 2.2V(min)V IL Logic Low Input Voltage V A+=V D+=4.5V0.8V(max)I IH Logic High Input Current V IN=5V0.035 2.0µA(max)I IL Logic Low Input Current V IN=0V−0.035−2.0µA(max)V OH Logic High Output Voltage V A+=V D+=4.5V2.4 2.4V(min)I OUT=−1.6mA5Digital Logic Input/Output Characteristics(Continued)The following specifications apply to the ADC12041for V A +=V D +=5V,V REF +=4.096V,V REF −=0.0V,12-bit +sign con-version mode,f CLK =12.0MHz,R S =25Ω,source impedance for V REF +and V REF −≤1Ω,fully differential input with fixed 2.048V common-mode voltage,and minimum acquisition time,unless otherwise specified.Boldface limits apply for T A =T J =T MIN to T MAX ;all other limits T A =T J =25˚C Symbol ParameterConditions Typical Limits Unit (Note 10)(Note 11)(Limit)V OL Logic Low Output VoltageV A +=V D +=4.5V 0.40.4V (max)I OUT =1.6mA I OFF TRI-STATE Output Leakage Current V OUT =0V ±2.0µA (max)V OUT =5VC IND12–D0Input Capacitance10pFConverter AC CharacteristicsThe following specifications apply to the ADC12041for V S +=V D +=5V,V REF +=4.096V,V REF −=0.0V,12-bit +sign con-version mode,f CLK =12.0MHz,R S =25Ω,source impedance for V REF +and V REF −≤1Ω,fully differential input with fixed 2.048V common-mode voltage,and minimum acquisition time,unless otherwise specified.Boldface limits apply for T A =T J =T MIN to T MAX ;all other limits T A =T J =25˚C Symbol ParameterConditionsTypical Limits Unit (Note 10)(Note 11)(Limit)t Z Auto Zero Time 7878clks +120ns clks (max)t CALFull Calibration Time 49464946clks +120nsclks (max)CLK Duty Cycle50%40%(min)60%(max)t CONVConversion Time Sync-Out Mode 4444clks (max)t AcqSYNCOUTAcquisition Time Minimum for 13Bits 99clks +120ns clks (max)(Programmable)Maximum for 13Bits7979clks +120nsclks (max)Digital Timing CharacteristicsThe following specifications apply to the ADC12041,13-bit data bus width,V A +=V D +=5V,f CLK =12MHz,t f =3ns and C L =50pF on data I/O lines Symbol ParameterConditionsTypical Limits Unit (Note 10)(Note 11)(Limit)t TPR Throughput Rate Sync-Out Mode (SYNC Bit =“0”)9Clock Cycles of Acquisition Time222kHz t CSWR Falling Edge of CS 0nsto Falling Edge of WR t WRCS Active Edge of WR 0nsto Rising Edge of CS t WRWR Pulse Width 2030ns (min)t WRSETFalling Write Setup Time WMODE =“1”20ns (min)t WRHOLDFalling Write Hold Time WMODE =“1”5ns (min)t WRSETRising Write Setup Time WMODE =“0”20ns (min)t WRHOLDRising Write Hold TimeWMODE =“0”5ns (min)t CSRD Falling Edge of CS to Falling Edge of RD 0ns t RDCS Rising Edge of RD 0nsto Rising Edge of CSt RDDATA Falling Edge of RD to Valid Data 8-Bit Mode (BW Bit =“0”)4058ns (max)t RDDATA Falling Edge of RD to Valid Data 13-Bit Mode (BW Bit =“1”)2644ns (max)t RDHOLDRead Hold Time2332ns (max)A D C 12041 6Digital Timing Characteristics(Continued)The following specifications apply to the ADC12041,13-bit data bus width,V A +=V D +=5V,f CLK =12MHz,t f =3ns and C L =50pF on data I/O linesSymbol ParameterConditionsTypical Limits Unit (Note 10)(Note 11)(Limit)t RDRDY Rising Edge of RD 2438ns (max)to Rising Edge of RDY t WRRDY Active Edge of WR to Rising Edge of RDY WMODE =“1”3760ns (max)t STDRDYActive Edge of WR WMODE =“0”.Writing the 1.42.5ms (max)to Falling Edge of RDYRESET Command into the Configuration Registert SYNCMinimum SYNC Pulse Width510ns (min)Notes on SpecificationsNote 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is functional,but do not guarantee specific performance limits.For guaranteed specifications and test conditions,see the Electrical Characteristics.The guaranteed specifications apply only for the test conditions listed.Some performance characteristics may degrade when the device is not operated under the listed test condi-tions.Note 2:All voltages are measured with respect to GND,unless otherwise specified.Note 3:When the input voltage (V IN )at any pin exceeds the power supply rails (V IN <GND or V IN >(V A +or V D +)),the current at that pin should be limited to 30mA.The 120mA maximum package