2013年天津塘沽区中考二模数学试题
天津市历年中考数学真题及答案

2014年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝各你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-6)×(-1)的结果等于(A)6 (B)-6 (C)1 (D)-1(2)cos60o的值等于(A)(B)(C)(D)(3)下列标志中,可以看作是轴对称图形的是(A)(B)(C)(D)(4)为让市民出行更加方便,天津市政府大力发展公共交通.2013年天津市公共交通客运量约为1608 000000人次.将1608 000 000用科学记数法表示应为(A)×107(B)×108(C)×109(D)×1010(5)如图,从左面观察这个立体图形,能得到的平面图形是(A)(B)(C)(D)(6)正六边形的边心距为,则该正六边形的边长是(A)(B)2(C)3 (D)(7)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25o,则∠C的大小等于(A)20o(B)25o(C)40o(D)50o(8)如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于(A)3:2 (B)3:1(C)1:1 (D)1:2(9)已知反比例函数,当1<x<2时,y的取值范围是(A)0<y<5 (B)1<y<2(C)5<y<10(D)y>10(10)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为(A)(B)(C)(D)(11)某公司招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.公司将录取(A)甲(B)乙(C)丙(D)丁(12)已知二次函数y=ax2+b x+c(a≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=9没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是(A)0 (B)1 (C)2 (D)32014年天津市初中毕业生学业考试试卷数学第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。
2013中考数学天津卷答案

2013年天津中考数学试卷参考答案一、选择题二、填空题(共8小题,每小题3分,满分24分)11.a7. 12.6. 13.k>0. 14.AC=BD(答案不唯一).15.55. 16.. 17.7.18.(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG 即为所求.三、解答题19.不等式组的解集为﹣3<x<3.20.解:(Ⅰ)∵反比例函数y=(k为常数,k≠0)的图象经过点A(2,3),∴把点A的坐标代入解析式,得3=,解得,k=6,∴这个函数的解析式为:y=;(Ⅱ)∵反比例函数解析式y=,∴6=xy.分别把点B 、C的坐标代入,得(﹣1)×6=﹣6≠6,则点B不在该函数图象上.3×2=6,则点C中该函数图象上;(Ⅲ)∵当x=﹣3时,y=﹣2,当x=﹣1时,y=﹣6,又∵k>0,∴当x<0时,y随x的增大而减小,21.解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15=15)=15;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.故答案为:50,32.22.解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=180°﹣72°=18°.23.解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=≈≈415(m).答:天塔的高度CD为:415m.24.解:(1)在甲商场:100+(290﹣100)×0.9=271,100+(290﹣100)×0.9x=0.9x+10;在乙商场:50+(290﹣50)×0.95=278,50+(290﹣50)×0.95x=0.95x+2.5;(2)根据题意得出:0.9x+10=0.95x+2.5,解得:x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同,(3)由0.9x+10<0.95x+2.5,解得:x>150,0.9x+10>0.95x+2.5,解得:x<150,yB=0.95x+50(1﹣95%)=0.95x+2.5,正确;∴当小红累计购物大于150时上没封顶,选择甲商场实际花费少;当小红累计购物超过100元而不到150元时,在乙商场实际花费少.25.解:(Ⅰ)如图①,∵点A(﹣2,0),点B(0,4),∴OA=2,OB=4.∵∠OAE=∠0BA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,∴=,即=,解得,OE=1,∴点E的坐标为(0,1);(Ⅱ)①如图②,连接EE′.由题设知AA′=m(0<m<2),则A′O=2﹣m.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2﹣m)2+42=m2﹣4m+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=m.又BE=OB﹣OE=3,∴在Rt△BE′E中,BE′2=E′E2+BE2=m2+9,∴A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.当m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).②如图②,过点A作AB′⊥x,并使AB′=BE=3.易证△AB′A′≌△EBE′,∴B′A=BE′,∴A′B+BE′=A′B+B′A′.当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴==,∴AA′=×2=,∴EE′=AA′=,∴点E ′的坐标是(,1).26.解:(Ⅰ)∵抛物线经过点(0,),∴c=.∴y1=ax2+bx+,∵点(﹣1,0)、(3,0)在抛物线y1=ax2+bx+上,∴,解得,∴y1与x之间的函数关系式为:y1=﹣x2+x+;(II)∵y1=﹣x2+x+,∴y1=﹣(x﹣1)2+3,∴直线l为x=1,顶点M(1,3).①由题意得,t≠3,如图,记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,∵由已知得,AM与BP互相垂直平分,∴四边形ANMP为菱形,∴PA∥l,又∵点P(x,y2),∴点A(x,t)(x≠1),∴PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q(1,y2),∴QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,∵PM2=QM2+PQ2,即(y2﹣t)2=(y2﹣3)2+(x﹣1)2,整理得,y2=(x﹣1)2+,即y2=x3﹣x+,∵当点A与点C重合时,点B与点P重合,∴P(1,),∴P点坐标也满足上式,∴y2与x之间的函数关系式为y2=x2﹣x+(t≠3);②根据题意,借助函数图象:当抛物线y2开口方向向上时,6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),∵3>,∴不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,y1﹣y2=﹣(x﹣1)2+3﹣[(x﹣1)2+]=(x﹣1)2+,若3t﹣11≠0,要使y1<y2恒成立,只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,)在x轴下方,∵3﹣t<0,只要3t﹣11>0,解得t >,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.综上,可以使y1<y2恒成立的t的取值范围是t ≥.。
2013年天津市中考数学试卷-答案

合函数图象; 【考点】函数的图象
第Ⅱ卷
二、填空题 11.【答案】 a7 【解析】 a a6 a7 .