input current limits the number of pins that can safely exceed the power supplies with an input current of 30mA to four.Note 4:The maximum power dissipation must he derated at elevated temperatures and is dictated by T Jmax ,(maximum junction temperature),θJA (package junc-tion to ambient thermal resistance),and T A (ambient temperature).The maximum allowable power dissipation at any temperature is P Dmax =(T Jmax −T A )/θJA or the number given in the Absolute Maximum Ratings,whichever is lower.For this device,T Jmax =150˚C,and the typical thermal resistance (θJA )of the ADC12041in the V package,when board mounted,is 55˚C/W,and in the SSOP package,when board mounted,is 130˚C/W.Note 5:Human body model,100pF discharged through 1.5Ωk resistor.Note 6:Each input is protected by a nominal 6.5V breakdown voltage zener diode to GND,as shown below,input voltage magnitude up to 5V above V A +or 5V below GND will not damage the ADC12041.There are parasitic diodes that exist between the inputs and the power supply rails and errors in the A/D conversion can occur if these diodes are forward biased by more than 50mV.As an example,if V A +is 4.50V DC ,full-scale input voltage must be 4.55V DC to ensure accurate conversions.Note 7:V A +and V D +must be connected together to the same power supply voltage and bypassed with separate capacitors at each V +pin to assure conversion/comparison accuracy.Refer to the Power Supply Considerations section for a detailed discussion.Note 8:Accuracy is guaranteed when operating at f CLK =12MHz.Note 9:With the test condition for V REF (V REF +−V REF −)given as +4.096V,the 12-bit LSB is 1.000mV.Note 10:Typicals are at T A =25˚C and represent most likely parametric norm.Note 11:Limits are guaranteed to National’s AOQL (Average Outgoing Quality Level).Note 12:Positive integral linearity error is defined as the deviation of the analog value,expressed in LSBs,from the straight line that passes through positive full-scale and zero.For negative integral linearity error,the straight line passes through negative full-scale and zero.Note 13:Zero error is a measure of the deviation from the mid-scale voltage (a code of zero),expressed in LSB.It is the average value of the code transitions be-tween −1to 0and 0to +1(see Figure 8).Note 14:The DC common-mode error is measured with both inputs shorted together and driven from 0V to 5V.The measured value is referred to the resulting out-put value when the inputs are driven with a 2.5V input.Note 15:Power Supply Sensitivity is measured after an Auto-Zero and Auto Calibration cycle has been completed with V A +and V D +at the specified extremes.Note 16:V REFCM (Reference Voltage Common Mode Range)is defined asDS012441-4ADC120417Notes on Specifications(Continued)Note 17:The ADC12041’s self-calibration technique ensures linearity and offset errors as specified,but noise inherent in the self-calibration process will result in a repeatability uncertainty of ±0.20LSB.Note 18:Total Unadjusted Error (TUE)includes offset,full scale linearity and MUX errors.Note 19:The ADC12041parts used to gather the information for these curves were auto-calibrated prior to taking the measurements at each test condition.The auto-calibration cycle cancels any first order drifts due to test conditions.However,each measurement has a repeatability uncertainty error of 0.2LSB.See Note 17.Note 20:The reference input current is a DC average current drawn by the reference input with a full-scale sinewave input.The ADC12041is continuously con-verting with a throughput rate of 206kHz.Note 21:These typical curves were measured during continuous conversions with a positive half-scale DC input.A 240ns RD pulse was applied 25ns after the RDY signal went low.The data bus lines were loaded with 2HC family CMOS inputs (C L ∼20pF).Note 22:Any other values placed in the command field are meaningless.However,if a code of 101or 110is placed in the command field and the CS ,RD and WR go low at the same time,the ADC12041will enter a test mode.These test modes are only to be used by the manufacturer of this device.A hardware power-off and power-on reset must be done to get out of these test modes.Electrical CharacteristicsDS012441-5FIGURE 1.Output Digital Code vs the Operating Input Voltage Range (General Case)A D C 12041 8Electrical Characteristics(Continued)DS012441-6FIGURE 2.Output Digital Code vs the Operating Input Voltage Range for V REF =4.096VDS012441-7FIGURE 3.V REF Operating Range (General Case)ADC120419Electrical Characteristics(Continued)DS012441-8FIGURE 4.V REF Operating Range for V A =5VDS012441-9FIGURE 5.Transfer CharacteristicA D C 12041 10Electrical Characteristics(Continued)DS012441-10 FIGURE6.Simplified Error vs Output Code without Auto-Calibration or Auto-Zero CyclesDS012441-11 FIGURE7.Simplified Error vs Output Code after Auto-Calibration CycleDS012441-12FIGURE8.Offset or Zero Error Voltage(Note13)ADC12041Timing DiagramsDS012441-13FIGURE 9.Sync-Out Write (WMODE =1,BW =1),Read and Convert CyclesDS012441-14FIGURE 10.Sync-In Write (WMODE =1,BW =1),Read and Convert CyclesA D C 12041Timing Diagrams(Continued)DS012441-46 FIGURE11.Sync-Out Write(WMODE=0,BW=1),Read and Convert CyclesDS012441-47 FIGURE12.Sync-In Write(WMODE=0,BW=1),Read and Convert Cycles ADC12041Timing Diagrams(Continued)DS012441-48FIGURE 13.Sync-Out Read and Convert CyclesDS012441-49FIGURE 14.Sync-In Read and Convert CyclesA D C 12041Timing Diagrams(Continued)DS012441-50FIGURE15.8-bit Bus Read Cycle(Sync-Out)DS012441-51FIGURE16.8-bit Bus Read Cycle(Sync-In)ADC12041Timing Diagrams(Continued)Typical Performance Characteristics(See (Note 19),Electrical Characteristic Section)DS012441-15FIGURE 17.Write Signal Negates RDY (Writing the Standby,Auto-Cal or Auto-Zero Command)DS012441-16FIGURE 18.Standby and Reset Timing (13-Bit Data Bus Width)Integral Linearity Error (INL)Change vs Clock FrequencyDS012441-17Full-Scale Error Change vs Clock FrequencyDS012441-18Zero Error Change vs Clock FrequencyDS012441-19A D C 12041Typical Performance Characteristics(See(Note19),Electrical Characteristic Section)(Continued)Integral Linearity Error(INL) Change vs TemperatureDS012441-20Full-Scale Error Change vsTemperatureDS012441-21Zero Error Change vs TemperatureDS012441-22Integral Linearity Error(INL) Change vs Reference VoltageDS012441-23Full-Scale Error Change vsReference VoltageDS012441-24Zero Error Change vs ReferenceVoltageDS012441-25Integral Linearity Error(INL) Change vs Supply VoltageDS012441-26Full-Scale Error Change vs SupplyVoltageDS012441-27Zero Error Change vs SupplyVoltageDS012441-28ADC12041Typical Performance Characteristics(See (Note 21),Electrical Characteristic Section)(Continued)Typical Performance Characteristics(Continued)The curves were obtained under the following conditions.R S =50Ω,T A =25˚C,V A +=V D +=5V,V REF =4.096V,f CLK =12MHz,and the sampling rate f S =215kHz un-less otherwise stated.Supply Current vs Clock FrequencyDS012441-29Reference Current vs Clock FrequencyDS012441-30Analog Supply Current vs Temperature DS012441-31Digital Supply Current vs TemperatureDS012441-32Full Scale Differential 1,099Hz Sine Wave InputDS012441-33Full Scale Differential 18,677Hz Sine Wave InputDS012441-34A D C 12041Typical Performance Characteristics(Continued)The curves were obtained under the following conditions.R S =50Ω,T A =25˚C,V A +=V D +=5V,V REF =4.096V,f CLK =12MHz,and the sampling rate f S =215kHzunless otherwise stated.(Continued)Register Bit DescriptionCONFIGURATION REGISTER (Write Only)This is an 8-bit write-only register that is used to program the functionality of the ADC12041.All data written to the ADC12041will always go to this register only.The contents of this register cannot be read.MSB LSBb 7b 6b 5b 4b 3b 2b 1b 0COMMAND SYNCBWSEACQ TIMEFIELDPower on State:10HexFull Scale Differential 38,452Hz Sine Wave InputDS012441-35Full Scale Differential 79,468Hz Sine Wave InputDS012441-36Half Scale Differential 1kHz Sine Wave Input,f S =153.6kHz DS012441-37Half Scale Differential 20kHz Sine Wave Input,f S =153.6kHzDS012441-38Half Scale Differential 40kHz Sine Wave Input,f S =153.6kHz DS012441-39Half Scale Differential 75kHz Sine Wave Input,f S =153.6kHzDS012441-40ADC12041Register Bit Description(Continued)b 1–b 0:The ACQ TIME bits select one of four possible acquistion times in the SYNC-OUT mode (b 4=0).