3 / 13
故答案为: a7 【分析】利用同底数幂的法则计算即可得到结果. 【考点】同底数幂的乘法 12.【答案】6 【解析】∵ x 0 或 x 6 0 ,∴ x1 0,x2 6 ,∴原方程较大的根为 6. 故答案为 6. 【分析】原方程转化为 x 0 或 x 6 0 ,然后解两个一次方程即可得到原方程较大的根. 【考点】解一元二次方程﹣因式分解法 13.【答案】 k 0 【解析】∵一次函数 y kx 1 (k 为常数, k 0 )的图象经过第一、二、三象限,∴ k 0 . 故填: k 0 . 【分析】根据一次函数图象所经过的象限确定 k 的符号. 【考点】一次函数图象与系数的关系 14.【答案】 AC BD
∵ AC BC ,点 D 是边 AB 的中点,∴ ADC 90 ,∴四边形 ADCF 是矩形.
【分析】根据旋转的性质可得 AE CE,DE EF ,再根据对角线互相平分的四边形是平行四边形判断出
四边形 ADCF 是平行四边形,然后利用等腰三角形三线合一的性质求出 ADC 90 ,再利用有一个角是直
1 / 13
布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【考点】方差
6.【答案】A
【解析】所给图形的三视图是 A 选项所给的三个图形.
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【考点】简单组合体的三视图
7.【答案】A
2013年中考数学模拟试题2.doc

俯视图左视图主视图2013年中考数学模拟试题(卷B)满分:120分时间:120分钟一、选择题(本题共8个小题,每小题3分,共24分)在下列各题的四个备选答案中,只有一个是正确的.1.9-的相反数是A.19B.19-C.9-D.92、为了响应中央号召,今年某市加大财政支农力度,全市农业支出累计达到234760000元,其中234760000元用科学计数法可表示为()(保留三个有效数字).A、82.3410⨯元 B、82.3510⨯元 C、92.3510⨯元 D、92.3410⨯元3.如图,已知AB∥CD,∠C=35°,BC平分∠ABE,则∠ABE的度数是A.17.5°B.35°C.70°D.105°4.下列运算正确的是A.224236x x x=·B.22231x x-=-C.2222233x x x÷=D.224235x x x+=5.某男子排球队20名队员的身高如下表:身高(cm)180 186 188 192 208人数(个) 4 6 5 3 2则此男子排球队20名队员的身高的众数和中位数分别是(单位:cm)A.186,186 B.186,187 C.208,188 D.188,1876、一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为().A、2个B、3个C、4个D、5个7.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是A.16B.13C.12D.238.如图,AB是O⊙的直径,弦2cmBC=,F是弦BC的中点,60ABC∠=°.若动点E以2cm/s的速度从A点出发沿着A B A→→方向运动,设运动时间为()(03)t s t<≤,连结EF,当BEF△是直角三角形时,t(s)的值为A.47B.1C.47或1 D.47或1 或49二、填空题(每小题3分,共24分)9、函数32y x=-中,自变量x的取值范围是.蓝蓝红红红黄OABCD 10、已知113x y -=,则代数式21422x xy y x xy y----的值为 . 11、分解因式:2441a a -+= .12、用换元法解分式方程21212=---x xx x 时,如果设21x y x -=,将原方程化为关于y 的方程是 .13、某县2009年农民人均年收入为7800元,计划到2011年,农民人均收入达到9100元.设人均年收入的平均增长率为x ,则可列方程为 .14、如图,⊙O 是△ABC 的外接圆,OD ⊥AB 于点D 、交⊙O 于点E , ∠C =60°,如果⊙O 的半径为2,那么OD = .15、圆锥的底面半径为5cm ,圆锥母线长为13cm ,则圆锥的侧面积为 2cm (结果保留π).16、某蔬菜基地的圆弧形蔬菜大棚的剖面如图,已知16AB m =,半径10OA m =,则中间柱CD 的高度为 m .三、解答题(本题共10个小题,共72分)17、(6分)计算:︒+⎪⎭⎫ ⎝⎛----30tan 621322012118、(6分)求不等式组⎪⎩⎪⎨⎧-≤--x x x x 22158)2(3>的整数解.19、(6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值.20、.解方程:2250x x +-=ABO D CEOABC21、(6分)服装厂为红五月歌咏比赛加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服.22、某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。
2013年天津市中考数学试卷解析

天津市2013年中考数学试卷、选择题(共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有 项是符合题目要求的)1. ( 3分)(2013?天津)计算(- A . 12B . - 12考点:有理数的加法.分析:根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可. 解答:解:(-3) + (- 9) = - 12;故选B .点评:本题考查了有理数的加法,用到的知识点是有理数的加法法则,比较简单,属于基础 题. 2. ( 3分)(2013?天津)tan60°的值等于( ) A . 1B . :■:C . . -;D . 2考点:特殊角的三角函数值.分析:根据记忆的特殊角的三角函数值即可得出答案. 解答:解:ta n60°.;.故选C .点评:本题考查了特殊角的三角函数值, 一些特殊角的三角函数值是需要我们熟练记忆的内容.考点:中心对称图形分析:根据中心对称图形的定义,结合选项所给图形进行判断即可. 解答:解:A 、不是中心对称图形,故本选项错误;B 、 不是中心对称图形,故本选项错误;C 、 不是中心对称图形,故本选项错误;D 、 是中心对称图形,故本选项正确; 故选D .点评:本题考查了中心对称图形的知识, 判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4. ( 3分)(2013?天津)中国园林网 4月22日消息:为建设生态滨海, 2013年天津滨海新 区将完成城市绿化面积共 8210 000m 2,将8210 000用科学记数法表示应为( )A . 821 X102B . 82.1 XI05C . &21XI06D . 0.821 XI073) + (- 9)的结果等于(C . 6(3分)(2013?天津)下列标志中,可以看作是中心对称图形的是(考点:科学记数法一表示较大的数.分析:科学记数法的表示形式为ax10n的形式,其中1弓a|v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.解答:解:8 210 000=8.21 X06,故选:C.点评:此题考查科学记数法的表示方法•科学记数法的表示形式为a X0n的形式,其中1<|a| v 10, n为整数,表示时关键要正确确定a的值以及n的值.5. (3分)(2013?