(Refer to Selectable Acquisition Time section,page 22).b 1b 0Clocks 009011510471179b 2:When the Single-Ended bit (SE bit)is a ’1’,conversion results will be limited to positive values only and any negative conver-sion results will appear as a code of zero in the Data register.The SE bit is cleared at power-up .b 3:This is the Bus Width (BW)bit.When this bit is a ’0’the ADC12041is configured to interface with an 8-bit data bus;data pins D 7–D 0are active and pins D 12–D 9are in TRI-STATE.When the BW bit is a ’1’,the ADC12041is configured to interface with a 16-bit data bus and data pins D 12–D 0are all active.The BW bit is cleared at power-up .b 4:The SYNC bit.When the SYNC bit is a ’1’,the SYNC pin is programmed as an input and the converter is in synchronous mode.In this mode a rising edge on the SYNC pin causes the ADC to hold the input signal and begin a conversion.When b 8is a ’0’,the SYNC pin is programmed as an output and the converter is in an asynchronous mode.In this mode the signal at the SYNC pin indicates the status of the converter.The SYNC pin is high when a conversion is taking place.The SYNC bit is set at power-up .b 7–b 5:The command field.These bits select the mode of operation of the ADC12041.Power-up value is 000.(See Note 22)b 7b 6b 5Command000Standby command.This puts the ADC in a low power consumption mode.001Ful-Cal command.This will cause the ADC to perform a self-calibrating cycle that will correct linearity and zero errors.010Auto-zero command.This will cause the ADC to perform an auto-zero cycle that corrects offset errors.011Reset command.This puts the ADC in an idle mode.1Start command.This will put the converter in a start mode,preparing it to perform a conversion.If inasynchronous mode (b 4=“0”),conversions will immediately begin after the programmed acquisition time has ended.In synchronous mode (b 4=“1”),conversions will begin after a rising edge appears on the SYNC pin.DATA REGISTER (Read Only)This is a 13-bit read only register that holds the 12-bit +sign conversion result in two’s complement form.All reads performed from the ADC12041will place the contents of this register on the data bus.When reading the data register in 8-bit mode,the sign bit is extended.MSB LSBb 12b 11b 10b 9b 8b 7b 6b 5b 4b 3b 2b 1b 0signConversion DataPower on State:0000Hexb 11–b 0:b 11is the most significant bit and b 0is the least significant bit of the conversion result.b 12:This bit contains the sign of the conversion result.0for positive results and 1for negative.Functional DescriptionThe ADC12041is programmed through a digital interface that supports an 8-bit or 16-bit data bus.The digital interface consists of a 13-bit data input/output bus (D 12–D 0),digital control signals and two internal registers:a write only 8-bit Configuration register and a read only 13-bit Data register.The Configuration register programs the functionality of the ADC12041.The 8bits of the Configuration register are di-vided into 5fields.Each field controls a specific function of the ADC12041:the acquisition time,synchronous or asyn-chronous conversions,mode of operation and the data bus size.Features and Operating ModesSELECTABLE BUS WIDTHThe ADC12041can be programmed to interface with an 8-bit or 16-bit data bus.The BW bit (b 3)in the Configuration reg-ister controls the bus size.The bus width is set to 8bits (D 7–D 0are active and D 12–D 8are in TRI-STATE)if the BW bit is cleared or 13bits (D 12–D 0are active)if the BW bit is set.At power-up the default bus width is 8bits (BW =0).In 8-bit mode the Configuration register is accessed with a single write.When reading the ADC in 8-bit mode,the first read cycle places the lower byte of the Data register on the data bus followed by the upper byte during the next read cycle.In 13-bit mode all bits of the Data register and Configuration register are accessible with a single read or write cycle.A D C 12041。