天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5, (2)班成绩的方差为15,由此可知()A . (1)班比(2)班的成绩稳定B . (2)班比(1)班的成绩稳定C .两个班的成绩一样稳定D .无法确定哪班的成绩更稳定考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:•/ (1 )班成绩的方差为17.5, (2)班成绩的方差为15,••• (1)班成绩的方差>(2)班成绩的方差,••• (2)班比(1)班的成绩稳定.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6. (3分)(2013?天津)如图是由3个相同的正方体组成的一个立体图形,考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 解答:解:所给图形的三视图是A选项所给的三个图形.故选A.点评:本题考查了几何体的三种视图,掌握定义是关键.它的三视图是()7. (3分)(2013?天津)如图,在△ ABC中,AC=BC,点D、E分别是边AB、AC的中点, 将厶ADE绕点E旋转180 °得厶CFE,则四边形ADCF 一定是()考点:旋转的性质;矩形的判定.分析:根据旋转的性质可得AE=CE , DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出 / ADC=90 °再利用有一个角是直角的平行四边形是矩形解答.解答:解:•••△ ADE绕点E旋转180 °得厶CFE,••• AE=CE , DE=EF ,•••四边形ADCF是平行四边形,••• AC=BC,点D是边AB的中点,•/ ADC=90 °•四边形ADCF矩形.故选A.点评:本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角是平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.& (3分)(2013?天津)正六边形的边心距与边长之比为()A . :>3B •幼士2 C. 1 : 2 D. . ■::2考点:正多边形和圆.分析:首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长, 继而求得答案.解答:解:如图:设六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线OC,小 1 1贝V AC=^AB=—a,2 2•OC= ‘」L .:' J= -,a,•正六边形的边心距与边长之比为:—;—a:a= 2.C.正方形D.梯形A.矩形B.菱形故选B .wA C B点评:此题考查了正多边形和圆的关系•此题难度不大,注意掌握数形结合思想的应用.19. ( 3分)(2013?天津)若x= - 1 , y=2」卩八 --的值等于()x 2-64y 2『旳A . _ 1B. 11C. 1D. 1171716|1考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把 x , y 的值代入进行计算即可.解答:解:原式=器-—•';」(x+Sy ) (x - Sy ) (x+Sy ) R - 旳)故选D .点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键. 10. (3分)(2013?天津)如图,是一对变量满足的函数关系的图象,有下列 3个不同的问题情境:① 小明骑车以400米/分的速度匀速骑了 5分,在原地休息了 4分,然后以500米/分的速度 匀速骑回出发地,设时间为 x 分,离出发地的距离为 y 千米;② 有一个容积为6升的开口空桶,小亮以 1.2升/分的速度匀速向这个空桶注水,注 5分后 停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为 x 分,桶内的水量为 y升;③ 矩形ABCD 中,AB=4 , BC=3,动点P 从点A 出发,依次沿对角线 AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x ,当点P 与点A 不重合时,y=S △ ABP ;当点P 与 点A 重合时,y=0 .其中,符合图中所示函数关系的问题情境的个数为()考点:函数的图象.分析:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为 1.20=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③当点P在AC上运动时,S A ABP的面积一直增加,当点P运动到点C时,S A ABP=6,这段时间为5,;当点P在CD上运动时,S A ABP不变,这段时间为4,;当点P在DA 上运动时,S A ABP 减小,这段时间为3,符合函数图象;解答:解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为 1.20=6 升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③如图所示:当点p在AC上运动时,SA ABP的面积一直增加,当点P运动到点C时,S A ABP=6 , 这段时间为5,;当点P在CD上运动时,S A ABP不变,这段时间为4,;当点P在DA 上运动时,S A ABP 减小,这段时间为3,符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选C.点评:本题考查了函数的图象,解答本题需要同学们仔细分析所示情景,判断函数图象是否符合,要求同学们能将实际问题转化为函数图象,有一定难度.二、填空题(共8小题,每小题3分,满分24分)11. (3分)(2013?天津)计算a?『的结果等于a7.考点:同底数幕的乘法.专题:计算题.分析:利用同底数幕的法则计算即可得到结果.解答:解:a?a6=a7.故答案为:a7点评:此题考查了同底数幕的乘法运算,熟练掌握运算法则是解本题的关键.12. (3分)(2013?天津)一元二次方程x(x - 6)=0的两个实数根中较大的根是 6 .考点:解一元二次方程-因式分解法.专题:计算题.分析:原方程转化为x=0或x - 6=0,然后解两个一次方程即可得到原方程较大的根.解答:解:T x=0或x - 6=0 ,/• x i=0, x2=6,•••原方程较大的根为6.故答案为6.点评:本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.13. (3分)(2013?天津)若一次函数y=kx+1 (k为常数,k用)的图象经过第一、二、三象限,则的取值范围是k>0 .考点:一次函数图象与系数的关系.分析:根据一次函数图象所经过的象限确定k的符号.解答:解:•••一次函数y=kx+1 (k为常数,k旳)的图象经过第一、二、三象限,• k> 0.故填:k> 0.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k v 0时,直线必经过二、四象限. b> 0时,直线与y轴正半轴相交.b=0时,直线过原点;b v 0时,直线与y轴负半轴相交.14. (3分)(2013?天津)如图,已知 / C= / D, / ABC= / BAD , AC与BD相交于点O, 请写出图中一组相等的线段AC=BD (答案不唯一).考点:全等三角形的判定与性质.专题:开放型.""".分析:利用角角边”证明△ ABC和厶BAD全等,再根据全等三角形对应边相等解答即可. 解答:解:•.•在△ ABC和厶BAD中,ZC=ZDAB=BA• △ ABC ◎△ BAD (AAS ),••• AC=BD , AD=BC .故答案为:AC=BD (答案不唯一).点评:本题考查了全等三角形的判定与性质,是基础题,关键在于公共边型题目,答案不唯一.PA、PB分别切O O于点A、B ,若/ P=70°则/ C的大小考点:切线的性质.分析:首先连接OA , OB,由PA、PB分别切O O于点A、B,根据切线的性质可得:OA丄PA, OB 丄PB,然后由四边形的内角和等于360°求得/ AOB的度数,又由圆周角定理,即可求得答案.解答:解:连接OA , OB ,••• PA、PB分别切O O于点A、B ,• OA 丄PA, OB 丄PB, 即 / PAO= / PBO=90 °•/ AOB=360 °- / PAO- / P- Z PBO=360 °- 90°- 70 °- 90°=110°•Z C=:Z AOB=55 °.2点评:此题考查了切线的性质以及圆周角定理•此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16. (3分)(2013?天津)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是亠 .考点:列表法与树状图法. 专题:计算题.分析:先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.AB的应用,开放15. (3分)(2013?天津)如图, 为55 (度).解答:解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有 16种等可能的结果数,其中两次摸出的小球标号的和等于 4的占3种,所有两次摸出的小球标号的和等于 4的概率 匚!.16故答案为上LA 亦杰rfh2 3 4 5 3 4 5 6 4 5 6 75 6 7 S点评:本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n , 再找出某事件所占有的结果数m ,然后利用概率的概念求得这个事件的概率二.n17. (3分)(2013?天津)如图,在边长为 9的正三角形 ABC 中,BD=3 , / ADE=60 °则 AE 的长为 7.考点:相似三角形的判定与性质;等边三角形的性质.分析:先根据边长为9, BD=3 ,求出CD 的长度,然后根据/ ADE=60。
2013年天津中考数学真题卷含答案解析

2013年天津市初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(-3)+(-9)的结果等于()A.12B.-12C.6D.-62.tan60°的值等于()A.1B.√2C.√3D.23.下列标志中,可以看作是中心对称图形的是()4.中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8210000m2.将8210000用科学记数法表示应为()A.821×104B.82.1×105C.8.21×106D.0.821×1075.七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15.由此可知()A.(1)班比(2)班的成绩稳定B.(2)班比(1)班的成绩稳定C.两个班的成绩一样稳定D.无法确定哪班的成绩更稳定6.下图是由3个相同的正方体组成的一个立体图形,它的三视图是()7.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形8.正六边形的边心距与边长之比为()A.√3∶3B.√3∶2C.1∶2D.√2∶29.若x=-1,y=2,则2xx2-64y2-1x-8y的值等于()A.-117B.117C.116D.11510.如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0B.1C.2D.3第Ⅱ卷(非选择题,共90分)二、填空题(本大题共8小题,每小题3分,共24分)11.计算a·a6的结果等于.12.一元二次方程x(x-6)=0的两个实数根中较大的根是.13.若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是.相等的线14.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组..段.15.如图,PA、PB分别切☉O于点A、B,若∠P=70°,则∠C的大小为(度).16.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于4的概率是. 17.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明).三、解答题(本大题共8小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(本小题6分)解不等式组{x-1<2,2x+9>3.已知反比例函数y=k(k为常数,k≠0)的图象经过点A(2,3).x(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(Ⅲ)当-3<x<-1时,求y的取值范围.21.(本小题8分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①、②,请根据相关信息.解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.已知直线l与☉O,AB是☉O的直径,AD⊥l于点D.(Ⅰ)如图①,当直线l与☉O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线l与☉O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.23.(本小题8分)天塔是天津市的标志性建筑之一.某校数学兴趣小组要测量天塔的高度.如图,他们在点A处测得天塔最高点C的仰角为45°.再往天塔方向前进至点B处测得最高点C的仰角为54°,AB =112m.根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(Ⅰ)根据题意,填写下表(单位:元):累计购物130290 (x)实际花费在甲商场127…在乙商场126…(Ⅱ)当x取何值时,小红在甲、乙两商场的实际花费相同?(Ⅲ)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?25.(本小题10分)在平面直角坐标系中,已知点A(-2,0),点B(0,4),点E在OB上,且∠OAE=∠OBA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A'E'O',连结A'B、BE'.①设AA'=m,其中0<m<2,试用含m的式子表示A'B2+BE'2,并求出使A'B2+BE'2取得最小值时点E'的坐标;②当A'B+BE'取得最小值时,求点E'的坐标(直接写出结果即可).26.