M0516系列 中文资料及引脚功能

5.3 管脚描述........................................................................................................................ 11
6
DC 电气特性.............................................................................................................................. 14
5.1 QFN 33 pin...................................................................................................................... 9
5.2 LQFP 48 pin.................................................................................................................. 10
支持串行调试(SWD)接口,2 个观察点/4 断点。
z 内建一组 LDO支持宽工作电压范围:2.5V~5.5V
z 存储器 32KB/64KB Flash用于存储程序代码(APROM)
4KB Flash用于存储数据(DataFlash)
7
AC 电气特性 .............................................................................................................................. 17
MCU_S3C2410之ADC分析

MCU_S3C2410之ADC分析
基本概念:1.采样定理,又称香农采样定理,奈奎斯特采样定理:即采样频率要大于模拟信号最高频率的两倍
2.A/D 的位数,即A/D 的分辨率,决定量化误差的大小(LSB)1LSB=1/2
的N 次方
3.转换速率:指一次A/D 转换所需的时间,从接收转换开始控制信号到输出数字信号所花费的时间
A/D 是高速还是低速皆以此为依据
4.量化误差(分辨率)
为了减小量化误差,通常输入端会加入0.5LSB 的偏移量。
5.A/D 的精度(DNL 和INL)
用直尺来形象的描述,平常用的直尺,其最小刻度是1 毫米,然而,由于工艺等因素,使得直尺上的每个刻度并非都是精确的1 毫米,可能偏大,也可能偏小,DNL 即是用来描述A/D 转换器每个LSB 可能的最大误差。
当用这把直尺来测量某个物体的尺寸时,由于A/D 转换器的DNL 等因素,会导致测量值与物体的实际尺寸值存在偏差,INL 即用来描述A/D 转换值与理想转换值可能的最大误差。
如果INL 规格值为±4LSB,则12bit 的
A/D 转换结果有10 位精度基本可以保证。
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
数字阵列技术的研究

图4 数字雷达系统原理框图 2.2 高速A/D变换器和D/A变换器发展 随着高速ADC器件不断发展,国外多家公司推出了一系列高
( )64通道全数字接收阵列
99
( )64通道全数字接收阵列的分解视图 图5 Thales的64通道瓦片式阵列
法国Thales公司开发的M3R, GM400和SM400的雷达都采用 了最新的数字技术,而且数字接收阵列的结构逐渐从砖块式结 构向瓦片式结构转变。图5是该公司研制的64通道全数字接收阵 列的实物图,工作在S波段,包括2个32通道的接收板(主要实 现带外信号抑制、镜像信号滤波、放大、下变频以及A/D变换 和数字信号同步处理的功能),1个控制板和光接口模块以及电 源模块(AC-DC变换)。该接收阵列模块重8Kg,体积为100× 340×390mm3, 功 耗 1 5 0 W ; 主 要 应 用 于 地 面 雷 达 ( 如 G M400、 GM500)和海军雷达(See Master 400)。
图3 四个收发通道的MIMO软件化雷达原型 在国内,中电集团第三十八研究所、第十四研究所、成都 电子科技大学、西安电子科技大学、空军雷达学院和国防科技 大学等研究所和院校都对数字阵雷达技术进行了理论研究,在 系统方案和数字收发试验系统等方面已取得了一定进展。 中电集团第三十八研究所从上世纪90年代开始,一直致力 于数字阵列雷达的研究,在1998年研制成功了4单元发射数字波 束形成试验台,研究结果证明了基于DDS的发射DBF技术用于相 控阵雷达的可行性。于2000年9月研制成功8单元一维收发全数 字波束形成试验系统,实现了低副瓣发射波束及发射波束零点 的形成。2005年,完成了512个单元的DAR试验系统,该系统采 用模块化设计思想,其标志性成果为高度集成和可靠的DAM (Digital Array Module)。2008年完成全阵面收发DBF演示 验证系统的研制。 2 数字阵列关键技术进展研究 2.1 射频数字化接收和波形产生技术 随着数字逻辑集成电路以前所未有的运行速度向前发展, A/D变换器和D/A变换器也在尽可能靠近天线,采用射频采样和 波形产生的方式实现全数字化,利用可编程数字电路实现软件 化数字阵列雷达的条件已日趋成熟。 下图给出的数字雷达系统中,射频波形信号由数字信号直 接经D/A变换器产生,回波射频信号经宽带放大后经A/D变换器 直接采集成数字信号在数字域进行处理。这种架构具有很多优 点:模拟元件数和复杂性降低;基于软件的能力升级,易于实 现软件无线电;易于实现多功能雷达。
MT-024:Pipelined Decimation ADCs说明书

MT-024指南ADC架构V:流水线式分级ADC作者:Walt Kester简介目前对于需要5 MSPS至10 MSPS以上采样速率的应用,流水线式分级ADC架构占优势。
尽管flash(全并行)架构(参见指南MT-020)在上世纪80年代和90年代早期主导8位视频IC ADC市场,但现代应用中流水线式架构已大面积取代Flash ADC。
也有少量采样速率高于1 GHz的高功率砷化镓(GaAs)工艺Flash转换器,但分辨率仅限于6或8位。
不过,Flash转换器仍然是较高分辨率流水线式ADC的常用构建模块。
流水线式ADC的应用包括视频、图像处理、通信和各种其他应用。
该架构有助于较低成本的IC工艺,最常见的有CMOS和BiCMOS。
目前的技术在高于100 MSPS的采样速率下可产生12至16位分辨率。
基本分级ADC架构流水线式ADC源于上世纪50年代首次使用的分级架构,该架构用于减少隧道二极管和真空管Flash ADC 中的元件数和功率(参见参考文献1、2)。
分级架构的框图如图1所示,其中显示了一个6位、二级ADC。
Array图1:6位、二级分级ADC通过第一级3位子ADC(SADC)——Flash转换器,将输入采样保持电路(SHA)的输出数字化。
接着使用3位子DAC (SDAC)将粗略3位MSB转换结果转换回至模拟信号。
SDAC输出则从SHA输出减除,经放大后施加于第二级3位SADC。
接着通过3位第二级SADC数字化“残余信号”,从而产生总共6位输出字的三个LSB。
此类型的ADC通常称为“分级”ADC,因为输入范围细分为若干个较小范围(子范围),这些较小范围又可进一步细分。
通过考察第二级ADC输入端的残余波形,可对此分级ADC执行最佳分析,如图2所示。
该波形假定整体ADC接收的是低频斜坡输入信号。
为了确保无失码,残余波形必须恰好填满第二级ADC的输入范围,如图2A的理想情况所示。
这意味着N1 SADC和N1 SDAC的精度必须均优于N1 + N2位,所示例子中,N1 = 3,N2 = 3,N1 + N2 = 6。
ADS7886-12-Bit,1-MSPS,微功耗,MINIATURE SAR AD

6-Pin SOT23 ADS7886S ±2 ±2 11 6-Pin SC70
(1)
For most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at .
• • • • • • 1-MHz Sample Rate Serial Device 12-Bit Resolution Zero Latency 20-MHz Serial Interface Supply Range: 2.35 V to 5.25 V Typical Power Dissipation at 1 MSPS: – 3.9 mW at 3-V VDD – 7.5 mW at 5-V VDD INL ±1.25 LSB Maximum, ±0.65 LSB (Typical) DNL ±1 LSB Maximum, +0.4 / -0.65 LSB (Typical) Typical AC Performance: 72.25 dB SINAD, -84 dB THD Unipolar Input Range: 0 V to VDD Power Down Current: 1 µA Wide Input Bandwidth: 15 MHz at 3 dB 6-Pin SOT23 and SC70 Packages
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
一种pipeline ADC低功耗设计方案

– MDAC1:反馈电容double,输出幅度减半 – MDAC2:输入范围减半,相应地量程减半,可通过与MDAC1用相同的Vref,
但令接±Vref的电容与Cf2的比值减半来实现 – 后续级电路:相当于量程减半,与MDAC2一样处理
输出幅度控制
传统3b+2.5b级电路的输 入输出关系: 1)第一级采用1b冗余位, 可将运放输出摆幅控制在 1/2量程内; 2)后续级采用0.5b冗余位, 由于输入在1/2量程内, 故运放输出也控制在1/2 量程内。
f1相时间:Tp1 ~= Tck/2‐td1 f3相时间:Tp3 ~= Tck/2‐(td2‐td1) f2相时间:Tp2 ~= Tck‐Tp1‐Tp3
∑ Q2t
≈
−16C⎜⎛ ⎝
2Vi
−1 4
8
T1iVref
i =1
⎟⎠⎞⎜⎜⎝⎛1 −
2 Adc
⎟⎟⎠⎞
传统结构下
MDAC1理想输出: ∑ Vo1_ d
= 4Vi
−1 2
8
T1iVref
i =1
Q2t
≈
−8CVo1_ d ⎜⎜⎛⎝1−
2 Adc
⎟⎟⎞⎠
传统结构下MDAC2得到的总电荷: 对
⎜⎛ 4 + C p ⎟⎞
Opamp and capacitor sharing
控制时序:
Cf
+-
Cf
Vref
典型的运放/电容共 享应用如参考文献[2]
Vi(n)
Cs
-
Vo2(n-1)
+
To 3rd stage
When f1 is high
采样/放大
Cf放电
SH79F3283CV2.0

SH79F3283带12位ADC的增强型8051微控制器1. 特性⏹基于8051指令流水线结构的8位单片机⏹Flash ROM:32K字节⏹RAM:内部256字节,外部1280字节,LCD RAM 28字节⏹类EEPROM:1024字节⏹工作电压:f OSC = 32.768kHz - 16MHz,V DD = 2.0V - 5.5V⏹振荡器(代码选项):- 晶体谐振器:32.768kHz- 晶体谐振器:2MHz - 16MHz- 陶瓷谐振器:2MHz - 16MHz- 内部RC振荡器:12MHz(±2%)/128K⏹30/42/46个CMOS双向I/O管脚⏹2个可选择的开漏极I/O口(32脚封装无此IO口)⏹I/O内建上拉电阻⏹4个16位定时器/计数器:T2,T3,T4和T5⏹一个12位PWM定时器⏹一个8位PWM定时器(32脚封装无此功能)⏹中断源:- 定时器2,3,4,5- 外部中断0,1,2,3(32脚无外部中断0,1)- 外部中断4:8输入- ADC,EUART,SCM,LPD- PWM,SPI(32脚封装无SPI功能)⏹2个增强型EUART(32脚封装只有一个UART0)⏹SPI接口(主从模式)(32脚封装无SPI功能)⏹内建蜂鸣器⏹9通道12位模数转换器(ADC),内建比较功能⏹LED驱动器:- 3-8 X 8段(1/3 - 1/8占空比)⏹LCD驱动器:- 8 X 24段(1/8占空比,1/4偏置)- 6 X 26段(1/6占空比,1/4或1/3偏置)- 5 X 27段(1/5占空比,1/3偏置)- 4 X 28段(1/4占空比,1/3偏置)⏹内建低电压复位功能(LVR)(代码选项)- LVR电压1:4.1V- LVR电压2:3.7V- LVR电压1:2.8V- LVR电压2:2.1V⏹内建CRC校验模块,校验空间大小可选⏹支持单线仿真和烧写⏹CPU机器周期:1个振荡周期⏹看门狗定时器(WDT)⏹预热计数器⏹支持省电运行模式:- 空闲模式- 掉电模式⏹Flash型⏹封装:TQFP48/LQFP44/LQFP322. 概述SH79F3283是一种高速高效率8051可兼容单片机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12-1A 12b 3GS/s Pipeline ADC with 500mW and 0.4 mm2 in 40nm Digital CMOSChun-Ying Chen, Jiangfeng WuBroadcom Corporation5300 California Avenue, Irvine, California, USA949-926-6337, cychen@, jiangfeng@AbstractA 12b 3GS/s 2-way interleaved pipeline ADC is presented. To achieve high speed, multiple internally generated power/ground rails are used with thin-oxide MOS devices. The ADC achieves a SNR of 61dB and a DNL of -0.4/+0.6LSB, consumes 500mW at 3GS/s and occupies 0.4 mm2area in 40nm CMOS process.IntroductionA new breed of high speed and high resolution ADCs are enabling wide-band direct sampling receivers in communications systems. In this ADC, high speed is achieved by using thin-oxide transistors in key high speed blocks along with multiple internally generated power/ground rails. It achieves up to 3GS/s sampling rate and 61dB SNR while consuming 500mW power. Table I shows the performance comparison with recently published works.Figure 1 shows the architecture of the 3GS/s 12-bit ADC. It consists of 2 interleaved ADCs running at half rate 1.5GHz clock with opposite phases. Each ADC uses a 2-2-2-6 architecture