(本小题10分)已知抛物线y 1=ax 2+bx+c(a ≠0)的对称轴是直线l,顶点为点M,若自变量x 和函数值y 1的部分对应值如下表所示:x … -1 0 3 … y 1=ax 2+bx+c…94…(Ⅰ)求y 1与x 之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y 轴的直线l',A 为直线l'上的动点,线段AM 的垂直平分线交直线l 于点B,点B 关于直线AM 的对称点为P,记P(x,y 2). ①求y 2与x 之间的函数关系式;②当x 取任意实数时,若对于同一个x,有y 1<y 2恒成立,求t 的取值范围.答案全解全析:1.B (-3)+(-9)=-(3+9)=-12,故选B.2.C tan 60°=√3,故选C.3.D A选项是轴对称图形;B、C选项既不是轴对称图形,也不是中心对称图形;D选项是中心对称图形,故选D.评析本题考查中心对称图形的概念,解题关键是寻找对称中心,然后绕对称中心旋转180°后与原图形重合的图形是中心对称图形.4.C 科学记数法的形式为a×10n,其中1≤|a|<10,故8 210 000=8.21×106.故选C.5.B 数据的方差反映一组数据的稳定性.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)班成绩的方差比(1)班成绩的方差小,故(2)班的成绩比(1)班的成绩稳定, 故选B.6.A 从前面看到的图形有上下两层,上层是一个正方形,下层是左右并排的两个正方形,且上层的一个正方形放在下层的两个正方形中间,故排除B;从左面看到的是上下两个一样的正方形,且按要求左视图应该放在主视图的右边,故排除C;从上面看到的是一个正方形放在两个正方形的正中间,上层一个正方体和下层两个正方体的两条交线按要求应该画出来,故选A.7.A ∵△ADE绕E点旋转180°得到△CFE,∴AE=CE,DE=EF.∴四边形ADCF是平行四边形.又∵BC=AC,D是AB的中点,∴∠ADC=90°,∴平行四边形ADCF是矩形.8.B 如图所示:∵ABCDEF是正六边形,∴△OAB为正三角形.过O作OH⊥AB,垂足为H,则OHOA =sin 60°=√32,即边心距与边长的比为√3∶2,故选B.9.D 原式=2x (x+8y )(x -8y )-1x -8y =2x -(x+8y )(x+8y )(x -8y )=x -8y (x+8y )(x -8y )=1x+8y ,当x=-1,y=2时,原式=1-1+8×2=115.故选D.10.C 小明以400米/分的速度骑车5分钟,离开出发地的距离应该是2 000米而不是6米,故①不符合;小亮以1.2升/分的速度匀速向空桶注水,5分钟后正好注入6升,休息4分钟,这4分钟内桶里的水一直保持6升,再以2升/分的速度往外倒,正好3分钟倒完,故②符合;矩形ABCD 中,AB=4,BC=3,则AC=5,P 点从A 向C 运动的过程中,△ABP 的底AB=4不变,高从0增加到3,故面积从0增加到6,P 点从C 向D 运动的过程中,△ABP 的底和高分别是4和3,△PAB 的面积一直为6,P 点从D 到A 的运动过程中,△ABP 的底不变,高从3减小到0,面积从6减小到0,故③也符合,故选C.评析 “判断两个变量在运动变化过程中对应的函数图象是否正确”是本题考查的重点.解答本题的关键是找到变量在变化过程中的某一关键点或者某一关键段,观察关键点或者关键段对应的函数图象是否正确,把动态问题转化为静态问题来解决. 11.答案 a 7解析 a·a 6=a 1+6=a 7. 12.答案 6解析 x(x-6)=0,则x=0或x-6=0,即x=0或x=6,故较大的根为6. 13.答案 k>0解析 易知一次函数y=kx+1(k 为常数,k≠0)的图象过点(0,1),要使图象经过第一、二、三象限,只需k>0.14.答案 答案不唯一.AC=BD(或BC=AD,AO=BO,CO=DO)解析 在△ADB 和△BCA 中,∠C=∠D,∠ABC=∠BAD,AB=AB,故△ADB≌△BCA,则AC=BD,AD=BC, ∠ABD=∠BAC,∴OA=OB,又AC=BD,∴OC=OD.15.答案55解析如图,连结OA、OB,因为PA、PB是圆的切线,所以∠OAP=∠OBP=90°,又因为∠P=70°,所以∠AOB=360°-90°-90°-70°=110°,又∠AOB=2∠C,所以∠C=55°.16.答案316解析1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8根据列表可得,总共有16个结果,和是4的有3个,故两次摸出的小球的标号之和等于4的概率为3.1617.答案7解析∵△ABC为等边三角形,∴∠B=60°.又∵∠ADC=∠B+∠BAD=∠ADE+∠EDC,∠ADE=60°,∴∠EDC=∠BAD.又∵∠B=∠C,∴△ABD∽△DCE,∴AB∶CD=BD∶CE.∵AB=9,BD=3, ∴CD=6, ∴CE=2,∴AE=7. 18.答案 (Ⅰ)6(Ⅱ)如图,取格点P,连结PC,则PC⊥BC.过点A 画PC 的平行线,与BC 交于点Q,连结PQ 与AC 相交于点D;过点D 画CB 的平行线,与AB 相交于点E,连结DE,分别过点D 、E 画PC 的平行线,与CB 相交于点G 、F.则四边形DEFG 即为所求.解析 如图所示,△ABC 中,c>b>a,EFGD 为△ABC 内一条边在BC 边上的正方形,设正方形的边长为x,BC 边上的高AH=h,△ABC 的面积为S.∵△ADG∽△ABC,∴x a =ℎ-xℎ,∴x=aℎa+ℎ=2Sa+2Sa.同理可得:当正方形的一边落在AC 或AB 边上时,有x=2Sb+2S b或x=2Sc+2S c.(a +2Sa)-(b +2Sb)=(a-b)+(2S a -2S b )=(a-b)-2S·a -b ab =(a-b)·ab -2S ab.∵ab>ah,即ab>2S,∴ab-2S>0.又∵b>a,∴a-b<0. ∴(a +2Sa)-(b +2Sb )=(a-b)·ab -2S ab<0,∴a+2S a <b+2S b ,∴2Sa+2Sa>2Sb+2S b.同理可得2S b+2S b>2S c+2S c,∴2Sa+2S a>2Sb+2S b>2S c+2S c,即当正方形一边落在三角形最短的边上, 另两个顶点落在其他两边上时,正方形为三角形中所包含的面积最大的正方形,所以本题所作正方形一边应该落在最短边BC 上. 又根据画图过程可得:图中所作四边形DEFG 为矩形, ∵△QDG∽△QPC,△ADE∽△ACB,△DPC∽△DQA, ∴DG PC =DQ PQ ,DE BC =AD AC ,AD AC =DQ PQ,∴DG PC =DEBC.又∵PC=BC,∴DG=DE,∴四边形DEFG 为正方形.∴所作四边形DEFG 为△ABC 内部面积最大的正方形.评析 本题主要考查“在一个三角形内部如何作出面积最大的正方形”这一作图方法,解题关键是综合运用正方形和相似三角形知识寻找满足正方形面积最大的位置(即正方形的一边应该落在三角形的最短边上,另外两个顶点分别在另外两条边上).正确作出图形的关键是“利用网格特点,找出使PC 和BC 垂直且相等的P 点”. 19.解析 {x -1<2,①2x +9>3,②解不等式①,得x<3. 解不等式②,得x>-3. ∴不等式组的解集为-3<x<3.20.解析 (Ⅰ)∵反比例函数y=kx 的图象经过点A(2,3), ∴3=k2,解得k=6.