consisting of three MDAC stages and one 6b flash ADC, taking full advantage of the maximum speed in each stage to achieve the lowest power. The offset, gain and timing mismatches between the two ADC slices are corrected on chip using digital calibration.Amplifier and Switch DesignThe key to achieve high speed and high resolution in this work is the combination of 2.5V supply for amplifiers and 40nm thin-oxide MOS transistors for both g m devices and switches. The use of 2.5V supply maximizes the signal swing to 1.4Vpp and improves SNR by more than 6dB compared to using 1V supply.Figure 2 shows the amplifier structure used in the sample-and-hold (SHA) and MDACs. Thin-oxide NMOS transistors with large W/L ratio are used as the input differential pair to achieve high g m and low V dsat while having low parasitic capacitance for wide bandwidth and good phase margin. High gain that is required for 12b linearity is achieved by a telescopic cascode structure with the assistance of gain boosting. The cascode transistors are properly biased to protect the thin-oxide input transistors. In Figure 2, the amplifier output common mode voltage V cm1and the amplifier input common mode voltage V cm2 levels track temperature, process variation, and supply voltage for optimum operating points. Another bottleneck for high-speed pipeline ADC design is the CMOS switches that turn on/off the capacitors for signal sampling and charge transfer. Figure 2 shows the block diagram of sample-and-hold circuit. If the switches s1, s2, and s3 are implemented using thick-oxide CMOS transistors with minimum channel length of 0.25 µm, it will be impossible to achieve 1.5GS/s sampling speed. To overcome this problem, we use thin-oxide CMOS transistors with minimum channel length of 40 nm for all switching devices, achieving a 10x improvement in speed and a reduction of charge inject error. As shown in Figure 2, the switch and the corresponding driver stages are all implemented using thin-oxide devices. To accommodate 1.4Vpp signal swing, the local power and ground for the switch, V dd1 and V ss1, are designed to have the same common mode voltage as amplifier output V cm1. On the other hand, to keep the voltage stress of the switch within the safe level, the difference between V dd1 and V ss1 is regulated to be less than 1V, limited by the 40nm technology. The V dd1 and V ss1are generated inside the ADC by two low drop-out regulators (LDOs). Their common mode voltage tracks the common mode voltage of amplifier output over the process, temperature, and supply voltage variation for best performance. The ADC clock is level shifted up through an ac-coupled capacitor with a DC biased voltage of V cm1 to V dd1/V ss1 domain to drive the following thin-oxide drivers and switches.Flash DesignEach MDAC has a 2.5b flash ADC and the final residual is digitized using a 1.5GS/s 6b flash ADC. The flash ADCs must digitize 1.4Vpp voltage swing within a fraction of the 1.5GHz clock, while presenting a low input capacitance to maximize the signal bandwidth. Figure 3 shows the implementation of the flash ADC. The 40nm thin-oxide devices offer even greater advantage for flash ADCs as the regeneration time can be an order of magnitude shorter. The flash ADCs use exclusively thin-oxide