∴这个函数的解析式为y=6x . (Ⅱ)分别把点B,C 的坐标代入y=6x ,可知点B 的坐标不满足函数解析式,点C 的坐标满足函数解析式, ∴点B 不在这个函数的图象上,点C 在这个函数的图象上. (Ⅲ)∵当x=-3时,y=-2,当x=-1时,y=-6,又由k>0知,当x<0时,y随x的增大而减小,∴当-3<x<-1时,-6<y<-2.评析本题的第(Ⅰ)(Ⅱ)问主要考查用待定系数法求函数的解析式和函数图象的意义;第(Ⅲ)问考查反比例函数的性质,熟练掌握“当k>0时,在每个象限内y随x的增大而减小”这一性质是解答本题的关键.21.解析(Ⅰ)50;32.=16(元),(Ⅱ)∵x=5×4+10×16+15×12+20×10+30×850∴这组样本数据的平均数为16元.∵在这组样本数据中,10出现了16次,出现次数最多,∴这组样本数据的众数为10元.=15元, ∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,有15+152∴这组样本数据的中位数为15元.(Ⅲ)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据估计该校1 900名学生中捐款金额为10元的学生人数比例为32%,有1 900×32%= 608(名),∴该校本次活动捐款金额为10元的学生约有608名.评析本题重点考查学生对平均数、众数、中位数概念的理解,用样本估计总体以及学生的识图能力,易错处多因概念理解不透彻,易把16看成众数,把5元、10元、15元、20元、30元直接加起来除以4、16、12、10、8的和得到的结果作为平均数.22.解析(Ⅰ)如图,连结OC.∵直线l与☉O相切于点C,∴OC⊥l,∴∠OCD=90°.∵AD⊥l,∴∠ADC=90°.∴OC∥AD,∴∠ACO=∠DAC,在☉O中,∵OA=OC,∴∠BAC=∠ACO,∴∠BAC=∠DAC=30°.(Ⅱ)如图,连结BF.∵AB是☉O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF为Rt△ADE的一个外角,∠DAE=18°,∴∠AEF=∠ADE+∠DAE=90°+18°=108°.在☉O中,四边形ABFE是圆内接四边形,∴∠AEF+∠B=180°,∴∠B=180°-108°=72°,∴∠BAF=90°-72°=18°.评析本题重点考查了“圆内接四边形对角互补”“直径所对的圆周角是直角”这两个重要的知识点,对“见切线连圆心和切点”“利用直径构造直角”这些常见辅助线作法的熟练掌握是正确解答本题的关键.23.解析如图,根据题意,有∠CAD=45°,∠CBD=54°,AB=112 m.∵在Rt△ACD 中,∠ACD=∠CAD=45°,∴AD=CD. 又AD=AB+BD,∴BD=AD-AB=(CD-112)m.∵在Rt△BCD 中,tan∠BCD=BDCD ,∠BCD=90°-∠CBD=36°, ∴tan 36°=BDCD ,∴BD=CD ·tan 36°.∴CD ·tan 36°=CD -112, ∴CD=1121-tan36°≈1121-0.73≈415 m.答:天塔的高度CD 约为415 m. 24.解析 (Ⅰ)在甲商场:271,0.9x+10; 在乙商场:278,0.95x+2.5.(Ⅱ)根据题意,有0.9x+10=0.95x+2.5,解得x=150, ∴当x=150时,小红在甲、乙两商场的实际花费相同. (Ⅲ)由0.9x+10<0.95x+2.5,解得x>150, 由0.9x+10>0.95x+2.5,解得x<150,∴当小红累计购物超过150元时,在甲商场的实际花费少;当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.评析 本题是函数与不等式综合应用的方案设计问题,解答此类问题的关键是按照各自的优惠方案正确写出在甲、乙两个商场购物时,实际所需费用和物品标价的关系式,然后利用方程和不等式解决问题.25.解析 (Ⅰ)∵点A(-2,0),点B(0,4), ∴OA=2,OB=4.∵∠OAE=∠OBA,∠EOA=∠AOB=90°, ∴△OAE∽△OBA,∴OA OB =OEOA,即24=OE2,∴OE=1.∴点E 的坐标为(0,1).(Ⅱ)①如图,连结EE',∵AA'=m,∴A'O=2-m,在Rt△A'BO 中,∵A'B 2=A'O 2+BO 2, ∴A'B 2=(2-m)2+42=m 2-4m+20.∵△A'E'O'是将△AEO 沿x 轴向右平移得到的, ∴EE'∥AA',且EE'=AA', ∴∠BEE'=90°,EE'=m. 又BE=OB-OE=3,于是,在Rt△BE'E 中,BE'2=E'E 2+BE 2=m 2+9, ∴A'B 2+BE'2=2m 2-4m+29(0<m<2), 即A'B 2+BE'2=2(m-1)2+27(0<m<2), 当m=1时,A'B 2+BE'2取得最小值, ∴点E'的坐标为(1,1). ②点E'的坐标为(67,1).26.解析 (Ⅰ)由已知,抛物线y 1=ax 2+bx+c 经过点(0,94),得c=94,∴y 1=ax 2+bx+94. ∵点(-1,0)、(3,0)在抛物线y 1=ax 2+bx+94上,∴{a −b +94=0,9a +3b +94=0,解得{a =-34,b =32.∴y 1与x 之间的函数关系式为y 1=-34x 2+32x+94.(Ⅱ)由y 1=-34x 2+32x+94配方得y 1=-34(x-1)2+3,∴直线l 为x=1,顶点M(1,3).①根据题意,得t≠3.如图,记直线l 与直线l'交于点C,则点C(1,t). 当点A 与点C 不重合时,由已知,得AM 与BP 互相垂直平分, ∴四边形ABMP 为菱形,∴PA∥l, 又点P(x,y 2),则点A(x,t),(x≠1) ∴PM=PA=|y 2-t|.过点P 作PQ⊥l 于点Q,则点Q(1,y 2), ∴QM=|y 2-3|,PQ=AC=|x-1|.在Rt△PQM 中,由PM 2=QM 2+PQ 2,得(y 2-t)2=(y 2-3)2+(x-1)2, 整理,得y 2=16-2t (x-1)2+t +32,即y 2=16-2t x 2-13-t x+10-t 26-2t .当点A 与点C 重合时,点B 与点P 重合,可知点P (1,t +32),其坐标也满足上式.∴y 2与x 之间的函数关系式为y 2=16-2t x 2-13-t x+10-t 26-2t (t≠3); ②根据题意,借助函数图象.当抛物线y 2开口方向向上时,6-2t>0,即t<3,抛物线y 1的顶点M(1,3),抛物线y 2的顶点(1,t +32),由3>t +32,可知不符合题意.当抛物线y 2开口方向向下时,6-2t<0,即t>3, y 1-y 2=-34(x-1)2+3-[16-2t (x -1)2+t +32]=3t -114(3-t )(x-1)2+3-t 2.若3t-11≠0,要使y 1<y 2恒成立, 只要抛物线y=3t -114(3-t )(x-1)2+3-t 2开口方向向下,且顶点(1,3-t 2)在x 轴下方,因为3-t<0,所以只要3t-11>0,解得t>113,符合题意; 若3t-11=0,y 1-y 2=-13<0,即t=113也符合题意. 综上,可以使y 1<y 2恒成立的t 的取值范围是t≥113.。
2013年天津市中考数学模拟试卷(含答案)

2013年天津市中考数学模拟试卷答题时间:120分钟 满分:150分一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. 1.3的倒数是( ) A .-3 B .3 C .13 D .13-2.计算232(3)x x ⋅-的结果是( ) A .56x - B .56x C .62x - D .62x 3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定 4.使分式24x x -有意义的x 的取值范围是( ) A .x =2 B .x ≠2 C .x =-2 D .x ≠-25.不等式组2030x x ->-<⎧⎨⎩的解集是( ) A .x>2 B .x<3 C .2<x<3 D .无解6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( )A .80°B .50°C .40°D .20°7.如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是( )A .3B .4C .5D .68.观察市统计局公布的“十五”时期某市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是( )A .2003年农村居民人均收入低于2002年B .农村居民人均收入比上年增长率低于9%的有2年C .农村居民人均收入最多时2004年D .农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:春节期间,这三种不同的包装的土特产都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大是( ) A .甲 B .乙 C .丙 D .不能确定10.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为x 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118B .112C .19D .16二、填空题:(本大题10个小题,每小题3分,共30分)在每小题中,请将答案直接填在题后的横线上. 11.某市某天的最高气温是17℃,最低气温是5℃,那么当天的最大温差是____________℃. 12.分解因式:x 2-4=____________.13.如图,已知直线12l l ∥,∠1=40°,那么∠2=____________度.14.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为____________.15.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为____________立方米.16.如图,已知函数y=ax+b和y=kx的图象交于点P, 则根据图象可得,关于y ax by kx=+=⎧⎨⎩的二元一次方程组的解是____________.17.如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.18.按一定的规律排列的一列数依次为:111111,,,,,2310152635……,按此规律排列下去,这列数中的第7个数是____________.19.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(20,53-),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么该函数的解析式是____________.20.如图,△ABC内接于⊙O,∠A所对弧的度数为120°.∠ABC、∠ACB的角平分线分别交于AC、AB于点D、E,CE、BD相交于点F.以下四个结论:①1cos2B F E∠=;②BC=BD;③EF=FD;④BF=2DF.其中结论一定正确的序号数是____________.三、解答题:(本大题6个小题,共60分)下列各题解答时必须给出必要的演算过程或推理步骤.21.(每小题5分,共10分)(1)计算:102tan601)--︒++(2)解方程组:2328 y xy x=+=⎧⎨⎩22.(10分)如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:(1)△AEF≌△BCD;(2)EF∥CD.23.(10分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有____________套,B型玩具有____________套,C型玩具有____________套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为____________,每人每小时能组装C型玩具____________套.24.(10分)农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的情况下,Ⅱ号稻谷单位面积的产量比Ⅰ号稻谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号稻谷高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.⑴当Ⅱ号稻谷的国家收购价是多少时,在田间管理、土质和面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷的收益相同?⑵去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家收购价不变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?25.(10分)如图,在梯形ABCD中,AB∥DC,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.⑴求证:DC=BC;⑵E是梯形内的一点,F是梯形外的一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;⑶在⑵的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.26.(10分)机械加工需用油进行润滑以减小摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲乙两个车间都组织了人员为减少实际油耗量进行攻关.⑴甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍为60%,问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?⑵乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1千克,用油的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备的润滑用油量是多少千克?用油的重复利用率是多少?四、解答题:(本大题2个小题,共20分)下列各题解答时必须给出必要的演算过程或推理步骤. 27.(10分)已知:m 、n 是方程2650x x -+=的两个实数根,且m<n ,抛物线2y x bx c =-++的图像经过点A(m ,0)、B(0,n). (1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b aa--(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.28.