transistors. Multiple power/ground rails are used to maximize input range while ensuring reliability. The folded preamplifiers are powered by the V dd1supply to achieve 1.4Vpp input range. The latches are operated between V dd1 and V ss1 and their outputs can directly control the MDAC switches. The latch outputs are shifted down to 1V domain by high-speed level shifters to interface with digital circuitry. To minimize the input capacitance, the 6b flash ADC uses averaging to relax input matching requirement and interpolation to reduce the number of preamplifiers. Averaging requires over-ranging to compensate for the boundary effect and may lead to reduction of available input range. In this design, 3-input dummy preamplifiers are used at the edges to generate over-range voltages from inner taps of the resistor ladder while maintaining the maximum input range. Dummy latches are placed at the edges to equalize the capacitance and kickback at high frequency. The above techniques make it possible to build a 6b 1.5GS/s flash ADC with very low input capacitance, and enable the low power 2-2-2-6 pipeline architecture by avoiding additional MDAC stages.Measurement ResultsFigure 4 shows the measured SNR and SNDR as functions of sampling frequency and input frequency. The ADC achieves 61dB peak SNR and maintains near constant SNR from 100MHz to 1.1GHz. The peak SNDR is 59dB. The120 978-4-86348-165-72011 Symposium on VLSI Circuits Digest of Technical Papers1212011 Symposium on VLSI Circuits Digest of Technical PapersSNDR remains above 50dB up to 3GS/s sa 1GHz input frequency. The DNL is within +the INL is within +/-2LSB. Figure 5 shows spectrum with 1GHz wideband QAM input siReferences[1][2] [3][Process (nm) 130 90 180 9Resolution (bit) 11 11 10 1Fs (GS/s) 1.0 0.8 1.0 0SNR (dB) 59 60 57 SNDR (dB) 55 58 56 5Power (mW) 250 350 1260 5Area (mm 2)3.51.4490Table 1: Comparison of >500MS/s and >References[1] S. Gupta et al., “A 1GS/s 11b Time-Interleave CMOS,” ISSCC Digest of Technical Papers, pp 2006.[2] C-C. Hsu et al., “An 11b 800MS/s Time-InteDigital Background Calibration,” ISSCC Digest of pp. 464-465, Feb. 2007.[3] R. Taft et al., “A 1.8V 1.0GS/s 10bUnified-Folding-Interpolation ADC with 9.1 E Frequency,” ISSCC Digest of Technical Papers, pp [4] A. Verma et al., “A 10b 500MHz 55mW CM Digest of Technical Papers, pp. 84-85, Feb. 2009.Figure 1: Architecture of 3Gs/s 2-way interle Figure 2: Sample-and-hold amplifier and swit VsigClk (3GHz)÷21.5GHz BufferSHAMDAC 2.5bitclkbandgap LDOBias/reference Clk genMDAC2.5bitMDAC 2.5bitBufferSHAMDAC 2.5bitclkF (bandgap LDOBias/reference Clk genMDAC 2.5bitMDAC 2.5bit2.5ampling rate and +0.6/-0.4LSB and the ADC outputignal. [4] This work90 40 11 12 0.5 3.0 - 61 53 59 55 500 0.50.4>10b ADCs.ed ADC in 0.13ump. 2360-2369, Feb. erleaved ADC with f Technical Papers, b Self-Calibrating ENOB at Nyquist p. 78-79, Feb. 2009. MOS ADC,” ISSCCaved ADC.tch design.Figure 3: Flash ADC implementation Figure4: (a) SNDR versus sa SNR/SNDR versus input frequency. Figure 5: ADC output spectrum of 11212EncoderFlash (6 bit)n EncoderFlash (6 bit)5V-1+1Flash ADC comparator6b Flash ADC Architecture0V0V0VVss1Vdd1Only inedge dummyn.ampling frequency; (b)GHz QAM signal.-1+1Vss1Vdd1Level Shifterd (1V/0V)(To Digisum)d1 (Vdd1/Vss1)(To MDAC)。