(10分)如图28-1所示,一张三角形纸片ABC ,∠ACB =90°,AC =8,BC =6.沿斜边AB 的中线CD把这张纸片剪成1122AC D BC D ∆∆和两个三角形(如图28-2所示).将纸片11A C D ∆沿直线2D B (AB )方向平移(点12A D D B ,,,始终在同一直线上),当点1D 与点B 重合时,停止平移.在平移的过程中,112C D BC 与交于点E ,1A C 与222C D BC 、分别交于点F 、P .⑴当11A C D ∆平移到如图28-3所示位置时,猜想12D E D F 与的数量关系,并证明你的猜想;⑵设平移距离21D D 为x ,1122AC D BC D ∆∆和重复部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;1⑶对于⑵中的结论是否存在这样的x,使得重复部分面积等于原△ABC纸片面积的?若存在,请求出x4的值;若不存在,请说明理由.参考答案一、选择题:(每小题4分,共40分)1—5 C A A B C6—10 D B D C B二、填空题:(每小题3分,共30分)11.12或-12均可12.(x+2)(x-2)13.4014.2π或6.28均可15.4310⨯16.42 xy=-=-⎧⎨⎩17.如图,18.150或15819.12 yx =-20.①③三、解答题:21.(1)32;(2)12xy==⎧⎨⎩22.(1)因为AE∥BC,所以∠A=∠B.(2分)又因AD=BF,所以AF=AD+DF=BF+FD=BD(5分)又因AE=BC,所以△AEF≌△BCD.(7分)(2)因为△AEF≌△BCD,所以∠EFA=∠CDB.(9分)所以EF∥CD.(10分)23.(每空2分)(1)132,48,60;(2)4,6.24.(1)由题意,得1.62120%=-(元);(2分)(2)设卖给国家的Ⅰ号稻谷x千克,(3分)根据题意,得x(1-20%)×2.2=1.6x+1040.(6分)解得,x=6500(千克)(7分)x+(1-20%)x=1.8x=11700(千克)(9分)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同;(2)小王去年卖给国家的稻谷共为11700千克.(10分)25.(1)过A作DC的垂线AM交DC于M,则AM=BC=2.(1分)又tan∠ADC=2,所以212D M==.(2分)因为MC=AB=1,所以DC=DM+MC=2,即DC=BC.(3分)(2)等腰直角三角形.(4分)证明:因为DE=DF,∠EDC=∠FBC,DC=BC.所以,△DEC≌△BFC(5分)所以,CE=CF,∠ECD=∠BCF.所以,∠ECF=∠BCF+∠BCE=∠ECD+∠BCE=∠BCD=90°即△ECF是等腰直角三角形.(6分)(3)设BE=k,则CE=CF=2k,所以EF=.(7分)因为∠BEC=135°,又∠CEF=45°,所以∠BEF=90°.(8分)所以3BF k ==(9分)所以1sin 33B F E k k∠==.(10分)26.(1)由题意,得70×(1-60%)=70×40%=28(千克)(2分) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克,(3分) 由题意,得x ×[1-(90-x)×1.6%-60%]=12(6分) 整理,得x 2-65x -750=0解得:x 1=75,x 2=-10(舍去)(8分) (90-75)×1.6%+60%=84%(9分)答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克,用油的重复利用率是84%.(10分)27.(1)解方程2650x x -+=,得125,1x x ==(1分) 由m<n ,有m =1,n =5所以点A 、B 的坐标分别为A (1,0),B (0,5).(2分) 将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++. 得105b c c -++==⎧⎨⎩解这个方程组,得45b c =-=⎧⎨⎩所以,抛物线的解析式为245y x x =--+(3分) (2)由245y x x =--+,令y =0,得2450x x --+= 解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9).(4分) 过D 作x 轴的垂线交x 轴于M . 则1279(52)22D M C S ∆=⨯⨯-=12(95)142M D B O S =⨯⨯+=梯形,1255522B O C S ∆=⨯⨯=(5分)所以,2725141522B C D D M C B O C M D B O S S S S ∆∆∆=+-=+-=梯形.(6分)(3)设P 点的坐标为(a ,0)因为线段BC 过B 、C 两点,所以BC 所在的值线方程为y =x+5. 那么,PH 与直线BC 的交点坐标为E(a ,a+5),(7分)PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.(8分) 由题意,得①32E H E P =,即23(45)(5)(5)2a a a a --+-+=+解这个方程,得32a =-或5a =-(舍去)(9分)②23E H E P =,即22(45)(5)(5)3a a a a --+-+=+解这个方程,得23a =-或5a =-(舍去)P 点的坐标为3(,0)2-或2(,0)3-.(10分)28.(1)12D E D F =.(1分)因为1122C D C D ∥,所以12C AFD ∠=∠. 又因为∠ACB =90°,CD 是斜边上的中线, 所以,DC =DA =DB ,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠(2分) 所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =.(3分) (2)因为在Rt △ABC 中,AC =8,BC =6,所以由勾股定理,得AB =10. 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是△ABC 的AB 边上的高,为245.设1BED ∆的1B D 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x -=.所以24(5)25x h -=.121112(5)225B E D S B D h x ∆⨯⨯=-=.(5分)又因为1290C C ∠+∠=︒,所以290FPC ∠=︒. 又因为2C B ∠=∠,43sin ,cos 55B B ==.所以234,55P C x P F x ==,22216225F CPS P C P F x ∆⨯==而2212221126(5)22525B C D B E D F C P A B C y S S S S x x ∆∆∆∆=--=---所以21824(05)255y x x x =-+≤≤.(8分) 存在.当14A B C y S ∆=时,即218246255x x -+= 整理,得2320250x x -+=.解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原△ABC 面积的14.(10分)。